EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 28.05.2008 Bulletin 2008/22

Application number: 06116273.1

Date of filing: 29.06.2006

Sump for cooling package air intake housing of an agricultural machine
Wanne für Kühlanlagenlufteinlass einer landwirtschaftlichen Maschine
Puisard pour la conduite de prise d'air du module de refroidissement d'une machine agricole

Designated Contracting States: BE DE FR GB IT

Priority: 11.07.2005 US 178681

Date of publication of application: 17.01.2007 Bulletin 2007/03

Proprietor: Deere & Company
Moline, IL 61265-8098 (US)

Inventors:
• Chaney, Mark
Geneseo, IA 61254 (US)

• Keys II, Gary
Bettendorf, IA 52722 (US)

Representative: Holst, Sönke
Deere & Company
European Office
Global Intellectual Property Services
John-Deere-Strasse 70
68163 Mannheim (DE)

References cited:
US-A-2634713
US-A-4514201
US-A-6029430
US-A1-2004003578
US-B1-6193772

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to an apparatus configured for supplying air to a cooling package for an internal combustion engine that powers an agricultural machine, said apparatus comprising an air intake housing defining an air intake opening and a sump, said sump having a wall and a port, a gating device positioned in communication with said port, said gating device having a first position wherein said port of said sump is closed and a second position wherein said port of said sump is not closed.

[0002] One type of agricultural machine is an agricultural combine. Agricultural combines are engine powered machines that harvest, thresh, separate and clean an agricultural crop. The resulting clean grain is stored in a grain tank located on the combine. The clean grain can then be transported from the grain tank to a truck, grain cart or other receiving bin by an unloading auger.

[0003] Such agricultural combines typically include a cooling package to remove heat from the coolant circulating through the engine powering the agricultural combine. The cooling package may include, for example, a housing mounting a radiator, and a rotary screen mounted on the air intake side of the radiator. Due to the presence of dust and chaff during operation of the agricultural combines, the rotary screen begins to collect the dust and chaff on the outer surface of the rotary screen. A vacuum duct is used to transfer the material, e.g., dust and chaff, off of the outer screen surface of the rotary screen during operation. The dust and chaff removed by the vacuum duct thus bypasses the cooling package via the vacuum duct and exits through the engine fan, which in turn safely returns to the surrounding air.

[0004] Other debris may be introduced in the region of the cooling package that have sufficient density and mass such that if the debris comes in contact with the fan blades of the engine fan, some of the debris may be propelled into the radiator and potentially damage the cooling fins of the radiator, or possibly penetrate the radiator core. For example, in some agricultural combine configurations, the cooling package may be in relatively close proximity to the grain tank. If during the operation of the agricultural combine the grain tank overflows, it is possible that some of the grain may be inadvertently introduced into the cooling package, and in turn be propelled by the fan as a projectile into the radiator.

[0005] US 4 514 201 A describes an air intake stack for a combine with an air filter and a blower taking air through the filter. At the bottom of the stack, a horizontal bottom piece is supported within channels. Since the bottom piece can be manually slid within the channels, debris that has settled on the top surface of the bottom piece is allowed to drop out of the stack and onto the ground.

[0006] US 2 634 713 A describes a similar arrangement with a pivotable door providing access to a radiator core for cleaning off any dirt that may have passed through a screen.

[0007] The present invention provides an apparatus configured to substantially reduce the possibility that objects, such as grain, inadvertently introduced into the cooling package will reach the fan and be propelled into the radiator.

[0008] The invention is directed to an apparatus configured for supplying air to a cooling package for an internal combustion engine that powers an agricultural machine. The apparatus includes an air intake housing defining an air intake opening and a sump. The sump has a wall and a port. A gating device is positioned in communication with the port. The gating device has a first position wherein the port of the sump is closed and a second position wherein the port of the sump is not closed. A first force exerted on said gating device holds said gating device in said first position. The gating device is changed from said first position to said second position when a mass of debris collected in said sump exerts a second force that overcomes said first force holding said gating device in said first position.

