CORRECTED EUROPEAN PATENT SPECIFICATION

Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description Paragraphs 6, 7, 10-14, 16, 17, 28, 34, 36, 49
Claims EN 1, 11

Corrigendum issued on:
16.01.2013 Bulletin 2013/03

Date of publication and mention of the grant of the patent:

Application number: 05739012.2

Date of filing: 28.04.2005

HETEROCYCLIC AMIDE COMPOUND AND USE THEREOF AS AN MMP-13 INHIBITOR
HETEROCYCLISCHE AMIDVERBINDUNG UND DEREN VERWENDUNG ALS MMP-13-INHIBITOR
COMPOSÉ AMIDE HETEROCYCLIQUE ET UTILISATION DE CELUI-CI EN TANT QU’INHIBITEUR
MMP-13

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR
Designated Extension States:
AL BA HR LV MK YU

Priority: 30.04.2004 JP 2004135596

Date of publication of application:
10.01.2007 Bulletin 2007/02

Proprietor: Takeda Pharmaceutical Company Limited
Osaka-shi, Osaka 541-0045 (JP)

Inventors:
• TERAUCHI, Jun,
c/o TAKEDA PHARMACEUTICAL COMPANY LIMITED
Osaka-shi, Osaka 5328686 (JP)
• KUNO, Haruhiko,
c/o TAKEDA PHARMACEUTICAL COMPANY LIMITED
Osaka-shi, Osaka 5328686 (JP)
• NARA, Hiroshi,
c/o TAKEDA PHARMACEUTICAL COMPANY LIMITED
Osaka-shi, Osaka 5328686 (JP)
• OKI, Hideyuki,
c/o TAKEDA PHARMACEUTICAL COMPANY LIMITED
Osaka-shi, Osaka 5328686 (JP)
• SATO, Kenjiro,
c/o TAKEDA PHARMACEUTICAL COMPANY LIMITED
Osaka-shi, Osaka 5328686 (JP)

Representative: Dossmann, Gérard et al
Casalonga & Partners
Bayerstrasse 71-73
80335 München (DE)

References cited:
• PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05, 31 May 1999 (1999-05-31) & JP 11 043489 A
(TAKEDA CHEM IND LTD), 16 February 1999 (1999-02-16)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)
• IKEURA, Y. ET AL.: "Axially chiral N-benzyl-N,7-dimethyl-5-phenyl-1,7-naphthyridine-6-carboxamide derivatives as tachykinin NK1 receptor antagonists: determination of the absolute stereochemical requirements." J. MED. CHEM., vol. 41, no. 22, 1998, pages 4232-4239, XP002336400

• IKEURA Y ET AL: "POTENT NK1 RECEPTOR ANTAGONISTS: SYNTHESIS AND ANTAGONISTIC ACTIVITY OF VARIOUS HETEROCYCLES WITH AN N-3,5-BIS (TRIFLUOROMETHYL)BENZYL-N-METHYLCARBAMOYL SUBSTITUENT" CHEMICAL AND PHARMACEUTICAL BULLETIN, PHARMACEUTICAL SOCIETY OF JAPAN, TOKYO, JP, vol. 45, no. 10, 1997, pages 1642-1652, XP000910111 ISSN: 0009-2363

Description

Technical Field

[0001] The present invention relates to a heterocyclic amide derivative having a superior matrix metalloproteinase inhibitory activity and useful as a drug for the prophylaxis or treatment of osteoarthritis, rheumatoid arthritis and the like.

Background Art

[0002] Matrix metalloproteinase (MMP) is an endopeptidase that physiologically plays a key role in the tissue remodeling, wherein its protease activity is strictly controlled. In the diseased state, however, the control is disrupted, and the disruption induces excess degradation of extracellular matrix, which in turn is deeply involved in the etiology of many diseases including joint diseases such as osteoarthritis, rheumatoid arthritis and the like, bone diseases such as osteoporosis and the like, periodontal disease, infiltration and metastasis of tumor, corneal ulcer formation and the like (Expert Opinion on Therapeutic Patents, vol. 12, pp. 665-705 (2002)).

[0003] At present, MMP is known to include at least 26 different enzymes, which are divided into five groups based on the variation in the primary structure and substrate specificity: collagenase group (MMP-1, 8, 13, 18), gelatinase group (MMP-2, 9), stromelysin group (MMP-3, 10, 11), membrane MMP group (MMP-14, 15, 16, 17), and other group (MMP-7, 12). Of these, MMP-13 belonging to the collagenase group has been reported to almost always express in cartilage and bone tissue, and to show increased production amount in joint disease and the like.

[0004] Moreover, since MMP-13 shows a potent collagen degradation activity as compared to other collagenases, it is considered to be deeply involved in the bone and joint diseases.

Document WO98/17267 discloses compound

[0006] Meanwhile, as a compound having a heterocyclic amide skeleton, Bulletin of The Chemical Society of Japan, 1990, pp. 72-83 describes a compound represented by the formula

[0007] In addition, W02003/91224 describes a compound represented by
wherein R¹ is a hydrogen atom or alkyl; ring Q is a cyclohexylene group or a phenylene group; A¹ and A² are the same or different and each is a single bond or an alkylene group; E is -NHCO- or -CON(R²)- wherein R² is a hydrogen atom or alkyl; A³ is A³¹-A³²-A³³, A³¹ and A³³ are the same or different and each is a single bond, or the same or different 1 or 2 saturated or unsaturated aliphatic hydrocarbon groups at substitutable position(s), which, when one carbon atom has two branched chains, may form a divalent cycloalkyl together with the carbon atom, A³² is a single bond, an oxygen atom, a sulfur atom or -N(R³²) - wherein R³² is a hydrogen atom or alkyl; R³ is an optionally substituted acyclic aliphatic hydrocarbon group having 1 to 8 carbon atoms, an optionally substituted mono- to tricyclic aliphatic hydrocarbon group having 3 to 10 carbon atoms, an optionally substituted mono- or bicyclic aromatic hydrocarbon group having 6 to 12 carbon atoms, or an optionally substituted mono- to tricyclic heterocyclic group; when E is -CON(R²) -, this -N(R²) - and -A³-R³ may form a cyclic amino group; and R⁴ and R⁵ are the same or different and each is a hydrogen atom, alkyl, alkoxy, or halogen.

Disclosure of the Invention

There is a demand for the development of a novel compound superior in action effect, durability, safety, oral absorbability, selectivity and the like as compared to conventional MMP inhibitors and the like, and useful as a drug for the prophylaxis or treatment of joint diseases (osteoarthritis, rheumatoid arthritis and the like), osteoporosis, periodontal diseases, corneal ulcer and other MMP associated diseases.

The present inventors have conducted intensive studies and first succeeded in the creation of a novel compound represented by the formula

wherein ring A is a 6-membered nitrogen-containing heterocycle containing besides carbon atom, 2 nitrogen atoms, ring B is an optionally substituted monocyclic homocycle or optionally substituted monocyclic heterocycle, Z is N or NR¹, R¹ is a hydrogen atom, -- is a single bond or a double bond, R² is a hydrogen atom or an optionally substituted hydrocarbon group, X is an optionally substituted C1-6 alkylene group, ring C is (1) an optionally substituted homocycle or (2) an optionally substituted heterocycle other than a ring represented by the formula.
Accordingly, the present invention relates to

1. a compound represented by the formula

 \[
 \text{[I]}
 \]

 wherein ring A is a 6-membered nitrogen-containing heterocycle containing besides carbon atom, 2 nitrogen atoms, ring B is an optionally substituted monocyclic heterocycle or optionally substituted monocyclic heterocycle, Z is N or NR\(^1\), R\(^1\) is a hydrogen atom, \(\rightarrow\) is a single bond or a double bond, R\(^2\) is a hydrogen atom or an optionally substituted hydrocarbon group, X is an optionally substituted C\(1-6\) alkylene group, ring C is (1) an optionally substituted homocycle or (2) an optionally substituted heterocycle other than a ring represented by the formula

2. the compound of the above-mentioned (1), wherein, when the partial structure represented by the formula

 \[
 \text{[II]}
 \]

 is

3. the compound of the above-mentioned (1), wherein ring A is

\(X'\) is S, O, SO or CH\(_2\), and at least one of ring B and ring C has substituent(s), or a salt thereof.

(2) the compound of the above-mentioned (1), wherein, when the partial structure represented by the formula

\[
\]

\(X\) is an optionally substituted spacer having 1, 3 or 4 carbon atoms or a salt thereof.
or a salt thereof,
(4) the compound of the above-mentioned (1), wherein ring B is an optionally substituted 5- or 6-membered monocyclic heterocycle containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom or a salt thereof,
(5) the compound of the above-mentioned (1), wherein ring B is an optionally substituted benzene ring or a salt thereof,
(6) the compound of the above-mentioned (1), wherein the partial structure represented by the formula

![Formula Image](image)

is

![Structures](image)

or a salt thereof,
(7) the compound of the above-mentioned (1), wherein the partial structure represented by the formula

![Formula Image](image)

is

![Structures](image)

or a salt thereof,
(8) the compound of the above-mentioned (1), wherein the substituent of ring B is selected from (1) a C_{1-6} alkyl group, (2) a C_{1-6} alkyl group substituted by a C_{7-16} aralkyloxy optionally substituted by a carboxyl group, (3) a C_{1-6} alkyl group substituted by a C_{6-14} aryl-aminocarbonyl optionally substituted by a carboxyl group, (4) a C_{1-6} alkyl group substituted by a C_{6-14} aryl-carbonylamino optionally substituted by a carboxyl group, (5) a C_{1-6} alkyl group substituted by a C_{6-14} aryloxy optionally substituted by a carboxyl group, (6) a C_{6-14} aryloxy group optionally sub-
stituted by a carboxyl group, (7) a C₇₋₁₆ aralkyloxy group optionally substituted by a carboxyl group, (8) a C₆₋₁₄ aryl group optionally substituted by a carboxyl group, (9) a carbamoyl group optionally substituted by a C₇₋₁₆ aralkyl optionally substituted by a carboxyl group, (10) an amino group optionally substituted by C₇₋₁₆ aralkyl-carbonyl and halogen atoms, or a salt thereof, (9) the compound of the above-mentioned (1), wherein the partial structure represented by the formula

![Chemical Structure](image)

is

![Chemical Structure](image)

wherein R^a and R^b are each (1) a C₁₋₆ alkyl group, (2) a C₁₋₆ alkyl group substituted by a C₇₋₁₆ aralkyloxy optionally substituted by a carboxyl group, (3) a C₁₋₆ alkyl group substituted by a C₆₋₁₄ arylaminocarbonyl optionally substituted by a carboxyl group, (4) a C₁₋₆ alkyl group substituted by a C₆₋₁₄ aryl-carbonylamino optionally substituted by a carboxyl group, (5) a C₁₋₆ alkyl group substituted by a C₆₋₁₄ aralkyloxy optionally substituted by a carboxyl group, (6) a C₆₋₁₄ aryl group optionally substituted by a carboxyl group, (7) a C₇₋₁₆ aralkyloxy group optionally substituted by a carboxyl group, (8) a C₆₋₁₄ aryl group optionally substituted by a carboxyl group, (9) a carbamoyl group optionally substituted by a C₇₋₁₆ aralkyl optionally substituted by a carboxyl group or (10) an amino group optionally substituted by a C₇₋₁₆ aralkyl-carbonyl or a salt thereof, (10) the compound of the above-mentioned (1), wherein X is an optionally substituted methylene group or a salt thereof, (11) the compound of the above-mentioned (1), wherein ring C is an optionally substituted benzene ring or an optionally substituted pyridine ring or a salt thereof, (12) The above-mentioned compound (1) being 4-[[6-fluoro-2-[[3-(methoxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy]methyl]benzoic acid, 4-[[6-fluoro-3-chloro-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]oxo]methyl]benzoic acid, 4-[[6-fluoro-3-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]oxo]methyl]benzoic acid, 4-[[6-fluoro-3-methylphenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]oxo]methyl]benzoic acid, 4-[[6-fluoro-3-methylphenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]oxo]methyl]benzoic acid, 4-[[6-fluoro-3-methylphenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]oxo]methyl]benzoic acid, or a salt thereof, (13) a pharmaceutical agent comprising the compound of the above-mentioned (1) or a salt thereof, (14) a pharmaceutical agent of the above-mentioned (13), which is an agent for the prophylaxis or treatment of osteoarthritis or rheumatoid arthritis, (15) a production method of the compound of the above-mentioned (1) or a salt thereof, which comprises (1) reacting a compound represented by the formula

![Chemical Structure](image)

wherein L is a leaving group, and other symbols are as defined in the above-mentioned (1), or a salt thereof, with a compound represented by the formula
wherein each symbol is as defined in the above-mentioned (1), or a salt thereof, or [2] reacting a compound represented by the formula

wherein L² is a leaving group, and other symbols are as defined in the above-mentioned (1), or a salt thereof, with a compound represented by the formula R-H wherein R is a substituent of ring B, or a salt thereof,

(16) a matrix metalloproteinase inhibitor comprising the above-mentioned compound (1)
(17) the inhibitor of the above-mentioned (16), wherein the matrix metalloproteinase is matrix metalloproteinase-13 (MMP-13),
(18) a above-mentioned compound (1) or a salt thereof for use as a matrix metalloproteinase inhibitor, and the like.

[0012] Furthermore, while a compound represented by the formula [I] and a salt thereof produce tautomers, any tautomer is encompassed in the present invention, and a compound represented by the formula [I] and a salt thereof may be any of solvates, hydrates, non-solvates and non-hydrates.

(19). The compound of the above-mentioned (1) represented by the formula

wherein R⁴, R⁵, R⁶ and R⁷ are each

(i) a hydrogen atom,
(ii) a halogen atom,
(iii) a cyano group,
(iv) a hydroxy group,
(v) an amino group optionally substituted by substituent(s) selected from (a) a C⁷-16 aralkyl group optionally substituted by a C₁-6 alkoxy group, (b) a C₁-6 alkyl-carbonyl group optionally substituted by a C₁-6 aryloxy group and (c) a C₁-6 alkylsulfonyl group,
(vi) a C₁-6 alkyl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a C₁-6 alkoxy group, (c) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 4 heteroatoms selected from nitrogen atom, oxygen atom and sulfur atom and (d) a C₇-16 aralkyloxy optionally substituted by a carboxyl group,
(vii) a C₆-14 aryl group,
(viii) C₁-6 alkoxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a hydroxy group, (c) C₃-7 cycloalkyl group, (d) a C₇-16 aralkyloxy group, (e) a 5- to 8-membered aromatic heterocyclic
group having, besides carbon atom, 1 to 4 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom, (f) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which optionally have a carboxy group, and (g) C_{6-14} arylcarbonyl group,

(ix) a C_{7-16} aralkyloxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a cyano group, (c) a carboxyl group, (d) a C_{1-5} alkyl group optionally having a carboxyl group, (e) a C_{1-5} alkoxy group optionally having a carboxyl group, (f) an amino group, (g) a C_{1-5} alkoxyaminocarbonyl group, (h) a carbamoyl group, (i) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, (j) an amino-sulfonamido group optionally having a C_{1-5} alkoxyaminocarbonyl group and (k) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom,

(x) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom.

(xi) a thiol group,

(xii) a C_{1-5} alkythio group,

(xiii) a C_{7-16} aralkyloxy group,

(xiv) a 5- to 8-membered aromatic heterocyclic containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom-thio group,

(xv) a C_{1-5} alkoxy group,

(xvi) a carbamoyl group,

(xvii) a mono- or di-C_{1-5} alkylaminocarbonyloxy group,

(xviii) a mono- or di-C_{1-5} alkylaminocarbonyl-thio group,

(xix) a nitro group or

(xx) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom,

ring C' is a C_{6-14} aryl ring or a 5- to 8-membered heterocyclic group containing 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which is optionally substituted by substituent(s) selected from

(i) a halogen atom,

(ii) a cyano group,

(iii) an amino group optionally substituted by substituent(s) selected from (a) C_{1-5} alkyl optionally having C_{1-5} alkoxy, (b) C_{1-5} alkyl-carbonyl, (c) C_{1-5} alkoxy, (d) C_{1-5} alkoxy-carbonyl, (e) C_{1-5} alkoxy-carbonyl-carbonyl, (f) C_{1-5} alkoxy-carbonyl-C_{1-5} alkoxy-carbonyl and (g) a 5- to 8-membered non-aromatic heterocyclic having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonyl, (h) a C_{7-16} aralkyl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) C_{1-5} alkyl-carbonylamino, (c) C_{1-5} alkoxylamino, (d) a 5- to 8-membered non-aromatic heterocyclic having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonylamino, (e) C_{1-5} alkoxy-carbonylamino group, (f) a 5- to 8-membered aromatic heterocyclic having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonylamino and (g) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonylamino, (h) a C_{6-14} aryl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) amino optionally having C_{1-5} alkoxy-carbonyl, (c) C_{1-5} alkoxy and (d) carbonyl,

(vi) a C_{1-5} aralkyl group optionally substituted by C_{1-5} alkoxy,

(vii) a C_{1-5} alkoxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) C_{1-5} alkoxy, (c) C_{1-5} alkoxy-carbonyl, (d) carboxyl, (e) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which is optionally substituted by C_{1-5} alkyl, (f) a 5- to 8- membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom and (g) carbamoyl optionally having C_{1-5} alkoxy,

(viii) a C_{1-5} aralkyloxy group optionally substituted by substituent(s) selected from (a) a halogen atom and (b) C_{1-5} alkoxy.

(ix) a C_{1-5} aralkyloxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) amino optionally having C_{1-5} alkoxy-carbonyl, (c) C_{1-5} alkoxy and (d) carbonyl.

(x) a C_{7-16} aralkyloxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) C_{1-5} alkoxy, (c) C_{1-5} alkoxy-carbonyl and (d) C_{1-5} aryl,

(xi) a 5- to 8-membered non-aromatic heterocyclic-oxy group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which is optionally substituted by substituent(s) selected from (a) a halogen atom, (b) amino optionally having C_{1-5} alkoxy-carbonyl, (c) C_{1-5} alkoxy and (d) carbonyl,
selected from nitrogen atom and oxygen atom,
(xii) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom optionally substituted by C$_6$-14 aryloxy optionally having a halogen atom,
(xiii) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom,
(xiv) a C$_1$-6 alkoxy-carbonyl group and
(xv) a C$_1$-6 alkylureido group
provided that when R$_4$, R$_5$, -R$_6$ and -R$_7$ are hydrogen atoms, ring C' is an aromatic ring or a heterocycle containing 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which has the aforementioned substituent(s), or a salt thereof.

Best Mode for Carrying Out the Invention

[0013] The present invention is described in detail in the following.

(1) "ring A"

[0014] The ring A is a 6 membered nitrogen-containing heterocycle, containing beside carbon atom, 2 nitrogen atoms and Z is N or NR$_1$ (R$_1$ is a hydrogen atom).

[0015] As the combination of Z and - - - is a double bond, and (2) Z is NR$_1$ and - - - is a single bond can be mentioned, with preference given to Z is NR$_1$ and - - - is a single bond.

[0016] As the 6-membered, nitrogen-containing heterocycle, containing, besides carbon atom 2 nitrogen atoms represented by ring A (e.g., pyrazine, pyrimidine, pyridazine, pipperazine, triazine, tetrahydropyridine, tetrahydropyrazine, tetrahydropyrimidine, tetrahydroaziridinyl, dihydroaziridinyl, hexahydroaziridinyl, hexahydropyridazinyl, can be mentioned, with preference given to a 6-membered nitrogen-containing non-aromatic heterocycle containing, besides carbon atom, 2 nitrogen atoms. Of these, a dihydroaziridinylring is most preferable.

[0017] As the "nitrogen-containing heterocycle" represented by ring A, 6-membered nitrogen-containing heterocycle containing, besides carbon atom 2 nitrogen atoms, (e.g., pyrimidine, pyridazine, pipperazine, triazine, tetrahydropyridine, tetrahydropyrazine, tetrahydroaziridinyl, dihydroaziridinyl, hexahydroaziridinyl, hexahydropyridazinyl, hexahydropyridazinyl, isoazoxolane can be mentioned, with preference given to a 6-membered nitrogen-containing aromatic heterocycle containing, besides carbon atom, nitrogen atoms (e.g., pyridine, pyrazine, pyrimidine) and a 6-membered nitrogen-containing non-aromatic heterocycle containing, besides carbon atom, nitrogen atoms (e.g., dihydropyridine, dihydroaziridine, dihydroaziridinyl) can be mentioned. Of these, a dihydroaziridinylring is most preferable.

[0018] When ring A has a nitrogen atom, it may form a quaternary ammonium salt and, for example, a salt may be formed with an anion such as a halogen ion (e.g., Cl, Br, I and the like), a sulfuric acid ion, a hydroxyion and the like.

(2) "ring B (ring B')"

[0019] Ring B is an optionally substituted monocyclic homocycle or an optionally substituted monocyclic heterocycle, and ring B' is an optionally substituted homocycle or an optionally substituted heterocycle.

[0020] As the "monocyclic homocycle (monocyclic hydrocarbon comprising carbon atoms)" represented by ring B, for example, a 3- to 10-membered, preferably 5- to 9-membered, monocyclic hydrocarbon, more preferably a 5- or 6-membered monocyclic hydrocarbon and the like can be mentioned and, specifically, for example, benzene, C$_6$-C$_9$ cycloalkane (e.g., cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like), C$_{3-10}$ cycloalkene (e.g., cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene and the like) and the like are used. Of these, as ring B, for example, a 6-membered monocyclic homocycle, such as benzene, cyclohexane and the like, are preferable, and a benzene ring is particularly preferable.

[0021] As the "homonucleare (cyclic hydrocarbon comprising carbon atoms)" represented by ring B', for example, a 3- to 14-membered cyclic hydrocarbon and the like can be mentioned, and specifically, for example, a C$_{6-14}$ aryl ring, C$_{3-10}$ cycloalkane (e.g., cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like), C$_{3-10}$ cycloalkene (e.g., cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene and the like)
and the like are used.

[0022] Specifically, besides the aforementioned monocyclic homocycles, indene, naphthalene, anthracene, fluorene, phenanthrene and derivatives thereof (e.g., (partial) hydrides thereof and the like) and the like are used.

[0023] As the "monocyclic heterocycle" represented by ring B, for example, a 3 to 9-membered monocyclic heterocycle containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, sulfur atom, oxygen atom and the like, preferably a 5- to 9-membered monocyclic heterocycle, more preferably a 5- or 6-membered monocyclic heterocycle, particularly preferably a 5- or 6-membered monocyclic aromatic heterocycle, can be mentioned. Specifically, for example, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, imidazole, pyrazole, triazole, pyrrolidine, imidazoline, imidazolidine, piperidine, piperezene, triazine, tetrahydropyridine, dihydropyridine, tetrahydroprazine, tetrahydropyrimidine, tetrahydropridazine, pyrrole (dihydropyrole), pyrazoline (dihydropyrrole), hexahydropyrimidine, hexahydropyridazine, thi-azole, isoazole, oxazole, isoxazole, oxazoline, morpholine, thiazoline (dihydrothiazole), isothiazoline (dihydroisothiazole), isoaxazolidine (tetrahydroisoxazole), thiazolidine (tetrahydrothiazole), isothiazolidine (tetrahydroisothiazole), isoaxazolidine (tetrahydroisoxazole), furan, thiophene, pyran, dioxane, dihydropryan, dihydrothiophene, dihydrofuran, tetrahydrothiophene, tetrahydrofuran, tetrahydropryan and the like can be mentioned.

