EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
04.03.2009 Bulletin 2009/10

(21) Application number: 05737837.4

(22) Date of filing: 05.05.2005

(54) APPARATUS AND METHOD FOR STERILISING BOTTLES AND/OR CAPS AND FILLING THEM

VORRICHTUNG UND VERFAHREN ZUM STERILISIEREN VON FLASCHEN UND/ODER KAPPEN UND ZU DEREN FÜLLEN

APPAREILS ET PROCEDES PERMETTANT DE STERILISER ET REMPLIR LES COMPOSANTS D'UNITES DE CONDITIONNEMENT, EN PARTICULIER DES BOUTEILLES ET/OU DES CAPUCHONS

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR

(30) Priority: 07.05.2004 IT MO20040111

(43) Date of publication of application:
07.02.2007 Bulletin 2007/06

(73) Proprietor: Sidel S.p.A.
43100 Parma (IT)

(72) Inventors:
• COLATO, Luca
 I-43023 Montechiarugolo (IT)

• SILVESTRI, Angelo
 Ricco del Golfo di Spezia (IT)

(74) Representative: Crugnola, Pietro et al
Luppi & Associati S.r.l.
Via Camperio, 11
20123 Milano (IT)

(56) References cited:
WO-A-98/42385
DE-A1- 4 039 434
DE-A1- 19 909 826
US-A- 4 944 132

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates to apparatuses according to the preamble of claim 1 and methods according to the preamble of claim 10 for filling and sterilising components of packaging units, in particular bottles and/or caps, and known from DE 199 09 826. Such apparatuses and methods are particularly suitable for being used to obtain bottles filled and/or sealed in aseptic conditions.

[0002] In the production of filled containers, in particular of containers intended to be filled with foodstuffs such as milk or fruit juice or other drinks, it is very important to ensure that both the containers and their contents and the caps are sterile and safe for the health of the consumer.

[0003] To this end, it is necessary to sterilise both internally and externally the containers before filling them, to sterilise the caps with which to close the containers, fill and close or seal the containers in an aseptic environment to avoid their contamination after sterilisation.

[0004] Different techniques are known from the prior art for sterilising containers to be filled.

[0005] The containers can be treated with a chemical sterilising agent with great oxidising power, such as for example derived chloride, hydrogen peroxide or peracetic acid, or mixtures of the latter. This procedure comprises different phases: the containers are first wet internally and externally with the sterilising agent that is left in contact with the walls of the container for a sufficient time so that the sterilisation reaction occurs, the sterilisation reaction being dependent on the concentration, the action time and the temperature of the sterilising agent; subsequently, the containers are rinsed with sterile water to eliminate residues of the sterilising agent used, or, in the case of hydrogen peroxide, are fanned with heated air to evaporate the residues.

[0006] A limit arising from the use of a chemical agent for sterilising containers is that such a technique requires rather a long time for all the phases that the procedure requires to be completed.

[0007] This causes delays in the manufacturing process of filled containers.

[0008] A further limit is connected to the very great overall dimensions required by an apparatus to manufacture filled containers in aseptic conditions that uses a chemical sterilising agent. It is in fact necessary to provide a wetting station, a rinsing station or drying station, a filling station and a cap-fitting station. Furthermore, all the stations listed above must be maintained in an environment that has been made sterile by means of isolators, or be placed inside a so-called “clean room”.

[0009] To maintain the aseptic conditions in an isolator, or in a “clean room” it is necessary to filter the air with suitable filters before inserting it inside the protected environments; furthermore, in order to avoid undesired infiltrations of air, such environments are kept at pressure that is greater than atmospheric pressure.

[0010] The plant and running costs for an apparatus that is provided with large aseptic environments are therefore very high.

[0011] A further limit is that chemical sterilisation cannot be used with all containers. In particular, chemical sterilising agents leave residues in PET (polyethylene terephthalate) bottles, so there are limits to their use.

[0012] A still further limit is that in chemical sterilisation processes high temperatures are often reached that can alter the chemical-physical properties of the containers and cause alterations to the material of which they are made that are for example due to crystallisation.

[0013] This is evident above all for bottles in PET as this material is very sensitive to high temperatures.

[0014] From WO2004/000100 it is furthermore known sterilising empty containers already provided with caps with a beam of electrons in a suitable irradiation chamber, filling said containers inside the irradiation chamber by perforating the wall of the cap with a filling needle, conveying the filled containers outside the irradiation chamber and applying thermal energy to the cap to close the hole caused by the filling needle and again sealing the container.

[0015] A limit to this method is that the thermal treatment to which the filled containers are subjected may alter the product inside the containers. This is particularly important in cases in which foodstuffs are present in the containers, as there is a risk that after thermal treatment such foodstuffs will become unusable or hazardous for the health of a consumer.