[0009] The agricultural machine includes an engine, a fan rotatably coupled to the engine, and a cooling package in fluid communication with the engine. The cooling package includes a radiator having an air inlet and an air outlet. A fan shroud is mounted at the air outlet of the radiator. A vacuum duct has a vacuum opening and an exhaust opening, with the exhaust opening being connected to the fan shroud in fluid communication with the air outlet of the radiator and the vacuum opening being positioned adjacent the rotary screen. An air intake housing is coupled to the air inlet of the radiator and configured to channel air to the air inlet. The air intake housing defines an air intake opening and a sump. The sump has a wall and a port. A gating device is positioned in communication with the port. The gating device has a first position wherein the port of the sump is closed and a second position wherein the port of the sump is not closed.

[0010] In the following, an embodiment of the invention will be discussed based upon the drawings, in which:

Fig. 1 is a diagrammatic side view of an agricultural machine, and in particular an agricultural combine, embodying the present invention.

Fig. 2 is a schematic diagram of a cooling package air intake housing defining an air intake opening and a sump, with a gating device in a closed position.

Fig. 3 is a schematic diagram of the cooling package air intake housing of Fig. 2, with the gating device in an open position.

Fig. 4 is a rear view of the cooling package schematically illustrated in Figs. 2 and 3.
Referring to the schematic diagrams of Figs. 2 and 3, agricultural machine 10 includes an internal combustion engine 44 that provides the mechanical power needed to perform the propulsion and harvesting operations. Referring also to Figs. 4 and 5, a cooling package 46 is provided in fluid communication with engine 44. Cooling package 46 includes a radiator 48 having an air inlet 50 and an air outlet 52. A fan shroud 54 is mounted at air outlet 52 of radiator 48. A fan 56 having a plurality of fan blades is rotatably coupled to engine 44, and positioned within an opening formed in fan shroud 54. A rotary screen 58 is mounted at air inlet 50 of radiator 48. A vacuum duct 60 having a vacuum opening 64 is provided to assist in removal of dust and chaff from rotary screen 58. Exhaust opening 64 is connected to fan shroud 54 in fluid communication with air outlet 52 of radiator 48, and vacuum opening 62 is positioned adjacent rotary screen 58.

Fig. 5 is an enlarged side view of a portion of the cooling package of Fig. 4, showing the gating device in relation to the open position and the closed position.

[0011] Fig. 1 is a diagrammatic depiction of an agricultural machine 10. In the embodiment shown, agricultural machine 10 is in the form of an agricultural combine. Although the invention is being described as being incorporated into a combine, it is contemplated that the present invention may be used with other types of agricultural machines.

[0012] Agricultural machine 10, in the form of a combine, includes a supporting structure 12. A propulsion unit 14, which may include tires and/or tracks that engage the ground, is coupled to supporting structure 12, and performs propulsion and/or steering functions. A harvesting platform 16 is used for harvesting a crop and directing the crop to a feederhouse 18. The harvested crop is directed by feederhouse 18 to a beater 20. Beater 20 directs the harvested crop upwardly through an inlet transition section 22 to an axial crop processing unit 24.

[0013] Axial crop processing unit 24 is located between, and supported by the side sheets of agricultural machine 10. Axial crop processing unit 24 includes an axial rotor housing 26 and an axial rotor 28 located in axial rotor housing 26. The harvested crop enters axial rotor housing 26 through inlet transition section 22. Axial rotor 28 is provided with an infeed portion, a threshing portion and a separating portion. Axial rotor housing 26 has a corresponding infeed section, a threshing section and a separating section.

[0014] Both crop processing portions, the threshing portion and the separating portion, are provided with crop engaging assemblies. The threshing section of the axial rotor housing 26 is provided with a concave and the separating section is provided with a grate. Grain and chaff released from the crop mat falls through the concave and the grate. The concave and grate prevent the passage of crop material larger than grain or chaff from entering a cleaning system 30.

[0015] Grain and chaff falling through the concave and grate is directed to cleaning system 30 which removes the chaff from the grain. The clean grain is then directed by a clean grain elevator 32 to a fountain auger 34. Fountain auger 34 directs the grain into a grain tank, or grain compartment, 36. The grain is removed from the grain tank 36 by an unloading auger 38.

[0016] As the crop residue, e.g., straw, stalks, chaff, dust, etc., reaches the end of the crop processing unit it is expelled through an outlet to a beater 40. Beater 40 propels the crop residue out the rear of the combine. The operation of agricultural machine 10 is controlled from the operator's cab 42.

