Transmission of Data over Voice Channels
Übertragung von Daten über Gesprächskanäle
Transmission de données sur un canal de parole

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

Priority: 08.05.2004 GB 0410321

Date of publication of application:
14.02.2007 Bulletin 2007/07

Proprietor: Mulsys Ltd
Guildford
Surrey GU1 3RX (GB)

Inventors:
• Kondoz, Ahmet
 Guildford, Surrey GU4 7LR (GB)

Katugampala, Nilantha Nandima
Kottawa,
Pannipitiya (LK)

• AL-NAIMI, Khaldoon, Taha
 Guildford, Surrey GU4 7XS (GB)

• VILLETTE, Stephane
 F-72500 Dissay sous Courcillon (FR)

Representative: Wilson, Alan Stuart
Barker Brettell LLP
138 Hagley Road
Edgbaston
Birmingham
B16 9PW (GB)

References cited:
EP-A- 0 545 783
WO-A-02/065664
WO-A-03/071521

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to data transmission over telecommunications networks, and in particular to the transmission of digital data over speech channels of such networks.

Using speech channels for the transmission of data over networks can have advantages under some circumstances because they are generally given a high priority and are subject to relatively small delays. This is necessary to ensure that normal speech can be transmitted without unacceptable loss of clarity, whereas data channels are generally susceptible to greater delay. However, transmitting non-speech data over speech channels can be difficult, especially where low bit rate speech coding systems are used, such as in GSM. These systems have been developed recently, and have data rates of below 50kb/s and often below 30kb/s. The bit rate that can be used for speed coding can be even lower, and may be less than 20kb/s. For example, a typical GSM voice channel has a 22.8kb/s rate, but only 13kb/s of the gross bit rate is used for speech coding.

One problem that systems such as the GSM system do not fully address is security. The GSM system ensures subscriber identity confidentiality and provides subscriber authentication, as well as confidentiality of user traffic and signalling. The ciphering algorithms used in GSM have proved to be effective in ensuring traffic confidentiality. However, the traffic confidentiality is only maintained across the radio access channel. Voice traffic is transmitted across the core circuit-switched networks 'in-clear' in the form of PCM or ADPCM speech, which opens up the possibility of unauthorised access, to GSM to GSM, or GSM to PSTN conversations. For end-to-end security the speech signal must be encrypted. This means that it no longer resembles speech, and cannot therefore be sent over the voice channel in the same way as un-encrypted speech. Instead it needs to be considered in the same way as general digital data. A disadvantage of the GSM speech channel is that security is controlled by the network operator, not the end user. Control by the end user may be preferable in some applications.

Although the GSM data channel can be used for encrypted speech transmission, this approach suffers from a number of disadvantages, in particular delays as mentioned above. The GSM data channel typically requires 28 to 31 seconds to establish a connection, of which approximately 18 seconds are taken up by the GSM modem handshaking time. In addition, the round trip time of the GSM data channel is between 1 and 2 seconds for the 95th percentile.

The patent WO03071521 discloses a method of sending data over a speech channel in a mobile communication network.

The invention is as defined in the claims.

Preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:

- Figure 1 is a diagrammatic representation of a data communication system according to the invention;
- Figure 2 is a diagram showing functions of a modulator and demodulator of the system of Figure 1;
- Figure 3 is a diagram illustrating a method of modulation of data in the system of Figure 1;
- Figure 4 is a table used in the method of Figure 3;
- Figure 5a shows a segment of a waveform signal produced by the method of Figure 3;
- Figure 5b shows a segment of a waveform signal produced by a modification of the method of Figure 3;
- Figure 6 is a diagram showing modification of modulated waveform in the system of Figure 1 to include characteristics so that the signal passes through Voice Activity Detectors (VAD);
- Figure 7 is a graph of the spectrum of the signal segment of Figure 5a;
- Figure 8 shows a spectral shaping function used to modify the waveform segment of Figure 5a;
- Figure 9 is a graph showing the spectrum of the modified signal segment corresponding to Figure 5a;
- Figure 10a shows the waveform segment of Figure 5a after it has been modified;
- Figure 10b shows the waveform segment of Figure 5b after it has been modified;
- Figure 11 shows a pulse shaping function that can be used in place of the frequency transforms of Figures 7 to 9;
Figure 12 is a diagram showing an adaptive channel compensation filter used in the system of Figure 1;

Figure 13 is a graph showing synchronisation pulses sent by the transmitter of Figure 1;

Figure 14 is a graph showing the form in which the signal of Figure 13 is received at the demodulator of Figure 1 after transmission over the network;

Figure 15 is a graph showing the signal of Figure 14 after filtering by the channel compensation filter of Figure 1;

Figure 16 is a graph showing a data carrying modulated waveform signal sent by the modulator of Figure 1;

Figure 17 is a graph showing the form in which the signal of Figure 16 is received at the demodulator of Figure 1 after transmission over the network;

Figure 18 is a graph showing the signal of Figure 17 after filtering by the channel compensation filter of Figure 1;

Figures 19 and 20 show modulated waveform features that can be used in place of the pulses of Figures 5a and 5b; and

Figure 21 shows an encrypted speech transmission system excluding the system of Figure 1.

[0008] Referring to Figure 1, a voice communication system comprises a first service access point (SAP) 10, arranged to transmit voice over a voice communications network 12, and a second SAP 14, arranged to receive voice over the network. A data modulator 18 is arranged to receive input data 17 and to convert the input data signal to a modulated waveform 19 for input to the first SAP 10. If a GSM mobile terminal is used as the first SAP, it includes a speech compression module in the form of a GSM speech encoder which converts the modulated signal 19 to a bit stream 22 for transmission onto the network 12. The second SAP 14 is arranged to receive the bit stream 25 from the network 12, and includes a speech decompression module for converting the bit stream 25 back to a modulated waveform signal 27. A demodulator 28 is arranged to demodulate the received modulated waveform signal 27 to a data signal 29, and to output the data signal 29. In practice each of the SAPs 10, 14 will be arranged to both transmit and receive signals, but only one-way communication will be described here for the sake of clarity.

