CANCER TREATMENT USING VIRUSES AND CAMPTOTHECINS
KREBSBEHANDLUNG MITTELS VIREN UND CAMPTOTHECINEN
TRAITEMENT DE CANCERS UTILISANT DES VIRUS ET DES CAMPTOTHECINES

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

Priority: 27.04.2004 US 565631 P

Date of publication of application: 24.01.2007 Bulletin 2007/04

Proprietor: Wellstat Biologics Corporation
Gaithersburg, MD 20878 (US)

Inventors:
• LORENCE, Robert, M.
Bethesda, MD 20817 (US)
• ROBERTS, Michael, S.
Myersville, MD 21773 (US)

Representative: MacLean, Martin Robert et al
Mathys & Squire LLP
120 Holborn
London EC1N 2SQ (GB)

References cited:
WO-A-00/07605 WO-A-00/62735

Remarks:
The file contains technical information submitted after the application was filed and not included in this specification

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
BACKGROUND OF THE INVENTION

[0001] Coadministration of oncolytic viruses with other chemotherapeutic agents is disclosed in WO 00/62735 (pages 35-36). See Kirn D (Cancer Gene Ther 2002; 9:959-960; Virotherapy for cancer: current status, hurdles and future directions) and Bell JC et al. (Cur Gene Ther 2002, 2:243-254; Oncolytic viruses: programmable tumour hunters) for recent reviews on anti-cancer virus therapy. Improvements in efficacy using such virus therapies are important to the field and getting approval and widespread use of the approach. Specifically, a drug which shows supra-additive efficacy with a virus would be most advantageous.

[0002] The use of camptothecins as anticancer agents is reviewed in Garcia-Carbonero, et al., Clin. Cancer Res. (March 2002) 8:641-661; and in Pizzolato JF and Saltz LB, The camptothecins. Lancet 2003 361:2235-42. Camptothecins have antitumor activity based on their binding to and inhibition of topoisomerase I, a nuclear enzyme which reduces torsional stress during DNA replication and which has an important role in DNA replication. Topotecan and irinotecan are the two camptothecins have been approved for clinical use by the US Food and Drug Administration (FDA). Other camptothecins are in development as cancer therapeutics (Ulukan and Swaan, (Campothecins: a review of their chemotherapeutic potential. Drugs, 2002, 62:2039-57); and Garcia-Carbonero and Supko, 2002).

[0005] WO 00/07605 describes use of camptothecin derivatives, with reduced gastrointestinal toxicity.

SUMMARY OF THE INVENTION

[0010] This invention provides for the use of a Newcastle disease virus and/or a camptothecin compound in the manufacture of a medicament for treating, in combination with the other ingredient mentioned a mammalian subject having a neoplasm, comprising administering to the subject a Newcastle disease virus and a camptothecin compound in a combined amount effective to treat the subject.

[0011] In an embodiment of this invention the treatment further comprises administering to the subject a monoclonal antibody against epidermal growth factor receptor in an amount effective, in combination with the Newcastle disease virus and the camptothecin compound, to treat the subject.

[0012] This invention provides for the use of a Newcastle disease virus and/or a camptothecin compound in the manufacture of a medicament for treating, in combination with the other ingredient mentioned, a subject having a neoplasm. This invention also provides the use of a monoclonal antibody against epidermal growth factor receptor in the manufacture of a medicament for treating, in combination with a Newcastle disease virus as mentioned above and a camptothecin compound, a subject having a neoplasm.

[0013] This invention is based on the finding that anti-cancer viruses and camptothecins in combination are effective against neoplastic cells. To illustrate, a mesogenic strain of Newcastle disease virus and irinotecan, a camptothecin compound, have demonstrated a greater than additive level of in vivo antitumor activity, as shown in the examples.

DETAILED DESCRIPTION OF THE INVENTION

[0014] As used herein the transitional term "comprising" is open-ended. A claim utilizing this term can contain elements in addition to those recited in such claim. Thus, for example, the claims can read on treatment regimens that also include other therapeutic agents or therapeutic virus doses not specifically recited therein, as long as the recited elements or their equivalent are present.
As used herein “NDV” is an abbreviation for Newcastle Disease Virus. As used herein “DLT” is an abbreviation for dose limiting toxicity. As used herein the term “plaque-forming unit” (PFU) means one infectious virus particle. As used herein “BPFU” means billion PFUs. As used herein “PP” means plaque-purified. Thus, for example PPMK107 means plaque-purified Newcastle Disease virus strain MK107. As used herein “PFU/m²”, which is a standard unit for expressing dosages, means PFUs per square meter of patient surface area. As used herein the term “replication-competent” virus refers to a virus that produces infectious progeny in cancer cells.