[0024] As preferable monocyclic heterocycle, for example, (i) a 6-membered monocyclic nitrogen-containing heterocycle containing, besides carbon atom, 1 or 2 nitrogen atoms (e.g., pyridine, pyrazine ring and the like) or (ii) a 5-membered monocyclic sulfur-containing heterocycle containing, besides carbon atom, one sulfur atom (e.g., thiophene ring and the like) and the like can be mentioned, with particular preference given to thiophene ring.

[0025] As the "heterocycle" represented by ring B', for example, a 3- to 12-membered heterocycle containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, sulfur atom, oxygen atom and the like, specifically, aromatic fused heterocycle and the like are used besides the aforementioned monocyclic heterocycle.

[0026] As the aromatic fused heterocyclic group, for example, a 8- to 12-membered aromatic fused heterocycle such as benzofuran, benzothiophene, indole, benzimidazole, benzoxazole, coumarin, quinoline, isoquinoline, quinoxaline, quinazoline, phthalazine, naphthyridine, acridine, thiophene, phenoxazine, phenothiazine, purine, xanthine, xanthene, pteridine and the like (preferably, a heterocycle wherein the aforementioned 5- or 6-membered monocyclic aromatic heterocycle is condensed with a benzene ring or a heterocycle wherein the same or different two heterocycles of the aforementioned 5- or 6-membered monocyclic aromatic heterocycle are condensed) and the like can be mentioned.

[0027] As the substituents that "monocyclic homocycle" and "monocyclic heterocycle" represented by ring B, and the "homocycle" and "heterocycle" represented by ring B' optionally have, for example,

(i) a halogen atom,
(ii) a cyano group,
(iii) a hydroxy group,
(iv) a nitro group,
(v) a formyl group,
(vi) an optionally substituted amino group (e.g., an amino group, an cyclic amino group and the like, which are optionally substituted by an optionally substituted alkyl group to be mentioned in (vii) below, an optionally substituted aryl group to be mentioned in (viii) below, an optionally substituted alkoxy group to be mentioned in (ix) below, an optionally substituted carbonyl group to be mentioned in (xii) below, an optionally substituted sulfonyl group to be mentioned in (xii) below, an optionally substituted sulfonfyl group to be mentioned in (xii) below, an optionally substituted 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitro group, sulfur atom and oxygen atom to be mentioned in (xviii) below, an optionally substituted 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitro group, sulfur atom and oxygen atom, to be mentioned in (xviii) below, a formyl group and the like, specifically, a C7-16 aralkylamino group optionally substituted by a C1,6 alkoxy group, a formylamino group, a C1,6 alkoxy-carbonylamino group optionally substituted by a C6-14 aryloxy group, a C1,6 alkylsulfonylamino group or an amino group mono- or di-substituted by an optionally substituted alkyl group (specifically, mono- or di-C1,6 alkylamino group such as methyamino, ethyamino, propyamino, dimethyamino, diethylamino group and the like (particularly, a mono- or di-C1,4 alkylamino group), a pyrimidinylmethylamino group), a cyclic amino group (e.g., a 5- to 8-membered cyclic amino group optionally containing, besides nitrogen atom, 1 to 3 hetero atoms from oxygen atom, sulfur atom and the like (e.g., pyrrolidino, piperidino, piperezene, morpholino group and the like), an alkoxy-carbonylamino group (e.g., a C1,6 alkoxy-carbonylamino group such as an ethoxy-carbonylamino group etc., and the like), an aryl-carbonylamino group (e.g., a C6-14 aryl-carbonylamino group such as a benzoylamino group etc., and the like), a C1,6 alkylcarbonylamino-carbonylamino group, a C1,6 alkoxy-carbonyl-C1,6 alkylcarbonylamino group, a 5- to 8-membered non-aromatic heterocycle having, besides carbon atom, 1 to 3 hetero atoms selected from nitro group and oxygen atom-carbonylamino group),
(vi) an optionally substituted alkyl group (e.g., an alkyl group, a cycloalkyl group and the like, which is optionally substituted by a halogen atom, an amino group, an alkylamino group, a carboxyl group, an alkoxy group, a hydroxy group, an optionally substituted aryl group, an alkoxy group, an optionally substituted aralkyloxy group,
an alkylcarbonylamino group, an alkylsulfonylamino group, an alkoxycarbonylamino group, an alkoxycarbonylcarbonylamino group, an alkylcarbonyloxy group, a heterocyclic group, a heterocycle-carbonylamino group, an optionally substituted ureido group, a nitro group, a cyano group, a C_{1-6} alkyl-carbonyl group, an alkylthio group, an optionally substituted arylaminocarbonyl group, an optionally substituted arylcarbonylamino group, an optionally substituted aryloxy group, an aralkylthio group, an azide group and the like),

More specifically

(a) a linear or branched alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl and the like, cycloalkyl group (e.g., a C_{3-8} cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl etc., and the like),

(b) a halogenated C_{1-6} alkyl group or halogenated C_{3-8} cycloalkyl group (e.g., chloromethyl, difluoromethyl, trichloromethyl, trifluoromethyl, 2-bromoethyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl and the like),

(c) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by an amino group (e.g., aminomethyl, 2-aminoethyl group and the like),

(d) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by mono- or di-C_{1-6} alkylamino group (e.g., methylaminomethyl, dimethylaminomethyl, 2-methylaminomethyl, 2-dimethylaminomethyl group and the like),

(e) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a carboxyl group (e.g., carboxymethyl, carboxyethyl group and the like),

(f) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{1-6} alkoxy-carbonyl group (e.g., methoxycarbonyl group, ethoxycarbonyl group, tert-butoxycarbonyl group and the like),

(g) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a hydroxy group (e.g., hydroxymethyl, hydroxyethyl group and the like),

(h) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{6-14} aryl group, which may have a halogen atom, a cyano group, a hydroxy group, a nitro group, a carboxyl group, an amino group, a mono or di-C_{1-6} alkylamino group and the like (e.g., benzyl and the like),

(i) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{1-6} alkoxy group (e.g., methoxymethyl, methoxyethyl and the like),

(j) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{7-16} aralkyloxy group, which may have a halogen atom, a cyano group, a hydroxy group, a nitro group, a carboxyl group, an amino group, a mono or di-C_{1-6} alkylamino group and the like (e.g., benzoxymethyl and the like),

(k) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{1-6} alkoxy-carbonylamino group, an amino group, a mono or di-C_{1-6} alkylamino group and the like (e.g., acetylaminomethyl, acetylaminoethyl and the like),

(1) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{1-6} alkylsulfonylaminogroup (e.g., methylsulfonylaminomethyl, the like),

(m) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{1-6} alkoxycarbonylamino group (e.g., ethoxycarbonylaminoethyl, tert-butoxycarbonylaminoethyl group and the like),

(n) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{1-6} alkoxy-carbonylamino group (e.g., methoxycarbonylaminoethyl, tert-butoxycarbonylaminoethyl group and the like),

(o) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{1-6} alkyl-carbonylamino group (e.g., acetylaminomethyl, acetylaminoethyl and the like),

(p) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a heterocyclic group (e.g., a 3- to 12-membered, preferably 5- or 6-membered, aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, such as furyl, thienyl, pyrrolid and the like, a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom- and sulfur atom) (e.g., 2-furylmethyl group and the like),

(q) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a heterocyclic group (e.g., a 3- to 12-membered, preferably 5- or 6-membered, aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, such as furyl, thienyl, pyrrolid and the like, a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom) (e.g., optionally substituted C_{6-14} aryl group and the like),

(r) a C_{1-6} alkyl group or a C_{3-8} cycloalkyl group each substituted by a C_{1-6} alkoxy-carbonyloxy group (e.g., acetylloxymethyl group and the like),
(a) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by a nitro group (e.g., nitromethyl, 2-nitroethyl etc.),
(l) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by a cyano group (e.g., cyanomethyl, 2-cyanoethyl etc.),
(u) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by a C₁₋₆ alkyl-carbonyl (e.g., acetyl methyl etc.),
(v) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by a C₁₋₆ alkythio (e.g., methylthio etc.),
(w) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by a C₆₋₁₄ aryl-aminocarbonyl optionally substituted by a carboxyl group (e.g., phenylaminocarbonylmethyl etc.),
(x) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by a C₆₋₁₄ arylicarbonylamino group optionally substituted by a carboxyl group or C₁₋₆ alkoxy-carbonyl (e.g., benzoylaminoethyl etc.),
(y) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by a C₆₋₁₄ aryloxycarbyl optionally substituted by a carboxyl group (e.g., phenoxymethyl etc.).
(z) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by a C₁₋₆ alkyl-carbonyl (e.g., acetylmethyl etc.),
(aa) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by an N-C₁₋₆ alkyl-N-C₇₋₁₄ aralkylamino group (e.g., N-benzyl-N-methylaminomethyl etc.),
(bb) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by a C₇₋₁₆ aralkylthio group (e.g., benzylthiethyl etc.),
(ee) a C₁₋₆ alkyl group or a C₃₋₈ cycloalkyl group substituted by an azide group (e.g., azidomethyl etc.), and the like,
(viii) an optionally substituted C₆₋₁₄ aryl group (e.g., a C₆₋₁₄ aryl group optionally substituted by a substituent selected from a halogen atom, a cyano group, a hydroxy group, a nitro group, a carboxyl group, a C₁₋₆ alkoxy, a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, optionally halogenated C₁₋₆ alkyl group such as methyl, ethyl, trifluoromethyl, and the like, a formyl group, a C₁₋₆ alkyl-carbonyl group, a C₁₋₆ alkoxy-carbonyl group, an amino group, a mono or di-C₁₋₆ alkylamino group, a C₁₋₆ alkoxy-carbonylamino group, a carbamoyl group, a C₁₋₆ alky carbamoyl group, a C₁₋₆ aryl carbamoyl group, a C₁₋₆ alkyloxy carbamoyl group, a C₁₋₆ alkylenedioxy group, a C₁₋₆ alky ureido group and the like),
(ix) an optionally substituted C₁₋₆ alkoxy group (e.g., a C₁₋₆ alkoxy group optionally substituted by a substituent selected from a halogen atom; a hydroxy group; a cyano group; a nitro group; a carboxyl group; a formyl group; a C₁₋₆ alkyl-carbonyl group; a C₁₋₆ alkyln group; an amino group, a mono or di-C₁₋₆ alkylamino group, a C₁₋₆ alkoxy-carbonyl group, a carbamoyl group, a C₁₋₆ alky carbamoyl group; a C₁₋₆ alkyloxy carbamoyl group, a C₁₋₆ alkylenedioxy group, a C₁₋₆ alky ureido group and the like),
(x) a substituted, oxy group (e.g., an optionally substituted aralkyloxy group (e.g., a C₇₋₁₆ aralkyloxy group optionally substituted by a substituent selected from a halogen atom; a hydroxy group; a cyano group; a formyl group; a C₁₋₆ alkyl-carbonyl group; a C₁₋₆ alkyln group; an amino group, a mono or di-C₁₋₆ alkylamino group, a C₁₋₆ alkoxy-carbonyl group, a carbamoyl group, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, an amino-sulfonilamino group optionally having a C₁₋₆ alkoxycarbonyl group and a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, an amino-sulfonilamino group optionally having a C₁₋₆ alkoxycarbonyl group and a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which may have hydroxy or C₁₋₆ alkoxy, an amino-sulfonilamino group optionally having a C₁₋₆ alkoxycarbonyl group and a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which may have hydroxy or C₁₋₆ alkoxy, an amino-sulfonilamino group optionally having a C₁₋₆ alkoxy carbonyl group; and a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, such as furyl, thi enyl, pyrrolyl and the like, a 5-to 8-membered non-
aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and the like),

(xi) a carbonyl group,

(xii) an optionally substituted carbonyl group (e.g., alkoxy-carbonyl group (e.g.: a C1-6 alkoxy-carbonyl group such as methoxy carbonyl, ethoxy carbonyl, propoxy carbonyl, butoxy carbonyl, isobutoxy carbonyl group etc., and the like), an aralkyloxy-carbonyl group (e.g., a C7-16 aralkyloxy-carbonyl group such as benzyl oxy carbonyl group etc., and the like), an aryloxy-carbonyl group (e.g., a C6-14 aryloxy-carbonyl group such as phenoxycarbonyl group etc., and the like), an alkyloxy-carbonyl group Optionally substituted by a C5-14 aryl group (e.g., a C1-6 alkoxy-carbonyl group such as methylcarbonyl, ethylcarbonyl, butylcarbonyl and the like, and the like), a cycloalkylcarbonyl group (e.g., a C3-8 cycloalkyl-carbonyl group such as cyclopentylcarbonyl, cyclohexylcarbonyl group and the like, and the like), an aryloxy-carbonyl group (e.g., a C6-14 aryloxy-carbonyl group such as benzoyl and the like, and the like), an aralkylcarbonyl group (e.g., a C7-16 aralkylcarbonyl group such as benzylcarbonyl and the like, and the like), a C1-6 alkoxy-carbonyl-carbonyl group (e.g., a C1-6 alkoxy-carbonyl-C1-4 alkyl-carbonyl group, a 5- or 6-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom-carbonyl group, a 5- to 6-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom-carbonyl group, a C1-6 alkoxy-5- to 8-membered non-aromatic heterocyclic containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom-carbonyl group),

(xiii) an optionally substituted carbamoyl group (e.g., a carbamoyl group, a thiocarbamoyl group, a mono- or di-alkylcarbamoyl group (e.g., a mono- or di-C1-6 alkyl-carbamoyl group such as methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, butylcarbamoyl, diethylcarbamoyl, dibutylcarbamoyl group and the like), a mono- or di-aralkyl-carbamoyl group optionally substituted by a carbonyl group or C2-6 alkoxy-carbonyl (e.g., a mono- or di-C7-16 aralkyl-carbamoyl group such as benzylcarbamoyl and the like), and the like),

(xiv) a thiol group,

(xv) a thiol group having a substituent (e.g., an optionally halogenated C1-6 alkythio group, a C7-16 aralkythio group, a 5- to 6-membered aromatic heterocycle-thio group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, a mono- or di-C1-6 alky carbamoyl-thio group),

(xvi) an optionally substituted sulfonyl group (e.g., a C1-6 alkylsulfonyl group (e.g., a C1-6 alkylsulfonyl group such as methoxysulfonyl, ethoxysulfonyl, propoxysulfonyl and the like, and the like), a cycloalkylsulfonyl group (e.g., a C3-8 cycloalkylsulfonyl group such as cyclopentylsulfonyl, cyclohexylsulfonyl and the like, and the like), an arylsulfonyl group (e.g., a C6-14 arylsulfonyl group such as phenylsulfonyl, naphthylsulfonyl and the like, and the like), an aralkylsulfonyl group (e.g., a C7-15 aralkylsulfonyl group such as benzylsulfonyl and the like, and the like)),

(xvii) an optionally substituted group (e.g., optionally substituted by a substituents selected from a halogen atom, a cyano group, a hydroxy group, a nitro group, a carbonyl group, a C1-6 alkoxy group, a 5- to 6-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, optionally halogenated C1-6 alkyl group such as methyl, ethyl, trifluoromethyl and the like, a formyl group, a C1-6 alkyl-carbonyl group, a C1-6 alkoxy-carbonyl group, an amino group, a mono or di-C1-6 alkylaminocarbonyl group, a C6-14 alkylcarbonylamino group, a carbamoyl group, a C1-6 alky carbamoyl group, a C6-14 aryl group, a C1-3 alkylenedioxy group, a C6-14 aryloxy group optionally substituted by a halogen atom and the like, and the like) 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, sulfur atom and oxygen atom (including a 5- to 8-membered cyclic amino group optionally containing, besides nitrogen atom, 1 to 3 hetero atoms such as sulfur atom, oxygen atom and the like, for example, pyrrolidinyl, tetrahydrofuryl, tetrahydrothienyl, piperidyl, tetrahydropyranyl, morpholinyl, thiomorpholinyl, pipеразинyl and the like),

(xviii) an optionally substituted group (e.g., optionally substituted by a substituent selected from a halogen atom, a cyano group, a hydroxy group, a nitro group, a carbonyl group, a C1-6 alkoxy group, a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, optionally halogenated C1-5 alkyl group such as methyl, ethyl, trifluoromethyl and the like, the formyl group, a C1-6 alkyl-carbonyl group, a C1-6 alkoxy-carbonyl group, an amino group, a mono or di-C1-6 alkylaminocarbonyl group, a C6-14 alkylcarbonylamino group, a carbamoyl group, a C1-6 alkyl carbamoyl group, a C6-14 aryl group, a C1-3 alkylenedioxy group, a C6-14 aryloxy group optionally substituted by a halogen atom and the like, and the like) 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atoms, sulfur atom and oxygen atom (e.g., furyl, thienyl, pyrrolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, 1,2,3-oxidiazolyl, 1,2,4-oxidiazolyl, 1,3,4-oxidiazolyl, furyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetrazolyl, pyridyl, pyri-
dazinyl, pyrimidinyl, pyrazinyl, triazinyl and the like),
(xix) an optionally substituted (e.g., optionally substituted by a substituent selected from (1) optionally halogenated C_{1-6} alkyl, (2) optionally halogenated C_{3-8} cycloalkyl and (3) optionally substituted C_{6-14} aryl group (e.g., optionally substituted by the optionally substituted C_{6-14} aryl group of the aforementioned (viii)) ureido group,
(xx) an oxo group and the like are used.

[0029] As preferable substituent that the "optionally substituted, nitrogen-containing heterocycle," represented by ring A (ring A') may have, for example,

(i) a halogen atom,
(ii) a cyano group,
(iii) a hydroxy group,
(iv) a nitro group,
(v) an optionally substituted amino group (a mono- or di-C_{1-6} alkylamino group, a C_{7-16} aralkylamino group optionally substituted by a C_{1-6} alkoxy group, a C_{1-6} alkyl-carbonylamino group optionally substituted by a C_{6-14} aryloxy group and C_{1-6} alkylsulfonylamino group etc.),
(vi) an optionally substituted alkyl group (e.g., a C_{1-6} alkyl group optionally substituted by a substituent selected from a halogen atom, a C_{1-6} alkoxy group and a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, and the like),
(vii) an optionally substituted C_{6-14} aryl group (e.g., a C_{6-14} aryl group optionally substituted by a substituent selected from a halogen atom, a C_{1-6} alkoxy group and a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and the like),
(viii) an optionally substituted C_{1-6} alkoxy group (e.g., a C_{1-6} alkoxy group optionally substituted by a substituent selected from a halogen atom, a hydroxy group, a C_{3-7} cycloalkyl group, a C_{7-16} aralkyloxy group, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, and the like),
(ix) an optionally substituted aralkyloxy group (e.g., a C_{7-16} aralkyloxy group optionally substituted by a substituent selected from a halogen atom, a cyano group, a carboxyl group, a C_{1-6} alkyl group optionally having a carboxy group, a C_{1-6} alkoxy group optionally having a carboxyl group, a C_{1-6} alkoxycarbonyl group, a carboxamoyl group, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, and the like),
(x) a thiol group,
(xi) an optionally halogenated C_{1-6} alkylthio group,
(xii) a C_{7-16} aralkylthio group,
(xiii) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom-thio group,
(xiv) a mono- or di-C_{1-6} alkylcarbamoyl-thio group
(xv) a C_{1-6} alkylsulfonyl group,
(xvi) a carboxamoyl group,
(xvii) a mono- or di-C_{1-6} alkylamino-thiocarbonyloxy group,
(xviii) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, sulfur atom and oxygen atom,
(xix) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from nitrogen atom, sulfur atom and oxygen atom, and the like can be mentioned.

[0030] More preferable substituents that ring B (ring B') optionally have include, for example, a halogen atom, an optionally substituted C_{1-6} alkyl group (e.g., a C_{1-6} alkyl group optionally substituted by substituent(s) selected from a halogen atom, a C_{1-6} alkoxy group and a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom), an optionally halogenated C_{1-6} alkoxy group, a mono- or di-C_{1-6} alkylamino group, an optionally halogenated C_{1-6} alkylthio group, a nitro group, a cyano group and the like.
Of these, 1 to 3 substituents selected from a halogen atom, an optionally halogenated C₁₋₆ alkyl group and an optionally halogenated C₁₋₆ alkoxy group and the like are particularly preferable.

The substituent of ring B (ring B’) may be present at any substitutable position on the ring, and when two or more substituents are present, the substituents may be the same or different and, the number thereof may be about 0-4. The number of the substituents is preferably about 0-3.