[0017] Referring to the schematic diagrams of Figs. 2 and 3, agricultural machine 10 includes an internal combustion engine 44 that provides the mechanical power needed to perform the propulsion and harvesting operations. Referring also to Figs. 4 and 5, a cooling package 46 is provided in fluid communication with engine 44. Cooling package 46 includes a radiator 48 having an air inlet 50 and an air outlet 52. A fan shroud 54 is mounted at air outlet 52 of radiator 48. A fan 56 having a plurality of fan blades is rotatably coupled to engine 44, and positioned within an opening formed in fan shroud 54. A rotary screen 58 is mounted at air inlet 50 of radiator 48. A vacuum duct 60 having a vacuum opening 64 is provided to assist in removal of dust and chaff from rotary screen 58. Exhaust opening 64 is connected to fan shroud 54 in fluid communication with air outlet 52 of radiator 48, and vacuum opening 62 is positioned adjacent rotary screen 58.

[0018] An air intake housing 66 is coupled to air inlet 50 of radiator 48 and configured to channel air to air inlet 50. The air drawn by fan 56 passes through the core of radiator 48 to air outlet 52, as represented by the plurality of short horizontal arrowed lines. A pressure P1 is established by the airflow past exhaust opening 64 of vacuum duct 60, and in turn, pressure P1, e.g., a negative pressure, is also present at vacuum opening 62 of vacuum duct 60.

[0019] Referring to Figs. 2-4, air intake housing 66 defines an air intake opening 68 and a sump 70. Sump 70 is positioned at a level below a height (H) of vacuum opening 62 of vacuum duct 60. Sump 70 is defined by a perimetrical wall 72 and a port 74. Port 74 may have a single opening, or, as in the embodiment shown in Fig. 4, may include multiple openings, such as for example, wherein each of two openings are positioned on opposite sides of vacuum duct 60.

[0020] Port 74 may have a single opening, or, as in the embodiment shown in Fig. 4, may include multiple openings, such as for example, wherein each of two openings are positioned on opposite sides of vacuum duct 60.

[0021] As shown in Figs. 2-5, a gating device 80 is positioned in communication with port 74. Gating device 80 may be, for example, in the form of a flap 82, e.g. door, that is pivotally connected via a hinge arrangement to air intake housing 66. In the embodiment of Fig. 4, for example, gating device 80 may include multiple flaps 82, such as for example, wherein each of the two flaps 82 are positioned on opposite sides of vacuum duct 60.

[0022] As is best illustrated in Figs. 2 and 5, gating device 80 has a first, e.g., closed, position 86 wherein port 74 of sump 70 is closed. As is best illustrated in Figs. 3 and 5, gating device 80 has a second, e.g., open, position 88 wherein port 74 of sump 70 is not closed, i.e., is open.

[0023] In the embodiment shown in Figs. 3 and 4, flap 82 is in a normally open position, until acted upon by a force to draw flap 82 to closed position 86, i.e., into contact with outer edge 76 of perimetrical wall 72, to cover, i.e., close, port 74 (see Figs. 2 and 5). While reference is made to port 74 being closed, such a closed condition may, but need not, seal port 74, i.e., some residual air may flow through port 74 even when flap 82 is in closed
position 86.

[0023] Referring to Fig. 2, a first force F1 exerted on gating device 80 holds gating device 80 in closed position 86. The first force F1 may be, for example, a negative pressure P1 introduced by vacuum duct 60 when engine 44 is running.

[0024] Referring to Fig. 3, gating device 80, e.g., flap 82, is changed from closed position 86 to open position 88 when a mass of debris collected in sump 70 exerts a second force F2 sufficient to overcome the first force F1 attempting to hold gating device 80 in closed position 86. For example, the debris collected in sump 70 may be formed, at least in significant part, by grain inadvertently introduced into air intake opening 68 of air intake housing 66 by grain spillage from grain tank 36. The second force F2 may be supplemented by a gravitational force exerted on gating device 80.

