EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 10.06.2015 Bullentin 2015/24

Application number: 06253686.7

Date of filing: 13.07.2006

Vehicle driving assist system
Fahrassistentenzsystem für ein Kraftfahrzeug
Système d’assistance à la conduite pour véhicule automobile

Designated Contracting States: DE FR GB

Date of publication of application: 17.01.2007 Bullentin 2007/03

Proprietor: Nissan Motor Co., Ltd
Yokohama-shi, Kanagawa 221-0023 (JP)

Inventors:
• Kobayashi, Yousuke,
Nissan Motor Co., Ltd.
Yokohama-shi
Kanagawa, 221-0023 (JP)
• Naito, Genpei,
Nissan Motor Co., Ltd.
Yokohama-shi
Kanagawa, 221-0023 (JP)
• Kimura, Takeshi,
Nissan Motor Co., Ltd.
Yokohama-shi
Kanagawa, 221-0023 (JP)
• Yoshizawa, Hiroyuki,
Nissan Motor Co., Ltd.
Yokohama-shi
Kanagawa, 221-0023 (JP)

Representative: Hager, Thomas Johannes et al
Hoefer & Partner
Patentanwälte
Postfach 14 03 29
80453 München (DE)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a vehicle driving assist system. More specifically, the present invention relates to a vehicle driving assist system configured to assist a driver with respect to operation of a vehicle based on a detectable intention of the driver.

A vehicle driving assist system has been proposed to control an actuation reaction force exerted by the accelerator pedal of a vehicle and a braking/driving force exerted against the vehicle based on the amount of risk existing in the vicinity of the vehicle and the chance of contact occurring between the vehicle and an obstacle. (See, for example, Japanese Laid-Open Patent Publication No. 2005-112242.)

In view of the above, it will be apparent to those skilled in the art from this disclosure that there exists a need for an improved vehicle driving assist system. This invention addresses this need in the art as well as other needs, which will become apparent to those skilled in the art from this disclosure.

It has been discovered that in a vehicle driving assist system as described above assists the driver with respect to driving the vehicle by conveying to the driver the amount of risk existing in the vicinity of the vehicle and the chance of contact occurring between the vehicle and an obstacle. The risk and chance of contact are conveyed through the actuation reaction force exerted by the accelerator pedal and the feeling of deceleration of the vehicle. However, when the vehicle is traveling in heavy traffic, crowded merge situations, or other situations in which the driver deliberately drives at a short following distance with respect to preceding vehicles, such a system sometimes executes excessive control that is contrary to the driver’s intent. Thus, the conventional system sometimes has difficulty executing control that is appropriate when the driver is driving in a manner that is tailored to a particular traffic situation.

EP-A-1 544 070 describes a system that regulates an accelerator pedal reaction force based on a risk potential determined according to the environment surrounding a vehicle. In this document the accelerator pedal reaction force is adjusted based on an estimated driver’s intention and a confidence index. However, the driver’s intention as used merely refers to whether the driver intends to keep the current traveling lane, to change the lane to the left. In other words, this document only discloses a system that corrects the accelerator pedal reaction force according to whether the driver intends to challenge the lane or not. In this document, the risk potential is calculated based on time to collision (TTC) and time headway (THW).

The above mentioned object and other objects of the present invention are solved by the combination of features of claim 1 or 9. The dependent claims contain advantageous embodiments of the present invention.

The control pattern selecting section may be further configured to select the selected vehicle control pattern using the driver’s intention predicted based on the accelerator pedal actuation state.

The control pattern selecting section may be configured to change the selected vehicle control pattern to one of the plurality of vehicle control patterns having a control execution region that is shorter than a current control execution region of the selected vehicle control pattern when the driver intent predicting section predicts that the driver’s intention is to accelerate.

The control pattern selecting section may be further configured to change the selected vehicle control pattern to one of the plurality of vehicle control patterns having a control execution region that is longer than a current control execution region when the driver intent predicting section predicts that the driver’s intention is to decelerate and the positional relationship between the host vehicle and the obstacle is changing in a direction of increasing distance between the host vehicle and the obstacle.

The plurality of vehicle control patterns may each have a different control execution region; and the control pattern selecting section is further configured to select one from the plurality of vehicle control patterns that has a longest control execution region as the selected vehicle control pattern when the traveling situation detecting section ceases to detect the obstacle.

The relative position calculating section may be configured to calculate an amount of time until the host vehicle contacts the obstacle based on the distance and a relative velocity between the host vehicle and the obstacle, the amount of time constituting the positional relationship between the host vehicle and the obstacle; and each of the plurality of vehicle control patterns may have a different control execution region defined according to a length of the amount of time until the host vehicle contacts the obstacle based on the distance and a relative velocity between the host vehicle and the obstacle.

The vehicle driving assist system may be provided within a vehicle.

These and other objects, features, aspects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.

Within the scope of this application it is envisaged that the various aspects, embodiments and alternatives set out in the preceding paragraphs, in the claims and in the following description may be taken individually or in any combination thereof.

Referring now to the attached drawings which form a part of this original disclosure:
Figure 1 is a block diagram of a vehicle driving assist system in accordance with a first embodiment of the present invention;

Figure 2 is a schematic perspective view of a vehicle in which the vehicle driving assist system shown in Figure 1 is installed in accordance with the first embodiment of the present invention;

Figure 3 is a block diagram illustrating selected internal components of the controller of the vehicle driving assist system in accordance with the first embodiment of the present invention;

Figure 4 is a flowchart illustrating the processing steps of the driving assistance control program executed by the controller of the vehicle driving assist system in accordance with the first embodiment of the present invention;

Figure 5 is a flowchart for explaining the processing steps executed in order to detect the intent of the driver;

Figure 6 is a flowchart for explaining the processing steps executed in order to select the control pattern;

Figure 7 is a series of graphs illustrating the concept of the risk potential of the vehicle in which the driving assist system is installed;

Figure 8 is a flowchart for explaining the processing steps executed in order to calculate the risk potential;

Figure 9 is a plot of the accelerator pedal reaction force control amount versus the risk potential;

Figure 10 is a series of graphs illustrating how the intent of the driver, the control pattern, the following distance, the risk potential, and the reaction force control command value change with time when the control pattern changes from Control Pattern 0 to Control Pattern 1 and then from Control Pattern 1 to Control Pattern 2;

Figure 11 is a series of graphs illustrating how the intent of the driver, the control pattern, the following distance, the risk potential, and the reaction force control command value change with time when the control pattern changes from Control Pattern 2 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 0;

Figure 12 is a system diagram of a vehicle driving assist system in accordance with a second embodiment of the present invention;

Figure 13 is a schematic view of a vehicle in which the vehicle driving assist system shown in Figure 12 is installed in accordance with the second embodiment of the present invention;

Figure 14 is a diagram for explaining the general concept of the driving force control in accordance with the second embodiment of the present invention;

Figure 15 is a plot of the requested driving force versus the accelerator pedal depression amount in accordance with the second embodiment of the present invention;

Figure 16 is a diagram for explaining the general concept of the braking force control in accordance with the second embodiment of the present invention;

Figure 17 is a plot of the requested braking force versus the brake pedal depression amount in accordance with the second embodiment of the present invention;

Figure 18 is a block diagram showing the internal components of the controller in accordance with the second embodiment of the present invention;

Figure 19 is a flowchart showing the processing steps of a driving assistance control program in accordance with the second embodiment of the present invention;

Figure 20 is a plot of the repelling force versus the risk potential;

Figure 21 is a flowchart for explaining the processing steps executed in order to calculate the driving force revision
amount and the braking force revision amount;

Figure 22 is a characteristic curve plot for explaining how the driving force and the braking force are revised;

Figure 23 is a series of graphs illustrating how the intent of the driver, the control pattern, the following distance, the risk potential, the reaction force control command value, and the repelling force change with time when the control pattern changes from Control Pattern 0 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 2;

Figure 24 is a series of graphs illustrating how the intent of the driver, the control pattern, the following distance, the risk potential, the reaction force control command value, and the repelling force change with time when the control pattern changes from Control Pattern 2 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 0;

Figure 25 is a flowchart for explaining the processing steps executed in order to calculate the risk potentials in accordance with a third embodiment of the present invention;

Figure 26 is a plot of the reaction force control command value versus the reaction force calculation risk potential in accordance with the third embodiment of the present invention;

Figure 27 is a plot of the repelling force versus the repelling force calculation risk potential in accordance with the third embodiment of the present invention;

Figure 28 is a series of graphs illustrating how the intent of the driver, the control pattern, the following distance, the reaction force calculation risk potential, the repelling force calculation risk potential, the reaction force control command value, and the repelling force change with time when the control pattern changes from Control Pattern 0 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 2 in accordance with the third embodiment of the present invention; and

Figure 29 is a series of graphs illustrating how the intent of the driver, the control pattern, the following distance, the reaction force calculation risk potential, the repelling force calculation risk potential, the reaction force control command value, and the repelling force change with time when the control pattern changes from Control Pattern 2 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 0 in accordance with the third embodiment of the present invention.

[0016] Selected embodiments of the present invention will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments of the present invention are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.

First Embodiment

[0017] Referring initially to Figures 1 and 2, a vehicle driving assist system 1 is illustrated in accordance with a first embodiment of the present invention. Figure 1 is a block diagram of a vehicle driving assist system in accordance with the first embodiment of the present invention. Figure 2 is a schematic perspective view of a vehicle (hereinafter also called "the host vehicle") in which the vehicle driving assist system shown in Figure 1 is installed in accordance with the first embodiment of the present invention. With the present invention, an appropriate control pattern (explained below) is selected in consideration of an accelerator pedal actuation state and a positional relationship between the host vehicle and an obstacle, both of which vary depending on the traffic situation surrounding the vehicle. Consequently, information can be conveyed to the driver through the accelerator pedal actuation reaction force of the accelerator pedal and/or the braking/driving force of the host vehicle while also reducing the annoyance that results when control that is contrary to the driver's intent is executed.

[0018] First, the main structures and features of the vehicle driving assist system will now be explained. A laser radar 10 is mounted to a front grill portion, a bumper portion, or the like of the vehicle and serves to horizontally scan a region in front of the vehicle with an infrared light pulse. The laser radar 10 then measures the reflected light resulting from the infrared light reflecting off of a plurality of reflecting objects located in front of the vehicle (normally, the rear ends of preceding vehicles). By measuring the time required for the reflected light to arrive, the laser radar 10 detects the following distance and existence direction to a plurality of vehicles. The detected following distances and existence directions are sent to a controller 50. In this embodiment, the existence directions of preceding objects can be expressed as a relative angle with respect to the vehicle in which the driving assist system 1 is installed. The region in front of the host vehicle
scanned by the laser radar 10 is, for example, ±6 degrees with respect to the front of the host vehicle and the system detects preceding objects existing within this angular range.

[0019] The vehicle speed sensor 30 is configured and arranged to detect the speed of the host vehicle in which the system 1 is installed. The vehicle speed sensor 30 outputs a signal indicative of the speed of the host vehicle to the controller 50. For example, the vehicle speed sensor 30 is configured and arranged to measure the rotational speed of the wheels and the rotational speed of the output side of the transmission, and then output the detected vehicle speed to the controller 50.