As preferable substituents that "homocycle or heterocycle" represented by ring B (ring B’) may have, for example,

(i) a halogen atom,
(ii) a cyano group,
(iii) a hydroxy group,
(iv) a nitro group,
(v) an optionally substituted amino group (e.g., (a) a mono- or di-C₁₋₆ alkylamino group, (b) a C₇₋₁₆ aralkylamino group optionally substituted by a C₁₋₆ alkoxy group, (c) a C₁₋₆ alkylcarbonylamino group optionally substituted by a C₆₋₁₄ arylamido group, (d) a C₁₋₆ alkylsulfonylamino group and (e) a C₇₋₁₆ aralkylcarbonylamino group etc.),
(vi) an optionally substituted alkyl group (e.g., a C₁₋₆ alkyl group optionally substituted by (a) a halogen atom, (b) a C₁₋₆ alkoxy group, (c) a substituent selected from a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, (d) C₇₋₁₆ aralkylamido group optionally substituted by a carboxyl group, C₁₋₆ alkoxy-carbonyl, C₁₋₆ alkyl-amino-carbonyl, a cyano group, halogen or carboxyl-C₁₋₆ alkyl, (e) C₆₋₁₄ aryloxyamino optionally substituted by a carboxyl group or C₁₋₆ alkoxy-carbonyl, (f) C₆₋₁₄ arylcarbonylamino optionally substituted by a carboxyl group or C₁₋₆ alkoxy-carbonyl, (g) C₆₋₁₄ arylamido optionally substituted by a carboxyl group or C₁₋₆ alkoxy-carbonyl, (h) C₆₋₁₄ arylcarbonylamido optionally substituted by hydroxy-C₁₋₆ alkyl, (i) N-C₁₋₆ alkyl-N-C₇₋₁₆ aralkylamino, (j) N-C₁₋₆ alkyl-carbonyl-N-C₇₋₁₆ aralkylamino, (k) C₇₋₁₆ aralkylothio, (l) an azide group, (m) a cyano group, (n) C₁₋₆ alkoxy-carbonyl, (o) a hydroxy group and the like),
(vii) an optionally substituted C₆₋₁₄ aryl group (e.g., a C₆₋₁₄ aryloxy group optionally substituted by a halogen atom, a C₁₋₆ alkoxy group, substituent(s) selected from 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, a carboxyl group and the like),
(viii) an optionally substituted C₁₋₆ alkoxy group (e.g., a C₁₋₆ alkoxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a hydroxy group, (c) a C₃₋₇ cycloalkyl group, (d) a C₇₋₁₆ aralkylamido group, (e) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, (f) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which may have a carboxyl group or a carbonyl group, and (g) a C₁₋₆ arylcarbonylamino and the like),
(ix) an optionally substituted aralkylamido group (e.g., a C₇₋₁₆ aralkylamido group optionally substituted by a substituent selected from a halogen atom, a cyano group, a carboxyl group, a C₁₋₆ alkoxy group optionally having a carboxyl group, a C₁₋₆ alkoxy group optionally having a carboxyl group, an amino group, a C₁₋₆ alkoxyamido group, a carbamoyl group, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, amino-sulfonlamino group optionally having a C₁₋₆ alkoxyamido group and a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, (h) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which may have a carboxyl group or a carbonyl group, and (i) a C₁₋₆ arylcarbonylamino and the like),
(x) an optionally substituted aralkylamido group (e.g., a C₇₋₁₆ aralkylamido group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a cyano group, (c) a carboxyl group, (d) a C₁₋₆ alkoxy group optionally having a carboxyl group, (e) a C₁₋₆ alkoxy group optionally having a carboxyl group, (f) an amino group, (g) a C₁₋₆ alkoxyamino group, (h) a carbamoyl group, (i) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which may have hydroxy or C₁₋₆ alkyl, (j) an amino-sulfonlamino group optionally having C₁₋₆ alkoxyamido group and (k) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and the like),
(x) a thiol group,
(xii) an optionally halogenated C₁₋₆ alkylthio group,
(xiii) a C₇₋₁₆ aralkylthio group,
(xiv) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom-thio group,
(xv) a mono- or di-C₁₋₆ alkylcarbamoyl-thio group
(xvi) a C₁₋₆ alkylosulfon group,
(xvii) a carbamoyl group,
(xviii) a mono- or di-C1,6 alkylamino-thiocarbonyloxy group,
(xix) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, sulfur atom and oxygen atom,
(xx) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, sulfur atom and oxygen atom, and the like,
(xxi) a C7,16 aralkyl-carbamoyl group optionally substituted by a carboxyloxy group or a C1,6 alkoxy carbonyl group, (xxii) an oxo group and the like can be mentioned.

[0034] More preferable substituents that ring B optionally have include, for example, a halogen atom, an optionally substituted C1,6 alkyl group (e.g., a C1,6 alkyl group optionally substituted by a halogen atom, a C1,6 alkoxy group, substituent(s) selected from a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, a C7,16 aralkyloxy optionally substituted by a carboxyloxy group, a C6,14 aryloxyamino carbonyl group optionally substituted by a carbamoyl group, or a C7,16 aralkyloxy optionally substituted by a carboxyloxy group, a C6,14 aryloxy group optionally substituted by a carboxyloxy group, and the like), an optionally halogenated C1,6 alkylthio group, a nitro group, a cyano group, an optionally substituted aralkyloxy group (e.g., a C7,16 aralkyloxy group optionally substituted by substituent(s) selected from a halogen atom, a cyano group, a carbamoyl group, a C1,6 alkyl group optionally having a carboxyloxy group, a C6,14 alkoxy group optionally having a carboxyloxy group, an amino group, a C1,6 alkoxy carbonyl group, a carbamoyl group, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, an amino-sulfonylamino group optionally having a C1,6 alkoxy carbonyl group and a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and the like), an optionally substituted aralkyloxy group (e.g., a C7,16 aralkyloxy group optionally substituted by substituent(s) selected from a halogen atom, a cyano group, a carbamoyl group, a C1,6 alkyl group optionally having a carboxyloxy group, a C6,14 alkoxy group optionally having a carboxyloxy group, a C7,16 aralkyloxy group optionally having a carbamoyl group, a C6,14 alkoxy group optionally having a carbamoyl group, an amino group, a C1,6 alkoxy carbonyl group, a carbamoyl group, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, an amino-sulfonyluracil group optionally having a C1,6 alkoxy carbonyl group and a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and the like), a C7,16 aryloxy group optionally substituted by a carboxyloxy group, a C6,14 aralkyl carbamoyl group optionally substituted by a carbamoyl group and an amino group optionally substituted by a C7,16 aralkyl-carbonyl and the like.

[0035] Of these, 1 to 3 substituents selected from a halogen atom, an optionally halogenated C1,6 alkyl group, a C1,6 alkyl group substituted by a C7,16 aralkyloxy optionally substituted by a carboxyloxy group, a C1,6 alkyl group substituted by a C6,14 arylaminocarbonyl optionally substituted by a carboxyloxy group, a C6,14 arylaminocarbonyl group optionally substituted by a carbamoyl group, a C1,6 alkyl group substituted by a C6,14 arylaminocarbonyl group optionally substituted by a carbamoyl group, an optionally halogenated C1,6 alkyl group, an amino group, a C1,6 alkoxy carbonyl group, a carbamoyl group, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, an amino-sulfonyluracil group optionally having a C1,6 alkoxy carbonyl group and a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and the like), an optionally substituted aralkyloxy group (e.g., a C7,16 aralkyloxy group optionally substituted by substituent(s) selected from a halogen atom, a cyano group, a carbamoyl group, a C1,6 alkyl group optionally having a carboxyloxy group, a C6,14 alkoxy group optionally having a carboxyloxy group, an amino group, a C1,6 alkoxy carbonyl group, a carbamoyl group, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, an amino-sulfonyluracil group optionally having a C1,6 alkoxy carbonyl group and a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and the like), a C7,16 aryloxy group optionally substituted by a carboxyloxy group, a C6,14 aralkyl carbamoyl group optionally substituted by a carbamoyl group and an amino group optionally substituted by a C7,16 aralkyl-carbonyl and the like.

[0036] Particularly, 1 to 3 substituents selected from (1) a C1,6 alkyl group, (2) a C1,6 alkyl group substituted by a C7,16 aralkyloxy optionally substituted by a carboxyloxy group, (3) a C1,6 alkyl group substituted by a C6,14 aryloxy carbonyl group, (4) a C1,6 alkyl group substituted by a C6,14 aryloxy carbonyl group, (5) a C1,6 alkyl group substituted by a C6,14 aryloxy carbonyl group, (6) a C6,14 aryloxy group optionally substituted by a carboxyloxy group, (7) a C7,16 aralkyloxy group optionally substituted by a carboxyloxy group and the like are preferable.
substituted by a carboxyl group, (8) a C₆-₁₄ aryl group optionally substituted by a carboxyl group, (9) a carbamoyl group optionally substituted by a C₇-₁₆ aralkyl optionally substituted by a carboxyl group, (10) an amino group optionally substituted by C₇-₁₆ aralkyl-carbonyl and (11) a halogen atom and the like are preferable.

[0037] The substituent of ring B may be present at any substitutable position on the ring, and when two or more substituents are present, the substituents may be the same or different and, the number thereof may be about 0-4. The number of the substituents is preferably about 0-3.

[0038] When ring B has a nitrogen atom, it may form a quaternary ammonium salt and, for example, a salt may be formed with an anion such as a halogen ion (e.g., Cl⁻, Br⁻, I⁻ and the like), a sulfuric acid ion, a hydroxy ion and the like.

(3) R¹, R²

[0039] R¹ is a hydrogen atom and R² is a hydrogen atom or an optionally substituted hydrocarbon group.

[0040] As the "hydrocarbon group" of the "optionally substituted hydrocarbon group" represented by R², for example, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group and the like can be mentioned. It is preferably an alkyl group, a cycloalkyl group or an aryl group, and particularly preferably an alkyl group.

[0041] As the "alkyl group", a linear or branched one having 1 to 6 carbon atoms is used, and preferably, for example, an alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl and the like is used.

[0042] As the "alkenyl group", for example, an alkenyl group having 2 to 6 carbon atoms, such as ethenyl, propenyl, isopropenyl, butenyl, isobutenyl, sec-butenyl and the like, is used, and preferably, for example, an alkenyl group having 2 to 4 carbon atoms, such as ethenyl, propenyl, isopropenyl and the like, is used.

[0043] As the "alkynyl group", for example, an alkynyl group having 2 to 6 carbon atoms, such as ethynyl, propynyl, butynyl, isobutylnyl and the like, is used, and preferably, for example, an alkynyl group having 2 to 4 carbon atoms, such as ethynyl, propynyl and the like, is used.

[0044] As the "cycloalkyl group", for example, a C₃-₈ cycloalkyl group, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like, is used, and preferably, for example, a C₃-₆ cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, is used.

[0045] As the "aryl group", for example, an aryl group having 6 to 14 carbon atoms, such as phenyl, naphthyl, anthryl, phenanthryl and the like, is used, and preferably, for example, an aryl group having 6 to 10 carbon atoms, such as phenyl, naphthyl and the like, is used.

[0046] As the substituents that the "hydrocarbon group" represented by R² optionally have, specifically,

(i) a halogen atom,
(ii) a cyano group,
(iii) a hydroxy group,
(iv) the above-mentioned optionally substituted amino group (same as the "optionally substituted amino group" that the "optionally substituted, ring B optionally has),
(v) the above-mentioned optionally substituted alkyl group (same as the "optionally substituted alkyl group" that the "optionally substituted, ring B optionally has),
(vi) the above-mentioned optionally substituted aralkyloxy group (same as the "optionally substituted aralkyloxy group" that the "optionally substituted, ring B optionally has),
(vii) the above-mentioned optionally substituted C₆-₁₄ aryl group (same as the "optionally substituted C₆-₁₄ aryl group" that the "optionally substituted, ring B optionally has),
(viii) the above-mentioned optionally substituted C₆-₁₄ aryl group (same as the "optionally substituted C₆-₁₄ aryl group" that the "optionally substituted, ring B optionally has),
(ix) a thiol group,
(x) a C₁-₆ alkylthio group,
(xi) a C₇-₁₆ aralkylthio group,
(xii) a 5- to 8-membered aromatic heterocycle containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom-thio group,
(xiii) a C₁-₆ alkylsulfonyl group,
(xiv) a carbamoyl group,
(xv) a mono- or di-C₁-₆ alkylamino-thiocarbonyloxy group,
(xvi) the above-mentioned mono- or di-C₁-₆ alkylcarbamoyl-thio group,
(xvii) a nitro group,
(xviii) a carboxyl group,
(xix) a C₁-₆ alkoxy-carbonyl group and
(xx) a C₁-₆ alkyl-carbonyl group and the like can be mentioned.
[0047] As R², is preferably a hydrogen atom or an optionally substituted lower alkyl group.

[0048] As the “optionally substituted lower alkyl group”, for example, a C₁₋₆ alkyl group optionally substituted by the aforementioned substituent of the “optionally substituted alkyl group” (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl) and the like are used.

[0049] As R², a hydrogen atom is particularly preferable.

[0050] As the partial structure represented by the formula

![Formula II]

10 to which the aforementioned ring A and ring B are related, or as the partial structure represented by the formula

![Formula II]

to which the aforementioned ring A¹ and ring B¹ are related, one wherein the aforementioned preferable embodiments of the aforementioned ring A, ring B and Z are combined, or one wherein the aforementioned preferable embodiments of the aforementioned ring A¹, ring B¹ and Z are combined, is used. Particularly,

![Structures]
and the like are preferable.

[0051] More specifically, the formula
and the like are preferable. Above all,

wherein R¹ is a hydrogen atom are preferable, and

are particularly preferable.

In addition,

are also preferable embodiments.

As the particularly preferable embodiments,
wherein R^a and R^b are each a (1) a C_{1-6} alkyl group, (2) a C_{1-6} alkyl group substituted by a C_{7-16} aralkyloxy optionally substituted by a carboxyl group, (3) a C_{1-6} alkyl group substituted by a C_{6-14} arylaminocarbonyl optionally substituted by a carboxyl group, (4) a C_{1-6} alkyl group substituted by a C_{6-14} aryl-carbonylamino optionally substituted by a carboxyl group, (5) a C_{1-6} alkyl group substituted by a C_{6-14} aryl oxy optionally substituted by a carboxyl group, (6) a C_{6-14} aryl oxy group optionally substituted by a carboxyl group, (7) a C_{7-16} aralkyloxy group optionally substituted by a carboxyl group, (8) a C_{6-14} aryl group optionally substituted by a carboxyl group, (9) a carbamoyl group optionally substituted by a C_{7-16} aralkyl, can be mentioned.

(4) "X" and "Y"

[0054] X is an optionally substituted C_{1-6} alkylene group,
[0055] When the partial structure represented by

![Diagram](image)

in the formula [I] is

![Diagram](image)

X is an optionally substituted spacer having 1, 3 or 4 carbon atoms.

[0056] As the kind of the bond, a double bond and a triple bond can be mentioned, besides a single bond.

[0057] As the "C_{1-6} alkylene group" of the "optionally substituted C_{1-6} alkylene group" represented by X, specifically, -(CR_X1RX_X2)_w-represented by an aliphatic hydrocarbon group (wherein R_X1 and R_X2 are the same or different and each is a hydrogen atom or the same or different substituents, and w is an integer of 1 to 6 for "X"),

[0058] As the "substituent" of the "optionally substituted C_{1-6} alkylene group" represented by X, for example, those similar to the "substituent" of the "optionally substituted hydrocarbon group" represented by the aforementioned R^2 and the like, as well as an oxo group, a thioxy group and the like can be mentioned. When a substituent is present, the substituent is preferably 1 or 2 substituents selected from (1) a halogen atom, (2) a C_{1-6} alkyl group or C_{1-6} alkoxy group optionally substituted by 1 or 2 substituents selected from i) a halogen atom, ii) a C_{1-6} alkoxy group, iii) a nitro group, iv) a cyano group, v) a hydroxy group, vi) an amino group, vii) a mono- or di-C_{1-6} alkylamino group, viii) a carboxyl group, ix) a C_{1-6} alkoxy-carbonyl group and x) a C_{1-6} alkyl-carbonyl group, (3) a nitro group, (4) a cyano group, (5) a hydroxy group, (6) an amino group, (7) a mono- or di-C_{1-6} alkylamino group, (8) a carboxyl group, (9) a C_{1-6} alkoxy-carbonyl group and (10) a C_{1-6} alkyl-carbonyl group and the like, or an oxo group or a thiocarbonyl group.

[0059] Of those mentioned above, as X, for example, the aforementioned optionally substituted spacer represented by the formula -(CH_2)_n-X^1-(CH_2)_m-[X^1 is CH_2, n and m are each an integer of 0 to 3, n+m<6] or an optionally substituted C_{1-6} alkylene group is preferable. Of these, an optionally substituted C_{1-6} alkylene group (particularly a methylene group) is preferable, and an unsubstituted C_{1-6} alkylene group (particularly a methylene group) is particularly preferable.
(5) "ring C (ring C')"

[0060] Ring C is (1) an optionally substituted homocycle or (2) an optionally substituted heterocycle other than a ring represented by the formula

![Diagram](attachment:image1.png)

(X' is S, O, SO or CH₂), and ring C' is an optionally substituted homocycle or heterocycle.

[0061] As the "homocycle" represented by ring C or ring C', those similar to the ones exemplified for the aforementioned "homocycle" represented by ring B' are used. Of these, 6-membered homocycles such as a benzene ring, a cyclohexene ring and the like are preferable, and a benzene ring and the like are particularly preferable.

[0062] As the "heterocycle" represented by ring C, for example, a 3- to 12-membered heterocycle containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, sulfur atom, oxygen atom and the like (specifically, monocyclic heterocycle, aromatic fused heterocycle exemplified for ring B'), preferably a 3- to 9-membered, preferably 5- to 9-membered, more preferably 5-or 6-membered, heterocycle containing, besides carbon atom, 1 to 3 nitrogen atoms, which is other than a ring represented by the formula

![Diagram](attachment:image2.png)

(X' is S, O, SO or CH₂) is used. Specifically, pyridine, pyrazine, pyrimidine, pyridazine, pyrrole, imidazole, pyrazole, triazole, pyrridine, imidazoline, imidazolidine, piperidine, piperazine, triazine, tetrahydropyridine, dihydropyridine, tetrahydropyrazine, tetrahydropyrimidine, tetrahydropyridazine, dihydropyrole, dihydroimidazole, dihydropyrazole, hexahydropyrimidine, hexahydropyridazine, thiazole, isoazazole, oxazole, isoxazole, oxazoline, oxazolidine, thione, oxazine, morpholine, dihydrothiazole, dihydroisothiazole, dihydrooxazole, dihydroisoxazole, tetrahydrothiazole, tetrahydroisothiazole, tetrahydrooxazole, furan, thiophene, pyran, dioxane, dihydropyran, dihydrothiophene, dihydrofuran, tetrahydrothiophene, tetrahydrofuran, tetrahydrofuran, benzofuran, benzothiophene, indole, benzimidazole, benzoxazole, coumarin, quinoline, isoquinoline, quinoxaline, quinazoline, phthalazine, naphthyridine, acridine, thiadiazine, phenoxyazine, phenoxyazine, purine, xanthine, xanthene, pteridine and the like can be mentioned.

[0063] As the "heterocycle" represented by ring C', those similar to the "heterocycle" represented by the aforementioned ring B are used.

[0064] Of those mentioned above, as ring C or ring C', for example, (i) a 6-membered nitrogen-containing heterocycle containing, besides carbon atom, 1 or 2 nitrogen atoms (e.g., pyridine, pyrazine ring and the like) or (ii) a 5-membered aromatic sulfur-containing heterocycle containing, besides carbon atom, one sulfur atom (e.g., thiophene ring and the like) can be mentioned, with particular preference given to a pyridine ring.

[0065] As the substituent that ring C (ring C) may have, those similar to the substituents that the aforementioned ring B (optionally have are used. Of these,

(i) a halogen atom,
(ii) a cyano group,
(iii) a formyl group,
(iv) an optionally substituted amino group (e.g., an amino group optionally substituted by substituent(s) selected from C₁₋₆ alkyl optionally substituted by substituent(s) selected from C₁₋₆ alkyl optionally substituted by C₁₋₆ alkoy, C₁₋₆ alkyl-carbonyl (e.g., acetyl, propionyl, butyryl and the like), C₁₋₆ alkoxysulfonyl, C₁₋₆ alkoxy-carbonyl (e.g., ethoxycarbonyl and the like), C₁₋₆ alkoxy-carbonyl-carbonyl, C₁₋₆ alkoxy-carbonyl-C₁₋₆ alkyl-carbonyl and a 5- to 8-membered non-aromatic heterocycle having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonyl; an amino group mono- or di-substituted by an alkyl group (e.g., a mono- or di-C₁₋₆ alkylamino group such as methylamino, ethylamino, propylamino, dimeth-
ylamino, diethylamino group and the like (particularly, mono- or di-C\textsubscript{1-4} alkylamino group); a formylamino group, a pyrimidinylmethylamino group and the like), a cyclic amino group (e.g., a 5- to 8-membered cyclic amino group optionally containing, besides nitrogen atom, 1 to 3 hetero atoms from oxygen atom, sulfur atom and the like (e.g., pyrrolidino, piperidino, morpholino group and the like) and the like), an aryl-carbonylamino group (e.g., a C\textsubscript{6-14} aryl-carbonylamino group such as benzoylamino group and the like, and the like), an alkylsulfonylamino group (e.g., a C\textsubscript{1-4} alkylsulfonylamino group such as methylsulfonlamino, ethylsulfonylamino, propylsulfonylamino group and the like, and the like),

(v) an optionally substituted alkyl group (e.g., an alkyl group or cycloalkyl group optionally substituted by a halogen atom, an amino group, an alkylamino group, a carboxyl group, an alkoxycarbonyl group, a hydroxy group, an aryl group, an alkoxy group, an aralkyloxy group, an alkyloxycarbonylamino group, an alkylcarboxylamino group, an alkylcarboxyloxy group, a heterocyclic group, an alkylsulfonylamino group, a ureido group, an alkylureido group and a heterocycle-carbonylamino group and the like, and the like),

more specifically,

(a) a linear or branched alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl and the like or a cycloalkyl group (e.g., a C\textsubscript{3-8} cycloalkyl group such as cyclopentyl, cyclohexyl and the like),

(b) a halogenated C\textsubscript{1-6} alkyl group or C\textsubscript{3-8} cycloalkyl group (e.g., chloromethyl, difluoromethyl, trichloromethyl, trifluoromethyl, 2-bromoethyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl and the like),

(c) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by an amino group (e.g., aminomethyl, 2-aminoethyl group and the like),

(d) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a mono- or di-C\textsubscript{1-6} alkylamino group (e.g., methylaminomethyl, dimethylaminomethyl, 2-methy laminoethyl, 2-dimethylaminomethyl group and the like),

(e) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a carboxyl group (e.g., carboxymethyl, carboxyethyl group and the like),

(f) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a C\textsubscript{1-6} alkoxy-carbonyl group (e.g., methoxycarbonylethyl, ethoxycarbonylethyl, tert-butoxycarbonylethyl group and the like),

(g) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a hydroxy group (e.g., hydroxymethyl, hydroxyethyl group and the like),

(h) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a C\textsubscript{6-14} aryl group (e.g., benzyl and the like),

(i) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a C\textsubscript{1-6} alkoxy group,

(j) a C\textsubscript{1-6} alkyl group or a C\textsubcript{3-8} cycloalkyl group, each substituted by a C\textsubscript{7-16} aralkyloxy group (e.g., benzoxymethyl and the like),

(k) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a C\textsubscript{1-6} alkyl-carbonylamino group (e.g., acetylaminomethyl, acetylaminoethyl and the like),

(l) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a C\textsubscript{1-6} alkoxycarbonylamino group (e.g., ethoxycarbonylaminomethyl, tert-butoxycarbonylaminoethyl group and the like),

(m) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a C\textsubscript{1-6} alkyl-carbonyloxy group (e.g., acetyloxymethyl group and the like),

(n) a C\textsubscript{1-6} alkyl group or a C\textsubscript{3-8} cycloalkyl group, each substituted by a C\textsubscript{1-6} alkyl-ureido group,

(o) a C\textsubscript{1-6} alkyl group or C\textsubscript{3-8} cycloalkyl group, each substituted by a ureido group,

(p) a C\textsubscript{1-6} alkyl group or C\textsubscript{3-8} cycloalkyl group, each substituted by a C\textsubscript{1-6} alkyl-ureido group,

(q) a C\textsubscript{1-6} alkyl group or C\textsubscript{3-8} cycloalkyl group, each substituted by a C\textsubscript{1-6} alkyl-carbonylamino group such as methyl, ethyl, trifluoromethyl and the like and a C\textsubscript{1-6} alkyl-ureido group),