[0009] For a conventional mobile network the output 22 of the first SAP 10 will transmit the signal as a radio signal, and the network 12 will include a number of base stations for transmitting and receiving the radio signals, and a telephone network to which the base stations are connected.

[0010] Referring to Figure 2 the data modulator system 18 includes a number of modules arranged to perform a number of functions on the input data 17. These are a channel encoding module 32, an interleaving module 34, a modulation module 36 and a spectral shaping module 38. The data demodulator system 28 includes a number of modules that process the received modulated waveform. These include a channel compensation filter 40, an inverse spectral shaping module 42, a demodulation module 44, a de-interleaving module 46 and a channel decoding module 48.

[0011] The channel coding carried out by the module 32 can be of any suitable form, such as block coding, convolutional coding or turbo coding. Different useful data throughputs are derived using different rate codes and puncturing according to the desired bit error rate (BER). As is well known, channel coding generally works by adding redundancy into the data before transmission, so that if some bits of the transmitted signal are lost during transmission, the original data can still be extracted.

[0012] The output from the channel coding module 32 comprises a 60 bit frame every 20ms. The modulator 36 is arranged to separate each 60 bit frame into 5ms frames each carrying 15 bits, producing four symbols from each channel coding frame. In this example the interleaving process operates on each 60 bit frame. The 60 bits of the frame are entered into a table having four rows of 15 columns as follows:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>12</td>
<td>...</td>
</tr>
</tbody>
</table>

[0013] The array is then read in rows, giving the following sequence:

1,5,9,......57,2,6,10,......59,4,8,12,......60.
The frequency spectrum is then inverse transformed and normalized, producing a waveform. This frequency spectrum varies once every 80ms, and this variation is enough to ensure that a VAD will not cut the signal off.

The frequency spectrum of Figure 7 and the smoothly varying frequency spectrum of Figure 8. This spectrum is therefore modified to the form shown in Figure 9. As can be seen this is a multiplication of the original spectral shaping module that applies a gain that varies with frequency to the frequency components of the waveform signal. The gain in this case required variation in spectral shaping.

After modulation the waveform signal is further modified by the spectral shaping module 38. This is to ensure that the spectral shape of the signal varies over time so that any voice activity detector (VAD) on the voice channel will not identify any parts of the transmitted signal as a non-speech and cut them out of the transmission. As shown in Figure 6, the spectral shaping module 38 modifies only parts of the modulated waveform, in this case modifying a 20ms section out of each 80ms section of the waveform. This leaves the remaining 60ms sections unchanged, thereby producing the required variation in spectral shaping.

When the positions of all of the pulses in the symbol have been defined, the sign of the pulses is defined so that the sign alternates through the symbol. In this case every other pulse starting with the second is made negative, and the remaining pulses are left positive. Clearly the signs of all of the pulses could be inverted so that the first pulse was negative. Finally the complete waveform is multiplied by a preferred gain factor so that the signal is suitable for onward transmission. The symbols are transmitted in sequence to produce a continuous modulated waveform signal.

In a modification to this method, the modulated symbols are reorganized so that the symbols close or similar to each other also have similar data bit patterns, i.e. close hamming distances. If a symbol is wrongly demodulated, it is more likely to have been confused with another symbol that is similar to it. Assigning similar bit patterns to similar symbols minimizes the demodulation bit errors.

In the example shown the first three bits of the sequence are 101, and the position on the first track allocated to the data bits 101 is position 25. Therefore a pulse is produced at position 25 in the symbol. The remaining four groups of three bits are carried by pulses in positions 16, 32, 13 and 34 as shown, and pulses are therefore produced at each of those positions.

In the example shown the first three bits of the sequence are 101, and the position on the first track allocated to the data bits 101 is position 25. Therefore a pulse is produced at position 25 in the symbol. The remaining four groups of three bits are carried by pulses in positions 16, 32, 13 and 34 as shown, and pulses are therefore produced at each of those positions.

In this case the first positions of the five tracks are positions 0 to 4 respectively, and the positions in each track are spaced apart from each other by five positions. For example, the first track includes positions 0, 5, 10, 15, 20, 25, 30 and 35 as can be seen from Figure 4. Each track is allocated to a respective group of bits in the 15 bit data frame. Here the first track is allocated to the first three bits, the second track to the second three bits and so on. For each track, a pulse is produced on one of the eight positions only, and the selected position carries the three bits of data associated with that track, as shown in the bottom row of Figure 4. As there are eight positions in each track, each position can carry three bits of data, as there are eight possible combinations of the group of three bits.

In this case the first positions of the five tracks are positions 0 to 4 respectively, and the positions in each track are spaced apart from each other by five positions. For example, the first track includes positions 0, 5, 10, 15, 20, 25, 30 and 35 as can be seen from Figure 4. Each track is allocated to a respective group of bits in the 15 bit data frame. Here the first track is allocated to the first three bits, the second track to the second three bits and so on. For each track, a pulse is produced on one of the eight positions only, and the selected position carries the three bits of data associated with that track, as shown in the bottom row of Figure 4. As there are eight positions in each track, each position can carry three bits of data, as there are eight possible combinations of the group of three bits.