[0020] The controller 50 comprises a CPU and a ROM, a RAM, and other components peripheral to the CPU and serves to control the entire vehicle driving assist system 1. Based on the speed of the host vehicle received from the vehicle speed sensor 30 and the distance information received from the laser radar 10, the controller 50 recognizes the obstacle situation in the vicinity of the host vehicle, e.g., recognizes the traveling situation with respect to the obstacles in terms of relative distances and relative velocities with respect to the obstacles. Based on the obstacle situation, the controller 50 calculates risk potentials indicating the degree of convergence between the host vehicle and each obstacle. The controller 50 also executes the control described below based on the risk potentials with respect to the obstacles.

[0021] By controlling the reaction force generated when the accelerator pedal 72 is depressed, the vehicle driving assist system 1 in accordance with the first embodiment assists driver in an appropriate manner with respect to acceleration and deceleration of the host vehicle. In order to accomplish this, the controller 50 calculates a vehicle longitudinal reaction force control amount based on the risk potentials with respect to the obstacles in front of the host vehicle. The controller 50 outputs the calculated longitudinal reaction force control amount to an accelerator pedal reaction force control device 70.

[0022] Based on the reaction force control amount from the controller 50, the accelerator pedal reaction force control device 70 controls the torque generated by a servomotor 71 built into a linkage mechanism of the accelerator pedal 72. The servomotor 71 is configured and arranged to control the reaction force generated based on a command value from the accelerator pedal reaction force control device 70 and can freely control the actuation reaction force (accelerator pedal depression force) generated when the driver operates the accelerator pedal 72.

[0023] The accelerator pedal stroke sensor 74 is configured and arranged to detect the depression amount (actuation amount) of the accelerator pedal 72 and output a signal indicative of the depression amount (actuation or operation amount) of the accelerator pedal 72. The depression amount of the accelerator pedal 72 is converted into a rotation angle of the servomotor 71 by a linkage mechanism. The accelerator pedal stroke sensor 74 outputs the detected accelerator pedal actuation amount to the controller 50.

[0024] Figure 3 is a simplified block diagram of the internal and peripheral components of the controller 50. The controller 50 preferably includes a microcomputer with a control program that controls the system 1 in a manner as discussed below. The controller 50 can also include other conventional components such as an input interface circuit, an output interface circuit, and storage devices such as a ROM (Read Only Memory) device and a RAM (Random Access Memory) device. Thus, the internal and peripheral components of the controller 50 are configured such that the controller 50 includes an obstacle recognizing unit or section 51, a risk potential calculating unit or section 52, an intent detecting unit or section 53, a control pattern selecting unit or section 54, and an accelerator pedal reaction force calculating unit or section 55. It will be apparent to those skilled in the art from this disclosure that the precise structure and algorithms for these units or sections 51 to 55 as well as other units or sections can be any combination of hardware and software that will carry out the functions of the present invention. Thus, "means plus function" clauses as utilized in the specification and claims should include any structure or hardware and/or algorithm or software that can be utilized to carry out the function of the "means plus function" clause.

[0025] The obstacle recognizing unit 51 is configured and/or arranged to recognize the obstacle situation in the vicinity of the host vehicle based on detection values from the laser radar 10 and the vehicle speed sensor 30. Based on the obstacle situation recognized by the obstacle recognizing unit 51, the risk potential calculating unit 52 is configured and arranged to calculate the risk a potential RP indicating the degree of convergence between the host vehicle and an obstacle in front of the host vehicle. The intent detecting unit 53 is configured and/or arranged to determine the driver's intention. More specifically, the intent detecting unit 53 is configured and/or arranged to determine the driver's intention with respect to acceleration or deceleration based on the operating state of the accelerator pedal 72 detected by the accelerator pedal stroke sensor 74.

[0026] The control pattern selecting unit 54 is configured and/or arranged to select a control pattern for executing accelerator pedal reaction force control based on the obstacle situation in the vicinity of the host vehicle, the risk potential RP with respect to an obstacle in front of the host vehicle, and the acceleration/deceleration intent of the driver. In accordance with the control pattern selected by the control pattern selecting unit 54, the accelerator pedal reaction force calculating unit 55 calculates a command value (reaction force control amount) for the accelerator pedal actuation reaction force based on the risk potential RP.

[0027] The operation of a vehicle driving assist system 1 in accordance with the first embodiment will now be explained with reference to Figure 4. Figure 4 is a flowchart showing the processing steps of the driving assistance control executed
by the controller 50 in the first embodiment. This control loop is executed continuously once per prescribed time period, e.g., every 50 msec.

[0028] In step S 100, the controller 50 reads in the traveling situation. The traveling situation mentioned here constitutes information related to the traveling circumstances of the host vehicle, including information regarding obstacles in front of the host vehicle. Thus, the controller 50 reads in a following distance X and an existence direction to the obstacle detected by the laser radar 10 and a host vehicle speed Vh of the host vehicle detected by the vehicle speed sensor 30. The controller 50 also reads in the accelerator pedal actuation amount SA detected by the accelerator pedal stroke sensor 74.

[0029] In step S 200, the controller 50 recognizes the situation regarding obstacles in front of the host vehicle based on the traveling situation data read in step S 100. More specifically, the controller 50 recognizes a current relative position, a movement direction, and a movement velocity of the object with respect to the host vehicle based on the current traveling situation data obtained in step S 100 and based on relative position, a movement direction, and a movement velocity of the object with respect to the host vehicle that were detected during or prior to the previous control cycle and stored in the memory of the controller 50. The controller 50 then recognizes the manner in which the obstacle is disposed in front of the host vehicle and the manner in which the obstacle is moving relative to the movement of the host vehicle.

[0030] In step S 300, the controller 50 detects a driving intent of the driver. More specifically, the controller 50 detects the driver's intentions regarding acceleration and deceleration. The control processing executed in order to determine the driver's intentions will now be explained with reference to the flowchart of Figure 5.

[0031] In step S 301, the controller 50 determines if the accelerator pedal 72 is in a released state. More specifically, the controller 50 determines if the current accelerator pedal actuation amount SA detected by the accelerator pedal stroke sensor 74 is 0. If so, the controller 50 proceeds to step S 302 and sets the value of a flag Flg_D to 2, indicating that it has determined the driver's intent is to decelerate.

[0032] If the accelerator pedal 72 is being depressed and the result of step S 301 is negative, then the controller 50 proceeds to step S 303 and calculates the accelerator pedal actuation speed dS. The accelerator pedal actuation speed dS can be calculated by, for example, calculating a time differential of the accelerator pedal actuation amount SA. The accelerator pedal actuation speed dS is expressed as a positive value when the accelerator pedal 72 is being depressed and as a negative value when the accelerator pedal 72 is being released.

[0033] In step S 304, the controller 50 determines if the accelerator pedal 72 is in the process of being depressed. More specifically, the controller 50 compares the accelerator pedal actuation speed dS calculated in step S 303 to a prescribed value dS1 (i.e., dS1> 0). If dS > dS1, the controller 50 determines that the accelerator pedal 72 is being depressed and proceeds to step S 305, where it sets the value of the flag Flg_D to 1 to indicate that the driver's intent is to accelerate.

[0034] If the result of step S 304 is negative, then the controller 50 proceeds to step S 306 and determines if the accelerator pedal 72 is in the process of being released. More specifically, the controller 50 compares the accelerator pedal actuation speed dS to a prescribed value dS2 (i.e., dS2< 0) and determines that the accelerator pedal 72 is being released if dS < dS2. If the accelerator pedal 72 is in the process of being released, then the controller 50 proceeds to step S 307 and sets the value of the flag Flg_D to 2 to indicate that the driver's intent is to decelerate. If value of dS is found to be between dS2 and dS1 (dS2 < dS < dS1) in step S 306, then the controller 50 determines that the driver is holding the accelerator pedal 72 at a particular position and proceeds to step S 308.

[0035] In step S 308, the controller 50 sets the value of the flag Flg_D to 0 to indicate that the driver's intent is to maintain the current traveling state without accelerating or decelerating. In other words, the controller 50 determines that the driver's intent is to travel at (maintain) a constant speed. The prescribed values dS1 and dS2 are threshold values that are set appropriately in advance for determining if the driver intends to accelerate, decelerate, or maintain a constant speed based on the actuation state of the accelerator pedal 72.

[0036] After the controller 50 predicts the driver's intent in step S 300, the controller 50 proceeds to step S 400 of Figure 4 in which the control process of the flow chart shown in Figure 6 is executed.

[0037] In step S 400, the controller 50 selects a control pattern among a plurality of control patterns for executing accelerator pedal reaction force control. The control pattern expression the manner in which the accelerator pedal reaction force control will be executed. The control patterns are something that produces a detectable driver condition. The control patterns indicate a control execution region in which the accelerator pedal reaction force control is executed. In this embodiment, the control patterns that can be selected include a Control Pattern 0 (Flg = 0) having a long control execution region, a Control Pattern 1 (Flg = 1) having a medium control execution region, and a Control Pattern 2 (Flg = 2) having a short control execution region.

[0038] Control Pattern 0 has a long control execution region and serves to start the actuation reaction force control at an early stage when an obstacle exists in front of the host vehicle so as to inform the driver of the situation regarding the obstacle. Thus, with Control Pattern 0, the driver can be encouraged to operate the host vehicle in an appropriate manner in traffic situations in which there are comparatively few other vehicles and following distances with respect to obstacles in front of the host vehicle are somewhat large. Control Pattern 1 has a medium-length control execution
The control processing executed by the controller 50 in order to select the control pattern will now be explained with reference to the flowchart of Figure 6.

In step S401, the controller 50 calculates the amount of time TTC (time to contact) until the host vehicle contacts the obstacle, e.g., a preceding vehicle, recognized in front of the host vehicle in step S200. The time to contact TTC is a physical quantity indicating the current degree of convergence of the host vehicle with respect to the preceding vehicle. More specifically, the time to contact TTC is a value indicating the number of seconds until the following distance X becomes zero and the host vehicle contacts the preceding vehicle if the current traveling state continues, i.e., if the host vehicle speed Vh and the relative velocity Vr (i.e., Vr = vehicle speed - preceding vehicle speed) remain constant. The time to contact TTC with respect to the preceding vehicle is found using the Equation 1 shown below.

\[\text{TTC} = \frac{X}{V_r} \]
(Equation 1)

If the result of step S406 is positive, then the controller 50 proceeds to step S407 and changes the control pattern to Control Pattern 2 (Flg = 2), i.e., the short control execution region.

If the result of step S406 is negative and the current control pattern is Control Pattern 2, then the controller 50 proceeds to step S405 and determines if the current control pattern is Control Pattern 2 (Flg = 2). If the result of step S405 is negative, then the controller 50 continues using the control pattern (Control Pattern 2) set in the previous control cycle.

If the result of step S405 is positive, then the controller 50 proceeds to step S404 and changes the control pattern to Control Pattern 1 (Flg = 1), i.e., the medium-length control execution region. If the result of step S403 is negative, then the controller 50 continues using the control pattern (Control Pattern 0) set in the previous control cycle. If the time to contact TTC is larger than Th0, then the controller 50 proceeds to step S411 and changes the control pattern to Control Pattern 0 (Flg = 0), i.e., the long control execution region. If the result of step S409 or S410 is negative, i.e., if the driver does not intend to decelerate or the time to contact TTC is less than or equal to the threshold value Th0, then the controller 50 continues using Control Pattern 1 as set in the previous control cycle. If the result of step S408 is negative, i.e., if an obstacle does not exist in front of the host vehicle, then the controller 50 proceeds to step S412 and changes the control pattern to Control Pattern 0 (Flg = 0), i.e., the long control execution region.