(vi) an optionally substituted aryl group (e.g., a C\textsubscript{6-14} aryl group optionally substituted by substituent(s) selected from a halogen atom, an amino group optionally having C\textsubscript{1-6} alkoxy-carbonyl, a C\textsubscript{1-6} alkoxy group, a carbonyl group, an optionally halogenated C\textsubscript{1-6} alkyl group such as methyl, ethyl, trifluoromethyl and the like and a C\textsubscript{1-6} alkyl-ureido group),

(vii) a C\textsubscript{7-16} aralkyl group optionally substituted by C\textsubscript{1-6} alkyl,

(viii) an optionally substituted alkoxycarbonyl group (e.g., a C\textsubscript{1-6} alkyl group optionally substituted by substituent(s) selected
from a halogen atom, C_{1-6} alkoxy, C_{1-6} alkoxy-carbonyl, carboxyl, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which is optionally substituted by C_{1-6} alkyl, a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and a carbamoyl group optionally having C_{1-6} alkyl and the like),

(ix) an arylxoy group (e.g., a C_{6-14} arylxoy group optionally substituted by substituent(s) selected from a halogen atom and C_{1-6} alkoxy and the like), an aralkyloxy group (e.g., a C_{7-16} aralkyloxy group optionally substituted by substituent(s) selected from a halogen atom, C_{1-6} alkoxy, C_{1-6} alkylatediaryloxy and C_{6-14} ary1 and the like), a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, a formyloxyl group, an aminocarbonyloxyl group, a mono- or di-alkylamino-carbonyloxyl group (e.g., a mono- or di-C_{1-6} a1kylamino-carbonyloxy group such as methylaminocarbonyloxy, ethylaminocarbonyloxy, dimethylaminocarbonyloxy, a diethy1aminocarbonyloxy group and the like, and the like), an alkylcarbonyloxyl group (e.g., a C_{1-6} alkyl-carbonyloxyl group such as acetoxy, propionyloxyl, butyroxy1 and the like, and the like), which is optionally substituted,

(x) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which is optionally substituted by C_{6-14} arylxoy optionally substituted by a halogen atom (e.g., furyl, thiophenyl, pyrrol, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, furazanyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetr1zolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl and the like), (e.g., pyrrolidinyl, tetrahydrofuryl, tetrahydrothienyl, piperid1nyl, tetrahydropyranyl, morpholinyl, thiomorpholinyl, piperazinyl and the like),

(xi) an optionally substituted thiol group (e.g., an optionally halogenated alkylthio group (e.g., a C_{1-6} alklythio group optionally substituted by a halogen atom such as fluorine, chlorine and the like, such as methylthio, difluoromethylthio, trifluoromethylthio, ethylthio, prop1lythio, isopropylthio, butylthio and the like (particularly a C_{1-4} alklythio group) and the like)), (e.g., pyrrolidinyl, tetrahydrofuryl, tetrahydrothienyl, piperid1nyl, tetrahydropyranyl, morpholinyl, thiomorpholinyl, piperazinyl and the like),

(xii) an optionally substituted aldehyde group (e.g., an optionally halogenated aldehyde group (e.g., a C_{1-6} aldehyde group optionally substituted by a halogen atom such as fluorine, chlorine and the like, such as methylcarbony1, difluoromethylcarbony1, trifluoromethylcarbony1, ethylcarbony1, prop1lycarbony1, butylcarbony1, diethylcarbony1, a dibuty1carbonyl group and the like),

(xiii) an optionally substituted thiol group (e.g., an optionally halogenated alkylthio group (e.g., a C_{1-6} alklythio group optionally substituted by a halogen atom such as fluorine, chlorine and the like, such as methylthio, difluoromethylthio, trifluoromethylthio, ethylthio, prop1lythio, isopropylthio, butylthio and the like (particularly a C_{1-4} alklythio group) and the like)), (e.g., pyrrolidinyl, tetrahydrofuryl, tetrahydrothienyl, piperid1nyl, tetrahydropyranyl, morpholinyl, thiomorpholinyl, piperazinyl and the like),

(xiv) an optionally substituted carbonyl group (e.g., an alkoxy-carbonyl group (e.g., a C_{1-6} alkoxy-carbonyl group such as methoxycarbonyl, ethoxycarbonyl, propoxy carbonyl, but oxy carbonyl, an isobutoxy carbonyl group and the like), an aralkyloxy carbonyl group (e.g., a C_{7-16} aralkyloxy carbonyl group such as benzoxycarbonyl and the like), an arylxoy carbonyl group (e.g., a C_{6-14} arylxoy carbonyl group such as a phenoxycarbonyl and the like), an aralkyloxy carbonyl group (e.g., a C_{1-6} aralkyloxy carbonyl group, an arylxoy carbonyl group, a C_{1-6} alklyxoy carbonylamino group, an aralkyloxyl group, a C_{1-6} aralkyloxyl group, a C_{6-14} arylx group, a C_{7-16} aralkyloxyl group optionally substituted by a halogen atom and the like),

(xv) an optionally substituted carbamoyl group (e.g., a thiocarbamoyl group, a mono- or di-alkylcarbamoyl group (e.g., a C_{3-8} cycloalkylcarbonyl group such as cyclopentylcarbonyl, a cyclohexylcarbonyl group and the like), an ary1carbonyl group (e.g., a C_{6-14} ary1carbonyl group such as a benzy1carbonyl group and the like),

(xvi) an optionally substituted sulfonl group (e.g., an alky sulfonl group (e.g., a C_{1-6} alkly sulfonl group such as methylsulfonl, a ethylsulfonl group, a propylsulfonl group and the like), a cycloalkylsulfonl group (e.g., a C_{3-6} cycloalkylsulfonl group such as cyclopropylsulfonl, a cyclohexylsulfonl group and the like), an ary1sulfonl group (e.g., a C_{6-14} ary1sulfonl group such as a phenylsulfonl, a naphthylsulfonl group and the like),

(xvii) a C_{1-6} alklyureido group (e.g., methy lureido),

(xviii) a nitro group and the like are preferable, moreover,
(i) a halogen atom,
(ii) a cyano group,
(iii) an optionally substituted amino group (e.g., an amino group optionally substituted by substituent(s) selected from C₁₋₆ alkyl optionally having C₁₋₆ alkoxy, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkylsulfonyl, C₁₋₆ alkoxy-carbonyl, C₁₋₆ alkoxy-carbonyl-carbonyl, C₁₋₆ alkyl-carbonyl and a 5- to 8-membered non-aromatic heterocycle having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonyl; mono- or di-C₁₋₆ alkylamino group),
(iv) an optionally substituted alkyl group (e.g., a C₁₋₆ alkyl group optionally substituted by substituent(s) selected from a halogen atom, amino, C₁₋₆ alkyl-carbonylaminoc, C₁₋₆ alkylsulfonylaminoc, a 5- to 8-membered non-aromatic heterocycle having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonylaminoc, C₁₋₆ alkyl-carbonyl-carbonylaminoc, a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom and C₁₋₆ alkyl-ureido),
(v) an optionally substituted aryl group (e.g., a C₆₋₁₄ aryl group optionally substituted by substituent(s) selected from a halogen atom, amino optionally having C₁₋₆ alkoxy-carbonyl, C₁₋₆ alkoxy, carboxyl and C₁₋₆ alkyl-ureido),
(vi) a C₇₋₁₆ aralkyl group optionally substituted by C₁₋₆ alkoxy,
(vii) an optionally substituted alkoxy group (e.g., a C₁₋₆ alkoxy group optionally substituted by substituent(s) selected from a halogen atom, C₁₋₆ alkoxy, C₁₋₆ alkoxy-carbonyl, carboxyl, a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which is optionally substituted by C₁₋₆ alkyl-ureido),
(viii) an optionally substituted aryloxy group (e.g., a C₆₋₁₄ aryloxy group optionally substituted by substituent(s) selected from a halogen atom and C₁₋₆ alkoxy and the like),
(ix) an optionally substituted aralkyloxy group (e.g., a C₇₋₁₆ aralkyloxy group optionally substituted by substituent(s) selected from a halogen atom, C₁₋₆ alkoxy, C₁₋₆ alkylenedioxy and C₆₋₁₄ ary and the like),
(x) a 5- to 8-membered non-aromatic heterocyclic-oxo group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom,
(xi) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which is optionally substituted by C₆₋₁₄ aryloxy optionally substituted by a halogen atom,
(xii) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom,
(xiii) a C₁₋₆ alkoxy-carbonyl group,
(xiv) an optionally halogenated alkylthio group,
(xv) a nitro group

and the like are preferable.

As the substituent that ring C (ring C') may have, for example, a halogen atom, an optionally substituted alkyl group (e.g., a C₁₋₆ alkyl group optionally substituted by substituent(s) selected from a halogen atom, amino, C₁₋₆ alkyl-carbonylaminoc, C₁₋₆ alkylsulfonylaminoc, a 5- to 8-membered non-aromatic heterocycle having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonylaminoc, C₁₋₆ alkyl-carbonyl-carbonylaminoc, a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom and C₁₋₆ alkyl-ureido), an optionally halogenated C₁₋₆ alkyl group, a mono- or di-C₁₋₆ alkyaminoc group, an optionally halogenated C₁₋₆ alklythio group, a nitro group, a cyano group and the like are preferable.

As the substituent that ring C (ring C') may have, for example, a halogen atom, an optionally substituted alkyl group (e.g., a C₁₋₆ alkyl group optionally substituted by substituent(s) selected from a halogen atom, amino, C₁₋₆ alkyl-carbonylaminoc, C₁₋₆ alkylsulfonylaminoc, a 5- to 8-membered non-aromatic heterocycle having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonylaminoc, C₁₋₆ alkyl-carbonyl-carbonylaminoc, a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom and C₁₋₆ alkyl-ureido), an optionally halogenated C₁₋₆ alkyl group, a mono- or di-C₁₋₆ alkyaminoc group, an optionally halogenated C₁₋₆ alklythio group, a nitro group, a cyano group and the like are preferable.

Of these, particularly, 1 to 3 substituents selected from a halogen atom, an optionally halogenated C₁₋₆ alkyl group and an optionally halogenated C₁₋₆ alkoxy group, and the like are more preferable.

The substituent of ring C or ring C' may be present at any substitutable position on the ring, and when two or more substituents are present, the substituents may be the same or different and, the number thereof may be about 0-4. The number of the substituents is preferably about 0-3.

When ring C or ring C' has a nitrogen atom, it may form a quaternary ammonium salt and, for example, a salt may be formed with an anion such as a halogen ion (e.g., Cl⁻, Br⁻, I⁻ and the like), a sulfuric acid ion, a hydroxy ion and the like.

As a compound represented by the formula [I] or [I'], a compound wherein preferable embodiments of each symbol mentioned above are optionally combined is preferably used. Of these, (1-1) a compound represented by the formula
wherein R^4, R^5, R^6 and R^7 are each

(i) a hydrogen atom,

(ii) a halogen atom,

(iii) a cyano group,

(iv) a hydroxy group,

(v) an amino group optionally substituted by substituent(s) selected from (a) a C$_{7-16}$ aralkyl group optionally substituted by a C$_{1-6}$ alkoxy group, (b) a C$_{1-6}$ alkyl-carbonyl group optionally substituted by a C$_{6-14}$ aryl group and (c) a C$_{1-6}$ alkoxy-carbonyl group,

(vi) a C$_{1-6}$ alkyl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a C$_{1-6}$ alkoxy group, (c) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 4 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom and (d) a C$_{7-16}$ aroylloxy group optionally substituted by a carboxyl group,

(vii) a C$_{6-14}$ aryl group,

(viii) a C$_{1-6}$ alkyl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a hydroxy group, (c) C$_{3-7}$ cycloalkyl group, (d) a C$_{7-16}$ aralkyl group, (e) a 5- to 8-membered aromatic heterocyclic group having, besides carbon atom, 1 to 4 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom, (f) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which optionally have a carboxy group, and (g) C$_{6-14}$ aryl group,

(ix) a C$_{7-16}$ aryl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a cyano group, (c) a carboxyl group, (d) a C$_{1-6}$ alkyl group optionally having a carboxyl group, (e) a C$_{1-6}$ alkyl group optionally having a carboxyl group, (f) an amino group, (g) a C$_{1-6}$ alkyl group optionally having a carboxyl group, (h) a carbamoyl group, (i) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, (j) an amino-sulfonamido group optionally having a C$_{1-6}$ alkyl group and (k) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom,

(x) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom,

(xi) a thiol group,

(xii) a C$_{1-6}$ alkythio group,

(xiii) a C$_{7-16}$ aralkythio group

(xiv) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom-thio group,

(xv) a C$_{1-6}$ alkylsulfonyl group,

(xvi) a carbamoyl group,

(xvii) a mono- or di-C$_{1-6}$ alkylamino-thiocarbonyloxy group, (xviii) a mono- or di-C$_{1-6}$ alklylcarbamoyl-thio group, (xix) a nitro group or (xx) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom,

ring C' is a C$_{6-14}$ aryl ring or a 5- to 8-membered heterocyclic group containing 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which is optionally substituted by substituent(s) selected from

(i) a halogen atom,

(ii) a cyano group,

(iii) an amino group optionally substituted by substituent(s) selected from (a) C$_{1-6}$ alkyl group optionally having C$_{1-6}$ alkoxy, (b) C$_{1-6}$ alkyl-carbonyl, (c) C$_{1-6}$ alkoxy-carbonyl, (d) C$_{1-6}$ alkoxy-carbonyl-carbonyl, (e) C$_{1-6}$ alkoxy-carbonyl-carbonyl and (f) C$_{1-6}$ alkoxy-carbonyl-C$_{1-6}$ alkyl-carbonyl and (g) a 5- to 8-membered non-aromatic heterocyclic having, besides carbon
atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonyl,
(iv) a C1-6 alkyl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) C1-6 alkyl-
 carbonylamino, (c) C1-6 alky sulfonylamino, (d) a 5- to 8-membered non-aromatic heterocycle having, besides carbon
 atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonylamino, (e) C1-6 alkoxy-carbonyl-
 carbonylamino group, (f) a 5- to 8-membered aromatic heterocycle having, besides carbon atom, 1 to 3 hetero atoms
 selected from nitrogen atom and oxygen atom-carbonylamino and (g) a 5- to 8-membered non-aromatic heterocyclic
 group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom,
(v) a C6-14 aryl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) amino optionally
 having C1-6 alkoxy-carbonyl, (c) C1-6 alkoxy and (d) carboxyl,
(vi) a C7-16 aralkyl group optionally substituted by C1-6 alkoxy,
(vii) a C1-6 alkoxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) C1-6 alkoxy,
 (c) C1-6 alkoxy-carbonyl, (d) carboxyl, (e) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon
 atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which
 is optionally substituted by C1-6 alkyl, (f) a 5- to 8-membered non-aromatic heterocyclic group containing, besides
 carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom and (g) carbamoyl optionally having
 C1-6 alkyl,
(viii) a C6-14 aryloxy group optionally substituted by substituent(s) selected from (a) a halogen atom and (b) C1-6
 alkoxy ,
(ix) a C6-14 aryloxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) amino
 optionally having C1-6 alkoxy-carbonyl, (c) C1-6 alkoxy and (d) carboxyl,
(x) a C7-16 aralkyloxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) C1-6 alkoxy,
 (c) C1-3alkylenedioxy and (d) C6-14 aryl,
(xi) a 5- to 8-membered non-aromatic heterocyclic-oxy group containing, besides carbon atom, 1 to 3 hetero atoms
 selected from nitrogen atom and oxygen atom,
(xii) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected
 from the group consisting of nitrogen atom, oxygen atom and sulfur atom optionally substituted by C6-14 aryloxy
 optionally having a halogen atom,
(xiii) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms
 selected from nitrogen atom and oxygen atom,
(xiv) a C1-6 alkoxy-carbonyl group and
(xv) a C1-6 alkylureido group provided that when R3, R4, R5 and R6 are hydrogen atoms, ring C' is an aromatic ring
 or a heterocycle containing 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which has the
 aforementioned substituent(s), or
(1-2) a compound represented by the formula

[0071]
wherein \(R^8, R^9, R^{10}\) and \(R^{11}\) are each

(i) a hydrogen atom,

(ii) a \(C_{1-6}\) alkyl group optionally substituted by \(C_{7-16}\) aralkyloxy optionally having carboxyl, \(C_{6-14}\) aryl-aminocarbonyl optionally having a carboxyl group or \(C_{6-14}\) aryl-carbonylamino optionally having carboxyl,

(iii) a \(C_{6-14}\) aryl group optionally having carboxyl,

(iv) a carbamoyl group optionally substituted by \(C_{7-16}\) aralkyloxy optionally having carboxyl or

(v) an amino group optionally substituted by \(C_{7-16}\) aralkylcarbonyl, and

\(C^*\) ring is

(i) a \(C_{6-14}\) aryl ring optionally substituted by substituent(s) selected from (a) a halogen atom, (b) \(C_{1-6}\) alkoxy optionally having a 5- to 8-membered non-aromatic heterocycle containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom or a halogen atom, (c) \(C_{1-6}\) alkyl optionally having a halogen atom or \(C_{1-6}\) alkythio, or

(ii) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which is optionally substituted by a \(C_{1-6}\) alkyl group optionally having a 5- to 8-membered non-aromatic heterocycle containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, and furthermore,

(2) compounds of Examples 1-415 and the like are preferably used.

(6) Tautomerism

[0072] Moreover, the compound represented by the formula [I] and a salt thereof produce tautomers, but any tautomer is encompassed in the present invention, and a compound represented by the formula [I] and a salt thereof may be any of solvates, hydrates, non-solvates and non-hydrates.

[0073] (7) From the compounds having various structures produced by the above-mentioned combinations, \(N\{[(1S, 2R)-1\{(3,5-difluorobenzyl)-3\}-(3-ethylbenzyl)amino\}-2-hydroxypropyl]-5,6-dimethyl-4-oxo-1,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide and 6-chloro-\(N\{(1S,2R,4S)-4\}-(dimethylamino)carbonyl\}-2-\{[5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl]carbonyl\}[amino]cyclohexyl\}-4-oxo-1,4-dihydrouquinazoline-2-carboxamide are excluded.

[0074] The present invention moreover provides production methods of a compound represented by the formula [I] or a salt thereof.

[0075] A compound represented by the formula [I] or a salt thereof and a starting compound thereof can be produced by a method known per se, for example, a method shown in the following scheme and the like. In the following, "room temperature" generally means 0 to 30°C and each symbol in the chemical structural formulas described in the scheme means as defined above unless otherwise specified. The compounds in the formulas include embodiments forming a salt, and as such salt, for example, those similar to the salt of compound [I] and the like can be mentioned.

[0076] The compounds obtained in respective steps can be used in the form of a reaction mixture or as a crude product for the next reaction. They can also be isolated from the reaction mixture by conventional methods, and can be easily purified by separation means such as recrystallization, distillation, chromatography and the like.

[0077] The reaction scheme is shown in the following. When a compound in the formula is commercially available, the commercially available product may be used as it is.

[Scheme 1]

wherein \(L\) is a leaving group, and other symbols are as defined above.
Compound [II] is amidated with compound [III] to give compound [I].

Here, as the leaving group represented by L in the compound represented by the formula [II], for example, an alkoxyl group (C1-6 alkoxyl group such as methoxy, ethoxy and the like), an optionally substituted aralkoxyl group (a C7-16 aralkoxyl group optionally substituted by a nitro group, such as benzyl group, p-nitrobenzyl group and the like), a hydroxyl group, a halogen atom (e.g., chlorine, bromine, iodine and the like), a substituted sulfonyloxy group (e.g., a C1-6 alkyl sulfonyloxy group or a C6,14 aryl sulfonyloxy group optionally substituted by C1-6 alkyl, such as methanesulfonyloxy, p-toluenesulfonyloxy and the like), an acyloxy group (a C1-6 alkanoyloxy group or a C6,14 arylcarbonyloxy group such as acetoxy, benzoyloxy and the like), an oxo group substituted by a hetero ring or an aryl group (succinimide, benzotriazole, quinoline, 4-nitrophenyl and the like), and the like can be mentioned. In this reaction, a compound represented by the formula [III] or a salt thereof is used in an amount of 1 - 10 mol, preferably 1 - 5 mol, per 1 mol of a compound represented by the formula [II] or a salt thereof.

In this reaction, as a reaction solvent, for example, alcohols such as methanol, ethanol and the like, ethers such as dioxane, tetrahydrofuran and the like, aromatic hydrocarbons such as benzene, toluene, xylene and the like, esters such as ethyl acetate and the like, halogenated hydrocarbons such as chloroform, dichloromethane and the like, nitriles such as acetonitrile and the like, amides such as N,N-dimethylformamide, N,N-dimethylacetamide and the like, sulfoxides such as dimethyl sulfoxide and the like, and the like are used alone or as a mixed solvent of two or more kinds thereof.

In this reaction, moreover, the reaction can be advantageously carried out by adding a base. As such base, for example, an inorganic base (alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and the like, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, potassium hydrogen carbonate and the like, alkali metal carbonates such as sodium carbonate, potassium carbonate, cesium carbonate and the like, alkali metal hydrides such as sodium hydride, potassium hydride and the like, alkali metal amides such as sodium amide and the like, alkoxides such as sodium methoxide, sodium ethoxide and the like), an organic base (primary amines such as trimethylamine, triethylamine, diisopropylethylamine and the like, aromatic amines such as pyridine and the like, and the like) and the like can be used. While the amount of the base to be used varies depending on the kind of the compound, solvent to be used, and other reaction conditions, it is generally 0.1 - 10 mol, preferably 0.2 - 5 mol, per 1 mol of a compound represented by the formula [II] or a salt thereof. A compound represented by the formula [II] or a salt thereof can be easily produced by a method known in the art or a method analogous thereto. For example, ethyl 4-oxo-3,4-dihydroquinazoline-2-carboxylate is a known compound described in J. Org. Chem. Vol. 27, pp. 4672-4674 (1962).

When ring A is a pyrimidine ring, the compound can be obtained according to the method described in the following scheme.

![Scheme 2]

wherein Q1 and Q2 are each an alkoxyl group, a hydroxyl group or an amino group, Q3 is an oxygen atom or a nitrogen atom, and other symbols are as defined above.

As the alkoxyl group represented by Q1 or Q2, a C1-6 alkoxyl group such as methoxy, ethoxy and the like and the like is used.

When Q1 is NH2, the objective compound can be produced from compound [IV] and compound [V] according to the following scheme.

(Scheme 2)
to a method known per se. Here, a compound represented by the formula [V] or a salt thereof can be used in an amount of 1 - 10 mol, preferably 1 - 5 mol, per 1 mol of a compound represented by the formula [IV] or a salt thereof, and as the solvent, those similar to the ones exemplified for the above-mentioned Step 1 can be used.

[Scheme 3]

wherein each symbol is as defined above.