[0025] Sump 70 and gating device 80, e.g., flap 82, are designed and configured such that the second force F2 will overcome the first force F1 to open gating device 80 prior to a level of debris, i.e., grain, collected in sump 70 reaching a level in air intake housing 66 wherein the grain would reach the level (H) of vacuum opening 62 of vacuum duct 60. Accordingly, even when agricultural machine 10 is running, gating device 80 will open to drain grain inadvertently received in sump 70 prior to the grain reaching a level wherein the grain would be drawn by vacuum into vacuum opening 62 of vacuum duct 60, thereby substantially reducing the possibility that dense objects, such as grain, may be sucked into vacuum duct 60, and in turn, propelled by fan 56 as a projectile into radiator 48.

[0026] As an alternative to the preferred embodiment described herein with respect to Figs. 2-5, gating device 80, e.g., flap 82, may be biased via a light spring (not shown) to a normally closed position, if desired. In this case, the force of the light spring would contribute to the force F1 that holds gating device 80 in closed position 86.

Claims

1. An apparatus configured for supplying air to a cooling package (46) for an internal combustion engine (44) that powers an agricultural machine (10), said apparatus comprising:

 an air intake housing (66) defining an air intake opening (68) and a sump (70), said sump (70) having a wall (72) and a port (74), a gating device (80) positioned in communication with said port (74), said gating device (80) having a first position wherein said port (74) of said sump (70) is closed and a second position wherein said port (74) of said sump (70) is not closed,

 characterized in that a first force exerted on said gating device (80) holds said gating device in said first position, and said gating device (80) is changed from said first position to said second position when a mass of debris collected in said sump (70) exerts a second force that overcomes said first force holding said gating device (80) in said first position.

2. An apparatus according to of claim 1, wherein said debris is formed, at least in significant part, by grain inadvertently introduced into said air intake opening of said air intake housing (66).

3. An apparatus according to claim 1, wherein:

 said cooling package (46) includes a radiator (48) having an air inlet (50) and an air outlet (52), a rotary screen (58) mounted adjacent said vacuum opening (62) being positioned on opposite sides of said vacuum duct (60), said sump (70) being positioned adjacent said rotary screen (58); and said sump (70) being positioned at a level below a height of said vacuum opening (62) of said vacuum duct (60).

4. An apparatus according to claim 3, wherein said port (74) includes two openings, each of said two openings being positioned on opposite sides of said vacuum duct (60).

5. An apparatus according to claim 3, wherein said first force includes a negative pressure introduced by said vacuum duct (60) when said engine (44) is running.

6. An apparatus according to claim 1, wherein said second force includes a gravitational force exerted on said gating device (80).

7. An apparatus according to claim 1, wherein said gating device (80) is a flap (82) pivotally connected to said air intake housing (66), and wherein said flap (82) covers said port (74) when said flap (82) is in said first position,

8. An agricultural machine (10), especially a combine, comprising an internal combustion engine (44), a cooling package (46) for the engine (44) and an apparatus according to one of the preceding claims.

9. An agricultural machine (10) according to claim 8, comprising:

 a fan (56) rotatably coupled to said engine (44); a cooling package (46) in fluid communication with said engine (44), said cooling package (46) including a radiator (48) having an air inlet (50) and an air outlet (52), a fan shroud (54) mounted
at said air outlet (52) of said radiator (48), a rotary screen (58) mounted at said air inlet (50) of said radiator (48), and a vacuum duct (60) having a vacuum opening (62) and an exhaust opening (64), said exhaust opening (64) being connected to said fan shroud (54) in fluid communication with said air outlet (52) of said radiator (48) and said vacuum opening (62) being positioned adjacent said rotary screen (58);

the air intake housing (66) coupled to said air inlet (50) of said radiator (48) and configured to channel air to said air inlet (50), said sump (70) being positioned at a level below a height of said vacuum opening (62) of said vacuum duct (60).