The control processing executed by the controller 50 in order to select the control pattern will now be explained with reference to the flowchart of Figure 6.

In step S401, the controller 50 calculates the amount of time TTC (time to contact) until the host vehicle contacts the obstacle, e.g., a preceding vehicle, recognized in front of the host vehicle in step S200. The time to contact TTC is a physical quantity indicating the current degree of convergence of the host vehicle with respect to the preceding vehicle. More specifically, the time to contact TTC is a value indicating the number of seconds until the following distance X becomes zero and the host vehicle contacts the preceding vehicle if the current traveling state continues, i.e., if the host vehicle speed Vh and the relative velocity Vr (i.e., Vr = vehicle speed - preceding vehicle speed) remain constant. The time to contact TTC with respect to the preceding vehicle is found using the Equation 1 shown below.

\[\text{TTC} = \frac{X}{V_r} \]
(Equation 1)
If the time to contact TTC is larger than the threshold value Th1, then the controller 50 proceeds to step S416 and changes the control pattern to Control Pattern 1 (Flg = 1), i.e., the medium control execution region. If the result of step S414 or S415 is negative, i.e., if the driver does not intend to decelerate or the time to contact TTC is less than or equal to the threshold value Th1, then the controller 50 continues using Control Pattern 2 as set in the previous control cycle. If the result of step S413 is negative, i.e., if an obstacle does not exist in front of the host vehicle, then the controller 50 proceeds to step S417 and changes the control pattern to Control Pattern 0 (Flg = 0), i.e., the long control execution region.

After the controller 50 selects the appropriate control pattern in step S400, the controller 50 proceeds to step S500 of Figure 4 in which the control process of the flow chart shown in Figure 8 is executed.

In step S500, the controller 50 calculates a risk potential RP indicating the degree of convergence between the host vehicle and the obstacle, e.g., preceding vehicle, in front of the host vehicle. The term "risk potential" refers to the degree of risk or possibility of danger. In this embodiment, the risk potential is set to increase as the host vehicle and an obstacle existing in the vicinity of the host vehicle draw closer together. In other words, in this illustrated embodiment, the risk potential is a physical quantity that expresses how close the host vehicle and the obstacle are to each other, i.e., the degree to which the host vehicle and the obstacle have drawn near to each other (degree of convergence). The method of calculating the risk potential RP will now be described.

Referring first to Figure 7, two cases are schematically modeled to explain method of calculating the risk potential RP. Consider a model in which it is assumed that an imaginary elastic body 300 is provided on the front of the host vehicle 100 in which the assist system 1 is installed, as shown in diagram (a) of Figure 7. The imaginary elastic body 300 touches against the preceding vehicle 300 and is compressed, thereby generating a pseudo traveling resistance against the movement of the host vehicle 100. Here, the risk potential RP with respect to the obstacle is defined to be the spring force that results when, as shown in diagram (b) of Figure 7, the imaginary elastic body 300 contacts the preceding vehicle 200 and is compressed. The method of calculating the risk potential RP will now be explained with reference to the flowchart of Figure 8.

In step S501, the controller 50 determines if the control pattern selected in step S400 is Control Pattern 0 (Flg = 0). If the selected control pattern is Control Pattern 0, i.e., the long control execution region, then the controller 50 proceeds to step S502 and sets the value Th0 used to determine if the control pattern was Control Pattern 0 as a time to contact threshold value Th for calculating the risk potential RP.

If the result of step S501 is negative, then the controller 50 proceeds to step S503 and determines if the current control pattern is Control Pattern 1 (Flg = 1). If the selected control pattern is Control Pattern 1, i.e., the medium-length control execution region, then the controller 50 proceeds to step S504 and sets the value Th1 used to determine if the control pattern was Control Pattern 1 as the time to contact threshold value Th. If the result of step S503 is negative, then the controller 50 proceeds to step S505 and sets the threshold value Th2 as the time to contact threshold value Th. The threshold value Th2 is a prescribed value used for determining if the control pattern having the short control execution region, i.e., Control Pattern 2, should be selected. The threshold value Th2 is set in advance to an appropriate value that is less than threshold value Th1.

In step S506, the controller 50 determines if the time to contact TTC of the host vehicle with respect to the preceding vehicle calculated in step S400 is smaller than the time to contact threshold value Th set in step S502, S504, or S505. If the time to contact TTC is smaller than the time to contact threshold value Th, then the controller 50 proceeds to step S507 and calculates a reference length L indicating the length of the imaginary elastic body 300. The reference length L is calculated using Equation 2 shown below based on the time to contact threshold value Th and the relative velocity Vr of the host vehicle and the preceding vehicle.

\[L = Th \times Vr \]
(Equation 2)

In step S508, the controller 50 uses the reference length L calculated in step S507 in Equation 3 shown below in order to calculate the risk potential RP of the host vehicle with respect to the preceding vehicle.

\[RP = K \times (L - X) \]
(Equation 3)

In the equation, the term K is the spring constant of the imaginary elastic member 300. Thus, the shorter the following distance X of the host vehicle with respect to the preceding vehicle becomes, the more the imaginary elastic body 300 is compressed and the risk potential RP increases.
If the result of step S506 is negative and the time to contact TTC is equal to or larger than the time to contact the preceding vehicle, the control pattern is determined to be low and the risk potential RP is set to 0.

After the controller 50 calculates the risk potential RP in step S500, the controller 50 proceeds to step S600 of Figure 4. In step S600, the controller 50 calculates a reaction force control command value FA for the actuation reaction force to be exerted by the accelerator pedal 72 based on the risk potential RP calculated in step S500. Figure 9 is a plot of the accelerator pedal reaction force control command value FA versus the risk potential RP. As indicated in Figure 9, when the risk potential is larger than a prescribed minimum value RPmin, the accelerator pedal reaction force control command value FA is calculated such that the generated accelerator pedal reaction force increases as the risk potential RP increases.

When the risk potential RP is larger than a prescribed maximum value RPmax, the accelerator pedal reaction force control command value FA is held constant at a maximum value FAmax such that a maximum accelerator pedal reaction force is generated.

In step S700 of Figure 4, the controller 50 sends the accelerator pedal reaction force control command value FA calculated in step S600 to the accelerator pedal reaction force control device 70. The accelerator pedal reaction force control device 70 controls the actuation reaction force exerted by the accelerator pedal 72 based on the command value received from the controller 50. After command value is sent, the current control loop ends.

The operational effects of a vehicle driving assist system 1 in accordance with the first embodiment of the present invention will now be explained with reference to the drawings. Figure 10 is a series of graphs illustrating how the intent of the driver, the control pattern, the following distance, the risk potential, and the reaction force control command value change with time when the control pattern changes from Control Pattern 0 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 2. Figure 11 is a series of graphs illustrating how the intent of the driver, the control pattern, the following distance, the risk potential, and the reaction force control command value change with time when the control pattern changes from Control Pattern 2 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 0.

When traveling in a traffic jam or other congested traffic conditions, the driver operates the accelerator pedal 72 frequently in order to adjust the host vehicle speed Vh and the traveling distance X. When traveling in congestion, merging traffic, and other situations in which the following distance X must be short, the driver’s ability to operate the accelerator pedal 72 would be impeded if the system determined that the degree of convergence with respect to a preceding vehicle was high and caused the accelerator pedal 72 to exert a large actuation reaction force. Therefore, the control pattern is changed automatically in order to avoid impeding the driver’s ability to drive and becoming an annoyance in situations where the traveling distance X with respect to a preceding vehicle is naturally short, such as in congested traffic or merging traffic, and in situations where the driver deliberately shortens the traveling distance in order to pass a preceding vehicle.

The graph (a) of Figure 10 indicates the driver’s intent with respect to acceleration in a traffic situation like those mentioned above, i.e., congested traffic, merging traffic, or passing. The graph (b) of Figure 10 shows how the control pattern changes from Control Pattern 0 to Control Pattern 1 and then from Control Pattern 1 to Control Pattern 2 when the driver intends to accelerate. As shown in graph (c) of Figure 10, the following distance gradually shortens as the host vehicle approaches the preceding vehicle. Since the control pattern changes, i.e., the control execution region changes, the risk potential RP changes in a discontinuous manner as shown in graph (d) of Figure 10.

Since the time to contact threshold value Th and the control execution region are different for each of the Control Patterns 0, 1 and 2, the risk potential RP starts rising at a different timing for each of the control patterns, as indicated with the dotted lines in graph (d) of Figure 10. When Control Pattern 0 is set a risk potential RP corresponding to Control Pattern 0 is selected, and when Control Pattern 1 is set a risk potential RP corresponding to Control Pattern 1 is selected. Consequently, as shown in graph (d) of Figure 10, the risk potential does not increase in a continuous manner but, rather, undergoes abrupt changes.

As shown in graph (e) of Figure 10, the accelerator pedal reaction force control command value FA changes in accordance with the risk potential RP. As a result, the accelerator pedal actuation reaction force can be prevented from increasing excessively and becoming an annoyance to the driver or impeding the driver’s ability to drive. Also, since the actuation reaction force changes in a discontinuous manner, the driver can readily recognize that the control pattern has changed.

When the driver has the intent to decelerate, it would seem odd if the accelerator pedal 72 continued to exert a large actuation reaction force. Thus, as shown in graph (a) of Figure 11, when the driver exhibits the intent to decelerate, the control pattern is changed automatically based on the time to contact TTC of the host vehicle and the preceding vehicle. When the time to contact TTC increases beyond the threshold value Th1, the control pattern changes from Control Pattern 2 to Control Pattern 1. Then, when the time to contact TTC increases beyond the threshold value Th0, the control pattern is changed again from Control Pattern 1 to Control Pattern 0. In this way, the control pattern is gradually
The risk potential RP in accordance with Control Pattern 2 is selected when Control Pattern 2 is being used, the risk potential RP in accordance with Control Pattern 1 is selected when Control Pattern 1 is being used, and the risk potential RP in accordance with Control Pattern 0 is selected when Control Pattern 0 is being used. Thus, after the risk potential RP used for control decreases to 0 as indicated with the solid-line curve in graph (d) of Figure 11, it remains at 0 (RP = 0).

As shown in graph (e) of Figure 11, the accelerator pedal reaction force control command value FA changes in accordance with the risk potential RP. As a result, when the driver is attempting to decelerate, the accelerator pedal actuation reaction force can be decreased rapidly so that the actuation reaction force control is well-matched to what the driver would expect to feel. Also, the control pattern is changed to the control pattern having the longest control execution region, i.e., Control Pattern 0, when an obstacle ceases to be detected. As a result, when a new obstacle is detected, the risk potential RP can be calculated at an early timing and the driver can be informed earlier regarding the existence of the new obstacle.