(Step 3)

[0086] A compound wherein Q₁ is alkoxy can be produced from compound [IV] and compound [Va] according to a method known per se. Here, a compound represented by the formula [Va] or a salt thereof can be used in an amount of 1 - 10 mol, preferably 1 - 5 mol, per 1 mol of a compound represented by the formula [IV] or a salt thereof. As the solvent, those similar to the ones exemplified for the above-mentioned Step 1 can be used.

[0087] In this reaction, moreover, the reaction can be advantageously carried out by adding an acid. As such acid, for example, inorganic acids (hydrochloric acid, bromic acid, sulfuric acid and the like), organic acids (aliphatic carboxylic acids such as acetic acid, trifluoroacetic acid and the like, and the like) and the like can be mentioned. While the amount of the acid to be used varies depending on the kind of the compound and solvent to be used, and other reaction conditions, it is generally 0.1 - 50 mol, preferably 0.5 - 10 mol, per 1 mol of a compound represented by the formula [IV] or a salt thereof. The reaction is generally carried out in the temperature range of from -50°C to 200°C, preferably -20°C to 150°C and, while the reaction time varies depending on the kind of the compound, reaction temperature and the like, it is about 1 - 96 hrs., preferably 1 - 48 hrs.

[Scheme 4]

wherein each symbol is as defined above.

(Step 4 and Step 5)

[0088] The objective compound can be produced by acylating the amino group of compound [IV], and cyclizing the obtained compound [VI] in the presence of an acid or base. As the solvent for the acylation reaction from compound [IV] to compound [VI], those similar to the ones exemplified for the above-mentioned steps can be used.

[0089] In this reaction, moreover, the reaction can be advantageously carried out by adding a base. As such base, those similar to the ones exemplified for the above-mentioned Step 1 can be used. While the amount of the base to be used varies depending on the kind of the compound and solvent to be used, and other reaction conditions, it is generally 0.1 - 10 mol, preferably 0.2 - 5 mol, per 1 mol of a compound represented by the formula [IV] or a salt thereof. The reaction is generally carried out in the temperature range of from -50°C to 200°C, preferably -20°C to 150°C and, while the reaction time varies depending on the kind of the compound, reaction temperature and the like, it is about 1 - 96 hrs., preferably 1 - 48 hrs.
reaction is generally carried out in the temperature range of from -50°C to 200°C, preferably -20°C to 150°C and, while the reaction time varies depending on the kind of the compound, reaction temperature and the like, it is about 1 - 96 hrs., preferably 1 - 48 hrs.

[0090] As the solvent for the cyclization reaction from compound [VI] to compound [IIa], those similar to the ones exemplified for the above-mentioned Step 1 can be used.

[0091] In this reaction, moreover, the reaction can be advantageously carried out by adding an acid. As such acid, those similar to the ones exemplified for the above-mentioned Step 3 can be used. While the amount of the acid to be used varies depending on the kind of the compound and solvent to be used, and other reaction conditions, it is generally 0.1 - 50 mol, preferably 0.5 - 10 mol, per 1 mol of a compound represented by the formula [VI] or a salt thereof. The reaction is generally carried out in the temperature range of from -50°C to 200°C, preferably -20°C to 150°C. While the reaction time varies depending on the kind of the compound, reaction temperature and the like, it is about 1 - 96 hrs., preferably 1 - 48 hrs.

[Scheme 5]

wherein each symbol is as defined above.

(Step 6 and Step 7)

[0092] When L₁ is OH, compound [IV] is cyclized to give oxazine ring compound [VII], and compound [VII] is treated with ammonia or ammonium salt to give compound [IIa]. As the solvent for the oxazine cyclization reaction from compound [IV] to compound [VII], those similar to the ones exemplified for the above-mentioned Step 1 can be used.

[0093] In this reaction, moreover, the reaction can be advantageously carried out by adding a base. As such base, those similar to the ones exemplified for the above-mentioned Step 1 can be used. While the amount of the base to be used varies depending on the kind of the compound and solvent to be used, and other reaction conditions, it is generally 0.1 - 10 mol, preferably 0.2 - 5 mol, per 1 mol of a compound represented by the formula [IV] or a salt thereof. The reaction can be generally carried out in the temperature range of from -50°C to 200°C, preferably -20°C to 150°C. While the reaction time varies depending on the kind of the compound, reaction temperature and the like, it is about 1 - 96 hrs., preferably 1 - 48 hrs.

[0094] As the solvent for the reaction to give condensed pyrimidine compound [IIa] from compound [VII], those similar to the ones exemplified for the above-mentioned Step 1 can be used.

[0095] In this reaction, moreover, the reaction can be advantageously carried out by adding a base. As such base, those similar to the ones exemplified for the above-mentioned Step 1 can be used.

[0096] In the production of compound [I], when ring B has a leaving group L², the compound can be also produced by nucleophilic substitution reaction.
wherein L^2 is a leaving group, R is a substituent that ring B optionally has, and other symbols are as defined above.

(Step 8)

[0097] As the leaving group L^2, a halogen atom (fluorine, chlorine, bromine or iodine and the like), an alkoxy group (C$_{1-6}$ alkoxy group such as methoxy, ethoxy and the like), an acyl group (C$_{1-6}$ alkanoyl group or C$_{6-14}$ arylcarbonyl group such as acetyl, benzoyl and the like) and the like can be mentioned. As the nucleophilic agent, amine, alkoxide and carbon nucleophilic agent can be mentioned.

[0098] In this reaction, a compound represented by the formula [VIII] or a salt thereof can be used in an amount of 1 - 10 mol, preferably 1 - 5 mol, per 1 mol of a compound represented by the formula [Ib] or a salt thereof. As a reaction solvent, those similar to the ones exemplified for the above-mentioned steps can be used.

[0099] In this reaction, moreover, the reaction can be advantageously carried out by adding a base. As such base, those similar to the ones exemplified for the above-mentioned Step 1 can be used. While the amount of the base to be used varies depending on the kind of the compound and solvent to be used, and other reaction conditions, it is generally 0.1 - 10 mol, preferably 0.2 - 5 mol, per 1 mol of a compound represented by the formula [VIII] or a salt thereof. The reaction is generally carried out in the temperature range of from -50°C to 200°C, preferably -20°C to 150°C. While the reaction time varies depending on the kind of the compound, reaction temperature and the like, it is about 1 - 96 hrs., preferably 1 - 48 hrs.

[0100] The reaction is generally carried out in the temperature range of from -50°C to 200°C, preferably -20°C to 150°C. While the reaction time varies depending on the kind of the compound, reaction temperature and the like, it is about 1 - 96 hrs., preferably 1 - 48 hrs.

[0101] In each of the reactions mentioned above, when the starting compounds have an amino group, a carboxyl group or a hydroxy group as a substituent, such groups may be protected with the protecting groups which are generally used in peptide chemistry and the like. In such case, if necessary, such protecting groups can be removed to obtain the objective compounds after the reactions. Such protecting groups can be introduced or removed by methods known per se, such as the method described in Protective Groups in Organic Synthesis, 3rd Ed. (1999), edited by Theodora W. Greene, Peter G. M. Wuts, published by Wiley-Interscience, or an analogous method thereto.

[0102] The above-mentioned reactions may be further combined with one or more of known hydrolysis reaction, deprotection reaction, acylation reaction, alkylation reaction, oxidization reaction, cyclization reaction, carbon chain elongation reaction and substituent exchange reaction on demand, whereby compound [I] can be also produced.

[0103] The compound [I] can be isolated and purified by a known means, such as phase transfer, concentration, solvent extraction, fractionation, liquid conversion, crystallization, recrystallization, chromatography and the like.

[0104] When compound [I] is obtained as a free compound, it can be converted to an objective salt by a method known per se or a method analogous thereto, and when it is conversely obtained as a salt, it can be converted to a free form or different objective salt by a method known per se or a method analogous thereto.

[0105] As the salt of compound [I], for example, metal salt, ammonium salt, salts with organic base, salts with inorganic acid, salts with organic acid, salts with basic or acidic amino acid and the like can be mentioned. As preferable examples of metal salt, for example, alkali metal salts such as sodium salt, potassium salt and the like, alkaline earth metal salts such as calcium salt, magnesium salt, barium salt and the like; aluminum salt and the like can be mentioned. As preferable examples of salts with organic base, for example, salts with trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N,N'-dibenzylethlenediamine and the like can be mentioned. As preferable examples of salts with inorganic acid, for example, salts with hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid and the like can be mentioned. As preferable examples of salts with basic amino acid, for example, salts with arginine, lysin, ornithine and the like can be mentioned. As preferable examples of salts with acidic amino acid, for example, salts with aspartic acid, glutamic acid and the like can be mentioned.
Of these, pharmaceutically acceptable salts are preferable. When, for example, the compound has an acidic functional group therein, inorganic salts such as alkaline metal salts (e.g., sodium salt, potassium salt, etc.), alkaline earth metal salts (e.g., calcium salt, magnesium salt, barium salt, etc.) and the like, ammonium salt and the like, and when the compound has a basic functional group therein, for example, salts with inorganic acid such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid and the like, and salts with organic acid such as acetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, methanesulfonic acid, p-toluenesulfonic acid and the like can be mentioned.

The compound [I] or a salt thereof of present invention (hereinafter to be abbreviated as compound [I]) has a superior MMP inhibitory activity, particularly an MMP-13 inhibitory activity.

Moreover, the compound [I] of the present invention shows low toxicity and is safe.

Accordingly, the compound [I] of the present invention having superior MMP inhibitory action, particularly MMP-13 inhibitory action, is useful as a safe drug for the prophylaxis or treatment of all MMP associated diseases, such as joint disease (e.g., osteoarthritis, rheumatoid arthritis (articular rheumatism) and the like), osteoporosis, cancer (e.g., tumor and the like such as primary, metastatic or recurrent tumors such as breast cancer, prostate cancer, pancreatic cancer, stomach cancer, lung cancer, colorectal cancer (colon cancer, rectal cancer, anal cancer), cancer of esophagus, duodenal cancer, head and neck cancer (lingual cancer, pharyngeal cancer, laryngeal cancer), cerebral tumor, schizophrenia, non-small-cell lung cancer, lung small cell carcinoma, liver cancer, kidney cancer, biliary tract cancer, uterine cancer (endometrial cancer, cervical cancer), ovarian cancer, bladder cancer, skin cancer, angiomia, malignant lymphoma, malignant melanoma, thyroid cancer, osteosarcoma, angiofibroma, retina sarcoma, penile cancer, pediatric solid tumor, Kaposis's sarcoma, Kaposis's sarcoma caused by AIDS, tumor of the maxillary sinus, fibrous histiocytoma, leiomysarcoma, rhabdomyosarcoma, liposarcoma, hysteroymhoma, osteoblastoma, osteosarcoma, chondrosarcoma, cancerous mesothelioma, leukemia and the like, and the like), periodontal disease, cornea ulcer, chronic ulcer, pathologic bone resorption (Paget's disease and the like), nephritis, angiogenesis, aneurysm, arteriosclerosis, emphysema, chronic obstructive pulmonary disease (COPD), liver cirrhosis, autoimmune disease (Crohn's disease, Sjogren's disease and the like), infiltration or metastasis of cancer and the like, in mammals (e.g., mice, rats, hamsters, rabbits, cats, dogs, bovines, sheep, monkeys, humans, etc.), or as a contraceptive, particularly as a drug for the prophylaxis or treatment of osteoarthritis or rheumatoid arthritis.

The pharmaceutical preparations comprising compound [I] of the present invention may be in any solid preparations of powders, granules, tablets, capsules and the like, and in any liquid forms of syrups, emulsions, injections and the like.

The pharmaceutical preparations of the present invention may be produced by any conventional methods, for example, blending, kneading, granulation, tabletting, coating, sterilization, emulsification, etc., in accordance with the forms of the preparations to be produced. For the production of such pharmaceutical preparations, for example, each of the items in General Principles for pharmaceutical preparations in the Japanese Pharmacopoeia, can be made reference to. In addition, the pharmaceutical preparations of the present invention may be formulated into a sustained release preparation containing active ingredients and biodegradable polymer compounds. The sustained release preparation can be produced according to the method described in JP-A-9-263545.

In the pharmaceutical preparations of the present invention, the content of compound [I] varies depending on the form of the preparation, but is generally in about 0.01 to 100% by weight, preferably about 0.1 to 50% by weight, more preferably 0.5 to 20% by weight, of the total weight of the preparation.

When compound [I] of the present invention is used as the above-mentioned pharmaceutical preparations, it may be used alone, or in admixture with a suitable, pharmaceutically acceptable carrier, such as excipients (e.g., starch, lactose, sucrose, calcium carbonate, calcium phosphate, etc.), binders (e.g., starch, gum arabic, carboxymethyl cellulose, hydroxypropyl cellulose, crystalline cellulose, alginic acid, gelatin, polyvinyl pyrrolidone, etc.), lubricants (e.g., stearic acid, magnesium stearate, calcium stearate, talc, etc.), disintegrants (e.g., calcium carboxymethylcellulose, talc, etc.), diluents (e.g., water for injection, physiological saline, etc.) and, if desired, with the additives (e.g., stabilizer, preservative, colorant, fragrance, dissolution aid, emulsifier, buffer, isotonic agent, etc.) and the like by conventional methods. The compound can be formulated into solid preparations such as powder, fine granule, granule, tablet, capsule, etc., or into the liquid preparations such as injection, etc., and can be administered orally or parenterally. Further, compound [I] can be administered in the form of a formulation for local administration or directly on the diseased part having an articular disease. In the latter case, injection is preferred. The compound [I] can be also administrated as a parenteral formulation for local administration (e.g., a formulation for injection for intramuscular, subcutaneous, intraorgan and on-site (in the vicinity of a joint) routes, a solid form such as implant, granule, powder, a liquid form such as suspension, an ointment, etc.) .

For example, a practical formulation for injection can be obtained by mixing compound [I] with a dispersant (e.g., surfactant such as Tween 80, HCO-60, etc., carboxymethyl cellulose, sodium alginate, polysaccharide such as hyaluronic acid, polysorbate, etc.), a preservative (e.g., methylparaben, propylparaben, etc.), an isotonic agent (e.g., sodium chloride, mannitol, sorbitol, glucose, etc.), a buffer (e.g., calcium carbonate, etc.), a pH adjusting agent (e.g.,
sodium phosphate, potassium phosphate, etc.) and the like, into an aqueous suspension. Further, thus obtained formulation is made into a practically usable formulation for injection by dispersing it with an oil of plant origin such as sesame oil or corn oil, or with a mixture thereof with phospholipids such as lecithin, or with medium chain triglyceride (e.g., Miglyol 812, etc.) as in a suspension in oil.

[0114] In particular, when such formulation is administered directly into the joint cavity of a patient suffering from an articular disease for local administration, the formulation can be produced by dispersing compound [I] in a hyaluronic acid preparation for injection (for example, product by Kaken Pharmaceutical Co., Ltd.; Arts) as dispersing medium. The hyaluronic acid used in the dispersing medium may be a non-toxic salt thereof, and examples include an alkali metal salt such as sodium, potassium and the like, or an alkali earth metal salt such as magnesium, calcium and the like, a sodium salt being particularly preferred. The molecular weight of hyaluronic acid or a non-toxic salt thereof is about 200,000 to about 5,000,000 (measured by the viscosity method), preferably about 500,000 to about 3,000,000, and more preferably about 700,000 to 2,500,000.

[0115] The final concentration of hyaluronic acid or sodium hyaluronate in this dispersion is suitably less than 1% (W/V) for viscosity from the aspects of easiness of various handling and administration and the like, preferably from about 0.02 to less than 1%, and even more preferably from about 0.1 to 1% (W/V).

[0116] The dispersing medium may contain a pH adjusting agent, local anesthetic, antibiotics, a solubilizing agent, an adsorption agent, an anti-adsorption agent, glycosaminoglycans, polysaccharides, and the like by a method known per se. Preferred examples include mannitol, sorbitol, table salt, glycine, ammonium acetate, or an aqueous protein that can be administered into body fluid without exhibiting any substantial pharmacological activity. The glycosaminoglycan include hyaluronic acid, chondroitin, chondroitin sulfate A, chondroitin sulfate C, dermatan sulfate, heparin, heparan sulfate, keratan sulfate and the like. The polysaccharide include an acidic polysaccharide such as arginic acid.

[0117] The above-mentioned aqueous protein may be anything that is soluble in water, a physiological saline or a buffer, and examples include human serum albumin, human serum globulin, collagens, gelatin and the like. The pH adjusting agent include, for example, glycine, ammonium acetate, citric acid, hydrochloric acid, sodium hydroxide and the like. The local anesthetic include, for example, chlorobutanol, xylocaine hydrochloride and the like. The antibiotic include, for example, gentamicin and the like. The solubilizing agent include, for example, glycine, ammonium acetate, citric acid, hydrochloric acid, sodium hydroxide and the like. The antibiotic include, for example, gentamicin and the like. The solubilizing agent include, for example, glycine, ammonium acetate, citric acid, hydrochloric acid, sodium hydroxide and the like.

[0118] Furthermore, when the dispersing medium contains an aqueous protein, the content of the aqueous protein in the preparation for a single dose is preferably about 0.05 to 50 mg, more preferably about 0.5 to 20 mg, and even more preferably about 0.75 to 10 mg. Such preparation may contain phosphoric acid or a salt thereof (e.g., sodium phosphate, potassium phosphate, etc.).

[0119] When a preparation for injection contains phosphoric acid or a salt thereof, the concentration of sodium phosphate or potassium phosphate in the injection preparation is about 0.1 mM to 500 mM, and preferably about 1 mM to 100 mM.

[0120] Sterilization of a preparation may be carried out by operating the entire production process under aseptic conditions, sterilizing with γ-rays, adding a preservative, and the like, without being particularly limited.

[0121] The prophylactic and therapeutic agent of the invention can be used in combination with other agents. For example, when compound [I] is used as a therapeutic agent for articular diseases, it can be used in combination with (i) a cyclooxygenase inhibitor (Cox-I or Cox-II inhibitor), (ii) a disease-modified anti-rheumatoid drug and immune suppressant, (iii) a biological formulation, (iv) an analgesic and anti-inflammatory agent, (v) a therapeutic agent for bone diseases, (vi) an inhibitor of TNF-α production inhibitor, or (vii) an inhibitor of c-JUN N-terminal kinase (JNK) inhibitor. Further, when compound [I] is used as an anticancer agent, it can be used in combination with (viii) other anticancer agents.

(i) A cyclooxygenase inhibitor (Cox-I or Cox-II inhibitor) include, for example, a salicylic acid derivative such as Celecoxib, Rofecoxib, aspirin and the like, Diclofenac, Indomethacin, Loxoprofen and the like.

(ii) A disease-modified anti-rheumatoid drug and immune suppressant include, for example, methotrexate, Leflunomid, Prograf, sulfasalazine, D-penicilamine, oral metallic agent, T-cell differentiation controlling agent and the like.

(iii) A biological formulation include, for example, a monoclonal antibody (e.g., anti-TNF-α antibody, anti-IL-12 antibody, anti-IL-6 antibody, anti-ICAM-I antibody, anti-CD4 antibody, etc.), soluble receptor (e.g., soluble TNF-α receptor, etc.), proteinaceous ligand (IL-1 receptor antagonist, etc.) and the like.

(iv) An analgesic and anti-inflammatory agent include, for example, centrally active analgesic (e.g., morphine, codeine, pentazocine, etc.), steroids (e.g., prednisolone, hydrocortisone, methylprednisolone, dexamethasone, betamethasone, etc.), anti-inflammatory enzymes (e.g., bromelain, lysozyme, proctase, etc.) and the like.

(v) A therapeutic agent for bone diseases (e.g., fracture, refracture, osteoporosis, osteomalacia, Paget’s disease, spastic myelitis, chronic rheumatoid arthritis, destruction of articular tissues in modified gonarthrosis and its analogous diseases, etc.) include, for example, a calcium preparation (e.g., calcium carbonate, etc.), a calcitonin preparation,

38
When used in combination, the administration interval for compound [I] and the combination drug is not particularly limited. Compound [I] or a pharmaceutical composition thereof, and the drug for combination or a pharmaceutical composition thereof, may be administered to a subject of administration either simultaneously or with a time interval. The dose of the drug for combination may be determined to be in accordance with the clinically used dose, and can be suitably selected according to the subject of administration, administration route, type of disease, organization and the like.

(vii) A JNK inhibitor include compounds described in the publications of, for example, WO00/35906, WO00/35909, WO00/35921, WO00/64872, WO00/75118 and WP02/62792.

(viii) An anticancer agent include, for example, 6-O-(N-chloroacetylcarbamoyl)fumagillol, bleomycin, methotrexate, actinomycin D, mitomycin C, daunorubicin, adriamycin, neocarzinostatin, cytosome arabinoside, fluorouracil, tetrahydrofurfuryl-5-fluorouracil, picibanil, lentinan, levamisole, bestatin, azimexone, glytilitin, doxorubicin hydrochloride, acetylated doxorubicin hydrochloride, hepromycin sulfate, vincristine sulfate, vinblastine sulfate, irinotecan hydrochloride, cyclophosphamide, melphalan, busulphan, thiota, procarbazine hydrochloride, cisplatin, azathioprine, mercaptopurine, tegafur, carmofur, cytarabine, methyl testosteron, propionic acid testosteron, testosterone enanthate, mepitiostan, fosfestril, chlormadinone acetate, leuprolarin acetate, buserelin acetate and the like.

[0122] When used in combination, the administration interval for compound [I] and the combination drug is not particularly limited. Compound [I] or a pharmaceutical composition thereof, and the drug for combination or a pharmaceutical composition thereof, may be administered to a subject of administration either simultaneously or with a time interval. The dose of the drug for combination may be determined to be in accordance with the clinically used dose, and can be suitably selected according to the subject of administration, administration route, type of disease, organization and the like.

[0123] The form of administration for combination is not particularly limited, and compound [I] and the drug for combination may be combined at the time of administration. Such form of administration include, for example, (1) administration of a single preparation which can be obtained by simultaneously formulating compound [I] or a pharmaceutical composition thereof with the drug for combination or a pharmaceutical composition thereof; (2) simultaneous administration by an identical route of administration, of two preparations which can be obtained by separately formulating compound [I] or a pharmaceutical composition thereof and the drug for combination or a pharmaceutical composition thereof; (3) administration with a time interval by an identical route of administration, of two preparations which can be obtained by separately formulating compound [I] or a pharmaceutical composition thereof or a pharmaceutical composition thereof; (4) simultaneous administration by different routes of administration, of two preparations which can be obtained by separately formulating compound [I] or a pharmaceutical composition thereof with the drug for combination or a pharmaceutical composition thereof; (5) administration with a time interval by different routes of administration, of two preparations which can be obtained by separately formulating compound [I] or a pharmaceutical composition thereof with the drug for combination or a pharmaceutical composition thereof or administration in the reverse order), and the like.

[0124] The mixing ratio for compound [I] with the drug for combination in the combination of the present invention can be appropriately selected according to the subject of administration, the administration route, type of disease and the like.