[0016] A further limit is that such a method cannot be used with all types of cap but only with caps that are easily perforable by a filling nozzle.

[0017] It is furthermore known, for example from US 3,780,308, using electron beams to sterilise empty containers previously placed in an aseptic sterilisation zone, filling the containers, closing the containers with a portion of previously sterilised sealing tape and conveying the closed and filled containers outside the aseptic zone.

[0018] The known solutions are suitable for treating containers with a widened shape, such as trays or the like, but are not suitable for treating containers with an elongated shape, such as bottles, which have an inlet section that is reduced in relation to the body.

[0019] In fact, in the treatment of bottles there arises the problem of penetration of radiation and the efficacy of sterilisation treatment of all the internal surface of the bottles.

[0020] Furthermore, the known solutions enable sealed containers to be produced i.e. containers which cannot be reclosed once they have been opened but those solutions are nevertheless not suitable for producing containers provided with caps that enable subsequent opening and closing of the containers.

[0021] Furthermore, known apparatuses have a considerable spatial extent to arrange in succession the different treatment stations, therefore the aseptic conditions must be maintained in a very extensive zone, with the consequent problems of high costs for managing such
plants.

DE 195 20 925 describes a method for germ-free filling of plastic bottles, esp. PET-bottles of low heat resistance, with a fluid. The fluid is treated by a pasteuriser at the full pasteurisation temperature and whilst still retaining some heat, is decanted into the vessel using a filling machine. The filled bottle is then sealed by the closure machine. In novel manner, the fluid is cooled from the pasteurisation temperature, and each vessel is given a thermal after-treatment. The fluid is maintained for a given time at a set, core temperature of at least 60°C.

DE 199 09 826 describes a method involving filling containers in a filling device from a continuously supplied filling unit. The containers are plasma-sterilised before filling in several continuously supplied plasma sterilising units during their conveyance through the filling unit. There is one plasma-sterilising unit in each filling unit.

DE 199 09 826 describes also a filling device for containers with use for the afore mentioned method.

WO98/42385 discloses commercial sterilisation of the interior surfaces of containers, cups or bottles by the use of energetic electrons accomplished by directing electrons of moderate energies through the open mouth of such containers. Electrons which would normally illuminate the container beyond the inner diameter of the neck opening may be absorbed by a suitable electron-absorbing and cooled mask positioned above the container neck.

DE 40 39 434 describes filling station of rotary machine provided with bottle gripper with a vertical movement allowing the bottle to be lowered and raised relative to the filler valve by a mechanical cam action. Also at each filling station is a pivoted arm which again under cam control can magnetically pick up a bottle cap from a magazine chute and transfer it to a position directly above the bottle mouth.

Upward movement of the bottle then locates the cap, the arm is withdrawn, and continued upward movement of the bottle into the forming sleeve closes the cap.

DE 39 27 491 describes a machine for filling bottles with a liquid under pressure having a turntable which brings each bottle in turn under the filler head. The turntable supports each bottle on a separate rotatable platform which can be pushed upwards to press the neck of the bottle against a sealing ring in the filler head. After the bottle has been filled a rotating disc brings a screw cap over the mouth of the bottle. The platform is then rotated to screw the bottle into the cap so that the bottle is sealed whilst still under pressure.

US 4 944 132 describes an apparatus for the sterile packaging of flowable substances, comprising a conveyor belt, from one end of which open packages can be passed by an intermediate conveyor means through a sterilizing chamber and to a second conveyor belt disposed in a sterile chamber enclosed in a housing, filling means and sealing means being disposed in this sterile chamber while an outlet sluice is disposed in a wall of the housing. In order to simplify and so further improve such an apparatus that a more effective sterilization process is achieved, it is envisaged to construct the sterilizing chamber as an inlet sluice.

An object of the invention is to improve the apparatus and the methods for obtaining components of sterile packaging units or bottles filled and capped in sterile conditions.

A further object is to produce an apparatus for obtaining sterile, filled containers, or caps, having limited spatial dimensions and high productivity.

In a first aspect of the invention, there is provided an apparatus according to claim 1.

Owing to this aspect of the invention, it is possible, at the same level of productivity, to greatly reduce the overall spatial dimensions of a system for obtaining filled sterile containers. It is furthermore possible to greatly reduce the spatial extent of the aseptic zone of such apparatuses.

In a second aspect of the invention, there is provided a method according to claim 10.

Owing to this aspect of the invention, it is possible to obtain filled sterile containers made from any desired product and in which the efficacy of sterilisation is very high.