Basically, the operational effects of the first embodiment will now described. The controller 50 of the vehicle driving assist system 1 detects the host vehicle speed Vh of the host vehicle in which the system is installed and the following distance X of the host vehicle with respect to an obstacle existing in front of the host vehicle, and, based on these detected quantities, the controller 50 calculates a positional relationship between the host vehicle and the obstacle. Additionally, the controller 50 detects the state of actuation of the accelerator pedal 72 (which is a driver-operated device used by the driver in order to drive the host vehicle) by the driver and selects the control pattern from among a plurality of control patterns based on the accelerator pedal actuation state and the positional relationship of the host vehicle with respect to the obstacle. The controller 50 then calculates the risk potential RP that indicates the degree of convergence between the host vehicle and the obstacle. The calculation is based on the following distance X and the host vehicle speed Vh and is executed in accordance with the selected control pattern. Based on the calculated risk potential RP, the controller 50 then controls the actuation reaction force exerted by the accelerator pedal 72 and/or the braking/driving force exerted against the host vehicle. In the first embodiment, the actuation reaction force of the accelerator pedal 72 is controlled. More specifically, the actuation reaction force of the accelerator pedal 72 is controlled in accordance with the actuation state of the accelerator pedal 72 (which varies depending on the traffic situation surrounding the host vehicle) and the positional relationship between the host vehicle and the obstacle. As a result, the system can select an appropriate control pattern and accomplish both the task of transmitting information to the driver via the actuation reaction force and the task of reducing the annoyance to the driver caused by generating an actuation reaction force that is opposed to the intent of the driver.

The intent detecting unit 53 of the controller 50 predicts if the intent of the driver is to accelerate, decelerate, or travel at constant speed based on the actuation state of the accelerator pedal 72 by the driver. Each of the control patterns has a different control execution region and the control pattern selecting unit 54 of the controller 50 is configured to select the control pattern using the intent of the driver predicted based on the accelerator pedal actuation state. As a result, a control pattern that takes into consideration the driver's intent can be selected and the actuation reaction force can be controlled appropriately.

If the intent detecting unit 52 predicts that the driver intends to accelerate, the control pattern selecting unit 54 selects a control pattern having a shorter control execution region than the current control pattern. When the driver exhibits the intent to accelerate and is approaching near to an obstacle, the control pattern selecting unit 54 selects a control pattern having a short control execution region so as not to execute actuation reaction force control until the possibility (chances) of contact between the host vehicle and the obstacle becomes high. In this way, the system avoids impeding the driving operations executed by the driver, i.e., operation of the accelerator pedal 72 by the driver. Meanwhile, if the chances of contact become high, then the controller 50 can cause the accelerator pedal 72 to exert a large actuation reaction force to alert the driver and reduce the chances of contact.

If the intent detecting unit 52 predicts that the driver intends to decelerate and the positional relation which between the host vehicle and the obstacle is changing in the direction of increasing distance between the host vehicle and the obstacle, then the control pattern selecting unit 54 selects a control pattern having a control execution region that is longer than the current control execution region. As a result, when the driver is attempting to decelerate, the control execution region gradually becomes longer and actuation reaction force control that is well-matched to what the driver would expect to feel can be accomplished.

When an obstacle that has been detected by the laser radar 10 (traveling situation detecting section) ceases to be detected anymore, the control pattern selecting unit 54 selects the control pattern having the longest control execution region. As a result, the next time an obstacle begins being detected, the actuation reaction force control can be commenced at an early stage.

The controller 50 uses the following distance X and the relative velocity Vr as the positional relationship between the host vehicle and the obstacle and calculates the time to contact TTC of the host vehicle and the obstacle based on
the following distance X and the relative velocity V_r. The control execution region is defined to be the length of the time to contact TTC. Thus, the control pattern can be selected appropriately in view of the driver’s driving characteristics in congested traffic, merge situations, passing situations, and various other traffic situations.

Second Embodiment

[0075] Referring now to Figures 12 to 25, a vehicle driving assist system in accordance with a second embodiment will now be explained. In view of the similarity between the first and second embodiments, the parts of the second embodiment that are identical to the parts of the first embodiment will be given the same reference numerals as the parts of the first embodiment. In other words, the parts illustrated in Figures 12 and 13 that have the same functions as the parts of the first embodiment shown in Figures 1 and 2 are indicated with the same reference numerals. Moreover, the descriptions of the parts of the second embodiment that are identical to the parts of the first embodiment may be omitted for the sake of brevity. Thus, the second embodiment will be explained chiefly by describing its differences with respect to the first embodiment. Unless indicated to the contrary, the descriptions of the parts of the first embodiment applies to the second embodiment.

[0076] Figure 12 is a system diagram showing a vehicle driving assist system 2 in accordance with the second embodiment, while Figure 13 is a schematic view of a host vehicle having the vehicle driving assist system 2 shown in Figure 12 installed therein. As shown in Figure 12, the vehicle driving assist system 2 is further provided with a driving force control device or section 73 configured to control a driving force exerted against the host vehicle, a braking force control device or section 93 configured to control a braking force exerted against the host vehicle, and a brake pedal stroke sensor 94 (brake pedal stroke detecting section). The brake pedal stroke sensor 94 detects the depression amount (actuation amount) of the brake pedal 92. The brake pedal stroke sensor 94 outputs the detected brake pedal actuation amount to a controller 50A that is the same as the controller 50, but with different programming.

[0077] The driving force control device 73 is configured to calculate a control command for the engine. Figure 14 is a block diagram of the driving force control device 73. Figure 15 is a characteristic map plotting the driver’s requested driving force F_{da} versus the accelerator pedal actuation amount SA. The driving force control device 73 uses a map like that shown in Figure 15 to calculate the driver’s requested driving force F_{da} based on the accelerator pedal actuation amount SA. The driving force control device 73 adds a driving force revision amount ΔDa (explained later) to the driver’s requested driving force F_{da} so as to calculate a target driving force. The driving force control device 73 has an engine controller that calculates a control command for the engine based on the target driving force.

[0078] The braking force control device 93 is configured to output a brake fluid pressure command. Figure 16 is a block diagram of the braking force control device 93. Figure 17 is a characteristic map plotting the driver’s requested braking force F_{db} versus the brake pedal actuation amount SB. The driving force control device 93 uses a map like that shown in Figure 17 to calculate the driver’s requested braking force F_{db} based on the brake pedal actuation amount SB. The driving force control device 93 adds a braking force revision amount ΔDb (explained later) to the driver’s requested driving force F_{db} so as to calculate a target braking force. The braking force control device 93 has a brake fluid pressure controller configured to output a brake fluid pressure command based on the target braking force. A brake device 95 is provided on each of the wheels of the host vehicle. The brake devices 95 operate in accordance with a control command issued from the brake fluid pressure controller.

[0079] Figure 18 is a simplified block diagram of the internal and peripheral components of the controller 50A. The controller 50A preferably includes a microcomputer with a control program that controls the system 2 in a manner as discussed below. The controller 50A can also include other conventional components such as an input interface circuit, an output interface circuit, and storage devices such as a ROM (Read Only Memory) device and a RAM (Random Access Memory) device. Thus, the internal and peripheral components of the controller 50A are configured such that the controller 50 includes an obstacle recognizing unit or section 51, a risk potential calculating unit or section 52, an intent detecting unit or section 53, a control pattern determining unit or section 54, an accelerator pedal reaction force calculating unit or section 55, a repelling force calculating unit or section 56, and a braking/driving force revision amount calculating unit or section 57.

[0080] Based on the risk potential RP, the repelling force calculating unit 56 calculates a reference repelling force for calculating a driving force revision amount ΔDa and a braking force revision amount ΔDb. The braking/driving force revision amount calculating unit 57 calculates the revision amounts (ΔDa and ΔDb) for the braking and driving forces exerted against the host vehicle based on the repelling force selected by the repelling force calculating unit 56.

[0081] The operation of a vehicle driving assist system 2 in accordance with the second embodiment will now be explained with reference to Figure 19. Figure 19 is a flowchart showing the control processing steps of the driving assistance control executed by the controller 50A in the second embodiment. This control loop is executed continuously once per prescribed time period, e.g., every 50 msec. The control processing of the steps S100 to S600 is the same as in the flowchart shown in Figure 4 and explanations of those steps are omitted for the sake of brevity.
[0082] In step S620, the controller 50A calculates a repelling force F_c to be used for calculating the driving force revision amount ΔF_a and the braking force revision amount ΔF_b. The calculation of the repelling force F_c is based on the risk potential RP calculated in step S500. The repelling force F_c can be thought of as the spring force of the imaginary elastic body 300 shown in diagrams (a) and (b) of Figures 7. The repelling force F_c is calculated according to a relationship like that shown in Figure 20 such that the larger the risk potential RP is, the larger the calculated value of the repelling force F_c becomes. When the risk potential RP exceeds a prescribed value RP_1, the repelling force F_c becomes fixed at a maximum value F_{cmax}.

[0083] In step S650 of Figure 19, the controller 50A calculates the driving force revision amount ΔF_a for revising the driving force exerted against the host vehicle and the braking force revision amount ΔF_b for revising the braking force exerted against the host vehicle. The calculations are based on the repelling force F_c calculated in step S620. The control processing executed in order to calculate the revision amounts ΔF_a and ΔF_b in Figure 19 will now be explained with reference to the flowchart of Figure 21.

[0084] In step S651 of Figure 21, the controller 50A predicts the driver’s requested drive force F_{da}. A map like that shown in Figure 15 is stored in the controller 50A and the driver’s requested driving force F_{da} is predicted based on the accelerator pedal actuation amount SA by referring to the map.

[0085] In step S652, the controller 50A compares the driver’s requested driving force F_{da} predicted in step S651 to the repelling force F_c calculated in step S620. If the driver’s requested driving force F_{da} is equal to or larger than the repelling force F_c ($F_{da} \geq F_c$), then the controller 50A proceeds to step S653. In step S653, the controller 50A sets the driving force revision amount ΔF_a to the value $-F_c$. The controller 50A then sets the braking force revision amount ΔF_b to 0 in step S654.

[0086] In other words, since the difference $F_{da} - F_c$ is equal to or larger than 0 ($F_{da} - F_c \geq 0$), a positive driving force will remain even after the driving force F_{da} is revised based on the repelling force F_c. Thus, the revision amount output can be accomplished with only the driving force control device 73 outputting a revision amount. When this control is executed, the host vehicle will behave in such a fashion that the full driving force expected by the driver will not be delivered even though the driver is depressing the accelerator pedal 72. If the revised driving force is larger than the traveling resistance, the driver will feel the host vehicle exhibit more sluggish acceleration behavior. If the revised driving force is smaller than the traveling resistance, the driver will feel the host vehicle decelerate.

[0087] Meanwhile, if the result of step S652 is negative, i.e., if the driver’s requested driving force F_{da} is smaller than the repelling force F_c ($F_{da} < F_c$), the targeted revision amount cannot be obtained with revision amount output from the driving force control device 73 alone. Therefore, the controller 50A proceeds to step S655 and sets the driving force revision amount ΔF_a to $-F_{da}$. Then, in step S656, the controller sets 50A the braking force revision amount ΔF_b to the amount by which the revision amount ΔF_a is insufficient ($F_c - F_{da}$). The driver perceives this control as deceleration behavior of the host vehicle.