[0125] For example, the content of compound [I] present in the combination of the present invention may vary depending on the type of preparation, but it is typically about 0.01 to 100% by weight, preferably about 0.1 to about 50% by weight, and more preferably about 0.5 to about 20% by weight, with respect to the whole preparation.
The content of the drug for combination present in the combination of the present invention may vary depending on the type of preparation, but it is typically about 0.01 to 100% by weight, preferably about 0.1 to about 50% by weight, and more preferably about 0.5 to about 20% by weight, with respect to the whole preparation.

When compound [I] and the drug for combination are each separately formulated, the same contents may be used.

The dose may vary depending on the type of compound [I] or a pharmaceutically acceptable salt thereof, the administration route, symptoms, age of the patient, but in the case of administering orally to an adult patient having osteoarthritis, for example, the daily dose of compound [I] per kg body weight is about 0.005 to 50 mg, preferably about 0.05 to 10 mg, and more preferably about 0.2 to 4 mg, which can be administered in portions in 1 to 3 times.

When the pharmaceutical composition of the present invention is a sustained-release formulation, the dose may vary depending on the type and content of compound [I], type of formulation, the duration of drug release, the animal subject of administration (e.g., mammals such as human, rat, mouse, cat, dog, rabbit, cattle, pig, etc.) and purpose of administration, but in the case of parenteral administration, the release amount from the preparation is preferably from about 0.1 mg to about 100 mg of compound [I] per week.

For a drug for combination, the dose can be set to any level within the scope that side-effects do not occur. The daily dose for a drug for combination may vary depending on the extent of symptoms, the age, sex, body weight, and sensitivity of the subject of administration, the time and interval of administration, the properties, formulation, type of the pharmaceutical preparation, type of the active ingredient, and the like and may not be particularly limited. However, the dose of the drug, for example, in oral administration to a mammal is typically about 0.001 to 2000 mg, preferably about 0.01 to 500 mg, and more preferably about 0.1 to 100 mg per kg of body weight, which is typically administered in portions in 1 to 4 times.

When an agent for combination of the invention is administered, compound [I] and a drug for combination may be administered simultaneously; a drug for combination may be first administered, followed by compound [I]; or compound [I] may be administered first, followed by a drug for combination. When the administration is carried out with a time interval, the time interval may vary depending on the effective component to be administered, formulation, route of administration and the like. For example, when a drug for combination is first administered, compound [I] can be administered within 1 minute to 3 days from the point of administration of the drug for combination, preferably within 10 minutes to 1 day, and more preferably within 15 minutes to 1 hour. When compound [I] is administered first, a drug for combination can be administered within 1 minute to 1 day from the point of administration of compound [I], preferably within 10 minutes to 6 hours, and more preferably within 15 minutes to 1 hour. The pharmaceutical composition of the present invention is low in toxicity and thus can be used safely. In particular, the compounds of the Examples shown below exhibit excellent absorbability when administered orally, and thus can be used advantageously as an oral preparation.

Since compound [I], a salt thereof of the present invention have a superior MMP inhibitory action, particularly an MMP-13 inhibitory action, they are useful as safe drugs for the prophylaxis or treatment of all MMP associated diseases, such as joint disease (e.g., osteoarthritis, rheumatoid arthritis and the like), osteoporosis, cancer, periodontal disease, cornea ulcer, chronic ulcer, pathologic bone resorption (Paget's disease and the like), nephritis, angiogenesis, aneurysm, arteriosclerosis, emphysema, chronic obstructive pulmonary disease (COPD), liver cirrhosis, autoimmune disease (Crohn's disease, Sjogren's disease and the like), infiltration or metastasis of cancer and the like, or as contraceptives.

Examples

The present invention is explained in detail in the following by referring to Examples and Reference Examples. The present invention is not limited in any way by the examples and may be changed without departing from the scope of the present invention.

An elution in column chromatography in each Example was performed under the observation by a TLC (Thin Layer Chromatography), unless otherwise specified. TLC was performed using a 60F254 plate manufactured by Merck as a TLC plate. Detection was made by an UV detector or by means of a color development with a phosphomolybdic acid or a ninhydrin reagent. Silica gel 60 (70 to 230 mesh size) manufactured by Merck was employed as silica gel for column chromatography. A 60F254 plate manufactured by Merck was employed as preparative TLC plate. A room temperature referred herein typically means a temperature from about 10°C to 35°C.

NMR (Nuclear Magnetic Resonance) spectra were measured using a VARIAN model Gemini-200 spectrometer (1H-NMR: 200 MHz or 300 MHz) or a BRUKER model DPX300 (1H-NMR: 300 MHz). An internal standard was tetramethylsilane and all δ values are represented in ppm. Abbreviations employed here are described below. DMF: N,N-dimethylformamide, THF: tetrahydrofuran, EtOH: ethanol, DMA: N,N-dimethylacetamide, CDCl3: deuterated chloroform,
Example 1

N-[(3-(methyloxy)phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

To a solution of ethyl 4-oxo-3,4-dihydroquinazoline-2-carboxylate (1.42 g, 6.53 mmol) obtained by a method described in Journal of Organic Chemistry (1978), 43(23), 4485-7 etc. in THF (25 mL) were added 3-methoxybenzylamine (1.19 g, 8.71 mmol) and triethylamine (1.1 mL, 7.89 mmol), and the mixture was stirred overnight at room temperature. The reaction mixture was extracted with 10% aqueous potassium carbonate and ethyl acetate. The organic layer was washed with water and saturated brine, dried and concentrated. The obtained crude crystals were recrystallized from ethanol-diethyl ether to give the title compound (1.09 g, 54%).

Example 2

N-[(6-[(4-fluorophenyl)oxy]pyridin-3-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using 1-[(6-[(4-fluorophenyl)oxy]pyridin-3-yl)methanamine (synthesized by a method described in WO 2003091242 A1 etc.) instead of 3-methoxybenzylamine.

Example 3

4-oxo-N-[(4-(phenyloxy)phenyl)methyl]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using 4-phenoxybenzylamine instead of 3-methoxybenzylamine.

Example 4

4-oxo-N-[(3-(phenyloxy)phenyl)methyl]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using 3-phenoxybenzylamine instead of 3-methoxybenzylamine.

Example 5

N-(biphenyl-4-ylmethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using 4-phenylbenzylamine instead of 3-methoxybenzylamine.

Example 6

N-(biphenyl-3-ylmethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using 3-phenylbenzylamine instead of 3-methoxybenzylamine.

Example 7

N-[(4-fluorophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using 4-fluorobenzylamine instead of 3-methoxybenzylamine.
Example 8

N-(biphenyl-2-ylmethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0145] The compound was synthesized using 2-phenylbenzylamine instead of 3-methoxybenzylamine. melting point: 182-183°C

Example 9

4-oxo-N-((3-[(trifluoromethyl)oxy]phenyl)methyl)-3,4-dihydroquinazoline-2-carboxamide

[0146] The compound was synthesized using 3-((trifluoromethoxy)benzylamine instead of 3-methoxybenzylamine. melting point: 198-200°C

Example 10

4-oxo-N-[[3-(trifluoromethyl)phenyl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0147] The compound was synthesized using 3-(trifluoromethyl)benzylamine instead of 3-methoxybenzylamine. melting point: 224-225°C

Example 11

N-[[3-methylphenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0148] The compound was synthesized using 3-methylbenzylamine instead of 3-methoxybenzylamine. melting point: 184-185°C

Example 12

N-[[2-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0149] The compound was synthesized using 2-methoxybenzylamine instead of 3-methoxybenzylamine. melting point: 234-235°C

Example 13

N-[[2-(methyloxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0150] The compound was synthesized using ([2-methoxypyridin-4-yl]methyl)amine (synthesized by a method described in Journal of Medicinal Chemistry (1993), 36(15), 2362-2372) instead of 3-methoxybenzylamine. melting point: 186-189°C

Example 14

4-oxo-N-[[2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0151] The compound was synthesized using ([2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl]methyl)amine obtained in Reference Example 29 instead of 3-methoxybenzylamine. melting point: 169-172°C

Example 15

N-[[3-(aminomethyl)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide hydrochloride

[0152] 1,1-Dimethylethyl [3-(((4-oxo-3,4-dihydroquinazolin-2-yl)carbonylamino)methyl)phenyl]methyl]carbamate
(1.50g, 3.67 mmol) obtained in Example 53 was stirred in 4N hydrogen chloride/ethyl acetate for 5 hrs. The reaction mixture was concentrated under reduced pressure, and the obtained crude crystals were recrystallized from ethyl acetate to give the title compound as a white powder (1.25 g, 99%).

Example 16

N-[[2-[[3-methyl-3-(methyloxy)butyl]oxy]pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using [2-[[3-methyl-3-(methyloxy)butyl]oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 47 instead of 3-methoxybenzylamine.

melting point: 287-290°C

Example 17

N-[(2-[(furan-3-ylmethyl)oxy]pyridin-4-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using (2-[(furan-3-ylmethyl)oxy]pyridin-4-yl)methyl]amine obtained in Reference Example 35 instead of 3-methoxybenzylamine.

melting point: 166-167°C

Example 18

N-[(2-[(3-(methyloxy)propyl]oxy)pyridin-4-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using (2-[(3-(methyloxy)propyl]oxy)pyridin-4-yl)methyl]amine obtained in Reference Example 45 instead of 3-methoxybenzylamine.

melting point: 154-155°C

Example 19

N-[(2-[[3-(methyloxy)propyl]amino]pyridin-4-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using 4-(aminomethyl)-N-[3-(methyloxy)propyl]pyridine-2-amine obtained in Reference Example 79 instead of 3-methoxybenzylamine.

melting point: 189-191°C

Example 20

4-oxo-N-[[2-(tetrahydrofuran-3-yloxy)pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using [[2-(tetrahydrofuran-3-yloxy)pyridin-4-yl]methyl]amine obtained in Reference Example 75 instead of 3-methoxybenzylamine.

melting point: 215-216°C

Example 21

N-[[2-[[3-methyloxetan-3-yl]methyl]oxy]pyridin-4-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using [[2-[[3-methyloxetan-3-yl]methyl]oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 33 instead of 3-methoxybenzylamine.

melting point: 196-197°C

Example 22

N-[[2-[[3-(ethyloxy)propyl]amino]pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using 4-(aminomethyl)-N-[3-(ethyloxy)propyl]pyridine-2-amine obtained in Ref-
Example 23

melting point: 162-163°C

Example 24

4-oxo-N-[[2-(tetrahydro-2H-pyran-4-yl]oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide

melting point: 255-257°C

Example 25

N-([2-[[(furan-2-yl)methyl]oxy]pyridin-4-yl]methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0162] The compound was synthesized using ([2-[[(furan-2-yl)methyl]oxy]pyridin-4-yl]methyl)amine obtained in Reference Example 37 instead of 3-methoxybenzylamine.

melting point: 162-163°C

Example 26

4-oxo-N-[[2-[[phenylmethyl]oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0163] The compound was synthesized using ([2-[[phenylmethyl]oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 49 instead of 3-methoxybenzylamine.

melting point: 179-180°C

Example 27

N-([2-[[4-fluorophenyl]oxy]pyridin-4-yl]methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0164] The compound was synthesized using ([2-[[4-fluorophenyl]oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 71 instead of 3-methoxybenzylamine.

melting point: 204-205°C

Example 28

N-[[2-[[3,4-bis(methyloxy)phenyl]oxy]pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0165] The compound was synthesized using [[2-[[3,4-bis(methyloxy)phenyl]oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 73 instead of 3-methoxybenzylamine.

melting point: 190-191°C

Example 29

4-oxo-N-[[3-[[tetrahydrofuran-3-ylmethyl]oxy]phenyl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0166] The compound was synthesized using 1-[[3-[[tetrahydrofuran-3-ylmethyl]oxy]phenyl]methanamine obtained in Reference Example 85 instead of 3-methoxybenzylamine.

melting point: 161°C
Example 30
N-[(3-morpholin-4-ylphenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0167] The compound was synthesized using 1-(3-morpholin-4-ylphenyl)methanamine obtained in Reference Example 94 instead of 3-methoxybenzylamine.
melting point: 253-254°C

Example 31
N-[(3-cyanophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0168] The compound was synthesized using 3-(aminomethyl)benzonitrile (synthesized by a method described in FR 1582452 etc.) instead of 3-methoxybenzylamine.
melting point: 232°C

Example 32
4-oxo-N-[(2-[(tetrahydro-2H-pyran-4-ylmethyl)oxy]pyridin-4-yl)methyl]-3,4-dihydroquinazoline-2-carboxamide

[0169] The compound was synthesized using [(2-[(tetrahydro-2H-pyran-4-ylmethyl)oxy]pyridin-4-yl)methyl]amine obtained in Reference Example 31 instead of 3-methoxybenzylamine.
melting point: 196-197°C

Example 33
4-oxo-N-[(2-[(3-thienylmethyl)oxy]pyridin-4-yl)methyl]-3,4-dihydroquinazoline-2-carboxamide

[0170] The compound was synthesized using [(2-[(3-thienylmethyl)oxy]pyridin-4-yl)methyl]amine obtained in Reference Example 39 instead of 3-methoxybenzylamine.
melting point: 176-178°C

Example 34
N-[(2-[(4-(methyloxy)phenyl)methyl]oxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0171] The compound was synthesized using [(2-[(4-(methyloxy)phenyl)methyl]oxy)pyridin-4-yl]methyl]amine obtained in Reference Example 57 instead of 3-methoxybenzylamine. melting point: 192-195°C

Example 35
4-oxo-N-[(3-oxo-3,4-dihydro-2H-1,4-benzooxazin-6-yl)phenyl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0172] The compound was synthesized using 6-[(3-(aminomethyl)phenyl)-2H,1,4-benzooxazin-3(4H)-one obtained in Reference Example 93 instead of 3-methoxybenzylamine.
melting point: 299-300°C

Example 36
N-[(2-[(3-methyloxy)phenyl]methyl]oxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0173] The compound was synthesized using [(2-[(3-methyloxy)phenyl]methyl]oxy)pyridin-4-yl]methyl]amine obtained in Reference Example 55 instead of 3-methoxybenzylamine.
melting point: 148-149°C
Example 37

N-\{(1,3-benzodioxol-5-ylmethyl)oxy\}pyridin-4-yl)methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0174] The compound was synthesized using \{(1,3-benzodioxol-5-ylmethyl)oxy\}pyridin-4-yl)methyl\}amine obtained in Reference Example 59 instead of 3-methoxybenzylamine.

melting point: 176-177°C

Example 38

N-\{(3-fluorophenyl)methyl\}oxy\}pyridin-4-yl)methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0175] The compound was synthesized using \{(3-fluorophenyl)methyl\}oxy\}pyridin-4-yl)methyl\}amine obtained in Reference Example 51 instead of 3-methoxybenzylamine.

melting point: 179-180°C

Example 39

N-\{(4-fluorophenyl)methyl\}oxy\}pyridin-4-yl)methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0176] The compound was synthesized using \{(4-fluorophenyl)methyl\}oxy\}pyridin-4-yl)methyl\}amine obtained in Reference Example 53 instead of 3-methoxybenzylamine.

melting point: 212-213°C

Example 40

4-oxo-N-\{(pyridine-2-ylmethyl)oxy\}pyridin-4-yl)methyl\}-3,4-dihydroquinazoline-2-carboxamide

[0177] The compound was synthesized using \{(pyridine-2-ylmethyl)oxy\}pyridin-4-yl)methyl\}amine obtained in Reference Example 67 instead of 3-methoxybenzylamine.

melting point: 166-171°C

Example 41

4-oxo-N-\{(pyridine-3-ylmethyl)oxy\}pyridin-4-yl)methyl\}-3,4-dihydroquinazoline-2-carboxamide

[0178] The compound was synthesized using \{(pyridine-3-ylmethyl)oxy\}pyridin-4-yl)methyl\}amine obtained in Reference Example 65 instead of 3-methoxybenzylamine.

melting point: 186-188°C

Example 42

4-oxo-N-\{(pyridin-4-ylmethyl)oxy\}pyridin-4-yl)methyl\}-3,4-dihydroquinazoline-2-carboxamide

[0179] The compound was synthesized using \{(pyridin-4-ylmethyl)oxy\}pyridin-4-yl)methyl\}amine obtained in Reference Example 63 instead of 3-methoxybenzylamine.

melting point: 230-231°C

Example 43

N-\{(5-methylisoxazol-3-yl)methyl\}oxy\}pyridin-4-yl)methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0180] The compound was synthesized using \{(5-methylisoxazol-3-yl)methyl\}oxy\}pyridin-4-yl)methyl\}amine obtained in Reference

[0181] Example 41 instead of 3-methoxybenzylamine.

melting point: 176-179°C
Example 44

N-[[2-(((3,5-dimethylisoxazol-4-yl)methyl)oxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0182] The compound was synthesized using [[2-(((3,5-dimethylisoxazol-4-yl)methyl)oxy)pyridin-4-yl]methyl]amine obtained in Reference Example 43 instead of 3-methoxybenzylamine.

melting point: 198-202°C

Example 45

N-[(2-[[biphenyl-4-ylmethyl]oxy]pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0183] The compound was synthesized using [(2-[(biphenyl-4-ylmethyl)oxy]pyridin-4-yl)methyl]amine obtained in Reference Example 61 instead of 3-methoxybenzylamine.

melting point: 209-211°C

Example 46

N-[[2-(ethyloxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0184] The compound was synthesized using [[2-(ethyloxy)pyridin-4-yl]methyl]amine obtained in Reference Example 69 instead of 3-methoxybenzylamine.

melting point: 153-157°C

Example 47

N-[[4-fluoro-3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0185] The compound was synthesized using 4-fluoro-3-methoxybenzylamine (synthesized by a method described in WO03/029224 A1) instead of 3-methoxybenzylamine.

melting point: 190-194°C

Example 48

N-(4-morpholin-4-ylbutyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0186] The compound was synthesized using 4-(4-aminobutyl)morpholine (synthesized by a method described in Journal of Medicinal Chemistry (1997), 40(24), 3915-3925) instead of 3-methoxybenzylamine.

melting point: 114-117°C

Example 49

N-N-(3-morpholin-4-ylpropyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0187] The compound was synthesized using N-(3-aminopropyl)morpholine instead of 3-methoxybenzylamine.

melting point: 163-164°C

Example 50

N-[2-[[3-(methyloxy)phenyl]ethyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0188] The compound was synthesized using 2-(3-methoxyphenyl)ethylamine instead of 3-methoxybenzylamine.

melting point: 143-148°C
Example 51

N-[(3-ethyloxy)phenyl][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0189] The compound was synthesized using 1-[(3-ethyloxy)phenyl]methanamine hydrochloride obtained in Reference Example 87 instead of 3-methoxybenzylamine.

melting point: 181°C

Example 52

methyl 5-{[3-[(4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl]amino][methyl][phenyl]oxy}pentanoate

[0190] The compound was synthesized using methyl 5-[(3-(aminomethyl)phenyl]oxy]pentanoate hydrochloride obtained in Reference Example 91 instead of 3-methoxybenzylamine.

melting point: 133-134°C

Example 53

1,1-dimethylethyl [[3-[[4-oxo-3,4-dihydroquinazolin-2-yl]carbonyl]amino][methyl][phenyl]methyl]carbamate

[0191] The compound was synthesized using t-butyl N-[3-(aminomethyl)benzyl]carbamate instead of 3-methoxybenzylamine.

melting point: 180-183°C

[0192] The following Examples 54 to 66 were synthesized in the same manner as in Example 1 from ethyl 6-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 7.

Example 54

6-fluoro-N-[(3-methyloxy)phenyl][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0193] melting point: 177-179°C

Example 55

6-fluoro-N-[(2-methyloxy)phenyl][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0194] The compound was synthesized using 2-methoxybenzylamine instead of 3-methoxybenzylamine.

melting point: 192-194°C

Example 56

6-fluoro-N-[(4-methyloxy)phenyl][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0195] The compound was synthesized using 4-methoxybenzylamine instead of 3-methoxybenzylamine.

melting point: 187-189°C

Example 57

6-fluoro-N-[(2-[(furan-3-ylmethyl)oxy]pyridin-4-yl)][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0196] The compound was synthesized using (2-[(furan-3-ylmethyl)oxy]pyridin-4-yl)methyl)amine obtained in Reference Example 35 instead of 3-methoxybenzylamine.

melting point: 179-184°C
Example 58
6-fluoro-N-[[2-[(3-(methyloxy)propyl)oxy]pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0197] The compound was synthesized using [[2-[(3-(methyloxy)propyl)oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 45 instead of 3-methoxybenzylamine.
 melting point: 134-135°C

Example 59
6-fluoro-4-oxo-N-((2-[(tetrahydrofuran-3-yl)methoxy]pyridin-4-yl)methyl)-3,4-dihydroquinazoline-2-carboxamide

[0198] The compound was synthesized using ((2-[(tetrahydrofuran-3-yl)methoxy]pyridin-4-yl)methyl)amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.
 melting point: 181-183°C

Example 60
6-fluoro-4-oxo-N-((2-[(tetrahydrofuran-3-yl)methoxy]pyridin-4-yl)methyl)-3,4-dihydroquinazoline-2-carboxamide

[0199] The compound was synthesized using [[2-[(tetrahydrofuran-3-yl)methoxy]pyridin-4-yl]methyl]amine obtained in Reference Example 75 instead of 3-methoxybenzylamine.
 melting point: 173-175°C

Example 61
6-fluoro-4-oxo-N-((2-[(4-fluorophenyl)oxy]pyridin-4-yl)methyl)-3,4-dihydroquinazoline-2-carboxamide

[0200] The compound was synthesized using ((2-[(4-fluorophenyl)oxy]pyridin-4-yl)methyl)amine obtained in Reference Example 71 instead of 3-methoxybenzylamine.
 melting point: 216-217°C

Example 62
6-fluoro-4-oxo-N-((2-[(4-fluorophenyl)oxy]pyridin-4-yl)methyl)-3,4-dihydroquinazoline-2-carboxamide

[0201] The compound was synthesized using 1-{3-[(tetrahydrofuran-3-yl)methoxy]phenyl}methanamine obtained in Reference Example 85 instead of 3-methoxybenzylamine.
 melting point: 169-170°C

Example 63
6-fluoro-4-oxo-N-((2-[(tetrahydro-2H-pyran-4-yl)methoxy]pyridin-4-yl)methyl)-3,4-dihydroquinazoline-2-carboxamide

[0202] The compound was synthesized using ((2-[(tetrahydro-2H-pyran-4-yl)methoxy]pyridin-4-yl)methyl)amine obtained in Reference Example 31 instead of 3-methoxybenzylamine.
 melting point: 180-184°C

Example 64
6-fluoro-N-[[2-(methyloxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0203] The compound was synthesized using [[2-methoxy(pyridin-4-yl)methyl]amine (synthesized by a method described in Journal of Medicinal Chemistry (1993), 36(15), 2362-2372) instead of 3-methoxybenzylamine.
 melting point: 171-173°C
Example 65

N-[[2-(ethyloxy)pyridin-4-yl]methyl]-6-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0204] The compound was synthesized using [[2-(ethyloxy)pyridin-4-yl]methyl]amine obtained in Reference Example 69 instead of 3-methoxybenzylamine.

melting point: 199-201°C

Example 66

N-[[3-(ethyloxy)phenyl]methyl]-6-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0205] The compound was synthesized using 1-[[3-(ethyloxy)phenyl]methanamine hydrochloride obtained in Reference Example 87 instead of 3-methoxybenzylamine.

melting point: 175-176°C

[0206] The following Examples 67 to 82 were synthesized in the same manner as in Example 1 from ethyl 6-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 8.