In this case the first positions of the five tracks are positions 0 to 4 respectively, and the positions in each track are spaced apart from each other by five positions. For example, the first track includes positions 0, 5, 10, 15, 20, 25, 30 and 35 as can be seen from Figure 4. Each track is allocated to a respective group of bits in the 15 bit data frame. Here the first track is allocated to the first three bits, the second track to the second three bits and so on. For each track, a pulse is produced on one of the eight positions only, and the selected position carries the three bits of data associated with that track, as shown in the bottom row of Figure 4. As there are eight positions in each track, each position can carry three bits of data, as there are eight possible combinations of the group of three bits.

In this case the first positions of the five tracks are positions 0 to 4 respectively, and the positions in each track are spaced apart from each other by five positions. For example, the first track includes positions 0, 5, 10, 15, 20, 25, 30 and 35 as can be seen from Figure 4. Each track is allocated to a respective group of bits in the 15 bit data frame. Here the first track is allocated to the first three bits, the second track to the second three bits and so on. For each track, a pulse is produced on one of the eight positions only, and the selected position carries the three bits of data associated with that track, as shown in the bottom row of Figure 4. As there are eight positions in each track, each position can carry three bits of data, as there are eight possible combinations of the group of three bits.

In this case the first positions of the five tracks are positions 0 to 4 respectively, and the positions in each track are spaced apart from each other by five positions. For example, the first track includes positions 0, 5, 10, 15, 20, 25, 30 and 35 as can be seen from Figure 4. Each track is allocated to a respective group of bits in the 15 bit data frame. Here the first track is allocated to the first three bits, the second track to the second three bits and so on. For each track, a pulse is produced on one of the eight positions only, and the selected position carries the three bits of data associated with that track, as shown in the bottom row of Figure 4. As there are eight positions in each track, each position can carry three bits of data, as there are eight possible combinations of the group of three bits.

In this case the first positions of the five tracks are positions 0 to 4 respectively, and the positions in each track are spaced apart from each other by five positions. For example, the first track includes positions 0, 5, 10, 15, 20, 25, 30 and 35 as can be seen from Figure 4. Each track is allocated to a respective group of bits in the 15 bit data frame. Here the first track is allocated to the first three bits, the second track to the second three bits and so on. For each track, a pulse is produced on one of the eight positions only, and the selected position carries the three bits of data associated with that track, as shown in the bottom row of Figure 4. As there are eight positions in each track, each position can carry three bits of data, as there are eight possible combinations of the group of three bits.

In this case the first positions of the five tracks are positions 0 to 4 respectively, and the positions in each track are spaced apart from each other by five positions. For example, the first track includes positions 0, 5, 10, 15, 20, 25, 30 and 35 as can be seen from Figure 4. Each track is allocated to a respective group of bits in the 15 bit data frame. Here the first track is allocated to the first three bits, the second track to the second three bits and so on. For each track, a pulse is produced on one of the eight positions only, and the selected position carries the three bits of data associated with that track, as shown in the bottom row of Figure 4. As there are eight positions in each track, each position can carry three bits of data, as there are eight possible combinations of the group of three bits.

In this case the first positions of the five tracks are positions 0 to 4 respectively, and the positions in each track are spaced apart from each other by five positions. For example, the first track includes positions 0, 5, 10, 15, 20, 25, 30 and 35 as can be seen from Figure 4. Each track is allocated to a respective group of bits in the 15 bit data frame. Here the first track is allocated to the first three bits, the second track to the second three bits and so on. For each track, a pulse is produced on one of the eight positions only, and the selected position carries the three bits of data associated with that track, as shown in the bottom row of Figure 4. As there are eight positions in each track, each position can carry three bits of data, as there are eight possible combinations of the group of three bits.

In this case the first positions of the five tracks are positions 0 to 4 respectively, and the positions in each track are spaced apart from each other by five positions. For example, the first track includes positions 0, 5, 10, 15, 20, 25, 30 and 35 as can be seen from Figure 4. Each track is allocated to a respective group of bits in the 15 bit data frame. Here the first track is allocated to the first three bits, the second track to the second three bits and so on. For each track, a pulse is produced on one of the eight positions only, and the selected position carries the three bits of data associated with that track, as shown in the bottom row of Figure 4. As there are eight positions in each track, each position can carry three bits of data, as there are eight possible combinations of the group of three bits.
This comprises a central peak in the same position as the original pulse, and having the same sign, and two side peaks, one on each side of the central peak, that are of smaller amplitude than the central peak and of opposite sign. The waveform of Figure 5b, if modified in the same way, produces a waveform as shown in Figure 10b.

In practice the spectral shaping module 38 can be greatly simplified by performing time domain filtering or a convolution operation such that each single pulse from the waveform signal is replaced by a feature having the shape shown in Figure 11. This avoids the need for the frequency transformation, modification, and reverse transformation described above. In a further simplification the spectral shaping function 38 may be integrated with modulation 36 so that the required feature shape is placed in the created symbols when necessary.

It should also be noted that other forms of modification can also be used in addition to, or instead of, the spectral shaping described above. The aim of this modification is to produce a signal with varying features so that it varies over time, thereby overcoming the possible cutting off of a VAD. For example the amplitude of the waveform may be modified so that the energy contour of the waveform signal varies.

Once the waveform signal has been shaped by the spectral shaping module, it is output as the waveform signal 19 by the modulator 18, and then input to the speech compression module of the first SAP. The speech compression module operates by identifying various parameters of the waveform signal 19 and coding those parameters. The compressed signal that is transmitted across the network therefore transmits those parameters. When the compressed signal has been transmitted over the network 12 the speech decompression unit in the second SAP 14 uses the transmitted parameters to decode the original waveform signal.