[0088] Figure 22 is a diagram for explaining the method of revising the driving force and the braking force. The horizontal axis of Figure 22 indicates the accelerator pedal actuation amount SA and the brake pedal actuation amount SB. The accelerator pedal actuation amount SA increases as one moves to the right from the origin 0 and the brake pedal actuation amount SB increases as one moves to the left from the origin 0. The vertical axis of Figure 22 indicates the driving force and the braking force. The driving force increases as one moves upward from the origin 0 and the braking force decreases as one moves downward from the origin 0. The single-dot chain line in Figure 22 indicates the requested driving force F_{da} versus the accelerator pedal actuation amount SA and the requested braking force F_{db} versus the brake pedal actuation amount SB. The revised driving force and braking force (revised based on the repelling force F_c) are indicated with a solid line.

[0089] When the accelerator pedal actuation amount SA is large and the requested driving force F_{da} corresponding to the accelerator pedal actuation amount SA is equal to or larger than the repelling force F_c, the driving force is reduced by the revision amount ΔF_a. Meanwhile, when the accelerator pedal actuation amount SA is small and the requested driving force F_{da} corresponding to the accelerator pedal actuation amount SA is smaller than the repelling force F_c, the revision amount ΔF_a is set to such a value that the driving force will be reduced to zero and the driving force is revised by the revision amount ΔF_a. The difference between the repelling force F_c and the requested driving force F_{da} is set as the revision amount ΔF_a. As a result, the light braking is executed in accordance with the accelerator pedal actuation amount SA.

[0090] When the brake pedal 92 is depressed, the braking force is increased based on the revision amount ΔF_b. As a result, the braking/driving force characteristic is revised in such a fashion that the total travel resistance of the host vehicle is increased by the revision amount, i.e., by an amount equivalent to the repelling force F_c of the imaginary elastic body.

[0091] After the controller 50A calculates the driving force revision amount ΔF_a and the braking force revision amount ΔF_b in step S650 of Figure 19 by executing the process of the flow chart in Figure 21, the controller 50A proceeds to step S700 of Figure 19. In step S700, the controller 50A sends the accelerator pedal reaction force command value FA calculated in step S600 to the accelerator pedal reaction force control device 70. The accelerator pedal reaction force
In step S800, the controller 50A sends the driving force revision amount ΔD_a and braking force revision amount ΔD_b calculated in step S650 to the driving force control device 73 and the braking force control device 93, respectively. The driving force control device 73 calculates a target driving force based on the driving force revision amount ΔD_a and the requested driving force F_{da} and controls the engine controller such that the calculated target driving force is generated. The braking force control device 93 calculates a target braking force based on the braking force revision amount ΔD_b and the requested braking force F_{db} and controls the brake fluid pressure controller such that the target braking force is generated. After the command values are sent, the current control loop ends.

The operational effects of a vehicle driving assist system 2 in accordance with the second embodiment of the present invention will now be explained with reference to the drawings. The graphs (a) to (f) of Figure 23 illustrate how the intent of the driver, the control pattern, the following distance X, the risk potential RP, the accelerator pedal reaction force control command value FA, and the repelling force Fc change with time when the control pattern changes from Control Pattern 0 to Control Pattern 1 and then from Control Pattern 1 to Control Pattern 2. The graphs (a) to (f) of Figure 24 illustrate how the intent of the driver, the control pattern, the following distance X, the risk potential RP, the accelerator pedal reaction force control command value FA, and the repelling force Fc change with time when the control pattern changes from Control Pattern 2 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 0.

When the control pattern changes from Control Pattern 0 to Control Pattern 1 and then to Control Pattern 2, the risk potential RP and the accelerator pedal reaction force control command value FA change in a discontinuous manner in response to the changes in control pattern, as shown in graphs (d) and (e) of Figures 23. Accordingly, the repelling force Fc also changes in a discontinuous manner as shown in graph (f) of Figure 23. As a result, since the driving force acting on the host vehicle does not fall too low and cause excessive deceleration to occur, the driving assistance control can be prevented from becoming an annoyance to the driver or making it difficult for the driver to drive. Also, since the actuation reaction force changes in a discontinuous manner, the driver can readily recognize that the control pattern has changed.

When the control pattern changes from Control Pattern 2 to Control Pattern 1 and then to Control Pattern 0, the risk potential RP and the accelerator pedal reaction force control command value FA decline to 0 and stay at 0, as shown in graphs (d) and (e) of Figures 24. Accordingly, the repelling force Fc also declines to 0 and stays at 0, as shown in graph (f) of Figure 24. As a result, a driving force or braking force that is well-matched to the drivers request can be generated when the driver is attempting to decelerate on his or her own. Also, the control pattern is changed to the control pattern having the longest control execution region, i.e., Control Pattern 0, when an obstacle ceases to be detected. As a result, when a new obstacle is detected, the risk potential RP can be calculated at an early timing and the driver can be informed earlier regarding the existence of the new obstacle.

Basically, the operational effects of the second embodiment will now described. The controller 50A of the vehicle driving assist system 2 detects the host vehicle speed V_h of the host vehicle in which the system is installed and the following distance X of the host vehicle with respect to an obstacle existing in front of the host vehicle, and, based on these detected quantities, the controller 50A calculates a positional relation which between the host vehicle and the obstacle. Additionally, the controller 50A detects the actuation state of the accelerator pedal 72 (which is a driver-operated device used by the driver in order to drive the host vehicle) and selects a control pattern from among a plurality of control patterns based on the accelerator pedal actuation state and the positional relationship of the host vehicle with respect to the obstacle. The controller 50A then calculates a risk potential RP that indicates the degree of convergence between the host vehicle and the obstacle. The calculation is based on the following distance X and the host vehicle speed V_h and is executed in accordance with the selected control pattern. Based on the calculated risk potential RP, the controller 50A controls the actuation reaction force exerted by the accelerator pedal 72 and/or the braking/driving force exerted against the host vehicle. In the second embodiment, preferably both the accelerator pedal reaction force control and the braking/driving force control can be executed using an appropriate control pattern selected in consideration of the actuation state of the accelerator pedal 72 and the positional relationship between the host vehicle and the obstacle, both of which vary depending on the traffic situation surrounding the host vehicle.

Third Embodiment

Referring primarily to Figures 25 to 29, a vehicle driving assist system in accordance with a third embodiment of the present invention will now be explained. The basic constituent features of a vehicle driving assist system in accordance with the third embodiment are the same as those of the second embodiment shown in Figures 12 and 13. The third embodiment will be explained chiefly by describing its differences with respect to the second embodiment.

In the second embodiment, when the control pattern is changed, the risk potential RP and the repelling force Fc are changed and the accelerator pedal reaction force control command value FA and the revision amounts ΔD_a and ΔD_b.
In the third embodiment, the control pattern is changed, the risk potential RP and the repelling force Fc are changed and the accelerator pedal reaction force control command value FA and the revision amounts \(\Delta Da \) and \(\Delta Db \) for controlling the driving force and the braking force are individually adjusted.

More specifically, the third embodiment is configured to calculate a reaction force calculation risk potential \(RPfa \) for calculating the accelerator pedal reaction force control command value FA and a repelling force calculation risk potential \(RPfc \) for calculating the repelling force Fc. The risk potential \(RPfc \) for calculating the repelling force is changed in accordance with changes of the control pattern but the risk potential \(RPfa \) for calculating the reaction force is not changed.

The method of calculating the risk potentials \(RPfa \) and \(RPfc \) will now be explained with reference to the flowchart of Figure 25. The risk potentials \(RPfa \) and \(RPfc \) are calculated in step S500 of the flowchart shown in Figure 19. The control processing executed in steps S521 to S529 is the same as the control processing executed in steps S501 to S509 of Figure 8. The risk potential RP calculated in steps S528 and S529 is set as the repelling force calculation risk potential \(RPfc \).

In step S530, the controller 50A determines if the time to contact TTC is smaller than the time to contact threshold value \(\Theta \) used for determining if Control Pattern 0 should be selected. If TTC is less than the time to contact threshold value \(\Theta \) (TTC < \(\Theta \)), then the controller 50A proceeds to step S531 and calculates the reference length \(L0 \) based on the time to contact threshold value \(\Theta \) and the relative velocity \(Vr \) using Equation 4 below.

\[
L0 = \Theta \times Vr \\
\text{(Equation 4)}
\]

In step S532, the controller 50A uses the reference length \(L0 \) calculated in step S531 in Equation 5 shown below in order to calculate the reaction force calculation risk potential \(RPfa \).

\[
RPfa = K \times (L0 - X) \\
\text{(Equation 5)}
\]

If the result of step S530 is negative, then the controller 50A proceeds to step S533 and sets the reaction force calculation risk potential \(RPfa \) to 0.

Thus, if the time to contact TTC becomes smaller than the time to contact threshold value \(\Theta \), the reaction force calculation risk potential \(RPfa \) is calculated as a value corresponding to Control Pattern 0 regardless of which control pattern is actually being used.

After calculating the risk potentials \(RPfa \) and \(RPfc \), the controller 50A proceeds to step S600 where it calculates the accelerator pedal reaction force control command value FA based on the reaction force calculation risk potential \(RPfa \). Figure 26 is a plot of the reaction force control command value FA versus the risk potential \(RPfa \). As shown in Figure 26, when the risk potential \(RPfa \) reaches a prescribed minimum value \(RPfa_{min} \), the accelerator pedal reaction force control command value FA increases gradually as the risk potential \(RPfa \) increases. When the risk potential \(RPfa \) exceeds a prescribed maximum value \(RPfa_{max} \), the accelerator pedal reaction force control command value FA remains fixed at a maximum value \(FA_{max} \).

In step S620, the controller 50A calculates the repelling force \(Fc \) based on the repelling force calculating risk potential \(RPfc \). Figure 27 is a plot of the repelling force \(Fc \) versus the risk potential \(RPfc \). As shown in Figure 27, the repelling force \(Fc \) increases gradually as the risk potential \(RPfc \) increases. When the risk potential \(RPfc \) exceeds a prescribed value \(RPfc_{1} \), the repelling force \(Fc \) becomes fixed at a maximum value \(Fc_{max} \).

The control processing executed in step S650 and subsequent steps is the same as in the second embodiment.

The operational effects of a vehicle driving assist system in accordance with the third embodiment of the present invention will now be explained with reference to the drawings. The graphs (a) to (g) of Figure 28 illustrate how the intent of the driver, the control pattern, the following distance \(X \), the reaction force calculation risk potential \(RPfa \), the repelling force calculation risk potential \(RPfc \), the accelerator pedal reaction force control command value \(FA \), and the repelling force \(Fc \) change with time when the control pattern changes from Control Pattern 0 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 2. The graphs (a) to (g) of Figure 29 illustrate how the intent of the driver, the control pattern, the following distance \(X \), the reaction force calculation risk potential \(RPfa \), the repelling force calculation risk potential \(RPfc \), the accelerator pedal reaction force control command value \(FA \), and the repelling force \(Fc \) change with time when the control pattern changes from Control Pattern 2 to Control Pattern 1 and from Control Pattern 1 to Control Pattern 0.