Example 67

6-(methyloxy)-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0207] melting point: 174-176°C

Example 68

6-(methyloxy)-N-[[2-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0208] The compound was synthesized using 2-methoxybenzylamine instead of 3-methoxybenzylamine.

melting point: 223-226°C

Example 69

6-(methyloxy)-N-[[4-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0209] The compound was synthesized using 4-methoxybenzylamine instead of 3-methoxybenzylamine.

melting point: 221-223°C

Example 70

N-[[2-[(furan-3-ylmethyl)oxy]pyridin-4-yl]methyl]-6-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0210] The compound was synthesized using [[2-[(furan-3-ylmethyl)oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 35 instead of 3-methoxybenzylamine.

melting point: 226-228°C

Example 71

6-(methyloxy)-N-[[2-[[3-(methyloxy)propyl]oxy]pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

melting point: 161-163°C
Example 72

6-(methyloxy)-4-oxo-N-{(2-{[tetrahydrofuran-3-ylmethyl]oxy}[pyridin-4-yl]methyl)-3,4-dihydroquinazoline-2-carboxamide

[0212] The compound was synthesized using ([2- {[tetrahydrofuran-3-ylmethyl]oxy}[pyridin-4-yl]methyl]amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.

melting point: 200-202°C

Example 73

6-(methyloxy)-4-oxo-N-{[2-([tetrahydrofuran-3-yloxy]pyridin-4-yl)methyl]}-3,4-dihydroquinazoline-2-carboxamide

[0213] The compound was synthesized using ([2-([tetrahydrofuran-3-yloxy]pyridin-4-yl)methyl]amine obtained in Reference Example 75 instead of 3-methoxybenzylamine.

melting point: 214-215°C

Example 74

N-{[2-{(4-fluorophenyl)oxy}[pyridin-4-yl]methyl}}-6-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0214] The compound was synthesized using ([2-{(4-fluorophenyl)oxy}[pyridin-4-yl]methyl]amine obtained in Reference Example 71 instead of 3-methoxybenzylamine.

melting point: 206-207°C

Example 75

6-(methyloxy)-4-oxo-N-{[3-([tetrahydrofuran-3-ylmethyl)oxy]phenyl]methyl]}-3,4-dihydroquinazoline-2-carboxamide

[0215] The compound was synthesized using 1-([3-([tetrahydrofuran-3-ylmethyl)oxy]phenyl)methanamine obtained in Reference Example 85 instead of 3-methoxybenzylamine.

melting point: 181°C

Example 76

6-(methyloxy)-4-oxo-N-{[2-([tetrahydro-2H-pyran-4-ylmethyl)oxy][pyridin-4-yl]methyl]}-3,4-dihydroquinazoline-2-carboxamide

[0216] The compound was synthesized using ([2-([tetrahydro-2H-pyran-4-ylmethyl)oxy][pyridin-4-yl]methyl]amine obtained in Reference Example 31 instead of 3-methoxybenzylamine.

melting point: 218-220°C

Example 77

6-(methyloxy)-4-oxo-N-{[2-([3-thienylmethyl)oxy][pyridin-4-yl]methyl]}-3,4-dihydroquinazoline-2-carboxamide

[0217] The compound was synthesized using ([2-([3-thienylmethyl)oxy][pyridin-4-yl]methyl]amine obtained in Reference Example 39 instead of 3-methoxybenzylamine.

melting point: 201-202°C

Example 78

N-{[2-((ethyloxy)pyridin-4-yl]methyl]}-6-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0218] The compound was synthesized using ([2-((ethyloxy)pyridin-4-yl]methyl]amine obtained in Reference Example 69 instead of 3-methoxybenzylamine.

melting point: 211-213°C
Example 79

N-[[3-(ethyloxy)phenyl]methyl]-6-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0219] The compound was synthesized using 1-[[3-(ethyloxy)phenyl]methylene]methanamine hydrochloride obtained in Reference Example 87 instead of 3-methoxybenzylamine.

melting point: 184-185°C

Example 80

methyl 3-[[[[6-(methyloxy)-4-oxo-3,4-dihydroquinolin-2-yl]carbonyl]amino]methyl]benzoate

[0220] The compound was synthesized using methyl 3-(aminomethyl)benzoate hydrochloride (synthesized by a method described in Pharmazie (1967), 22(9), 465-70 etc.) instead of 3-methoxybenzylamine.

melting point: 224-226°C

Example 81

methyl 4-[[[6-(methyloxy)-4-oxo-3,4-dihydroquinolin-2-yl]carbonyl]amino]methyl]benzoate

[0221] The compound was synthesized using methyl 4-(aminomethyl)benzoate hydrochloride instead of 3-methoxybenzylamine.

melting point: 232-234°C

Example 82

[0222] The compound was synthesized using methyl 5-[[3-(aminomethyl)phenyl]oxy]pentanoate hydrochloride obtained in Reference Example 91.

[0223] Reference Example 91 instead of 3-methoxybenzylamine.

melting point: 141-142°C

[0224] The following Example 83 to Example 85 were synthesized in the same manner as in Example 1, from ethyl 6-chloro-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 98.

Example 83

6-chloro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0225] melting point: 203-206°C

Example 84

6-chloro-4-oxo-N-[[2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0226] The compound was synthesized using 2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl)methylamine obtained in Reference Example 29 instead of 3-methoxybenzylamine.

melting point: 190-194°C

Example 85

6-chloro-N-[[4-fluoro-3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0227] The compound was synthesized using 4-fluoro-3-methoxybenzylamine (synthesized by a method described in WO03/029224 A1) instead of 3-methoxybenzylamine.

melting point: 206-208°C
Example 86

N-[[3-(methylxy)phenyl]methyl]-6-nitro-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0228] The compound was synthesized in the same manner as in Example 1 using ethyl 6-nitro-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 95.
melting point: 174-180°C

[0229] The following Example 87 to Example 89 were synthesized in the same manner as in Example 1 from ethyl 6-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 9.

Example 87

6-methyl-N-[[3-(methylxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0230] melting point: 175-177°C

Example 88

6-methyl-4-oxo-N-[[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0231] The compound was synthesized using [[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.
melting point: 190-192°C

Example 89

N-[[2-[(furan-3-ylmethyl)oxy]pyridin-4-yl]methyl]-6-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0232] The compound was synthesized using [[2-[(furan-3-ylmethyl)oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 35 instead of 3-methoxybenzylamine.
melting point: 171-173°C

[0233] The following Example 90 and Example 91 were synthesized in the same manner as in Example 1 from ethyl 4-oxo-6-trifluoromethyl-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 10.

Example 90

4-oxo-N-[[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]-6-(trifluoromethyl)-3,4-dihydroquinazoline-2-carboxamide

[0234] The compound was synthesized using [[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.
melting point: 184-186°C

Example 91

N-[[3-(methylxy)phenyl]methyl]-4-oxo-6-(trifluoromethyl)-3,4-dihydroquinazoline-2-carboxamide

[0235] melting point: 186-187°C

[0236] The following Example 92 and Example 93 were synthesized in the same manner as in Example 1 from ethyl 4-oxo-6-[[trifluoromethyl]oxy]-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 11.

Example 92

4-oxo-N-[[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]-6-[[trifluoromethyl]oxy]-3,4-dihydroquinazoline-2-carboxamide

[0237] The compound was synthesized using [[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.
Example 93

N-[[3-(methyloxy)phenyl](methyl)-4-oxo-6-[(trifluoromethyl)oxy]-3,4-dihydroquinazoline-2-carboxamide

[0238] melting point: 156-159°C
[0239] The following Example 94 and Example 95 were synthesized in the same manner as in Example 1 from ethyl 5-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 12.

Example 94

5-(methyloxy)-N-[[3-(methyloxy)phenyl](methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0240] melting point: 188-190°C

Example 95

5-(methyloxy)-N-[[3-(methyloxy)phenyl](methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0241] The compound was synthesized using (2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl)methyl)amine obtained in Reference Example 29 instead of 3-methoxybenzylamine. melting point: 189-192°C
[0242] The following Example 96 and Example 97 were synthesized in the same manner as in Example 1 from ethyl 7-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 13.

Example 96

7-(methyloxy)-N-[[3-(methyloxy)phenyl](methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0244] melting point: 228-230°C

Example 97

7-(methyloxy)-4-oxo-N-[[2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl](methyl)-3,4-dihydroquinazoline-2-carboxamide

[0245] The compound was synthesized using (2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl)methyl)amine obtained in Reference Example 29 instead of 3-methoxybenzylamine. melting point: 208-210°C
[0246] The following Example 98 and Example 99 were synthesized in the same manner as in Example 1 from ethyl 8-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 14.

Example 98

8-(methyloxy)-N-[[3-(methyloxy)phenyl](methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0247] melting point: 238-239°C

Example 99

8-(methyloxy)-4-oxo-N-[[2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl](methyl)-3,4-dihydroquinazoline-2-carboxamide

[0248] The compound was synthesized using (2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl)methyl)amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.
The following Example 100 and Example 101 were synthesized in the same manner as in Example 1 from ethyl 6-amino-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 96.

Example 100

6-amino-N-([3-(methyloxy)phenyl]methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

Clinical trials suggest that the compound has antihyperuricemic activity.

Example 101

6-amino-4-oxo-N-(2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl)-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using ([2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl]amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.

Example 102

N-([3-(methyloxy)phenyl]methyl)-4-oxo-6-[[phenylmethyl]oxy]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using ([2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl]amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.

Example 103

4-oxo-6-[[phenylmethyl]oxy]-N-([2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using ([2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl]amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.

Example 104

6-iodo-N-([3-(methyloxy)phenyl]methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using ([2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl]-3,4-dihydroquinazoline-2-carboxamide

Example 105

6-iodo-4-oxo-N-(2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl)-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using ([2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl]-3,4-dihydroquinazoline-2-carboxamide

Example 106

N-([3-(methyloxy)phenyl]methyl)-4-oxo-5-[(2-phenylethyl)oxy]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using ([2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl]-3,4-dihydroquinazoline-2-carboxamide

Example 107

6-iodo-N-([3-(methyloxy)phenyl]methyl)-4-oxo-5-[(2-phenylethyl)oxy]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using ([2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-ylmethyl]-3,4-dihydroquinazoline-2-carboxamide

melting point: 219-220°C
Example 107
4-oxo-5-[(2-phenylethyl)oxy]N-[(2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methyl]-3,4-dihydroquinazoline-2-carboxamide

[0260] The compound was synthesized using (2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methylamine obtained in Reference Example 29 instead of 3-methoxybenzylamine.

melting point: 172-174°C

Example 108 and Example 109 were synthesized in the same manner as in Example 1 from ethyl 5-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 17.

Example 108
5-methyl-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0262] melting point: 150-152°C

Example 109
5-methyl-4-oxo-N-[(2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methyl]-3,4-dihydroquinazoline-2-carboxamide

[0263] The compound was synthesized using (2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methylamine obtained in Reference Example 29 instead of 3-methoxybenzylamine.

melting point: 164-165°C

Example 110 to Example 112 were synthesized in the same manner as in Example 1 from ethyl 5-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 18.

Example 110
5-fluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0265] melting point: 169-161°C

Example 111
5-fluoro-4-oxo-N-[(2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methyl]-3,4-dihydroquinazoline-2-carboxamide

[0266] The compound was synthesized using (2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methylamine obtained in Reference Example 29 instead of 3-methoxybenzylamine.

melting point: 187-189°C

Example 112
5-fluoro-N-[[2-(methyloxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0267] The compound was synthesized using ([2-methoxy]pyridin-4-yl)methylamine (synthesized by a method described in Journal of Medicinal Chemistry (1993), 36(15), 2362-2372) instead of 3-methoxybenzylamine.

melting point: 189-191°C

Example 113 to Example 115 were synthesized in the same manner as in Example 1 from ethyl 5,6-difluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 22.

Example 113
5,6-difluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0269] melting point: 189-191°C
Example 114

5,6-difluoro-4-oxo-N-\{2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl\}methyl)-3,4-dihydroquinazoline-2-carboxamide

[0270] The compound was synthesized using \((2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)\)methylamine obtained in Reference Example 29 instead of 3-methoxybenzylamine.
melting point: 198-199°C

Example 115

5,6-difluoro-N-\{2-(methylxy)pyridin-4-yl\}methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0271] The compound was synthesized using \((2-\text{methoxy}pyridin-4-yl)\)methylamine (synthesized by a method described in Journal of Medicinal Chemistry (1993), 36(15), 2362-2372) instead of 3-methoxybenzylamine.
melting point: 214-216°C

[0272] Example 116 and Example 117 were synthesized in the same manner as in Example 1 from ethyl 6-(morpholin-4-ylmethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 20.

Example 116

N-\{3-(methyloxy)phenyl\}methyl)-6-(morpholin-4-ylmethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0273] melting point: 126-129°C

Example 117

6-(morpholin-4-ylmethyl)-4-oxo-N-\{2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl\}methyl)-3,4-dihydroquinazoline-2-carboxamide

[0274] The compound was synthesized using \((2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)\)methylamine obtained in Reference Example 29 instead of 3-methoxybenzylamine.
melting point: 186-189°C

Example 118

6-(methylxy)methyl]-4-oxo-N-\{2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl\}methyl)-3,4-dihydroquinazoline-2-carboxamide

[0275] The title compound was obtained in the same manner as in Example 1 as a white powder from methyl 6-(methylxy)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 21, using \((2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)\)methylamine obtained in Reference Example 29 instead of 3-methoxybenzylamine.
melting point: 132-134°C

[0276] Example 119 and Example 120 were synthesized in the same manner as in Example 1 from ethyl 6-cyano-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 23.

Example 119

6-cyano-4-oxo-N-\{2-[(tetrahydro-2H-pyran-4-ylmethyl)oxy]pyridin-4-yl\}methyl)-3,4-dihydroquinazoline-2-carboxamide

[0277] The compound was synthesized using \((2-[(tetrahydro-2H-pyran-4-ylmethyl)oxy]pyridin-4-yl)\)methylamine obtained in Reference Example 31 instead of 3-methoxybenzylamine.
melting point: 218-222°C

Example 120

6-cyano-N-\{4-fluoro-3-(methyloxy)phenyl\}methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0278] The compound was synthesized using 4-fluoro-3-methoxybenzylamine (synthesized by a method described...
in WO03/029224 A1) instead of 3-methoxybenzylamine.
melting point: 242-244°C

Example 121

2-\{6,7-bis(methyloxy)-3,4-dihydroisoquinolin-2(1H)-yl\}carbonyl\}quinazolin-4(3H)-one

[0279] To a suspension of 4-oxo-3,4-dihydroquinazoline-2-carboxylic acid (150 mg, 0.788 mmol) obtained by a method
described in Journal of Medicinal Chemistry (1979), 22(1), 44-8 etc. in THF (4 mL) were added oxalyl chloride (103 μL,
1.18 mmol) and DMF (one drop) and the mixture was stirred at room temperature for 12 hrs. The solvent was evaporated
under reduced pressure. The obtained residue was suspended in THF (4 mL) again, 6,7-bis(methyloxy)-1,2,3,4-tetrahydro-
diskoquinoline hydrochloride (136 mg, 0.946 mmol) and triethylamine (241 μL, 1.73 mmol) were added, and the mixture
was stirred at room temperature for 12 hrs. The solvent was evaporated under reduced pressure. The residue was
extracted with ethyl acetate, washed 3 times with 1N hydrochloric acid and saturated brine and dried over anhydrous
sodium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was purified by preparative
TLC to give the title compound (8.2 mg, 2.8%) as a colorless solid.
melting point: 104-105°C

Example 122

2-\{(4-phenylpiperidin-1-yl)carbonyl\}quinazolin-4(3H)-one

[0280] The title compound was obtained in the same manner as in Example 121 using 4-phenylpiperidine instead of
6,7-bis(methyloxy)-1,2,3,4-tetrahydroisoquinoline hydrochloride.
melting point: 151-152°C

Example 123

2-\{(4-phenylpiperazin-1-yl)carbonyl\}quinazolin-4(3H)-one

[0281] The title compound was obtained in the same manner as in Example 121 using 1-phenylpiperazine instead of
6,7-bis(methyloxy)-1,2,3,4-tetrahydroisoquinoline hydrochloride.
melting point: 217-218°C

Example 124

2-\{(4-(phenyloxy)piperidin-1-yl)carbonyl\}quinazolin-4(3H) -one

[0282] The title compound was obtained in the same manner as in Example 121 using 4-phenoxy-piperidine instead
of 6,7-bis(methyloxy)-1,2,3,4-tetrahydroisoquinoline hydrochloride.
melting point: 154-155°C

Example 125

N-\{(3-\{[(methylsulfonyl)amino\}phenyl]methyl\})-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0283] To a solution of N-\{3-aminophenyl\}methyl\})-4-oxo-3,4-dihydroquinazoline-2-carboxamide (100 mg, 0.340 mmol)
obtained in Example 227 in THF (2 mL) were added methanesulfonyl chloride (31.6 μL) and triethylamine (56.8 μL,
0.408 mmol), and the mixture was stirred at room temperature for 12 hrs. The solvent was evaporated under reduced
pressure. The obtained residue was extracted with ethyl acetate, washed with water and saturated brine, and dried over
anhydrous sodium sulfate. Then the solvent was evaporated under reduced pressure and the obtained crude crystals
were recrystallized from ethyl acetate to give the title compound (112 mg, 88%) as a white powder.
melting point: 240-248°C
Example 126

N-[(3-[(methylamino)carbonyl]amino)phenyl]methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0284] The title compound was obtained in the same manner as in Example 125 from N-[(3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 227 and methylisocyanate.

melting point: 331-332°C

Example 127

N-[(3-(acetylamino)phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0285] The title compound was obtained in the same manner as in Example 125 from N-[(3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 227 and acetyl chloride.

melting point: 260-265°C

Example 128

Methyl oxo[3-(4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl]amino)methyl)phenyl]amino)acetate

[0286] The title compound was obtained in the same manner as in Example 125 from N-[(3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 227 and methyl chloro(oxo)acetate.

melting point: 228-229°C

Example 129

Methyl 3-oxo-3-{[(4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl]amino)methyl)phenyl]amino)propanoate

[0287] The title compound was obtained in the same manner as in Example 125 from N-[(3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 227 and methyl 3-chloro-3-oxopropanoate.

melting point: 211-212°C

Example 130

Methyl [3-{[(4-6xo-3,4-dihydroquinazolin-2-yl)carbonyl]amino)methyl)phenyl]carbamate

[0288] The title compound was obtained in the same manner as in Example 125 from N-[(3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 227 and methyl chloroformate.

melting point: 262-263°C

Example 131

N-[(3-[(methylsulfonyl)amino)methyl)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0289] The title compound was obtained in the same manner as in Example 125 from N-[(3-aminomethyl)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide hydrochloride obtained in Example 15 and methanesulfonyl chloride.

melting point: 194°C
Example 133
N-((3-[[acetylamino]methyl]phenyl)methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0291] The title compound was obtained in the same manner as in Example 125 from N-((3-aminomethyl)phenyl)methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide hydrochloride obtained in Example 15 and acetyl chloride. melting point: 242-257°C

Example 134
Methyl oxo(((4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl)amino)methyl]phenyl)methyl]amino)acetate

[0292] The title compound was obtained in the same manner as in Example 125 from N-((3-aminomethyl)phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide hydrochloride obtained in Example 15 and methyl chloro(oxo)acetate. melting point: 193-194°C

Example 135
4-oxo-N-((3-[[tetrahydrofuran-3-yl]carbonyl]amino)phenyl)methyl]-3,4-dihydroquinazoline-2-carboxamide

[0293] The title compound was obtained in the same manner as in Example 125 from N-((3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 227 and tetrahydrofuran-3-carbonyl chloride (synthesized by a method described in Chemische Berichte (1988), 121(3), 485-92 etc.). melting point: 225°C

Example 136
N-((3-[[(furan-3-yl]carbonyl)amino]methyl]phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0294] The title compound was obtained in the same manner as in Example 125 from N-((3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 227 and furan-3-carbonyl chloride (synthesized by the method described in US 3551571). melting point: 249°C

Example 137
4-oxo-N-((3-[[tetrahydrofuran-3-yl]carbonyl]amino)methyl]phenyl)methyl]-3,4-dihydroquinazoline-2-carboxamide

[0295] The title compound was obtained in the same manner as in Example 125 from N-((3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 15 and tetrahydrofuran-3-carbonyl chloride (synthesized by a method described in Chemische Berichte (1988), 121(3), 485-92 etc.). melting point: 189-190°C

Example 138
N-((3-[[furan-3-yl]carbonyl]amino)methyl]phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0296] The title compound was obtained in the same manner as in Example 125 from N-((3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide hydrochloride obtained in Example 15 and furan-3-carbonyl chloride (synthesized by a method described in US 3551571). melting point: 227-228°C

Example 139
N-((3-(methyloxy)phenyl)methyl]-4-oxo-6-(propanoylamino)-3,4-dihydroquinazoline-2-carboxamide

[0297] To a solution of 6-amino-N-((3-(methyloxy)phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (120
mg, 370 mmol) obtained in Example 100 and triethylamine (60 μL) in THF (15 mL) was added propionyl chloride (0.04 mL) at 0°C, and the mixture was stirred at room temperature for 1 hr. 10% aqueous citric acid solution was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogen carbonate and saturated brine, dried and concentrated. The obtained residue was recrystallized from ethyl acetate-diethyl ether to give the title compound (83 mg, 59%).

melting point: 222-223°C

[0298] The following Example 140 to Example 143 were synthesized in the same manner as in Example 139.