When the decoded waveform signal is input to the demodulator 28 from the speech decompression module of the second SAP 14, it is passed through the channel compensation filter 40. The function of this filter is to counteract the response of the entire communications link between the modulator 18 and the demodulator 28. The public mobile or fixed telephone voice channels have their own characteristic impulse response, which may include the responses of any frequency shaping filters at the transmitter and receiver ends. This impulse response includes a spreading effect on the pulses of the modulated signal. The filter 40 is therefore arranged to have a response that is the inverse of the response of the telecommunication system, which will therefore sharpen and restore the signal closer to the original modulated signal. This improves the accuracy of the demodulation.

Referring to Figure 12, the filter 40 is arranged to receive the decompressed signal, filter it using a number of filter coefficients, and transmit it on, via the inverse spectral shaping module 42 to the demodulation module 44. The demodulation module 44 demodulates the pre-processed waveform, in the inverse of the process of the modulator, to recreate the bit stream input to the modulation unit 36, as will be described in detail below. This bit stream is then processed in the de-interleaving module 46 and the channel decoding unit 48 to produce the output bit stream as described above.

The filter 40 is an adaptive filter, and its filter coefficients are adapted by a coefficient adaptation module 50. This coefficient adaptation module 50 receives the modulated waveform signal from the channel and compares it to a reference signal to determine whether and in what way the filter coefficients need to be adapted. The filter adaptation is carried out in two stages. In the first stage, the first modulator unit 18 is arranged to transmit a predetermined training sequence, and the coefficient adaptation module 50 compares the received signal with a pre-stored reference signal, stored in memory 52, that is the same as the transmitted training sequence. The coefficient adaptation module 50 is connected to the memory 52 by a switch 60. This allows it to set the filter coefficients to suitable initial values.

Once the training sequence is finished and the initial filter coefficients have been estimated, the switch 60 may be switched either to position P2 which suspends adaptation. This may be suitable if the voice communication channel response is time invariant. However, if the voice communication channel response varies with time, then the switch is switched to position P3 and the adaptation module 50 switches to a continuous adaptation mode. In this mode the reference signals are generated from the decoded output data bit stream. The output data is channel encoded in a local channel encoding module 54, and interleaved in a local interleaving module 56, and then modulated in a local modulation module 58, which is connected to the coefficient adaptation module 50 by the switch 60. These modules operate in the same manner as the corresponding modules in the modulator 18 at the first SAP 10. Therefore, assuming the output bit stream has been correctly decoded, the reference signal will be identical to the modulated waveform produced by the modulator 18 at the first SAP 10. The adaptation module 50 can therefore continuously adapt the filter coefficients to compensate for any variation in the channel response.

If at any time during transmission the reference signal cannot be generated accurately, then the switch is returned to position P2 and coefficient adaptation is suspended.

At the start of any communication a synchronisation signal is sent from the modulator 18 to the demodulator 28 so that the transmitted signal can be interpreted. Part of this synchronisation signal is shown in Figure 13 and comprises a number of pulses at different predetermined time intervals. When these synchronisation pulses are received at the filter 40, the communication link response gives, for example, the result shown in Figure 14. As can be seen, each pulse of the synchronisation signal has been changed so that it no longer has a single pulse characteristic. After the received signal has been passed through the filter 40, it is modified back to a form closer to the original signal, as shown...
Each symbol, there are 2^15 = 32768 possible reference waveform shapes. The inverse spectral shaping module 38 performs a function that is the inverse of the modification performed by the spectral shaping module 36. This removes the added modifications so that the signal input to the demodulation module 44 is as close as possible to the output from the modulation module 36.

Referring back to Figure 2, the output from the channel compensation filter 40 is passed through the inverse spectral shaping module 42. This performs a function that is the inverse of the modification performed by the spectral shaping module 38. This removes the added modifications so that the signal input to the demodulation module 44 is as close as possible to the output from the modulation module 36.

The demodulation module 44 carries out a demodulation process on the signal it receives, the result of which is essentially the inverse of the modulation process carried out in the modulation module 36, as described above and shown in Figures 3 and 4. However, while the inverse of the modulation process could be used, the demodulation is actually carried out by comparing the received signal symbols with a number of reference signals. The received modulated waveform signal, which has been filtered by the channel compensation filter and undergone inverse spectral shaping and therefore resembles the signal shown in Figure 18, is received, and the separate symbols identified. For each symbol the waveform is compared with reference waveforms and a matching metric determined for each reference waveform that indicates how close it is to the received waveform. This metric is used to identify the reference waveform that is closest to the received waveform. There is a separate reference waveform for each possible combination of the 15 bits in the symbol. The bits corresponding to the selected reference waveform are then output by the demodulation module. Each possible waveform shape for each symbol has a corresponding unique data bit pattern. As there are 15 bits in each symbol, there are 2^15 = 32768 possible reference waveform shapes or symbols. The inverse spectral shaping module 42 may be integrated with demodulation 44 by using the required feature shape in the reference symbol waveforms when necessary.

The interface between the modem and the service access point of the chosen telecommunications system could be digital or analogue. Also there may be analogue sections within a telecommunications system. These analogue sections may cause two problems. The sampling instances received by the demodulator may be different to those sent by the modulator, due to a constant phase shift in the Digital to Analogue and Analogue to Digital Converter (DAC and ADC) timing pulses. Second the clock frequencies of the DAC and ADC may be slightly different, which results in stretching or shrinking of the signal, in addition to losing the sampling instances.

The channel compensation filter 40 can compensate and realign a mismatch up to few samples and synchronise the filter output to the exact sample location with respect to the reference signal. This does not cause any adverse effects or degrade the performance of the channel compensation filter, since this effect is time invariant once a voice channel has been established. However, to prevent a larger mismatch from building up due to different clock frequencies, the lag between the pre-processed signal and the reference signal is measured and corrected for.