In an embodiment of this invention the virus is replication-competent.

In accordance with this invention, when the virus is a Newcastle Disease Virus it can be of low (lentogenic), moderate (mesogenic) or high (velogenic) virulence. The level of virulence is determined in accordance with the Mean Death Time in Eggs (MDT) test. (Alexander, "Chapter 27: Newcastle Disease" in Laboratory Manual for the Isolation and Identification of Avian Pathogens, 3rd ed., Purchase, et al. eds. (Kendall/Hunt, Iowa), page 117.) Viruses are classified by the MDT test as lentogenic (MDT>90 hours); mesogenic (MDT from 60-90 hours); and velogenic (MDT<60 hours). Mesogenic NDV is currently preferred.

In accordance with this invention, any conventional route or technique for administering viruses to a subject can be utilized. For examples of routes of administration refer to WO 00/62735. In one embodiment of this invention, the virus is administered systemically, for example intravenously. For intravenous administration of a therapeutic virus in accordance with this invention, preferably the virus is a mesogenic strain of Newcastle Disease Virus. In a preferred embodiment of this invention, from 12 x 10⁹ to 120 x 10⁹ PFU/m² per dose of a mesogenic strain of Newcastle Disease virus is administered intravenously to a human subject, more preferably from 12 x 10⁹ to 48 x 10⁹ PFU/m² per dose. As used herein “mg/m²” means milligrams per square meter of patient surface area.

The specification describes picornavirus such as a poliovirus, an echovirus, or a coxsackievirus. Examples of coxsackieviruses include the following types: A21, A13, A15 and A18. Examples of echoviruses include echovirus type 1.

As used herein the term “camptothecin compound,” means that class of compounds considered to be camptothecins, camptothecin analogs, camptothecin derivatives or camptothecin conjugates. These compounds are based on the characteristic five-ring backbone of camptothecin:

In accordance with the combination therapy of this invention the camptothecin compound can be administered from one month before administration of the virus until one month after administration of the virus. In more specific embodiments the camptothecin compound and the virus are administered to the subject within a single twenty-four hour period; or the camptothecin compound is administered from twenty-four hours to one month, preferably from twenty-four hours to one week, before administration of the virus; or the camptothecin compound is administered to the subject from twenty-four hours to one month, preferably from twenty-four hours to one week, after administration of the virus. The dosing and administration techniques and schedules for camptothecins and anti-cancer viruses are known in the art (See, e.g. Garcia-Carbonero, et al.; WO 00/62735; WO 2004/000209; and Pecora, et al., J. Clin. Oncol. (2002) 20 (9): 2251-2266), and their optimization for a specific patient is within the ability of the skilled clinician. Irinotecan is usually
administered to human patients in a dosage amount of from 62.5 to 125 mg/m² four times per week or more preferably 80 to 125 mg/m² four times per week; or from 300 to 350 mg/m² once every three weeks, or more preferably 300 to 350 mg/m² once every three weeks.

[0023] In accordance with this invention any antibody against epidermal growth factor receptor can be utilized. Chimeric and humanized monoclonal antibodies are preferred. Examples of suitable anti-EGF antibodies include cetuximab (trade-name: ERBITUX), ABX-EGF, MDX-447, h-R3, and EMD-7200 (see Mendelsohn J and Baselga J, “Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer”, 2004 J Clin Oncol 21:2787-2799). Cetuximab is preferably administered to human patients intravenously, and is usually administered in an initial intravenous infusion of from 200 to 400 mg/m², followed approximately weekly thereafter by subsequent infusions of from 125 to 250 mg/m².

[0024] The subject that is treated in accordance with this invention can be either a human subject or a non-human mammalian subject. In accordance with this invention, any neoplasm can be treated, including but not limited to the following: rectal cancer, pelvic cancer, colon cancer, lung cancer, breast cancer, prostate cancer, glioblastoma, renal cancer, pancreatic cancer, head and neck cancer, endometrial cancer, neuroblastoma, carcinoid, melanoma, ovarian cancer, sarcoma, cancer of the gastro-esophageal junction, gastric cancer, esophageal cancer, liver cancer, and cervical cancer.

[0025] Although monitoring the treatment is not an essential aspect of the invention, there are techniques for measuring the therapeutic effects of the treatment. These include, measuring the size of the tumor after administration of the virus, and a decrease in tumor size is a positive result.

[0026] The invention will be better understood by reference to the following examples, which illustrate but do not limit the invention described herein. In the following examples 1 to 6, the NDV is, a triple-plaque purified MK107, which is an attenuated (mesogenic) version of Newcastle Disease Virus, described more fully in International Patent Publication WO 00/62735, published October 26, 2000 (Pro-Virus, Inc.).