It is furthermore possible to obtain effective sterilisation of the containers without having to proceed to wetting and to subsequent drying of the walls of the containers that have to be sterilised.

The invention will be better understood and carried out with reference to the attached drawings that show an embodiment thereof by way of non-limitative example, in which:

Figure 1 is a simplified schematic plan view of an embodiment of an apparatus for the production of filled sterile containers;

Figure 2 is a simplified schematic plan view of an embodiment of an apparatus, not forming part of the invention, for the production of filled sterile containers;

Figure 3 is a schematic view from above of an embodiment of an apparatus for the production of filled sterile containers, as shown in Figures 1, or 2;

Figure 4 is an enlarged detail of Figure 3;

Figure 5 is a schematic section taken along a plane V-V in Figure 4;

Figure 6 is a schematic view like the one in Figure 3 but of another embodiment;

Figure 7 is an enlarged and fragmentary detail of Figure 6;

Figure 8 is a schematic and fragmentary section taken along a plane VIII-VIII in Figure 1;

Figure 9 is a section like the one in Figure 8, but in another embodiment;

Figure 10 is a fragmentary section taken along a plane X-X in Figure 9.
With reference to Figure 1, an apparatus 1 is shown for producing filled sterile containers.

The apparatus 1 comprises a carousel 2 delimited by walls 2a having the function of insulating the carousel 2 from the outside to ensure that aseptic conditions are maintained inside it. Upstream of the carousel 2, a sterilisation zone 3 is provided, which is also aseptic, is delimited by walls 3a, in which empty containers 10 are sterilised, in particular bottles coming from a supply line 300. In the sterilisation zone 3 there are arranged a first conveying star 301, a second conveying star 302 and a third conveying star 303 that are rotatable around their respective vertical and interacting axes such as to shift the containers 10 from the supply line 300 to an inlet A of the carousel 2 along a snaking path that goes through a first irradiation sterilising device 21.

The carousel 2 rotates in the direction indicated by the arrow F, conveying in its rotation the containers 10 and/or container closures 25 that have to be treated in suitable treatment zones provided on the carousel 2 and arranged in succession.

The treatment zones are defined as follows.

The containers 10 that enter the carousel 2 from the inlet A are rotated by the carousel to an outlet C, to a capping machine that is not shown in which one container closure for each container 10.

The evacuation line 306 takes the containers 10, each one of which is equipped with a container closure 25, one container closure for each container 10.

The passive sector 1, comprised between the outlet C and a further inlet 2, is defined along which the carousel 2 sterilisation zone 3 is provided, which is also aseptic, is delimited by walls 3a, in which empty containers 10 are sterilised, in particular bottles coming from a supply line 300. In the sterilisation zone 3 there are arranged a first conveying star 301, a second conveying star 302 and a third conveying star 303 that are rotatable around their respective vertical and interacting axes such as to shift the containers 10 from the supply line 300 to an inlet A of the carousel 2 along a snaking path that goes through a first irradiation sterilising device 21.

Between the inlet A and the outlet C an active sector 3, corresponding to the zone also defined along which the carousel 2 is devoid of container closures in the active sector 3, is defined along which the carousel 2 is devoid of container closures in the active sector 3.

Between the outlet C and the inlet A a passive angular sector β is defined along which the carousel 2 is devoid of the containers 10.

The passive sector β comprises a loading sector β1, comprised between the outlet C and a further inlet D along which the carousel 2 interacts with a loading star 26 to remove from it the container closures 25 and drag them in its rotation in the direction indicated by the arrow F.

The passive sector β furthermore comprises a sterilisation sector β2, corresponding to the zone also known as the “dead angle” of the carousel 2, comprised between the further inlet D and the inlet A, corresponding to a further sterilisation zone 3b, along which the container closures 25 loaded on the carousel 2 are sterilised by a further second irradiation sterilising device 37.

The carousel 2 then conveys along the active zone α both the containers 10 and the container closures 25, one container closure for each container 10.

The evacuation line 306 takes the containers 10, each one of which is equipped with a container closure 25, to a capping machine that is not shown in which the containers 10 provided with the closures 25 are definitively capped with suitable caps, for example screw caps.

In this embodiment, the capping machine does not need to be located in an aseptic environment, because the containers 10 that abandon the outlet A cannot be contaminated in the parts in contact with the product because each container is equipped with a container closure 25 that prevents undesired contamination.

This enables the construction and management costs of a capping machine to be used with this apparatus embodiment to be drastically reduced.

This embodiment of the apparatus 1 thus enables overall dimensions to be further reduced.

With the apparatus shown in Figure 1 sterile filled containers 10 are obtained that are provided with a cap in two parts, a sealing container closure 25 and a cap proper that is placed on the container closure 25.