The clock rate variations are detected by estimating the lag corresponding to the maximum cross correlation between the output of the channel compensation filter 40 and the reference signal. When the data is transmitted and the reference signal is locally generated at the demodulator 28, in order to avoid losing synchronisation, the cross correlation lag is estimated with fractional sample accuracy. This helps tracking the clock rate variations smoothly and avoids sudden loss of synchronisation. The fractional sample estimates can be obtained by up sampling the reference and the filter output to a higher sample rate, measuring the lag to the nearest number of samples, correcting the lag, and then down sampling to the original sample rate.

The fractional lag correction is carried out before the channel compensation filter coefficient adaptation. This avoids the filter trying to model the shrinking or stretching effect of the received signal and degrade the performance of the filter. This is achieved by correcting the alignment of the channel signal and the reference signal according to the detected lag. This correction is achieved by up sampling either the channel signal or the reference signal, correcting for the lag, and down sampling with the correct lag. Tracking the clock rate variations at a higher sampling rate also helps to make the lag corrections faster than the coefficient adaptation, hence to avoid the filter modelling the clock rate variations.

There are instances when the difference in the matching metric, for the best matching and for one or more other symbol waveform patterns is small. Soft decision considers those close matches and improves the channel decoder performance. The demodulator estimates a weight for each bit, rather than a hard decision of being one or zero. The
Each modulation/demodulation symbol has a corresponding unique data bit pattern. E.g. 15 bits per symbol producing $2^{15} = 32768$ symbols for all the possible bit patterns. The demodulator is arranged to find a weight value for each of the 15 bits of a received symbol, i.e. 15 separate weight values for the 15 bits.

For a received symbol the demodulator compares it with all the possible reference symbols and estimates a similarity measure S_i for each reference symbol:

$$S_i \quad (0 \leq i \leq 32767)$$

For example this similarity measure may be a function of the cross-correlation or the mean squared error between the received symbol and the candidate reference symbol. The estimated weight value for a particular bit position j is given by:

$$w_j = \sum_{i=0}^{32767} n_{i,j} \times S_i \quad (0 \leq j \leq 14)$$

Where $n_{i,j}$ is +1 if the jth bit of the ith reference symbol is one and -1 if the jth bit of the ith reference symbol is zero. In other words the 15 weight values are initialised to zero and each weight value is incremented or decremented by the similarity measure if the corresponding bit of the reference symbol used to estimate the similarity measure is one or zero. Then the weights are input to the channel decoder that uses them to estimate the value of each decoded data bit.

In the case of sub-optimum searches, where all the reference symbols are not used, the same principles are applied with the chosen search range of the reference symbols. A pre-processing algorithm will decide the candidate reference symbols.

The channel decoder may normalise the weight values as necessary. For example if four symbols correspond to one channel coding frame, the corresponding 60 weight values are normalised to fit into the soft decision quantiser range of the channel decoder. Each group of 60 weight values, corresponding to four symbols and a channel coding frame, is normalised independently.

In the embodiment described above the data is only carried in the positions of the pulses in the modulated waveform. However it will be appreciated that both the amplitude of each pulse, and the sign of each pulse, can also be used to carry the data. For example in a modification to the system shown in Figure 3, each pulse is arranged to have two possible amplitudes, one being twice that of the other. The amplitude of each pulse is therefore used to carry one bit. This means that each track in the example shown carries four rather than three bits. In a further modification, the sign of each pulse is not set so that they alternate, but is chosen to carry a further bit. In this way the sign and the position are used to carry four bits of data.

In further embodiments, rather than simple pulses, other features are generated in the waveform signal that carry the data. For example, the pulses of Figures 5a and 5b can each be replaced by features as shown in Figure 19 or Figure 20. In this case one or more of the position, sign, and amplitude of the feature can be used to carry the data in the same way as described above for pulses.

Referring to Figure 21, in one embodiment of the invention the data transmission system described above is used as part of a speech based telecommunication system. Specifically, the whole system is arranged to receive a speech signal 58 that can be a digital or an analogue signal. The system comprises a speech compression module 60 arranged to perform a standard speech compression algorithm on the input signal, and an encryption module 62 that is arranged to encrypt the compressed speech signal. The output from the encryption module 62 is a bit stream 64 that is then used as the data input 17 to the modulator system 18 of Figure 1. At the receiving end, the output data 29 from the demodulator system 28 forms a bit stream 66 that is input to a decryption module 68. The output of the decryption module is input to a speech decompression module 70, the output of which is a speech signal 72 corresponding to that 58 input to the system.

This system therefore provides a way of transmitting encrypted speech over a low bit rate voice channel.
Claims

1. A system for transmitting input data over a speech channel of a network, the system comprising:
 - a modulator arranged to produce a modulated waveform signal transforming the data for transmission over the network;
 wherein the modulator is arranged, in transforming the data, to convert the data into a sequence of symbols each symbol comprising a segment of the modulated waveform signal, and wherein the modulator is further arranged to modify features of the modulated waveform signal so that it varies over time so that it will be passed by a voice activity detector;
 - a channel compensation filter arranged to filter the modified modulated waveform signal after it has been transmitted over the speech channel to compensate for the response of the speech channel; and
 - a demodulator arranged to retrieve the data from the filtered modified modulated waveform signal.

2. A system according to claim 1 wherein the modulator further comprises a channel encoder arranged to channel encode the input data prior to its modulation.

3. A system according to claim 2 wherein the demodulator comprises a channel decoder arranged to channel decode the data.