Patentansprüche

1. Vorrichtung, die zur Zuführung von Luft zu einem Kühlpaket (46) für einen Verbrennungsmotor (44), der eine Landmaschine (10) antreibt, konfiguriert ist, wobei die Vorrichtung Folgendes umfasst:

 ein Lufteinlassgehäuse (66), das eine Lufteinlassöffnung (68) und eine Wanne (70) definiert, wobei die Wanne (70) eine Wand (72) und eine Öffnung (74) aufweist, eine Durchlassvorrichtung (80), die in Verbindung mit der Öffnung (74) positioniert ist, wobei die Durchlassvorrichtung (80) eine erste Position, in der die Öffnung (74) der Wanne (70) geschlossen ist, und eine zweite Position, in der die Öffnung (74) der Wanne (70) nicht geschlossen ist, aufweist, dadurch gekennzeichnet, dass eine auf die Durchlassvorrichtung (80) ausgeübte erste Kraft die Durchlassvorrichtung in der ersten Position hält und die Durchlassvorrichtung (80) aus der ersten Position in die zweite Position bewegt wird, wenn eine in der Wanne (70) angesammelte Schmutzteilchenmasse eine zweite Kraft ausübt, die die die Durchlassvorrichtung (80) in der ersten Position haltende erste Kraft überwindet.

2. Vorrichtung nach Anspruch 1, wobei die Schmutzteilchen zumindest zu einem Großteil durch Getreide gebildet werden, das versehentlich in die Lufteinlassöffnung des Lufteinlassgehäuses (66) eingelegt wird.

3. Vorrichtung nach Anspruch 1, wobei:

 das Kühlpaket (46) einen Kühler (48) mit einem Lufteinlass (50) und einem Luftauslass (52), ein am Lufteinlass (50) des Kühlers (48) angebrachtes Drehsieb (58) und einen Vakuumkanal (60) mit einer Vakuumschließung (62) und einer Auslassöffnung (64) enthält, wobei die Vakuumschließung (62) neben dem Drehsieb (58) positioniert ist; und die Wanne (70) auf einer Ebene unter einer Höhe der Vakuumschließung (62) des Vakuumkanals (60) positioniert ist.

4. Vorrichtung nach Anspruch 3, wobei die Öffnung (74) zwei Durchlässe enthält, wobei jeder der beiden Durchlässe auf einander gegenüberliegenden Seiten des Vakuumkanals (60) positioniert ist.

5. Vorrichtung nach Anspruch 3, wobei die erste Kraft einen Unterdruck umfasst, der durch den Vakuumkanal (60) eingeleitet wird, wenn der Motor (44) läuft.

6. Vorrichtung nach Anspruch 1, wobei die zweite Kraft eine Schwerkraft umfasst, die auf die Durchlassvorrichtung (80) ausgeübt wird.

7. Vorrichtung nach Anspruch 1, wobei die Durchlassvorrichtung (80) eine Klappe (82) ist, die schwenkbar mit dem Lufteinlassgehäuse (66) verbunden ist, und wobei die Klappe (82) die Öffnung (74) bedeckt, wenn sich die Klappe (82) in der ersten Position befindet.

8. Landmaschine (10), insbesondere Mähdrescher, mit einem Verbrennungsmotor (44), einem Kühlpaket (46) für den Motor (44) und einer Vorrichtung nach einem der vorhergehenden Ansprüche.

9. Landmaschine (10) nach Anspruch 8, die Folgendes umfasst:

 einen drehbar mit dem Motor (44) verbundenen Lüfter (56); ein mit dem Motor (44) in Strömungsverbindung stehendes Kühlpaket (46), wobei das Kühlpaket (46) einen Kühler (48) mit einem Lufteinlass (50) und einem Luftauslass (52), eine an dem Luftauslass (52) des Kühlers (48) angebrachte Lüfterverkleidung (54), ein am Lufteinlass (50) des Kühlers (48) angebrachtes Drehsieb (58) und einen Vakuumkanal (60) mit einer Vakuumschließung (62) und einer Auslassöffnung (64) enthält, wobei die Auslassöffnung (64) mit der Lüfterverkleidung (54) in Strömungsverbindung mit dem Luftauslass (52) des Kühlers (48) verbunden ist und die Vakuumschließung (62) neben dem Drehsieb (58) positioniert ist; ein Lufteinlassgehäuse (66), das an den Luft einlass (50) und den Kühler (48) gekoppelt und dazu konfiguriert ist, Luft zum Lufteinlass (50) zu leiten, wobei die Wanne (70) auf einer Ebene unter einer Höhe der Vakuumschließung (62) des Vakuumkanals (60) positioniert ist.
Revendications