With reference two Figure 2, an apparatus 1 is shown, not forming part of the invention, that enables filled containers 10 to be obtained that have a single-piece cap.

The apparatus 1 corresponds to what has been disclosed with reference to Figure 1, but is devoid of the loading star 26.

Consequently, in the wheel 2 only the containers 10 are conveyed to the active sector α, whilst the carousel 2 is devoid of container closures in the active sector α.

The filled containers 10 that leave the carousel 2 at the outlet C are transported by the further conveying star 304 that transfers the containers 10 to a second further conveying star 305 that takes the containers to a third further conveying star 307 from which the containers 10 go to a fourth further conveying star 308 that takes them to the evacuation line 306.

The further conveying stars 304, 305, 307, 308 take the filled containers 10 along a snaking outlet path that passes through a capping machine 6 in which the filled containers 10 are capped with suitable previously sterilised caps that are picked up from a storage zone 44 and reach a capping device 47 through a conveying tunnel 45 on which an irradiation sterilising device 46 is positioned.

The capping machine 6 is arranged inside an aseptic environment delimited by walls 41 that ensure conditions of sterility of the filled containers 10 and of the relative caps.

The sterile capping machine 6 is connected to a storage zone of the caps 44 from which the caps are removed and conveyed through a conveying tunnel 45.

With reference to Figure 3, the sterilisation zone 3 is shown in greater detail that is part of the apparatus in Figure 1 and/or 2.

The two embodiments of the sterilisation zone 3 presented in Figures 1 and 2 differ by number of conveying stars provided for conducting the containers 10 from the supply line of the containers 300 to the carousel 2; that number can be suitably varied according to par-
ticular needs.

[0061] Into the sterilisation zone 3 suitably filtered sterile air is delivered from suitable filters that are not shown and is kept at a certain overpressure to avoid undesired infiltration from the exterior.

[0062] The containers 10 are supplied to the sterilisation zone 3 by moving them in the direction F2 along the supply line 300, by means of an overhead conveyor 9 provided with first guide means 11 and with second guide means 12 between which the containers 10 remain engaged during conveying.

[0063] The overhead conveyor 9 takes the containers 10 to the first conveying star 301 peripherally provided with seats 14 spaced by an angular pitch H and shaped in such a way that portions of neck 15 of the containers 10 engage inside them, as shown in Figure 5.

[0064] The first guide means 11 of the overhead conveyor 9 is formed in such a way as to guide the containers 10 during their rotation on the first conveying star 301 to prevent the container to exit from the seats 14 during this rotation movement.

[0065] The containers 10, after a set path on the first conveying star 301, are picked up by a second conveying star 302 rotating on the same rotation plane as the first conveying star 301, but in opposite direction.

[0066] On a peripheral sterilisation zone 16a of the second conveying star 302 a plurality of supports 17 is fixed, on each of which a pair of idle rolling bodies 18 is mounted and located at an angular pitch H1, preferably the same as H.

[0067] Outside the second conveying star 302 a guide 19 is provided arranged to guide the containers 10 and located at a distance from each pair of rolling bodies 18 so that between the latter and the guide 19 a seat 20 is identified inside which the containers 10 are received. Each pair of rolling bodies 18 and guide 19 constitute orientation means.

[0068] As shown in Figure 4, the guide 19 is provided with a closed loop track 19a on a pair of pulleys 190 and moved by drive means that is not shown such that a surface 19b of the track 19a placed in contact with a container 10 to be conveyed translates in the translation direction F5 and causes in the container 10 to be conveyed a rotation in a direction indicated by the arrow F4 opposite the rotation direction of the second conveying star 302.

[0069] Thus the containers 10, when they are on the second conveying star 302, are subject to an internal revolution around the axis of the second conveying star 302 and to a rotation movement around their own longitudinal axis indicated by F4.

[0070] The second conveying star 302 conveys the containers 10 to the operating zone of a first irradiation sterilising device, such as an electron gun 21, which irradiates the containers 10 with beta rays, i.e. with electron rays having high energy.

[0071] Each container 10 performs at least one complete rotation around its axis in a time corresponding to the time in which the second conveying star 302 covers a distance that is the same as angular pass H1. In this way, a container 10 that is in the operating zone of the electron gun 21 performs underneath it a complete rotation before a further container 10 adjacent to the operating zone of the electron gun 21 arrives in said operating zone.

[0072] The electron gun 21 is supplied by a VDC electron accelerator that provides power amounting to 350-400 keV and enables about 600-800 bottles a minute to be treated, ensuring their sterilisation provided that any desired internal and/or external surface zone of the containers 10 receives a radiation dose between 10 and 20 kGy.