4. A system according to any foregoing claim wherein the modulator is arranged to modify the modulated signal by adding periodicity.

5. A system according to any foregoing wherein the modulator is arranged to modify the modulated signal by spectral shaping.

6. A system according to any foregoing claim wherein the demodulator is arranged to modify the modulated waveform signal using the inverse of the process of the modulator.

7. A system according to any foregoing claim wherein each symbol has at least one feature that has a position, an amplitude, and a sign, wherein at least one of the position, the amplitude and the sign of the feature is determined by the data.

8. A system according to claim 7 arranged such that the position of the feature is determined by the data.

9. A system according to claim 7 or claim 8 wherein each symbol is arranged to have a plurality of features each having a position, an amplitude and a sign, and at least one of the position the amplitude and the sign of each of the features is arranged to be determined by the data.

10. A system according to claim 9 wherein the sign of the features is arranged to alternate from one feature to the next to produce an alternating signal.

11. A system according to claim 9 or claim 10 wherein the symbol is arranged to have a plurality of sample positions, and the sample positions are divided into groups with one feature allocated to each group, such that there is one feature within each group of positions.

12. A system according to claim 11 wherein the position of each feature is arranged to define a group of bits in the data.

13. A system according to claim 12 wherein each group of sample positions is allocated to a respective group of bits within the data.

14. A system according to any of claims 7 to 13 wherein each symbol is arranged to carry a plurality of bits of data and the demodulator is arranged to determine a weight value for each of the bits derived from the similarity of the symbol to each of a range of reference symbols.

15. A system according to claim 14 wherein the channel decoder is arranged to estimate the bits from the weight values.

16. A system according to any foregoing claim wherein the demodulator is arranged to monitor the time lag in the
17. A system according to claim 16 wherein the demodulator is arranged to correct for the time lag before demodulating the received modulated waveform.

18. A system according to claim 16 or claim 17 wherein modulated waveform is arranged to be produced and detected at a first sample rate, and the demodulator is arranged to up sample the received waveform signal to a higher sample rate before correcting for the time lag.

19. A system according to any foregoing claim further comprising a speech compression module arranged to produce the input data from a speech input, and a speech decompression module arranged to decode a speech output from the retrieved data.

20. A system according to claim 19 further comprising an encryption module arranged to encrypt the compressed bit stream and a decryption module arranged to produce the compressed bit stream from the received data.

21. A system according to any foregoing claim wherein the channel compensation filter is arranged to use a set of coefficients representing an average inverse of the response of the speech channel.

22. A modem arranged to communicate over a voice channel of a network, the modem comprising:

- a modulator arranged to produce a modulated waveform signal transforming data for transmission over the network;
- wherein the modulator is arranged, in transforming the data, to convert the data into a sequence of symbols each symbol comprising a segment of the modulated waveform signal, and
- wherein the modulator is further arranged to modify features of the modulated signal so that it varies over time so that it will be passed by a voice activity detector;
- a channel compensation filter arranged to receive and filter the modified modulated waveform signal transmitted over the speech channel to compensate for the response of the speech channel; and
- a demodulator arranged to retrieve the data from the filtered modified modulated waveform signal.

23. A modem according to claim 22 further comprising the features of any of claims 2 to 21.

24. A method of transmitting input data over a speech channel of a network, the method comprising:

- producing a modulated waveform signal transforming the input data for transmission over the network;
- wherein transforming the data, includes converting the data into a sequence of symbols each symbol comprising a segment of the modulated waveform signal and
- modifying the modulated waveform signal so that it varies over time so that it will be passed by a voice activity detector;
- filtering the modified modulated waveform signal after it has been transmitted over the speech channel to compensate for the response of the speech channel; and
- retrieving the data from the filtered modified modulated waveform signal.

Patentansprüche

1. System zum Übertragen von Eingabedaten über einen Sprachkanal eines Netzes, wobei das System umfasst:

- einen Modulator, der ausgelegt ist, ein moduliertes Wellenformsignal zu erzeugen, während er die Daten zur Übertragung über das Netz transformiert;
- wobei der Modulator ausgelegt ist, beim Transformieren der Daten die Daten in eine Sequenz von Symbolen zu konvertieren, wobei jedes Symbol ein Segment des modulierten Wellenformsignals umfasst, und wobei der Modulator ferner ausgelegt ist, Merkmale des modulierten Wellenformsignals zu modifizieren, so dass es sich über die Zeit hinweg verändert, so dass es von einem Stimaktivitätsdetektor weitergegeben wird;
- ein Kanalkompensationsfilter, das ausgelegt ist, das modifizierte, modulierte Wellenformsignal zu filtern, nachdem es über den Sprachkanal übertragen wurde, um die Antwort des Sprachkanals zu kompensieren; und
- einen Demodulator, der ausgelegt ist, die Daten aus dem gefilterten, modifizierten, modulierten Wellenformsignal...
2. System gemäß Anspruch 1, wobei der Modulator ferner einen Kanalkodierer umfasst, der ausgelegt ist, die Eingabedaten vor ihrer Modulation zu kanalkodieren.

3. System gemäß Anspruch 2, wobei der Demodulator einen Kanaldekodierer umfasst, der ausgelegt ist, die Daten zu kanaldekodieren.

4. System gemäß einem der vorhergehenden Ansprüche, wobei der Modulator ausgelegt ist, das modulierte Signal durch Hinzufügen von Periodizität zu modifizieren.

5. System gemäß einem der vorhergehenden Ansprüche, wobei der Modulator ausgelegt ist, das modulierte Signal durch Spektralformen zu modifizieren.