When the control pattern changes from Control Pattern 0 to Control Pattern 1 and then to Control Pattern 2, the reaction force calculation risk potential \(RPfa \) is calculated as a value corresponding to Control Pattern 0 and, thus, increases gradually in a continuous fashion as shown in graph (d) of Figure 28. Conversely, as shown in graph (e) of...
Figure 28, the repelling force calculation risk potential RP_{fc} changes in a discontinuous manner in response to the changes in the control pattern, similarly to the second embodiment. As a result, the accelerator pedal reaction force control command value FA increases gradually in a continuous fashion as shown in graph (f) of Figure 28. Meanwhile, the repelling force Fc also changes in a discontinuous manner as shown in graph (g) of Figure 28. If the repelling force calculation risk potential RP_{fc} were calculated as a value corresponding to Control Pattern 0, the repelling force Fc would increase gradually as indicated with the dotted-line curve in Figure 28(g).

[0110] When the control pattern changes from Control Pattern 2 to Control Pattern 1 and then to Control Pattern 0, the reaction force calculation risk potential RP_{fa} is calculated as a value corresponding to Control Pattern 0 and decreases to 0 when a preceding vehicle ceases to be detected or the time to contact is equal to or larger than the threshold value Th_0. Conversely, as shown in graph (e) of Figure 29, the repelling force calculation risk potential RP_{fc} decreases to 0 in accordance with Control Pattern 2 and, thereafter, remains at 0, similarly to the risk potential RP of the second embodiment. Consequently, as shown in graph (f) of Figure 29, the accelerator pedal reaction force control command value FA decreases to 0 in response to the reaction force calculation risk potential RP_{fa}. Similarly, as shown in graph (g) of Figure 29, the repelling force Fc decreases in response to the repelling force calculation risk potential RP_{fc} and reaches 0 at an earlier time than the accelerator pedal reaction force control command value FA.

If the repelling force calculation risk potential RP_{fc} were calculated as a value corresponding to Control Pattern 0, the repelling force Fc would decrease gradually as indicated with the dotted-line curve in graph (g) of Figure 29.

[0111] Basically, the operational effects of the third embodiment will now described. The control pattern selecting unit 54 of the controller 50A is configured to hold the control pattern for controlling the actuation reaction force constant and to select the control pattern for controlling the driving force and braking force based on the intent of the driver and the positional relationship between the host vehicle and the obstacle. More specifically, the reaction force calculation risk potential RP_{fa} for calculating the accelerator pedal reaction force control command value FA is calculated as a value corresponding to Control Pattern 0, which has the longest control execution region. Meanwhile, the repelling force calculation risk potential RP_{fc} for calculating the revision amounts $ΔDa$ and $ΔDb$ for the driving force and braking force is changed in accordance with the selected control pattern. As a result, when, for example, the driver deliberately drives in close proximity to an obstacle, the size of the risk potential RP can be conveyed to the driver via as an actuation reaction force exerted by the accelerator pedal 72 and, at the same time, the amount by which the driving force is decreased can be adjusted such that the driving force is not decreased too much. In this way, the goal of conveying information to the driver and the goal of reducing the annoyance the control imposes on the driver can both be accomplished in an effective manner.

[0112] In each of the first to third embodiments, the Control Pattern 2 having a short control execution region, the Control Pattern 1 having a medium-length control execution region, and the Control Pattern 0 having a long control execution region are prepared and a control pattern is selected from among these three control patterns. However, the invention is not limited to using three control patterns. It is also acceptable to have two control patterns or four or more control patterns. In short, any plural number of control patterns having different control execution regions is acceptable.

[0113] In the first to third embodiments, the control patterns constitute control execution regions in which actuation reaction force control and/or driving/braking force control is executed. However, as used herein, the term "control pattern" refers to any control content (control format) that indicates how the actuation reaction force of a driver-operated device used to drive a vehicle and/or the braking/driving forces of the host vehicle are to be controlled in consideration of a risk potential RP. Thus, the control pattern includes but is not limited to a control execution region. Therefore, the control pattern also includes such control details as calculating the accelerator pedal reaction force control command value FA as a value corresponding to Control Pattern 0 at all times while adjusting the repelling force Fc in accordance with the selected control pattern, as is done in the third embodiment.

[0114] In the first to third embodiments, the time to contact TTC of the host vehicle and an obstacle in front of the host vehicle is used for selecting the control pattern. However, the invention is not limited to this method of selection. For example, it is also possible to select the control pattern based on the following time THW or the following distance X of the host vehicle to reach the current position of the obstacle and can be calculated by dividing the following distance X by the host vehicle speed Vh. The time to contact TTC, the following time THW, and the following distance X of the host vehicle with respect to the obstacle can each be said to express a positional relationship between the host vehicle and the obstacle.

[0115] In the first to third embodiments, the controller predicts whether the driver intends to accelerate, decelerate, or travel at constant speed based on the actuation state of the accelerator pedal 72 by the driver, i.e., the actuation speed dS at which the driver is operating the accelerator pedal 72. However, the invention is not limited to this method of determining the intent of the driver. It is also possible to predict the driver’s intent based on the actuation amount SA of the accelerator pedal 72 or the amount of additional depression of the accelerator pedal 72 beyond a previous actuation amount. Additionally, it is also possible to predict the intent to pass a preceding vehicle (change lanes) based on the actuation state of the accelerator pedal 72, the actuation state of a direction indicator, or the actuation state of a steering wheel. When the intent to change lanes is detected, the control pattern is selected in the same manner as when the
intent to accelerate is detected.

Although in the second embodiment both the accelerator actuation reaction force and the braking/driving forces of the host vehicle are controlled in accordance with the risk potential RP, it is possible to configure a system that is the same as the second embodiment except that control of the accelerator actuation reaction force is not executed and only the braking and driving forces are controlled. Similarly, it is also feasible to omit the braking force control and execute only the driving force control. It is also feasible to generate an actuation reaction force in the brake pedal 92 in accordance with the risk potential RP. The accelerator pedal 72 and the brake pedal 92 are driver-operated devices used by the driver in order to drive the host vehicle.

In the first to third embodiments, the model shown in diagrams (a) and (b) Figures 7 is assumed and the repelling force of the imaginary elastic body 300 when it is compressed against a preceding obstacle is calculated as a risk potential RP. However, the invention is not limited to such an approach. It is also feasible to calculate a risk potential RP using the time to contact TTC or the following time THW between the host vehicle and a preceding obstacle or to calculate a risk potential RP using a combination of the time to contact TTC and the following time THW.

In the first to third embodiments, the laser radar 10 and the vehicle speed sensor 30 function as the traveling situation detecting section, the controller 50 or 50A function as the relative position calculating section, the accelerator pedal stroke sensor 74 functions as the accelerator pedal actuation state detecting section, the control pattern selecting section, the risk potential calculating section, and the accelerator pedal reaction force calculating section 55, the braking/driving force revision amount calculating unit 57, the accelerator pedal reaction force control unit 70, the driving force control unit 73, and the braking force control unit 93 function as the control section. Also, the intent detecting unit 53 functions as the driver intent predicting section. However, the invention is not limited to these specific devices. For example, instead of the laser radar 10, a millwave radar of a different format or a CCD camera or other camera arranged and configured to detect an image of a region in front of the host vehicle can be used as the traveling situation detecting section.

General interpretation of terms

In understanding the scope of the present invention, the term "comprising" and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, "including", "having" and their derivatives. Also, the terms "part," "section," "portion," "member" or "element" when used in the singular can have the dual meaning of a single part or a plurality of parts. Also as used herein to describe the above embodiment(s), the following directional terms "forward, rearward, above, downward, vertical, horizontal, below and transverse" as well as any other similar directional terms refer to those directions of a vehicle equipped with the present invention. Accordingly, these terms, as utilized to describe the present invention should be interpreted relative to a vehicle equipped with the present invention. The term "detect" as used herein to describe an operation or function carried out by a component, a section, a device or the like includes a component, a section, a device or the like that does not require physical detection, but rather includes determining, measuring, modeling, predicting or computing or the like to carry out the operation or function. The term "configured" as used herein to describe a component, section or part of a device includes hardware and/or software that is constructed and/or programmed to carry out the desired function. Moreover, terms that are expressed as "section-plus function" in the claims should include any structure that can be utilized to carry out the function of that part of the present invention. The terms of degree such as "substantially", "about" and "approximately" as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. For example, these terms can be construed as including a deviation of at least ± 5% of the modified term if this deviation would not negate the meaning of the word it modifies.

While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. For example, the size, shape, location or orientation of the various components can be changed as needed and/or desired. Components that are shown directly connected or contacting each other can have intermediate structures disposed between them. The functions of one element can be performed by two, and vice versa. The structures and functions of one embodiment can be adopted in another embodiment. It is not necessary for all advantages to be present in a particular embodiment at the same time. Every feature which is unique from the prior art, alone or in combination with other features, also should be considered a separate description of further inventions by the applicant, including the structural and/or functional concepts embodied by such feature(s). Thus, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Claims

1. A vehicle driving assist system comprising:

a travelling situation detecting section (10, 30) configured to output a travelling situation detection result based on at least a distance between a host vehicle and an obstacle existing in front of the host vehicle and a speed of the host vehicle;

a relative position calculating section (50) configured to calculate a positional relationship between the host vehicle and the obstacle based on the travelling situation detection result of the travelling situation detecting section (10, 30);

a risk potential calculating section (52) configured to calculate a risk potential that indicates a degree of convergence between the host vehicle and the obstacle based on the travelling situation detection result of the travelling situation detecting section (10, 30); and

a control section (55, 57, 70, 73, 93) configured to control at least one of an actuation reaction force exerted by the accelerator pedal and a braking/driving force exerted against the host vehicle based on the risk potential calculated by the risk potential calculating section (52);

characterised in that the vehicle driving assist system further comprises:

an accelerator pedal actuation state detecting section (74) configured to detect an accelerator pedal actuation state of an accelerator pedal of the host vehicle by a driver;

a driver intent predicting section (53) configured to predict whether a driver’s intention is to accelerate, decelerate, or travel at a constant speed based on the accelerator pedal actuation state detected by the accelerator pedal actuation state detecting section (74); and

a control pattern selecting section (54) configured to select a selected vehicle control pattern from among a plurality of vehicle control patterns based on the accelerator pedal actuation state detected by the accelerator pedal actuation state detecting section and the positional relationship between the host vehicle and the obstacle calculated by the relative position calculating section (50);

wherein the risk potential calculating section (52) is further configured to execute the calculation of the risk potential in accordance with the selected vehicle control pattern selected by the control pattern selecting section (54).

2. The vehicle driving assist system as recited in claim 1, wherein the control pattern selecting section (54) is configured to select the selected vehicle control pattern using the driver’s intention predicted based on the accelerator pedal actuation state.

3. The vehicle driving assist system as recited in claim 2, wherein the control pattern selecting section (54) is configured to change the selected vehicle control pattern to one of the plurality of vehicle control patterns having a control execution region that is shorter than a current control execution region of the selected vehicle control pattern when the driver intent predicting section (53) predicts that the driver’s intention is to accelerate.

4. The vehicle driving assist system as recited in claim 2 or 3, wherein the control pattern selecting section (54) is further configured to change the selected vehicle control pattern to one of the plurality of vehicle control patterns having a control execution region that is longer than the current control execution region when the driver intent predicting section (53) predicts that the driver’s intention is to decelerate and the positional relationship between the host vehicle and the obstacle is changing in a direction of increasing distance between the host vehicle and the obstacle.

5. The vehicle driving assist system as recited in any one of claims 2 to 4, wherein:

the plurality of vehicle control patterns each has a different control execution region; and

the control pattern selecting section (54) is further configured to select one from the plurality of vehicle control patterns that has a longest control execution region as the selected vehicle control pattern when the travelling situation detecting section (10, 30) ceases to detect the obstacle.