[0073] The electron gun 21 is positioned in such a way that the beam of electrons emitted in relation to each container 10 has a trajectory indicated by T in Figure 5, that has an angle of incidence on an internal wall 10a of the containers 10 such as to ensure a reflection of the beam that ensures penetration of the beam and therefore effective sterilisation over the whole height of the containers 10.

[0074] By rotating the containers 10 below the electron gun 21, it is furthermore possible to irradiate points of the internal surface 10a of the containers 10 located on the entire internal surface thereof, thus sterilising the entire internal surface 10a of the containers 10.

[0075] The position of the electron gun 21 in relation to the containers 10 and its operating features enable the neck zone 15 and the thread of the containers 10 to be treated precisely and effectively.

[0076] In this way, it is possible to effectively treat even containers having an elongated shape and a whatever complex shape and with a capacity between 0.2 litres and about 2 litres.

[0077] Further positioning devices or orientation means can also be provided in relation to the rolling bodies 18 which, during irradiation, move the electron gun 21 in relation to the containers 10, or vice versa, or move both the electron gun 21 and the containers 10, such as to position the beam of electrons emitted by the electron gun 21 effectively on all the points of the internal surface 10a of the containers 10.

[0078] In a further embodiment, a gas injection device is provided that is arranged to inject noble gas inside the containers 10 during their irradiation by the electron gun 21.

[0079] In this way, inside the containers 10 gas plasma with great sterilising power is created, the sterilisation capacity of which cooperates with that of the beam of electrons, increasing the efficacy of sterilisation treatment.

[0080] The containers 10 are subsequently moved by the second conveying star 302 to a third conveying star 303, rotating in the same rotation direction as the first conveying star 301 and formed in a similar manner to the first conveying star 301, i.e. peripherally provided with further seats 23 placed at an angular pitch H2, inside which the neck portions 15 of the containers 10 engage.
The third conveying star 303 cooperates with a further guide 24 to convey the containers 10 to the carousel 2.

The values of the angular pitches H, H1, H2, and the values of the speed rotation of the first conveying star 301, of the second conveying star 302 and of the third conveying star 303 are selected such as to enable a synchronised shift of the containers 10 inside the sterilisation zone 3 and the carousel 2.

With reference to Figure 6, an embodiment of the sterilisation zone 3 is shown in which instead of the second conveying star 302 there is provided a linear conveyor 160 such as a belt conveyor.

The belt conveyor 160, which is moved by a pair of driven guide wheels 161 between which a belt 162 is wound, conveys the containers 10 in a translation direction F8 to the third conveying star 303.

On an external surface 163 of the belt 162 a plurality of pairs of rolling bodies 18 is provided.

Outside the belt 162, a straight guide 190 is provided that is arranged in such a way as to accompany the containers 10 during their translating motion onto the belt 162.

The guide 190, in its interrupted portion, is replaced by a further track 191 wound as a loop on further guide wheels 192 arranged according to the vertices of a triangle having a side corresponding to the guide 190, the guide wheels rotating in the direction F11 through the effect of drive means that is not shown.

The further track 191 is positioned such as to interact with an external surface of the containers 10 to rotate them in direction F4, onto the rolling bodies 18 while they translate in direction F8.

At the same time, the rolling bodies 18 are rotated in the direction F11.

The containers 10 are conveyed from the belt conveyor 160 to the operating zone of an electron gun 21 that irradiates the containers 10 with beta rays, i.e. with a beam of electrons having high energy.

Also in this case, the position of the electron gun 21 in relation to the containers 10, i.e. the angle of incidence of the beam of electrons emitted by it is such as to ensure rapid and effective sterilisation of the internal and external surface of the containers 10.

Each container 10 performs at least one complete rotation, rotates around its own longitudinal axis below the electron gun 21.

A gas-injection device can also be provided that is arranged to inject noble gas inside the containers 10 during their irradiation with the electron gun 21.

In this way plasma gas with high sterilising power is generated inside the containers 10, the sterilising capacity of which cooperates with that of the beam of electrons to increase the efficacy of the sterilisation treatment.

With reference to Figure 8, a loading star 26 is shown that is arranged to supply container closures 25 to the carousel 2 at the further inlet D.

The container closures 25 coming from a hopper, which is not shown, are conveyed in sequence through a conveying conduit 27 to an outlet 29 in which the container closures 25 are in a horizontal position and face the loading star 26 rotating in the direction indicated by F9, opposite the rotation direction F of the carousel 2.

Each container closure 25 is pushed against the periphery of the loading star 26 such as to be received in one of the peripheral seats with which the latter is provided. In this way the container closures 25 are taken to the edge of the loading star and are transferred to the carousel 2 to the operating zone of a given filling device 30 of containers of the plurality of filling devices with which the carousel 2 is provided.