8. System gemäß Anspruch 7, das derart ausgelegt ist, dass die Position des Merkmals durch die Daten bestimmt ist.

10. System gemäß Anspruch 9, wobei das Vorzeichen der Merkmale ausgelegt ist, um von einem Merkmal zum nächsten zu alternieren, um ein alternierendes Signal zu erzeugen.

11. System gemäß Anspruch 9 oder Anspruch 10, wobei das Symbol ausgelegt ist, eine Vielzahl von Abtastpositionen aufzuweisen, und die Abtastpositionen in Gruppen eingeteilt sind, wobei jeder Gruppe ein Merkmal zugeteilt ist, so dass ein Merkmal in jeder Gruppe von Positionen ist.

12. System gemäß Anspruch 11, wobei die Position jedes Merkmals ausgelegt ist, um eine Gruppe von Bits in den Daten festzulegen.

15. System gemäß Anspruch 14, wobei der Kanalkodierer ausgelegt ist, die Bits aus den Gewichtswerten zu schätzen.

16. System gemäß einem der vorhergehenden Ansprüche, wobei der Demodulator ausgelegt ist, die Zeitverzögerung im empfangenen, modulierten Signal zu überwachen und sie zu korrigieren.

17. System gemäß Anspruch 16, wobei der Demodulator ausgelegt ist, um die Zeitverzögerung vor einem Demodulieren der empfangenen, modulierten Wellenform zu korrigieren.

18. System gemäß Anspruch 16 oder Anspruch 17, wobei eine modulierte Wellenform ausgelegt ist, mit einer ersten Abtastrate erzeugt und detektiert zu werden, und der Demodulator ausgelegt ist, das empfangene Wellenformsignal auf eine höhere Abtastrate hochzutasten, bevor die Zeitverzögerung korrigiert wird.

19. System gemäß einem der vorhergehenden Ansprüche, welches ferner ein Sprachkomprimierungsmodul umfasst, das ausgelegt ist, die Eingabedaten aus einer Spracheingabe zu erzeugen, sowie ein Sprachdekomprimierungs-
modul, das ausgelegt ist, eine Sprachausgabe aus den wiedergewonnenen Daten zu dekodieren.

22. Modem, das ausgelegt ist, um über einen Stimmkanal eines Netzes zu kommunizieren, wobei das Modem umfasst:
 einen Modulator, der ausgelegt ist, ein moduliertes Wellenformsignal zu erzeugen, das Daten zur Übertragung über das Netz transformiert;
 wobei der Modulator ausgelegt ist, beim Transformieren der Daten die Daten in eine Sequenz von Symbolen zu konvertieren, wobei jedes Symbol ein Segment des modulierten Wellenformsignals umfasst, und
 wobei der Modulator ferner ausgelegt ist, Merkmale des modulierten Wellenformsignals zu modifizieren, so dass es sich über die Zeit hinweg verändert, so dass es von einem Stimmaktivitätsdetektor weitergegeben wird;
 ein Kanalkompensationsfilter, das ausgelegt ist, ein moduliertes Wellenformsignal über den Sprachkanal zu empfangen und zu filtern, um die Antwort des Sprachkanals zu kompensieren; und
 einen Demodulator, der ausgelegt ist, die Daten aus dem gefilterten, modifizierten, modulierten Wellenformsignal wiedergewinnen.

23. Modem gemäß Anspruch 22, welches ferner die Merkmale eines der Ansprüche 2 bis 21 umfasst.

24. Verfahren zum Übertragen von Eingabedaten über einen Sprachkanal eines Netzes, wobei das Verfahren umfasst:
 Erzeugen eines modulierten Wellenformsignals, das die Eingabedaten zur Übertragung über das Netz transformiert;
 wobei ein Transformieren der Daten ein Konvertieren der Daten in eine Sequenz von Symbolen umfasst, wobei jedes Symbol ein Segment des modulierten Wellenformsignals umfasst, und
 Modifizieren des modulierten Wellenformsignals, so dass es sich über die Zeit hinweg verändert, so dass es von einem Stimmaktivitätsdetektor weitergeleitet wird;
 Filtern des modifizierten, modulierten Wellenformsignals, nachdem es über den Sprachkanal übertragen wurde, um die Antwort des Sprachkanals zu kompensieren; und
 Wiedergewinnen der Daten aus dem gefilterten, modifizierten, modulierten Wellenformsignal.

Revendications

1. Système pour transmettre des données d’entrée sur un canal vocal d’un réseau, le système comprenant :
 un modulateur agencé pour produire un signal de forme d’onde modulé transformant les données pour une transmission sur le réseau ;
 dans lequel le modulateur est agencé, lors d’une transformation des données, pour convertir les données en une séquence de symboles, chaque symbole comprenant un segment du signal de forme d’onde modulé ; et
 dans lequel le modulateur est en outre agencé pour modifier des caractéristiques du signal de forme d’onde modulé pour qu’il varie dans le temps de façon à passer par un détecteur d’activité vocale ;
 un filtre de compensation de canal agencé pour filtrer le signal de forme d’onde modulé modifié après sa transmission sur le canal vocal dans le but de compenser la réponse du canal vocal ; et
 un démodulateur agencé pour extraire les données du signal de forme d’onde modulé, modifié, filtré.

2. Système selon la revendication 1, dans lequel le modulateur comprend en outre un encodeur de canal agencé pour un codage de canal des données d’entrée avant leur modulation.

3. Système selon la revendication 2, dans lequel le démodulateur comprend un décodeur de canal agencé pour un décodage de canal des données.

4. Système selon l’une quelconque des revendications précédentes, dans lequel le modulateur est agencé pour modifier
5. Système selon l’une quelconque des revendications précédentes, dans lequel le modulateur est agencé pour modifier le signal modulé par mise en forme spectrale.