EXAMPLES

Example 1. NDV in combination with irinotecan

[0027] Athymic mice were injected subcutaneously with 10 million human HT1080 fibrosarcoma cells. Five days later when the subcutaneous tumors were approximately 100 mm³ in size, groups of animals were treated intraperitoneally with irinotecan (25 mg/kg) or vehicle. Two days later animals were treated intravenously with either NDV (6 x 10⁶ plaque forming units, PFU) or vehicle. The incidence of complete tumor regression (CR, 100% tumor reduction) was much higher in the group receiving both irinotecan and NDV (90%) than either irinotecan alone (50%) or NDV alone (0%), see Table 1.

Table 1. Treatment of tumor-bearing mice with irinotecan 2 days before treatment with NDV yields greater complete tumor responses than either agent alone.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of Mice</th>
<th>CR, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irinotecan</td>
<td>10</td>
<td>30%</td>
</tr>
<tr>
<td>NDV</td>
<td>10</td>
<td>0%</td>
</tr>
<tr>
<td>Both Irinotecan and NDV</td>
<td>10</td>
<td>60%</td>
</tr>
<tr>
<td>Vehicle Control</td>
<td>10</td>
<td>0%</td>
</tr>
</tbody>
</table>

Example 2. NDV in combination with irinotecan

[0028] Athymic mice were injected subcutaneously with 10 million human HT1080 fibrosarcoma cells. Seven days later when the subcutaneous tumors were approximately 125 mm³ in size, groups of animals were treated intraperitoneally with irinotecan (25 mg/kg) or vehicle and then approximately one hour later they were treated intravenously with either NDV (6x10⁶ plaque forming units, PFU) or vehicle. The incidence of complete tumor regression (CR, 100% tumor reduction) was much higher in the group receiving both irinotecan and NDV (90%) than either irinotecan alone (50%) or NDV alone (0%), see Table 2.
Example 3. NDV in combination with irinotecan

Athymic mice were injected subcutaneously with 10 million human HT1080 fibrosarcoma cells. Seven days later when the subcutaneous tumors were approximately 387 mm³ in size, groups of animals were intravenously with either NDV (6 x 10⁶ plaque forming units, PFU) or vehicle. Two days later, the mice were then treated with treated intraperitoneally with irinotecan (25 mg/kg) or vehicle. The incidence of complete tumor regression (CR, 100% tumor reduction) was much higher in the group receiving both irinotecan and NDV (70%) than either irinotecan alone (10%) or NDV alone (0%), see Table 3.

Example 4. NDV in combination with weekly dosing of irinotecan.

Cancer patients are treated with NDV followed by treatment with irinotecan. In each 3 week portion of the 6 week cycle, NDV treatment consist of six total intravenous treatments given at three times per week for two weeks followed by a one week rest period (see Table 4 below). The first dose of each cycle consists of 12 to 24 billion PFU/m² (administered over 3 hours for course 1 and over 1 hour for all other courses) followed by additional doses of between 24 to 48 billion PFU/m² (each dose administered over 1 hour). Irinotecan is given for four consecutive weeks on a weekly basis beginning during week 3 or 4 of cycle 1 followed by two weeks without irinotecan therapy (As an example, see Table 4 below). Additional 6 week courses (also termed cycles) of both NDV and irinotecan are given to the patients.

Table 2. Treatment of tumor bearing mice with irinotecan the same day as treatment with NDV yields greater complete tumor responses than either agent alone.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of Mice</th>
<th>CR, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irinotecan</td>
<td>10</td>
<td>50%</td>
</tr>
<tr>
<td>NDV</td>
<td>10</td>
<td>0%</td>
</tr>
<tr>
<td>Both Irinotecan and NDV</td>
<td>10</td>
<td>90%</td>
</tr>
<tr>
<td>Vehicle Control</td>
<td>10</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 3. Treatment of tumor bearing mice with irinotecan two days after treatment with NDV yields greater complete tumor responses than either agent alone.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of Mice</th>
<th>CR, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irinotecan</td>
<td>10</td>
<td>10%</td>
</tr>
<tr>
<td>NDV</td>
<td>10</td>
<td>0%</td>
</tr>
<tr>
<td>Both Irinotecan and NDV</td>
<td>10</td>
<td>70%</td>
</tr>
<tr>
<td>Vehicle Control</td>
<td>10</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 4. Combination of treatment of NDV using irinotecan (80 to 125 mg/m²) given weekly x4. Cycles of treatment are repeated every 6 weeks.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Week</th>
<th>NDV?</th>
<th>Irrinotecan?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Yes, one dose over 90 minutes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Yes, one dose over 90 minutes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Yes, one dose over 90 minutes</td>
<td>Yes, one dose over 90 minutes</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Yes, one dose over 90 minutes</td>
<td>Yes, one dose over 90 minutes</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Yes, one dose over 90 minutes</td>
<td>Yes, one dose over 90 minutes</td>
</tr>
</tbody>
</table>
Example 5. NDV in combination irinotecan given once every 3 weeks.