The filling device 30 can be any known filling device and has therefore not been disclosed.

In the proximity of the filling device 30 there is provided a cam 33 that causes a bar element 34 to shift along its own longitudinal axis.

At one end 34a of the bar element 34 located at the part opposite the cam 33 there is provided a seat element 35 shaped such as to receive an oscillating arm 36 that is arranged to remove the container closures 25 from the peripheral seats of the loading star 26 and take them to the edge of the carousel 2.

By actuating the cam 33 the bar element 34 is translated, i.e. it is lowered or raised to rotate the oscillating arm 36 connected with it as indicated by the arrow F10.

In order to remove the container closures 25 from the loading star 26, the arm 36, which is first in a vertical position, is rotated such as to engage from above with a container closure 25 and is subsequently rotated in the opposite direction to return to the initial position after picking up a container closure 25.

The carousel 2 transfers the container closures 25 to the further sterilisation zone 3b, where they are irradiated by a further second irradiating device, such as a further electron gun 37 arranged, as shown in Figure 1, on the periphery of the carousel 2.

The further electron gun 37 irradiates the container closures 25 with a beam of electrons such as to ensure complete and effective sterilisation.

In the conveying position, the container closures 25 are arranged on the filling device 30 in such a way that their surface 25a, arranged to be in contact with the inside of the containers 10, faces the further electron gun 37.

For the further electron gun 37 and its operation the same considerations apply as those made for the electron gun 21 and for sterilisation of the containers 10.

Sterilisation of the container closures 25 is therefore very fast and occurs in the time required to cover the space between the further inlet D and the inlet A, or between the inlet of the containers 10 on the carousel 2.

In this way it is possible to sterilise container closures 25 on a carousel 2.
After sterilisation, each container closure 25 continues to rotate on the carousel 2 anchored to the respective oscillating arm 36.

The carousel 2, during its rotation, carries each filling device 30, provided with a sterilised container closure 25, to the inlet A of the containers 10, where the sterile containers 10 are removed from the carousel 2, each container being positioned at a filling device 30 and being rotarily conveyed.

From the inlet A, as each container 10 is positioned at a filling device 30, filling of the containers 10 occurs over a time corresponding to rotation of the carousel 2 along the filling sector α1 and can be considered to be terminated at the filling point B.

Subsequently, the filled containers 10 are conveyed to the sealing zone 5, that is still arranged on the carousel 2, in which each oscillating arm 36 is again rotated into a horizontal position and by interference applies the respective container closure 25 to each container 10.

With reference to Figures 9 and 10, there is shown an alternative embodiment of a device for loading and sterilising container closures 25 on the carousel 2, in which the container closures 25 are conveyed through the conduit 27 to an outlet 290 in which the container closures 25 are in a vertical position.

The outlet 290 faces the periphery of the loading star 26, provided with a serrated-edge 280 surface.

On the surface 280 of the loading star 26 there is identified a plurality of seats 281, each arranged to receive a given container closure 25.

The loading star 26 is internally provided with a plurality of hollow passages 292 each of which terminates in a seat 281 and can be alternatively connected to a suction device arranged to create a desired vacuum, or to a compression device arranged to supply pressurised air to the inside of the channel 292.

The container closures 25 fall from the conveying conduit 27 to the seats 281 inside which they are arranged so that their surface 25a, in that use is directed inside a container 10, is in contact with the periphery of the loading star 26.

When a container closure 25 falls into a seat 280 a certain vacuum is created inside the channel 292, in such a way as to keep the container closure 25 in the desired position.

When, during rotation of the loading star 26, a position near the carousel 2 is reached, the container closures 25 are each removed through interference by an oscillating arm 36 that is located in a vertical position and are each conveyed to a filling device 30 on the carousel 2.

Subsequently, the container closures 25 are conveyed to the further electron gun 37, which irradiates them with sterilising radiation.

In the sealing zone 5, when the container closures 25 have to be applied to the filled containers 10, the oscillating arm 36 causes the container closures 25 to rotate by about 90° to take them to a horizontal position so as to apply them by interference to the containers 10.

After the container closures 25 have been applied to each filled container 10, the filled and sealed containers 10 can be conveyed outside the aseptic carousel 2, and any subsequent operations to which the containers have to be subjected can be performed in non-aseptic environments.