7. Système selon l’une quelconque des revendications précédentes, dans lequel chaque symbole possède au moins une caractéristique qui a une position, une amplitude et un signe, dans lequel au moins l’un de la position, de l’amplitude et du signe de la caractéristique est déterminé par les données.

8. Système selon la revendication 7, agencé pour que la position de la caractéristique soit déterminée par les données.

9. Système selon la revendication 7 ou la revendication 8, dans lequel chaque symbole est agencé pour présenter une pluralité de caractéristiques possédant toutes une position, une amplitude et un signe, et au moins l’un de la position, de l’amplitude et du signe de chacune des caractéristiques est agencé pour une détermination par les données.

10. Système selon la revendication 9, dans lequel le signe des caractéristiques est agencé pour alterner d’une caractéristique à l’autre pour produire un signal alterné.

11. Système selon la revendication 9 ou la revendication 10, dans lequel le symbole est agencé pour présenter une pluralité de positions d’échantillonnage, et les positions d’échantillonnage sont divisées en groupes, une caractéristique étant affectée à chaque groupe, de sorte qu’il existe une caractéristique à l’intérieur de chaque groupe de positions.

12. Système selon la revendication 11, dans lequel la position de chaque caractéristique est agencée pour définir un groupe de bits dans les données.

13. Système selon la revendication 12, dans lequel chaque groupe de positions d’échantillonnage est affecté à un groupe respectif de bits à l’intérieur des données.

14. Système selon l’une quelconque des revendications 7 à 13, dans lequel chaque symbole est agencé pour porter une pluralité de bits de données, et le démodulateur est agencé pour déterminer une valeur de poids de chacun des bits dérivés de la similitude du symbole avec chaque symbole d’une gamme de symboles de référence.

15. Système selon la revendication 14, dans lequel le décodeur de canal est agencé pour estimer les bits à partir des valeurs de poids.

16. Système selon l’une quelconque des revendications précédentes, dans lequel le démodulateur est agencé pour surveiller le retard du signal modulé reçu et pour le corriger.

17. Système selon la revendication 16, dans lequel le démodulateur est agencé pour corriger le retard avant la démodulation de la forme d’onde modulée reçue.

18. Système selon la revendication 16 ou la revendication 17, dans lequel la forme d’onde modulée est agencée pour une production et une détection à une première vitesse d’échantillonnage, et le démodulateur est agencé pour échantillonner le signal de forme d’onde reçu à une vitesse d’échantillonnage plus élevée avant de corriger le retard.

19. Système selon l’une quelconque des revendications précédentes, comprenant en outre un module de compression vocale agencé pour produire les données d’entrée à partir d’une entrée vocale, et un module de décompression vocale agencé pour décoder une sortie vocale à partir des données extraites.

20. Système selon la revendication 19, comprenant en outre un module de cryptage agencé pour crypter le train de bits compressé et un module de décryptage agencé pour produire le train de bits compressé à partir des données reçues.
21. Système selon l’une quelconque des revendications précédentes, dans lequel le filtre de compensation de canal est agencé pour utiliser un ensemble de coefficients représentant un inverse moyen de la réponse du canal vocal.

22. Modem agencé pour communiquer sur un canal vocal d’un réseau, le modem comprenant :

- un modulateur agencé pour produire un signal de forme d’onde modulé transformant des données à des fins de transmission sur le réseau ;
- dans lequel le modulateur est agencé, lors d’une transformation des données, pour convertir les données en une séquence de symboles, chaque symbole comprenant un segment du signal de forme d’onde modulé ; et
- dans lequel le modulateur est en outre agencé pour modifier des caractéristiques du signal de forme d’onde modulé pour qu’il varie dans le temps de façon à passer par un détecteur d’activité vocale ;
- un filtre de compensation de canal agencé pour recevoir et filtrer le signal de forme d’onde modulé modifié après sa transmission sur le canal vocal dans le but de compenser la réponse du canal vocal ; et
- un démodulateur agencé pour extraire les données du signal de forme d’onde modulé, modifié, filtré.

24. Procédé de transmission de données d’entrée sur un canal vocal d’un réseau, le procédé comprenant :

- la production d’un signal de forme d’onde modulé transformant les données d’entrée pour une transmission sur le réseau ;
- dans lequel la transformation des données inclut une conversion des données en une séquence de symboles, chaque symbole comprenant un segment du signal de forme d’onde modulé, et
- la modification du signal de forme d’onde modulé pour qu’il varie dans le temps de façon à passer par un détecteur d’activité vocale ;
- le filtrage du signal de forme d’onde modulé modifié après sa transmission sur le canal vocal dans le but de compenser la réponse du canal vocal ; et
- l’extraction des données du signal de forme d’onde modulé, modifié, filtré.
Fig. 3

<table>
<thead>
<tr>
<th>Track 1:</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track 2:</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>16</td>
<td>21</td>
<td>26</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>Track 3:</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>27</td>
<td>32</td>
<td>37</td>
</tr>
<tr>
<td>Track 4:</td>
<td>3</td>
<td>8</td>
<td>13</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>33</td>
<td>38</td>
</tr>
<tr>
<td>Track 5:</td>
<td>4</td>
<td>9</td>
<td>14</td>
<td>19</td>
<td>24</td>
<td>29</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>Data bits:</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

Fig. 4
Fig. 6

Fig. 7
Fig. 11
Fig. 13

Fig. 14
Fig. 15

Fig. 16
Fig. 21

To Modulator System

From Demodulator System

Encryption

Decryption

Speech Compression

Speech Decompression

Speech

Speech

58

64

60

62

66

68

70

72
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 03071521 A [0005]