Cancer patients are treated with NDV followed by treatment with irinotecan. NDV treatment consist of six total intravenous treatments given at three times per week for two weeks followed by a one week rest period (see Table 5 below). The first dose of six consists of 12 to 24 billion PFU/m² (administered over 3 hours for course 1 and over 1 hour for all other courses) followed by a additional doses of 24 to 48 billion PFU/m² (each dose administered over 1 hour). Patients begin their irinotecan therapy during week 3 and are given one dose every 3 weeks (See Table 5 below). Additional 3 week courses of both NDV and irinotecan are given to the patients.

Table 5: Combination of treatment of NDV using irinotecan given once every 3 wks. Cycles of treatment are repeated every 3 weeks.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Week</th>
<th>NDV?</th>
<th>Irinotecan?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>3 doses/wk for two weeks followed by 1 week off</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Yes, one dose over 90 minutes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Yes, one dose over 90 minutes</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Yes, one dose over 90 minutes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Yes, one dose over 90 minutes</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Yes, one dose over 90 minutes</td>
<td></td>
</tr>
</tbody>
</table>

Example 6. NDV in combination with irinotecan and cetuximab.

Cancer patients are treated with both NDV and irinotecan as in examples 4 and 5, except that they additionally receive treatment with cetuximab [ERBITUX, a monoclonal antibody (mAb) against the epidermal growth factor receptor (EGFR)]. Cetuximab dosing begins on week 3 or week 4. The cetuximab dose is 200 to 400 mg/m² for the first intravenous (IV) infusion [administered as a 120 minute IV infusion (with a maximal infusion rate of 5 mL/min)] then 125 to 250 mg/m² [infused IV over 60 minutes] administered weekly thereafter. Some patients may also receive an initial test dose of cetuximab of 20 mg. Diphendydramine (50 mg IV) is commonly given to help lessen any infusion reactions due to cetuximab.

Claims

1. Use of a Newcastle Disease virus for the manufacture of a medicament for treating, in combination with a camp-
to the camptothecin compound, a subject having a neoplasm.

2. Use of a camptothecin compound for the manufacture of a medicament for treating, in combination with a Newcastle Disease virus, a subject having a neoplasm.

3. Use of a monoclonal antibody against epidermal growth factor receptor for the manufacture of a medicament for treating, in combination with a Newcastle Disease virus and a camptothecin compound, a subject having a neoplasm.

4. Use of any preceding claim, wherein the Newcastle Disease virus is replication-competent.

5. Use of any preceding claim, wherein the virus is a mesogenic strain of Newcastle Disease virus.

6. Use of any preceding claim, wherein in use the Newcastle Disease virus is administered intravenously.

7. Use of any preceding claim, wherein the camptothecin compound is selected from the group consisting of irinotecan, topotecan, 9-aminocamptothecin, exatecan, karenitecin, rubitecan, lurtotecan, and a homocamptothecin.

8. Use of claim 7, wherein the camptothecin compound is irinotecan.

9. Use of any preceding claim, wherein in use the camptothecin compound and the Newcastle Disease virus are administered to the subject within a single twenty-four hour period.

10. Use of any one of claims 1 to 9, wherein in use the camptothecin compound is administered from twenty-four hours to one month before administration of the Newcastle Disease virus, preferably from twenty-four hours to one week before administration of the Newcastle Disease virus.

11. Use of any one of claims 1 to 9, wherein in use the camptothecin compound is administered to the subject from twenty-four hours to one month after administration of the Newcastle Disease virus, preferably from twenty-four hours to one week after administration of the Newcastle Disease virus.

12. Use of any of Claims 3-11, wherein the monoclonal antibody is cetuximab.

13. A Newcastle Disease virus, for use in treating in combination with a camptothecin compound, a subject having a neoplasm.

15. A monoclonal antibody against epidermal growth factor receptor, for use in treating in combination with a Newcastle Disease virus and a camptothecin compound, a subject having a neoplasm.

Patentansprüche

4. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Virus der Newcastle-Krankheit replikationskompetent ist.

5. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Virus ein mesogener Stamm des Virus der
Newcastle-Krankheit ist.

8. Verwendung nach Anspruch 7, wobei die Camptothecin-Verbindung Irinotecan ist.

10. Verwendung nach einem der Ansprüche 1 bis 9, wobei die Camptothecinverbindung bei Gebrauch vierundzwanzig Stunden bis zu einem Monat vor der Verabreichung des Virus der Newcastle-Krankheit verabreicht wird, vorzugsweise vierundzwanzig Stunden bis zu einer Woche vor der Verabreichung des Virus der Newcastle-Krankheit.

12. Verwendung nach einem der Ansprüche 3 bis 11, wobei der monoklonale Antikörper Cetuximab ist.

Revendications

1. Utilisation d’un virus de la maladie de Newcastle pour la fabrication d’un médicament destiné au traitement, en combinaison avec un composé de camptothécine, d’un sujet atteint d’un néoplasme.

2. Utilisation d’un composé de camptothécine pour la fabrication d’un médicament destiné au traitement, en combinaison avec un virus de la maladie de Newcastle, d’un sujet atteint d’un néoplasme.

3. Utilisation d’un anticorps monoclonal contre le récepteur du facteur de croissance épidermique pour la fabrication d’un médicament destiné au traitement, en combinaison avec un virus de la maladie de Newcastle et un composé de camptothécine, d’un sujet atteint d’un néoplasme.

4. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le virus de la maladie de Newcastle est compétent pour la réplication.

5. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le virus est une souche mésogène du virus de la maladie de Newcastle.

6. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle, en cours d’utilisation, le virus de la maladie de Newcastle est administré par voie intraveineuse.

8. Utilisation selon la revendication 7, dans laquelle le composé de camptothécine est l’irinotécan.

9. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle, en cours d’utilisation, le composé de camptothécine et le virus de la maladie de Newcastle sont administrés au sujet au cours d’une seule période de 24 heures.

10. Utilisation selon l’une quelconque des revendications 1 à 9, dans laquelle, en cours d’utilisation, le composé de camptothécine est administré de 24 heures à 1 mois avant l’administration du virus de la maladie de Newcastle, préférablement de 24 heures à 1 semaine avant l’administration du virus de la maladie de Newcastle.

11. Utilisation selon l’une quelconque des revendications 1 à 9, dans laquelle, en cours d’utilisation, le composé de camptothécine est administré au sujet de 24 heures à 1 mois après l’administration du virus de la maladie de Newcastle, préférablement de 24 heures à 1 semaine après l’administration du virus de la maladie de Newcastle.

12. Utilisation selon l’une quelconque des revendications 3 à 11, dans laquelle l’anticorps monoclonal est le cetuximab.

13. Virus de la maladie de Newcastle destiné à une utilisation, en combinaison avec un composé de camptothécine, dans le traitement d’un sujet atteint d’un néoplasme.

14. Composé de camptothécine destiné à une utilisation, en combinaison avec un virus de la maladie de Newcastle, dans le traitement d’un sujet atteint d’un néoplasme.

15. Anticorps monoclonal contre le récepteur du facteur de croissance épidermique destiné à une utilisation, en combinaison avec un virus de la maladie de Newcastle et un composé de camptothécine, dans le traitement d’un sujet atteint d’un néoplasme.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 0062735 A [0001] [0018] [0022] [0026]
• US 20020071832 A, Fong [0003]
• WO 9425627 A [0004]
• WO 0007605 A [0005]
• US 4604463 A [0021]
• US 6403569 B [0021]
• US 5004758 A [0021]
• WO 2004012661 A [0021]
• WO 2003101998 A [0021]
• WO 2003101996 A [0021]
• WO 2003101406 A [0021]
• WO 2003093274 A [0021]
• WO 2003086471 A [0021]
• WO 0176597 A [0021]
• WO 0164194 A [0021]
• WO 0070275 A [0021]
• WO 0053607 A [0021]
• WO 9917805 A [0021]
• WO 9917804 A [0021]
• WO 9905103 A [0021]
• WO 9835969 A [0021]
• WO 9728164 A [0021]
• WO 9725332 A [0021]
• WO 9716454 A [0021]
• WO 2004000209 A [0022]

Non-patent literature cited in the description

• KIRN D. Cancer Gene Ther, 2002, vol. 9, 959-960 [0001]
• HASENBURG et al. Cancer Gene Therapy, 2000, vol. 7 (6), 839-852 [0006]
• ALEXANDER et al. Laboratory Manual for the Isolation and Identification of Avian Pathogens. Kendall/Hunt, Iowa, 117 [0017]