Claims

1. Apparatus, comprising rotating conveying means (301, 302, 303, 2; 301, 160, 303, 2) for conveying along a curved path components (10, 25) of packaging units comprising containers (10) and container closures (25), filling means (30) for filling with a product said containers (10) on said rotating conveying means (301, 302, 303, 2; 301, 160, 303, 2), sterilising means (21, 37) for sterilising at least part of said components (10, 25), said sterilising means (21, 37) being mounted along said path, said sterilising means comprising first sterilising means (21) for sterilising said containers (10) arranged upstream of a carousel (2) of said rotating conveying means (301, 302,303, 2; 301, 160, 303, 2) on which said containers (10) are filled and provided with said container closures (25), and second sterilising means (37) for sterilising said container closures (25), characterised in that said second sterilising means are arranged on the periphery of said carousel (2).

2. Apparatus according to claim 1, wherein said sterilising means comprises irradiating means (21, 37) arranged to emit radiation.

3. Apparatus according to any preceding claim, wherein said first sterilising means (21) is mounted on conveying wheel means (301, 302, 303) of said rotating conveying means (301, 302, 303, 2).

4. Apparatus according to claim 1 or 2, wherein said first sterilising means (21) is mounted on linear conveying means (160) interposed between said rotating conveying means (301, 302,303, 2).

5. Apparatus according to any preceding claim, wherein said second sterilising means (37) is mounted in a zone of a blind angle (β2) of said carousel (2).

6. Apparatus according to any preceding claim, wherein said carousel (2) has a zone (α1) of said carousel (2) located downstream of a filling zone located downstream of a filling zone (α1) of said carousel (2).

7. Apparatus according to any preceding claim, where-
in said sterilizing means comprises electron emitting means (21, 37).

8. Apparatus according to claim 7, wherein said sterilising means (21, 37) comprises gas inserting means suitable for producing plasma when it is irradiated by said radiation.

9. Apparatus according to any preceding claim, and further comprising orientation means (18, 19a; 18, 191; 26) arrange to direct said sterilising means (21, 37) to each surface zone to be sterilised of said components (10, 25).

10. Method, comprising conveying components (10, 25) of packaging units comprising containers (10) and container closures (25) along a curved path, filling said containers (10) with a product during said conveying, sterilising at least part of said components (10, 25), said sterilising comprising irradiating said container closures (10) with radiation in a zone provided upstream of a carousel (2) on which said containers (10) are filled and provided with said container closures (25), characterised in that said sterilising further comprises irradiating said container closures (25) on said carousel (2).

11. Method according to claim 10, wherein said irradiating comprises emitting a beam of electrons to said components (10, 25).

12. Method according to claim 10, or 11, wherein said irradiating occurs in such a way as to produce plasma from gaseous substances in said components (10, 25).

13. Method according to claim 11, or 12 as appended to claim 11, wherein said sterilising comprises positioning said beam of electrons to direct it to each surface zone to be sterilised of said components (10, 25).

Patentansprüche

1. Vorrichtung mit Rotations-Transport-Mitteln (301, 302, 303, 2; 301, 160, 303, 2) zum Transportieren von Komponenten (10, 25) von Verpackungseinheiten entlang eines gekrümmten Wegs, die Behälter (10) und Behälterverschlüsse (25) umfassen, Abfüllmitteln (30) zum Befüllen der Behälter (10) mit einem Produkt auf den Rotations-Transport-Mitteln (301, 302, 303, 2; 301, 160, 303, 2), Sterilisierungsmitteln (21, 37) zum Sterilisieren von zumindest einem Teil der Komponenten (10, 25), wobei die Sterilisierungsmittel (21, 37) entlang des Wegs befestigt sind, wobei die Sterilisierungsmittel ein erstes Sterilisierungsmittel (21) zum Sterilisieren der Behälter (10) aufweisen, das stromaufwärts eines Karussells (2) der Rotations-Transport-Mittel (301, 302, 303, 2; 301, 160, 303, 2) angeordnet ist, auf dem die Behälter (10) befördert werden und mit den Behälterverschlüssen (25) versehen werden, und ein zweites Sterilisierungsmittel (27) zum Sterilisieren der Behälterverschlüsse (25) aufweisen, dadurch gekennzeichnet, dass das zweite Sterilisierungsmittel an der Peripherie des Karussells (2) angebracht ist.

2. Vorrichtung nach Anspruch 1, wobei die Sterilisierungsmittel ein Strahlungsmittel (21, 37) aufweisen, das angeordnet ist, um Strahlung auszusenden.

3. Vorrichtung nach einem vorhergehenden Anspruch, wobei das erste Sterilisierungsmittel (21) auf einem Transportradmittel (301, 302, 303) der Rotations-Transport-Mittel (301, 302, 303, 2) angebracht ist.

4. Vorrichtung nach Anspruch 1 oder 2, wobei das erste Sterilisierungsmittel (21) auf einem linearen Transportmittel (160) angebracht ist, das zwischen den Rotations-Transport-Mitteln (301, 160, 303, 2) liegt.