1. Appareil configuré pour fournir de l’air à un module de refroidissement (46) pour un moteur à combustion interne (44) qui alimente une machine agricole (10), ledit appareil comprenant :
 - un logement d’admission d’air (66) définissant une ouverture d’admission d’air (68) et un puisard (70), ledit puisard (70) ayant une paroi (72) et un orifice (74),
 - un dispositif formant porte (80) positionné en communication avec ledit orifice (74), ledit dispositif formant porte (80) ayant une première position dans laquelle ledit orifice (74) dudit puisard (70) est fermé et une seconde position dans laquelle ledit orifice (74) dudit puisard (70) n’est pas fermé,
 - caractérisé en ce qu’une première force exercée sur ledit dispositif formant porte (80) maintient ledit dispositif formant porte dans ladite première position, et ledit dispositif formant porte (80) passe de ladite première position à ladite seconde position lorsqu’une masse de débris collectés dans ledit puisard (70) exerce une seconde force qui vient à bout de ladite première force maintenant ledit dispositif formant porte (80) dans ladite première position.

2. Appareil selon la revendication 1, dans lequel lesdits débris sont formés, au moins en partie sensible, par du grain introduit involontairement dans ladite ouverture d’admission d’air dudit logement d’admission d’air (66).

3. Appareil selon la revendication 1, dans lequel :
 - ledit module de refroidissement (46) comprend un radiateur (48) ayant une entrée d’air (50) et une sortie d’air (52), une grille rotative (58) montée au niveau de ladite entrée d’air (50) dudit radiateur (48), et un conduit d’aspiration (60) ayant une ouverture d’aspiration (62) et une ouverture d’évacuation (64), ladite ouverture d’aspiration (62) étant positionnée de façon adjacente à ladite grille rotative (58) ; et
 - ledit puisard (70) étant positionné à un niveau sous une hauteur de ladite ouverture d’aspiration (62) dudit conduit d’aspiration (60).

4. Appareil selon la revendication 3, dans lequel ledit orifice (74) comprend deux ouvertures, chacune desdites deux ouvertures étant positionnée sur les côtés opposés dudit conduit d’aspiration (60).

5. Appareil selon la revendication 3, dans lequel ladite première force comprend une pression négative introduite par ledit conduit d’aspiration (60) lorsque le-

6. Appareil selon la revendication 1, dans lequel ladite seconde force comprend une force gravitationnelle exercée sur ledit dispositif formant porte (80).

7. Appareil selon la revendication 1, dans lequel ledit dispositif formant porte (80) est un volet (82) relé de façon pivotante audit logement d’admission d’air (66), et dans lequel ledit volet (82) couvre ledit orifice (74) lorsque ledit volet (82) est dans ladite première position.

8. Machine agricole (10), en particulier une moissonneuse-batteuse, comprenant un moteur à combustion interne (44), un module de refroidissement (46) pour le moteur (44) et un appareil selon l’une quelconque des revendications précédentes.

9. Machine agricole (10) selon la revendication 8, comprenant :
 - un ventilateur (56) couplé en rotation audit moteur (44) ;
 - un module de refroidissement (46) en communication fluide avec ledit moteur (44), ledit module de refroidissement (46) comprenant un radiateur (48) ayant une entrée d’air (50) et une sortie d’air (52), un déflecteur de ventilateur (54) monté au niveau de ladite sortie d’air (52) dudit radiateur (48), une grille rotative (58) montée au niveau de ladite entrée d’air (50) dudit radiateur (48), et un conduit d’aspiration (60) ayant une ouverture d’aspiration (62) et une ouverture d’échappement (64), ladite ouverture d’échappement (64) étant reliée audit déflecteur de ventilateur (54) en communication fluide avec ladite sortie d’air (52) dudit radiateur (48) et ladite ouverture d’aspiration (62) étant positionnée de façon adjacente à ladite grille rotative (58) ; et
 - le logement d’admission d’air (66) couplé à ladite entrée d’air (50) dudit radiateur (48) et configuré pour canaliser l’air vers ladite entrée d’air (50), ledit puisard (70) étant positionné à un niveau en dessous d’une hauteur de ladite ouverture d’aspiration (62) dudit conduit d’aspiration (60).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4514201 A [0005]

- US 2634713 A [0006]