6. The vehicle driving assist system as recited in claim 2, wherein the risk potential calculating section (52) is configured to calculate the risk potential for controlling an actuation reaction force according to the selected vehicle control pattern that is held, and to calculate the risk potential for controlling the braking/driving force according to one of
The plurality of vehicle control patterns selected based on the driver’s intent and the positional relationship between the host vehicle and the obstacle.

7. The vehicle driving assist system as recited in claim 2, wherein:

the relative position calculating section (50) is configured to calculate an amount of time until the host vehicle contacts the obstacle based on the distance and a relative velocity between the host vehicle and the obstacle, the amount of time constituting the positional relationship between the host vehicle and the obstacle; and each of the plurality of vehicle control patterns has a different control execution region defined according to a length of the amount of time until the host vehicle contacts the obstacle based on the distance and a relative velocity between the host vehicle and the obstacle.

8. A vehicle equipped with the vehicle driving assist system according to any one of the preceding claims.

9. A vehicle driving assistance method comprising:

- calculating a positional relationship between a host vehicle and an obstacle existing in front of the host vehicle based on at least the distance between the host vehicle and the obstacle and the speed of the host vehicle;
- calculating a risk potential that indicates a degree of convergence between the host vehicle and the obstacle; and
- controlling an actuation reaction force exerted by the accelerator pedal and/or a braking/driving force exerted against the host vehicle based on the calculated risk potential; characterised in that the vehicle driving assist method further comprises:

- predicting whether a driver’s intention to accelerate, decelerate, or travel at a constant speed based on the accelerator pedal actuation state,
- detecting the state of actuation of an accelerator pedal of the host vehicle by a driver;
- selecting a control pattern from among a plurality of control patterns based on the state of actuation of the accelerator pedal by the driver and the positional relationship between the host vehicle and the obstacle; and
- calculating a risk potential that indicates a degree of convergence between the host vehicle and the obstacle based on at least said distance and said vehicle speed, said calculation being executed in accordance with the selected control pattern.

10. The vehicle driving assistance method as recited in claim 9, further comprising selecting of the selected vehicle control pattern further using the driver’s intention predicted based on the accelerator pedal actuation state.

Patentansprüche

1. Fahrrassistenzsystem für ein Kraftfahrzeug, umfassend:

- einen Fahrsituations-Erfassungsbereich (10, 30), der eingerichtet ist, um ein Fahrsituations-Erfassungsergebnis auf der Basis von zumindest einem Abstand zwischen einem Trägerfahrzeug und einem Hindernis, das vor dem Trägerfahrzeug vorhanden ist, und einer Geschwindigkeit des Trägerfahrzeugs auszugeben;
- einen Relativpositions-Berechnungsbereich (50), der eingerichtet ist, um ein Positionsverhältnis zwischen dem Trägerfahrzeug und dem Hindernis auf der Basis des Fahrsituations-Erfassungsergebnisses des Fahrsituations-Erfassungsbereichs (10, 30) zu berechnen;
- einen Risikopotential-Berechnungsbereich (52), der eingerichtet ist, um ein Risikopotential zu berechnen, das einen Grad einer Konvergenz zwischen dem Trägerfahrzeug und dem Hindernis auf der Basis des Fahrsituations-Erfassungsergebnisses des Fahrsituations-Erfassungsbereichs (10, 30) angibt; und
- einen Steuerungsbereich (55, 57, 70, 73, 93), der eingerichtet ist, um zumindest entweder eine Betätigungs-Reaktionskraft, die durch das Gaspedal ausgeübt wird, oder eine Brems-/Antriebskraft, die auf das Trägerfahrzeug aufgebracht wird, auf der Basis des Risikopotentials zu steuern, das durch den Risikopotential-Berechnungsbereich (52) berechnet wird;

dadurch gekennzeichnet, dass das Fahrrassistenzsystem für ein Fahrzeug ferner aufweist:

- einen Gaspedalbetätigungszustand-Erfassungsbereich (74), der eingerichtet ist, um einen Gaspedalbetätigungs- zustand eines Gaspedals des Trägerfahrzeugs durch einen Fahrer zu erfassen;
- einen Fahrerabsichts-Vorhersagebereich (53), der eingerichtet ist, um vorherzusagen, ob eine Absicht des
Fahrers darin besteht, auf der Basis des Gaspedalbetätigungszustands, der durch den Gaspedalbetätigungs-
6
zustands-Erfassungsbereich (74) erfasst wird, zu beschleunigen, zu bremsen oder bei einer konstanten Ge-
11
schwindigkeit zu fahren; und
16
- einen Steuerungsmuster-Auswahlbereich (54), der eingerichtet ist, um ein ausgewähltes Fahrzeugsteuerungs-
21
muster aus einer Mehrzahl von Fahrzeugsteuerungsmustern auf der Basis des Gaspedalbetätigungszustands,
26
der durch den Gaspedalbetätigungszustand-Erfassungsbereich erfasst wird, und des Positionsverhältnisses
31
zwischen dem Trägerfahrzeug und dem Hindernis, das durch den Relativpositions-Berechnungsbereich (50)
36
berechnet wird, auszuwählen;
41
- wobei der Risikopotential-Berechnungsbereich (52) ferner eingerichtet ist, um die Berechnung des Risikopo-
46
tentials gemäß dem ausgewählten Fahrzeugsteuerungsmuster, das durch den Steuerungsmuster-Auswahlbe-
51
reich (54) ausgewählt wird, auszuführen.

2. Fahrrassistenzsystem für ein Kraftfahrzeug gemäß Anspruch 1, wobei der Steuerungsmuster-Auswahlbereich (54)
eingerichtet ist, um das ausgewählte Fahrzeugsteuerungsmuster unter Verwendung der Absicht des Fahrers, die
auf der Basis des Bremspedalbetätigungszustands vorhergesagt wird, auszuwählen.

3. Fahrrassistenzsystem für ein Kraftfahrzeug gemäß Anspruch 2, wobei der Steuerungsmuster-Auswahlbereich (54)
eingerichtet ist, um das ausgewählte Fahrzeugsteuerungsmuster in eines aus der Mehrzahl der Fahrzeugsteue-
7
 rungsmuster zu ändern, das einen Steuerungsausführungsbereich aufweist, der kürzer als ein gegenwärtiger Steu-
14
erungsausführungsbereich des ausgewählten Fahrzeugsteuerungsmusters ist, wenn der Fahrerabsicht-Vorsorge-
21
gebereich (53) vorhersagt, dass die Absicht des Fahrers darin besteht, zu beschleunigen.

4. Fahrrassistenzsystem für ein Kraftfahrzeug gemäß Anspruch 2 oder 3, wobei der Steuerungsmuster-Auswahlbereich
(54) ferner eingerichtet ist, um das ausgewählte Fahrzeugsteuerungsmuster in eines aus der Mehrzahl der Fahr-
18
zeugsteuerungsmuster zu ändern, das einen Steuerungsausführungsbereich aufweist, der länger als der gegen-
24
wärtige Steuerungsausführungsbereich ist, wenn der Fahrerabsicht-Vorsorgegebereich (53) vorhersagt, dass die
Absicht des Fahrers darin besteht, zu bremsen und sich das Positionsverhältnis zwischen dem Trägerfahrzeug
und dem Hindernis in eine Richtung einer Zunahme des Abstandes zwischen dem Trägerfahrzeug und dem Hindernis
ändert.

5. Fahrrassistenzsystem für ein Kraftfahrzeug gemäß einem der Ansprüche 2 bis 4, wobei:

- jedes der Mehrzahl der Fahrzeugsteuerungsmuster einen unterschiedlichen Steuerungsausführungsbereich
aufweist; und
- der Steuerungsmuster-Auswahlbereich (54) ferner eingerichtet ist, um eines aus der Mehrzahl der Fahrzeug-
steuerungsmuster auszuwählen, das einen längsten Steuerungsausführungsbereich als das ausgewählte Fahr-
zeugsteuerungsmuster aufweist, wenn der Fahrsituations-Erfassungsbereich (10, 30) ein Erfassen des Hindernisses
beendet.

6. Fahrrassistenzsystem für ein Kraftfahrzeug gemäß Anspruch 2, wobei der Risikopotential-Berechnungsbereich (52)
eingerichtet ist, um das Risikopotential zum Steuern einer Betätigungs-Reaktionskraft gemäß dem ausgewählten
Fahrzeugsteuerungsmuster, das gehalten wird, zu berechnen, und um das Risikopotential zum Steuern der
Brems-/Antriebskraft gemäß einem aus der Mehrzahl der Fahrzeugsteuerungsmuster, das ausgewählt ist, auf der
Basis der Absicht des Fahrers und des Positionsverhältnisses zwischen dem Trägerfahrzeug und dem Hindernis
zur berechnen.

7. Fahrrassistenzsystem für ein Kraftfahrzeug gemäß Anspruch 2, wobei:

- der Relativpositions-Berechnungsbereich (50) eingerichtet ist, um eine Zeitgröße, bis das Trägerfahrzeug den
Hindernis berührt, auf der Basis des Abstandes und einer Relativgeschwindigkeit zwischen dem Trägerfahrzeug
und dem Hindernis zu berechnen, wobei die Zeitgröße das Positionsverhältnis zwischen dem Trägerfahrzeug
und dem Hindernis bildet; und
- jedes von der Mehrzahl der Fahrzeugsteuerungsmuster einen unterschiedlichen Steuerungsausführungsbereich
aufweist, der gemäß einer Länge der Zeitgröße, bis das Trägerfahrzeug den Hindernis berührt, auf der
Basis des Abstandes und einer Relativgeschwindigkeit zwischen dem Trägerfahrzeug und dem Hindernis de-
finiert ist.

8. Kraftfahrzeug, das mit dem Fahrrassistenzsystem für ein Kraftfahrzeug gemäß einem der vorhergehenden Ansprüche
Fahrassistenzverfahren für ein Kraftfahrzeug, umfassend:

- Berechnen eines Positionsverhältnisses zwischen einem Trägerfahrzeug und einem Hindernis, das vor dem Trägerfahrzeug vorhanden ist, auf der Basis von zumindest dem Abstand zwischen dem Trägerfahrzeug und dem Hindernis und der Geschwindigkeit des Trägerfahrzeugs;
- Berechnen eines Risikopotentials, das einen Grad der Konvergenz zwischen dem Trägerfahrzeug und dem Hindernis angibt; und
- Steuern einer Betätigungs-Reaktionskraft, die durch das Gaspedal ausgeübt wird, und/oder einer Brems-/Antriebskraft, die auf das Trägerfahrzeug aufgebracht wird, auf der Basis des berechneten Risikopotentials;

dadurch gekennzeichnet, dass das Fahrassistenzverfahren für ein Kraftfahrzeug ferner aufweist:

- Vorhersagen, ob eine Absicht des Fahrers darin besteht, auf der Basis des Gaspedalbetätigungszustands zu beschleunigen, zu bremsen oder bei einer konstanten Geschwindigkeit zu fahren,
- Erfassen des Betätigungszustands eines Gaspedsals des Trägerfahrzeugs durch einen Fahrer;
- Auswählen eines Steuerungsmusters aus einer Mehrzahl von Steuerungsmustern auf der Basis des Betätigungsstandes des Gaspedsals durch den Fahrer und dem Positionierverhältnis zwischen dem Trägerfahrzeug und dem Hindernis; und
- Berechnen eines Risikopotentials, das einen Grad einer Konvergenz zwischen dem Trägerfahrzeug und dem Hindernis auf der Basis von zumindest einem Abstand und einer Fahrzeuggeschwindigkeit angibt, wobei die Berechnung gemäß dem ausgewählten Steuerungsmuster ausgeführt wird.