5. Vorrichtung nach einem vorhergehenden Anspruch, wobei das zweite Sterilisierungsmittel (37) in einer toten Winkelzone (82) des Karussells (2) befestigt ist.

6. Vorrichtung nach einem vorhergehenden Anspruch, wobei das Karussell (2) zur Verwendung der Behälterverschlüsse (25) eine Zone (5) besitzt, die stromabwärts einer Abfüllzone (α1) des Karussells (2) liegt.

7. Vorrichtung nach einem vorhergehenden Anspruch, wobei das Sterilisierungsmittel ein Elektronen emittierendes Mittel (21, 37) aufweist.

8. Vorrichtung nach Anspruch 7, wobei die Sterilisierungsmittel (21, 37) ein Gaseinführungsmittel aufweisen, das geeignet ist, ein Plasma zu erzeugen, wenn es durch die Strahlung bestrahlt wird.

9. Vorrichtung nach einem vorhergehenden Anspruch und ferner mit einem Ausrichtungsmittel (18, 19a; 18, 191; 26), das angeordnet ist, um die Sterilisierungsmittel (21, 37) auf jede Flächenzone der Komponenten (10, 25) zu richten, die zu sterilisieren sind.

10. Verfahren mit:

 Transportieren von Komponenten (10, 25) von Verpackungseinheiten mit Behältern (10) und Behälterverschlüssen (25) entlang eines gekrümmten Wegs, Füllen der Behälter (10) mit einem Produkt während des Transports, Sterilisieren von zumindest einem Teil der Kom-
Dispositif comprenant des moyens transporteurs rotatifs (301, 302, 303, 2), des moyens de stérilisation (21, 37) agencés pour émettre un rayonnement dans une zone prévue en aval d’une zone de remplissage (ς1) dudit carrousel (2).

4. Dispositif selon la revendication 1 ou 2, dans lequel lesdits premiers moyens de stérilisation sont montés sur des moyens transporteurs linéaires (160) interposés entre lesdits moyens transporteurs rotatifs (301, 160, 303, 2).

5. Dispositif selon l’une quelconque des revendications précédentes, dans lequel lesdits deuxièmes moyens de stérilisation (37) sont montés dans une zone d’un angle mort (β2) dudit carrousel (2).

6. Dispositif selon l’une quelconque des revendications précédentes, dans lequel lesdits moyens de stérilisation comprennent des moyens (21, 37) émetteurs d’électrons.

7. Dispositif selon l’une quelconque des revendications précédentes, et comprenant de plus des moyens d’orientation (18, 19a ; 18, 191 ; 26) agencés pour diriger lesdits moyens de stérilisation (21, 37) vers chaque zone de surface desdits composants (10, 25) à stériliser.

8. Dispositif selon la revendication 7, dans lequel lesdits moyens de stérilisation (21, 37) comprennent des moyens d’insertion d’un gaz apte à produire un plasma lorsqu’il est irradié par ledit rayonnement.

9. Dispositif selon l’une quelconque des revendications précédentes, dans lequel lesdits moyens de stérilisation comprennent des moyens (21, 37) émetteurs d’électrons, caractérisés en ce que son rayonnement comprend l’émission d’un faisceau d’électrons sur lesdits composants (10, 25).

10. Procédé comprenant le transport de composants (10, 25) d’unités de conditionnement comprenant des premiers moyens de stérilisation (21) pour stériliser lesdits composants (10), placés en amont d’un carrousel (2) desdits moyens transporteurs rotatifs (301, 302, 303, 2 ; 301, 160, 303, 2) dans lesquels lesdits transporteurs (10) sont remplis et munis desdits bouchons (25) de récipients, et des deuxièmes moyens de stérilisation (37) pour stériliser lesdits bouchons (25) de récipients, caractérisé en ce que ladite stérilisation comprend en plus l’irradiation desdits bouchons (25) de récipients sur ledit carrousel (2).

12. Procédé selon la revendication 10 ou 11, dans lequel ladite irradiation s'effectue de façon à produire un plasma à partir de substances gazeuses dans lesdits composants (10, 25).

13. Procédé selon la revendication 11 ou 12 lorsque celle-ci est dépendante de la revendication 11, dans lequel ladite stérilisation comprend le positionnement dudit faisceau d'électrons pour le diriger sur chaque zone de surface à stériliser desdits composants (10, 25).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 19909826 [0001] [0023] [0023]
- US 3780308 A [0017]
- DE 19520925 [0022]
- WO 9842385 A [0024]
- DE 4039434 [0025]
- DE 3927491 [0027]
- US 4944132 A [0028]