Fahrassistenzverfahren für ein Kraftfahrzeug gemäß Anspruch 9, das ferner ein Auswählen des ausgewählten Fahrzeugsteuerungsmusters unter einer weiteren Verwendung der Absicht des Fahrers aufweist, die auf der Basis des Gaspedalbetätigungszustands vorhergesagt wird.

Revendications

1. Système d'aide à la conduite d'un véhicule comprenant :

- une section de détection de situation de circulation (10, 30) configurée pour délivrer en sortie un résultat de détection de situation de conduite sur la base d'au moins une distance entre un véhicule hôte et un obstacle existant à l'avant du véhicule hôte et d'une vitesse du véhicule hôte ;
- une section de calcul de position relative (50) configurée pour calculer une relation de position entre le véhicule hôte et l'obstacle sur la base du résultat de détection de situation de conduite de la section de détection de situation de conduite (10, 30) ;
- une section de calcul de potentiel de risque (52) configurée pour calculer un potentiel de risque qui indique un degré de convergence entre le véhicule hôte et l'obstacle sur la base du résultat de détection de situation de conduite de la section de détection de situation de conduite (10, 30) ; et
- une section de commande (55, 57, 70, 73, 93) configurée pour commander au moins l'une d'une force de réaction d'actionnement exercée par la pédale d'accélérateur et d'une force de freinage/entraînement exercée contre le véhicule hôte sur la base du potentiel de risque calculé par la section de calcul de potentiel de risque (52) ;

définit en ce que le système d'aide à la conduite d'un véhicule comprend en outre :

- une section de détection d'état d'actionnement de pédale d'accélérateur (74) configurée pour détecter un état d'actionnement de pédale d'accélérateur d'une pédale d'accélérateur du véhicule hôte par un conducteur ;
- une section de prédiction d'intention du conducteur (53) configurée pour prédire si une intention du conducteur est d'accélérer, déclencher ou de circuler à une vitesse constante sur la base de l'état d'actionnement de pédale d'accélérateur détecté par la section de détection d'état d'actionnement de pédale d'accélérateur (74) ; et
- une section de sélection de modèle de commande (54) configurée pour sélectionner un modèle de commande de véhicule sélectionné parmi une pluralité de modèles de commande de véhicule sur la base de l'état d'actionnement de pédale d'accélérateur détecté par la section de détection d'état d'actionnement.
2. Système d'aide à la conduite d'un véhicule selon la revendication 1, dans lequel la section de sélection de modèle de commande (54) est configurée pour sélectionner le modèle de commande de véhicule sélectionné en utilisant une intention du conducteur prédite sur la base de l'état d'actionnement de pédale d'accélérateur.

3. Système d'aide à la conduite d'un véhicule tel qu'énoncé dans la revendication 2, dans lequel la section de sélection de modèle de commande (54) est configurée pour changer le modèle de commande de véhicule sélectionné vers l'un de la pluralité de modèles de commande de véhicule ayant une région d'exécution de commande qui est plus courte qu'une région d'exécution de commande actuelle du modèle de commande de véhicule sélectionné lorsque la section de prédiction d'intention du conducteur (53) prédit que l'intention du conducteur est d'accélérer.

4. Système d'aide à la conduite d'un véhicule selon la revendication 2 ou 3, dans lequel la section de sélection de modèle de commande (54) est en outre configurée pour changer le modèle de commande de véhicule sélectionné vers l'un de la pluralité de modèles de commande de véhicule ayant une région d'exécution de commande qui est plus longue que la région d'exécution de commande actuelle lorsque la section de prédiction d'intention du conducteur (53) prédit que l'intention du conducteur est de décélérer et la relation de position entre le véhicule hôte et l'obstacle change en direction d'augmentation de distance entre le véhicule hôte et l'obstacle.

5. Système d'aide à la conduite d'un véhicule selon l'une quelconque des revendications 2 à 4, dans lequel :

 - la pluralité de modèles de commande de véhicule ont chacun une région d'exécution de commande différente ; et
 - la section de sélection de modèle de commande (54) est en outre configurée pour sélectionner l'un de la pluralité de modèles de commande de véhicule qui a la région d'exécution de commande la plus longue comme étant le modèle de commande de véhicule sélectionné lorsque la section de détection de situation de circulation (10, 30) cesse de détecter l'obstacle.

6. Système d'aide à la conduite d'un véhicule selon la revendication 2, dans lequel la section de calcul de potentiel de risque (52) est configurée pour calculer le potentiel de risque pour commander une force de réaction d'actionnement selon le modèle de commande de véhicule sélectionné qui est maintenu, et pour calculer le potentiel de risque pour commander la force de freinage/entraînement selon l'un de la pluralité de modèles de commande de véhicule sélectionné sur la base de l'intention du conducteur et de la relation de position entre le véhicule hôte et l'obstacle.

7. Système d'aide à la conduite d'un véhicule selon la revendication 2, dans lequel la section de calcul de position relative (50) est configurée pour calculer une durée jusqu'à ce que le véhicule hôte entre en contact avec l'obstacle sur la base de la distance et d'une vitesse relative entre le véhicule hôte et l'obstacle, la durée constituant la relation de position entre le véhicule hôte et l'obstacle ; et chacun de la pluralité de modèles de commande de véhicule a une région d'exécution de commande différente définie selon une longueur de la durée jusqu'à ce que le véhicule hôte entre en contact avec l'obstacle sur la base de la distance et d'une vitesse relative entre le véhicule hôte et l'obstacle.

8. Véhicule équipé du système d'aide à la conduite d'un véhicule selon l'une quelconque des revendications précédentes.

9. Procédé d'aide à la conduite d'un véhicule comprenant le fait :

 - de calculer une relation de position entre un véhicule hôte et un obstacle existant à l'avant du véhicule hôte sur la base d'au moins la distance entre le véhicule hôte et l'obstacle et de la vitesse du véhicule hôte ; de calculer un potentiel de risque qui indique un degré de convergence entre le véhicule hôte et l'obstacle ; et de commander une force de réaction d'actionnement exercée par la pédale d'accélérateur et/ou une force de freinage/entraînement exercée contre le véhicule hôte sur la base du potentiel de risque calculé ;
 - caractérisé en ce que le procédé d'aide à la conduite d'un véhicule comprend en outre le fait :
10. Procédé d’aide à la conduite d’un véhicule selon la revendication 9, comprenant en outre le fait de sélectionner le modèle de commande de véhicule sélectionné en utilisant en outre l’intention du conducteur prédite sur la base de l’état d’actionnement de pédale d’accélérateur.
Fig. 3
START

S100
READ IN TRAVELING SITUATION

S200
EXECUTE OBSTACLE RECOGNITION PROCESSING

S300
EXECUTE DRIVER INTENT DETECTION PROCESSING

S400
EXECUTE CONTROL PATTERN SELECTION PROCESSING

S500
EXECUTE RISK POTENTIAL CALCULATION PROCESSING

S600
EXECUTE ACCELERATOR PEDAL REACTION FORCE CALCULATION PROCESSING

S700
EXECUTE ACCELERATOR PEDAL REACTION FORCE OUTPUT PROCESSING

RETURN

Fig. 4
START FROM S300, EXECUTION OF DRIVER INTENT DETECTION PROCESSING

S301

ACCELERATOR PEDAL OFF? ACCELERATOR PEDAL ACTUATION AMOUNT = 0?

NO

S303

YES

CALCULATE ACCELERATOR PEDAL ACTUATION SPEED \(ds \)

S304

ACCELERATOR DEPRESSED? \(ds \geq dS1 \)?

NO

S306

YES

ACCELERATOR RELEASED? \(ds \leq dS2 \)?

NO

S307

YES

SET INTENT TO ACCELERATE: \(Fig_D = 1 \)

S305

SET INTENT TO DECELERATE: \(Fig_D = 2 \)

S302

SET INTENT TO DECELERATE: \(Fig_D = 2 \)

S308

SET INTENT TO TRAVEL AT CONSTANT SPEED: \(Fig_D = 0 \)

END

Fig. 5
Fig. 6
START AT STEP S500, CALCULATION OF RP

S501

CONTROL PATTERN 0 SELECTED? Fig = 0?

NO

YES

S503

CONTROL PATTERN 1 SELECTED? Fig = 1?

NO

YES

S504

SET TIME TO CONTACT THRESHOLD VALUE
Th = Th0

S505

SET TIME TO CONTACT THRESHOLD VALUE
Th = Th1

SET TIME TO CONTACT THRESHOLD VALUE
Th = Th2

S506

TIME TO CONTACT
TTC < Th?

NO

YES

S507

CALCULATE REFERENCE LENGTH L
L = Th x RELATIVE VELOCITY Vr

S508

CALCULATE RISK POTENTIAL
RP = K x (L - X)

S509

SET RISK POTENTIAL
RP = 0

END

Fig. 8
Fig. 10
Fig. 11
Fig. 15
Fig. 17
START FROM STEP S650, EXECUTION OF BRAKING/DRIVING FORCE REVISION AMOUNT CALCULATION PROCESSING

S651

ESTIMATE DRIVER'S REQUESTED DRIVING FORCE Fda

S652

Fda ≥ Fe?

NO

YES

S653

SET DRIVING FORCE REVISION AMOUNT ∆Da = -Fc

S655

SET DRIVING FORCE REVISION AMOUNT ∆Da = -Fda

S654

SET BRAKING FORCE REVISION AMOUNT ∆Db = 0

S656

SET BRAKING FORCE REVISION AMOUNT ∆Db = Fe - Fda

END

Fig. 21
Fig. 23
Fig. 24
START AT S500, CALCULATION OF RP

CONTROL PATTERN 0 SELECTED? Flg = 0?

SET TIME TO CONTACT THRESHOLD VALUE Th = Th0

CONTROL PATTERN 1 SELECTED? Flg = 1?

SET TIME TO CONTACT THRESHOLD VALUE Th = Th1

SET TIME TO CONTACT THRESHOLD VALUE Th = Th2

TIME TO CONTACT TTC < Th?

CALCULATE REFERENCE LENGTH L
L = Th x RELATIVE VELOCITY Vr

CALCULATE REPELLING FORCE CALCULATION RISK POTENTIAL.
RPfc = K x (L - X)

SET REPELLING FORCE CALCULATION RISK POTENTIAL RPfc = 0

CALCULATE REACTION FORCE CALCULATION RISK POTENTIAL.
RPfa = K x (L0 - X)

SET REACTION FORCE CALCULATION RISK POTENTIAL RPfa = 0

TIME TO CONTACT TTC < Th0?

CALCULATE REFERENCE LENGTH L0
L0 = Th0 x RELATIVE VELOCITY Vr

END

Fig. 25
Fig. 28
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2005112242 A [0002]
• EP 1544070 A [0005]