Example 140
6-(acetylamino)-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0299] The compound was synthesized using acetyl chloride instead of propionyl chloride.
melting point: 209-210°C

Example 141
N-[[3-(methyloxy)phenyl]methyl]-6-[[methylsulfonyl]amino]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0300] The compound was synthesized using methylsulfonyl chloride instead of propionyl chloride.
melting point: 245-248°C

Example 142
6-[[methylsulfonyl]amino]-4-oxo-N-[[2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0301] The compound was synthesized using 6-amino-4-oxo-N-[[2-[[tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide obtained in Example 101 instead of 6-amino-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide and methylsulfonyl chloride instead of propionyl chloride.
melting point: 198-201°C

Example 143
N-[[3-(methyloxy)phenyl]methyl]-4-oxo-6-[[[phenyloxy]acetyl]amino]-3,4-dihydroquinazoline-2-carboxamide

[0302] The compound was synthesized using phenoxyacetyl chloride instead of propionyl chloride.
melting point: 207-209°C

Example 144
6-hydroxy-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0303] To a suspension of N-[3-(methyloxy)phenyl]methyl]-4-oxo-6-[[phenyloxy]methyl]-3,4-dihydroquinazoline-2-carboxamide (2.00 g, 4.81 mmol) obtained in Example 102 in THF (50 mL) - methanol (20 mL) was added 10% palladium carbon (500 mg) under hydrogen atmosphere (1 atm), and the mixture was stirred at room temperature for 3 hrs. Insoluble material was filtered off, and the reaction mixture was concentrated to give the title compound as a pale-yellow powder (1.60 g, 100%). A part of the crude crystals (150 mg) was recrystallized from ethanol to give the title compound as a white powder (129 mg).
melting point: 268-271 °C

Example 145
6-(ethyloxy)-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0304] To a solution of 6-hydroxy-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (120 mg, 368 μmol) obtained in Example 144 in THF (3 mL)-DMF (1 mL) were added cesium carbonate (120 mg, 368 μmol) and ethyl iodide (29 μL, 368 μmol) and the mixture was stirred at room temperature for 1 hr. Cesium carbonate (120 mg, 368 μmol) and ethyl iodide (58 μL, 736 μmol) were added again, and the mixture was stirred at room temperature for 3 hrs. The reaction mixture was partitioned between ethyl acetate and water, and the organic layer was washed with
saturated brine. After drying over anhydrous sodium sulfate, the layer was concentrated, and the obtained concentrated residue was purified by preparative HPLC. The obtained crude crystals were recrystallized from ethanol to give the title compound as a white powder (27 mg, 21%). melting point: 163-165 °C

Example 146

6-cyano-N-[(3-(methyloxy)phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0305] To a suspension of 6- iodo-N-[(3-(methyloxy)phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (1.00 g, 2.30 mmol) obtained in Example 104 and zinc cyanide (148 mg, 1.26 mmol) in DMF (10 mL) was added tetrais(triphenylphosphine) palladium (0) (132 mg, 115 μmol) and the mixture was stirred under nitrogen atmosphere at 80°C for 3 hrs. After allowing to cool to room temperature, the reaction mixture was concentrated under reduced pressure. The obtained concentrated residue was suspended in ethyl acetate, and insoluble material was collected by filtration to give the title compound as a white powder (537 mg, 70%). A part of the crude crystals (200 mg) were recrystallized from ethanol to give the title compound as a white powder (193 mg). melting point: 206-208 °C

Example 147

6-cyano-4-oxo-N-((2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methyl)-3,4-dihydroquinazoline-2-carboxamide

[0306] To a suspension of 6- iodo-4-oxo-N-((2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methyl)-3,4-dihydroquinazoline-2-carboxamide (500 mg, 988 μmol) obtained in Example 105 and zinc cyanide (63.8 mg, 543 μmol) in DMF (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (57.1 mg, 49.4 μmol), and the mixture was stirred under nitrogen atmosphere at 80°C for 3 hrs. After allowing to cool to room temperature, the reaction mixture was concentrated under reduced pressure. The obtained concentrated residue was dissolved in ethyl acetate-THF, and the solution was washed with water and saturated brine. The solution was dried over anhydrous sodium sulfate, concentrated and the obtained crude crystals were recrystallized from ethanol to give the title compound as a pale-yellow powder (141 mg, 35%). melting point: 230-233 °C

Example 148

4-oxo-N2-((2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methyl)-3,4-dihydroquinazoline-2,6-dicarboxamide

[0307] 6-cyano-4-oxo-N-((2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methyl)-3,4-dihydroquinazoline-2-carboxamide (240 mg, 593 μmol) obtained in Example 147 was dissolved in conc. sulfuric acid (2 mL), and the mixture was stirred at room temperature for 1 hr, and stirred with heating at 50°C for 2 hrs. The reaction mixture was poured onto ice, and basified with sodium hydrogen carbonate. After extraction with a mixed solvent of ethyl acetate-THF, the mixture was washed with saturated brine. After drying over anhydrous sodium sulfate, the mixture was concentrated. The obtained crude crystals were recrystallized from ethanol to give the title compound as a pale-yellow powder (154 mg, 61%). melting point: 237-239 °C

Example 149

N-[(3-(methyloxy)phenyl)methyl]-6-[[3-(methyloxy)phenyl)methyl]amino)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0308] A solution of ethyl 6-(bromomethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate (300 mg, 964 μmol) obtained in Reference Example 20, Step 1 and 3-methoxybenzylamine (529 mg, 3.86 mmol) in DMF (6 mL) was stirred with heating at 90°C for 4 hrs. The reaction mixture was concentrated under reduced pressure and ethyl acetate and 1N hydrochloric acid were added. The precipitated insoluble material was collected by filtration, and washed with ethyl acetate. The obtained solid was suspended in saturated aqueous sodium hydrogen carbonate, and extracted with ethyl acetate. The organic layer was washed with saturated brine and, after drying over anhydrous sodium sulfate, the mixture was concentrated. The obtained crude crystals were recrystallized from ethanol to give the title compound as a pale-yellow powder (125 mg, 28%). melting point: 134-136°C
Example 150

N-[[3-(methyloxy)phenyl]methyl]-4-oxo-6-phenyl-3,4-dihydroquinazoline-2-carboxamide

[0309] To a suspension of 6-iodo-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (300 mg, 689 μmol) obtained in Example 104, phenylboronic acid (126 mg, 1.03 mmol) and 2M aqueous sodium carbonate solution (515 μL, 1.03 mmol) in toluene (3 mL) - ethanol (1 mL) was added tetrakis(triphenylphosphine)palladium(0) (16 mg, 14 μmol), and the mixture was heated under reflux under a nitrogen atmosphere for 6 hrs. Phenylboronic acid (41 mg, 340 μmol), 2M aqueous sodium carbonate solution (515 μL, 1.03 mmol) and tetrakis(triphenylphosphine)palladium (16 mg, 14 μmol) were added again, and the mixture was heated under reflux under a nitrogen atmosphere for 12 hrs. After allowing to cool to room temperature, the reaction mixture was concentrated under reduced pressure. The obtained concentrated residue was partitioned between ethyl acetate and water. The organic layer was washed with saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated. The obtained crude crystals were recrystallized from ethanol to give the title compound as a white powder (170 mg, 64%).

melting point: 202-204 °C

Example 151

N-[[3-(methyloxy)phenyl]methyl]-4-oxo-6-(1,3-thiazol-2-ylthio)-3,4-dihydroquinazoline-2-carboxamide

[0310] A solution of tris(dibenzylidenacetone)dipalladium(0) (13 mg, 14 μmol) and 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (16 mg, 28 μmol) in toluene (6 mL) was stirred under a nitrogen atmosphere at room temperature for 5 min. To this mixture were added 6-iodo-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (300 mg, 689 μmol) obtained in Example 104, 2-mercaptothiazole (81 mg, 689 μmol) and potassium tert-butyrate (240 mg, 2.14 mmol), and the mixture was stirred with heating at 100°C for 4 hrs. After allowing to cool to room temperature, the reaction mixture was concentrated under reduced pressure. The obtained concentrated residue was partitioned between ethyl acetate and water. The organic layer was washed with saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated. The obtained concentrated residue was purified by silica gel column chromatography (50-83% ethyl acetate/hexane), and recrystallized from ethanol to give the title compound as a yellow powder (63.5 mg, 21%).

melting point: 170-172°C

Example 152

O-{2-[[[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-6-yl} dimethylthiocarbamate

[0311] To a solution of 6-hydroxy-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (500 mg, 1.54 mmol) obtained in Example 144 and N,N-dimethylthiocarbamoyl chloride (380 mg, 3.08 mmol) in DMF (5 mL) was added 1,4-diazabicyclo[2.2.2]octane (345 mg, 3.08 mmol), and the mixture was stirred at room temperature for 2 hrs. Reaction mixture was poured into water (30 mL) under ice-cooling. The precipitated insoluble material was collected by filtration and the solid was washed with water, ethanol and diethyl ether to give the title compound as a white powder (608 mg, 96%).

melting point: 207-209°C

Example 153

S-{2-[[[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-6-yl} dimethylthiocarbamate

[0312] A mixture of O-{2-[[[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-6-yl} dimethylthiocarbamate (540 mg, 1.31 mmol) obtained in Example 152 and N,N-diethylaniline (5 mL) was stirred with heating at 210°C for 7 hrs. After allowing to cool to room temperature, the reaction mixture was poured into 3N hydrochloric acid (30 mL). The precipitated insoluble material was collected by filtration and the solid was washed with water, ethanol and diethyl ether to give the title compound as a pale-gray powder (440 mg, 82%).

melting point: 171-173 °C
Example 154

6-mercapto-N-[(3-methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0313] To a suspension of S-[2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-6-yl] dimethylthiocarbamate (380 mg, 921 μmol) obtained in Example 153 in methanol (10 mL) was added potassium hydroxide (259 mg, 4.61 mmol) and the mixture was heated under reflux for 2 hrs. After allowing to cool to room temperature, the reaction mixture was concentrated under reduced pressure, and the concentrated residue was dissolved in water. The mixture was acidified (pH 2-3) with 1N hydrochloric acid, and extracted with a mixed solvent of ethyl acetate-THF. The organic layer was washed with saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated. The obtained concentrated residue was crystallized from ethanol to give the title compound as a pale-yellow powder (300 mg, 95%).

melting point: 170-172 °C

Example 155

N-[(3-methyloxy)phenyl]methyl]-6-(methylthio)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0314] To a solution of 6-mercapto-N-[(3-methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (270 mg, 791 μmol) obtained in Example 154 and methyl iodide (49 μL, 791 μmol) in THF (5 mL) was added triethylamine (110 μL, 791 μmol), and the mixture was stirred with heating at room temperature for 1 hr. The reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated. The obtained concentrated residue was crystallized from ethanol to give the title compound as a pale-yellow powder (240 mg, 85%).

melting point: 168-170°C

Example 156

N-[(3-methyloxy)phenyl]methyl]-6-(methylsulfonyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0315] To a solution of N-[(3-methyloxy)phenyl]methyl]-6-(methylthio)-4-oxo-3,4-dihydroquinazoline-2-carboxamide (60 mg, 170 μmol) obtained in Example 155 in chloroform (2 mL) was added m-chloroperbenzoic acid (84 mg, 340 μmol) under ice-cooling, and the mixture was stirred with heating at room temperature for 2 hrs. The reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated. The obtained concentrated residue was crystallized from ethanol to give the title compound as a pale-yellow powder (62 mg, 95%).

melting point: 186-188°C

Example 157

N-[(3-methyloxy)phenyl]methyl]-4-oxo-6-[[2-oxo-2-phenylethyl]oxy]-3,4-dihydroquinazoline-2-carboxamide

[0316] To a suspension of 6-hydroxy-N-[(3-methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (300 mg, 922 μmol) obtained in Example 144 and phenacyl bromide (201 mg, 1.01 mmol) in acetone (2 mL) was added potassium carbonate (191 mg, 1.38 mmol), and mixture was stirred with heating at 60°C for 2 hrs. Phenacyl bromide (50 mg, 250 μmol) was added again, and the mixture was stirred with heating at 60°C for 2 hrs. The reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated. The obtained concentrated residue was purified by preparative HPLC to give the title compound as a white powder (144 mg, 35%).

melting point: 168-169°C

Example 158

N-[(3-methyloxy)phenyl]methyl]-4-oxo-6-[[1H-tetrazol-5-yl]-3,4-dihydroquinazoline-2-carboxamide

[0317] To a solution of 6-cyano-N-[(3-methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (100 mg, 299 μmol) obtained in Example 146 in DMF (3 mL) were added sodium azide (97.0 mg, 1.50 mmol) and ammonium chloride (80.0 mg, 1.50 mmol), and the mixture was stirred with heating at 80°C for 24 hrs. After allowing to cool to room
temperature, water was added to the reaction mixture. The precipitated insoluble material was collected by filtration. The solid was washed with water and ethyl acetate, suspended in ethanol and heated under reflux. After allowing to cool to room temperature, insoluble material was collected by filtration to give the title compound as a white powder (105 mg, 93%).

Example 159

N-\{3-(methyloxy)phenyl\}methyl]-4-oxo-5-[\{phenylmethyl\}oxy]-3,4-dihydroquinazoline-2-carboxamide

[0318] To a solution of benzyl alcohol (99 mg, 920 \(\mu\)mol) in DMA (6 mL) was added sodium hydride (60% in oil dispersion, 122 mg, 3.06 mmol), and the mixture was stirred at room temperature for 30 min. To the reaction mixture was added 5-fluoro-N-\{3-(methyloxy)phenyl\}methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (200 mg, 611 \(\mu\)mol) obtained in Example 110, and the mixture was stirred with heating at 80°C for 1 hr. The reaction mixture was cooled to room temperature, and adjusted to pH 3-4 with 1N hydrochloric acid. The mixture was extracted with a mixed solvent of ethyl acetate-THF. The organic layer was washed with water and saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethanol to give the title compound as a pale-yellow powder (207 mg, 81%).

melting point: 188-190°C

[0319] The following Example 160 to Example 174 were synthesized in the same manner as in Example 159.

Example 160

N-\{3-(methyloxy)phenyl\}methyl]-4-oxo-5-[\{3-phenylpropyl\}oxy]-3,4-dihydroquinazoline-2-carboxamide

[0320] The compound was synthesized using 3-phenylpropanol instead of benzyl alcohol.

melting point: 165-167°C

Example 161

N-\{3-(methyloxy)phenyl\}methyl]-4-oxo-5-[\{2-phenylethyl\}thio]-3,4-dihydroquinazoline-2-carboxamide

[0321] The compound was synthesized using 2-phenylethylthiophenol instead of benzyl alcohol.

melting point: 178-180°C

Example 162

4-\{5-\{\{3-(methyloxy)phenyl\}methyl\}amino\}carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl\}oxy\}methylbenzoic acid

[0322] The compound was synthesized using 4-(hydroxymethyl)benzoic acid instead of benzyl alcohol.

melting point: 268-270°C

Example 163

5-\{4-(fluorophenyl)\}methyl]oxy]-N-\{3-(methyloxy)phenyl\}methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0323] The compound was synthesized using 4-fluorobenzyl alcohol instead of benzyl alcohol.

melting point: 216-218°C

Example 164

N-\{3-(methyloxy)phenyl\}methyl]-5-[\{4-(methyloxy)phenyl\}methyl]oxy]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0324] The compound was synthesized using 4-methoxybenzyl alcohol instead of benzyl alcohol.

melting point: 197-199°C
Example 165
N-[3-(methyloxy)phenyl][methyl]-4-oxo-5-[(pyridine-3-ylmethyl)oxy]-3,4-dihydroquinazoline-2-carboxamide

[0325] The compound was synthesized using 3-pyridinemethanol instead of benzyl alcohol. melting point: 191-193°C

Example 166
3-[[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl]benzoic acid

[0326] The compound was synthesized using 3-(hydroxymethyl)benzoic acid instead of benzyl alcohol. melting point: 246-248°C

Example 167
2-[[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl]benzoic acid

[0327] The compound was synthesized using 2-(hydroxymethyl)benzoic acid instead of benzyl alcohol. melting point: 193-195°C

Example 168
N-[3-(methyloxy)phenyl][methyl]-5-[(2-methyl-2-phenylpropyl)oxy]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0328] The compound was synthesized using 2-methyl-2-phenylpropan-1-ol instead of benzyl alcohol. melting point: 145-147°C

Example 169
5-[(2-cyclohexylethyl)oxy]-N-[3-(methyloxy)phenyl][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0329] The compound was synthesized using 2-cyclohexylethanol instead of benzyl alcohol. melting point: 130-132°C

Example 170
N-[3-(methyloxy)phenyl][methyl]-4-oxo-5-[(2-piperidin-1-ylethyl)oxy]-3,4-dihydroquinazoline-2-carboxamide

[0330] The compound was synthesized using N-(2-hydroxyethyl)piperidine instead of benzyl alcohol. melting point: 225-227°C

Example 171
N-[3-(methyloxy)phenyl][methyl]-5-[(2-morpholin-4-ylethyl)oxy]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0331] The compound was synthesized using N-(2-hydroxyethyl)morpholine instead of benzyl alcohol. melting point: 130-132°C

Example 172
N-[3-(methyloxy)phenyl][methyl]-4-oxo-5-[[2-[phenylmethyl]oxy]ethoxy]-3,4-dihydroquinazoline-2-carboxamide

[0332] The compound was synthesized using 2-(benzyl)ethanol instead of benzyl alcohol. melting point: 136-138°C
Example 173

\((4-[[2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl[phenyl]oxy)acetic acid

[0333] The compound was synthesized using 4-(hydroxymethyl)phenoxycetic acid instead of benzyl alcohol.

Melting point: 133-135°C

Example 174

\(4-[[2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl[phenyl]acetic acid

[0334] The compound was synthesized using 4-(hydroxymethyl)phenylacetic acid instead of benzyl alcohol.

Melting point: 215-217°C

Example 175

4-oxo-5-[(phenylmethyl)oxy]-N-[[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0335] The compound was synthesized in the same manner as in Example 159 from 5-fluoro-4-oxo-N-[[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide obtained in Example 111.

Melting point: 190-192°C

[0336] The following Example 176 to Example 181 were synthesized in the same manner as in Example 159 from 5,6-difluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 113.

Example 176

6-fluoro-5-[[4-fluorophenyl)methyl]oxy]-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0337] The compound was synthesized using 4-fluorobenzyl alcohol instead of benzyl alcohol.

Melting point: 195-197°C

Example 177

4-[[6-fluoro-2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl]benzoic acid

[0338] The compound was synthesized using 4-(hydroxymethyl)benzoic acid instead of benzyl alcohol.

Melting point: 248-250°C

Example 178

6-fluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-5-[[2-phenylethyl]oxy]-3,4-dihydroquinazoline-2-carboxamide

[0339] The compound was synthesized using 2-phenylethanol instead of benzyl alcohol.

Melting point: 134-135°C

Example 179

4-[[6-fluoro-2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)ethyl]benzoic acid

[0340] A solution of 5,6-difluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (500 mg, 1.45 mmol) obtained in Example 113 and 4-(2-hydroxyethyl)benzoic acid (241 mg, 1.45 mmol) in DMA (5 mL) was added dropwise to a suspension of 60% sodium hydride (165 mg, 4.34 mmol) in DMA (2.5 mL) at room temperature and the mixture was stirred at room temperature for 30 min. and then at 80°C for 1.5 hrs with heating. The reaction
mixture was ice-cooled, and water (5 mL), ethyl acetate (10 mL), 1N hydrochloric acid (6 mL) and hexane (10 mL) were successively added dropwise. The precipitated solid was collected by filtration, and washed with water and methanol. The obtained solid was suspended in methanol, and the mixture was stirred with heating at 70°C for 30 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a pale-yellow powder (501 mg, 70%).

melting point: 227-229°C

1H NMR (300 MHz, DMSO-d6)

δ: 3.18 (2H, t, J = 6.9 Hz), 3.73 (3H, s), 4.32 (2H, t, J = 6.9 Hz), 4.44 (2H, d, J = 6.0 Hz), 6.81-6.84 (1H, m), 6.89-6.92 (2H, m), 7.46 (2H, d, J = 8.4 Hz), 7.24 (1H, t, J = 8.1 Hz), 7.53 (1H, dd, J = 6.3, 4.8 Hz), 7.79 (1H, t, J = 9.6 Hz), 7.87 (2H, d, J = 8.1 Hz), 9.50 (1H, t, J = 6.3 Hz), 12.20 (1H, bs), 12.87 (1H, bs).

Example 180

6-fluoro-5-[(2-(4-fluorophenyl)ethyl]oxy]-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0341] The compound was synthesized using 2-(4-fluorophenyl)ethanol instead of benzyl alcohol.

melting point: 146-148°C

Example 181

5-[[2-(4-aminophenyl)ethyl]oxy]-6-fluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0342] The compound was synthesized using 2-(4-aminophenyl)ethanol instead of benzyl alcohol.

melting point: 129-131°C

[0343] The following Example 182 and Example 183 were synthesized in the same manner as in Example 159 from 5,6-difluoro-4-oxo-N-[[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide obtained in Example 114.

Example 182

6-fluoro-5-[[4-(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]-4-oxo-N-[[2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]-3,4-dihydroquinazoline-2-carboxamide

[0344] The compound was synthesized using 4-fluorobenzyl alcohol instead of benzyl alcohol.

melting point: 183-185°C

Example 183

[0345] The compound was synthesized using 4-(hydroxymethyl)benzoic acid instead of benzyl alcohol.

melting point: 263-265°C

Example 184

4-[[6-(fluoro-2-[[2-(methyloxy)pyridin-4-yl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy]methyl]benzoic acid

[0346] The compound was synthesized in the same manner as in Example 159 from 4-(hydroxymethyl)benzoic acid and 5,6-difluoro-N-[[2-(methyloxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 115.

melting point: 231-233°C
Example 185

N-\{3-(methyloxy)phenyl\}[methyl]-4-oxo-5-{[2-phenylethyl]amino}-3,4-dihydroquinazoline-2-carboxamide

[0347] A solution of 5-fluoro-N-\{3-(methyloxy)phenyl\}[methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (100 mg, 309 \(\mu\)mol) obtained in Example 110 and 2-phenylethylamine (187 mg, 1.55 mmol) in N,N-dimethylacetamide (2 mL) was stirred with heating at 80°C for 2 days. 2-Phenylethylamine (93 mg, 770 \(\mu\)mol) was added, and the mixture was stirred with heating at 80°C for one day. The reaction mixture was concentrated under reduced pressure and ethyl acetate was added. The mixture was washed with 0.1N hydrochloric acid and saturated brine. After drying over anhydrous sodium sulfate, the mixture was concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethanol to give the title compound as a yellow powder (68 mg, 51%).
melting point: 164-166°C

Example 186

6-fluoro-N-\{3-(methyloxy)phenyl\}[methyl]-5-({[3-(methyloxy)phenyl]methyl}amino)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0348] The compound was synthesized in the same manner as in Example 185 from 5,6-difluoro-N-\{3-(methyloxy)phenyl\}[methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 113 and 3-methoxybenzylamine.
melting point: 141-143°C

Example 187

5-\{([4-cyanophenyl]methyl)oxy\}-N-\{3-(methyloxy)phenyl\}[methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0349] To a solution of 5-fluoro-N-\{3-(methyloxy)phenyl\}[methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (1.40 g, 4.28 mmol) obtained in Example 110 in N,N-dimethylacetamide (20 mL) was added sodium hydride (60% in oil dispersion, 856 mg, 21.4 mmol), and the mixture was stirred at room temperature for 30 min. To the reaction mixture was added 4-iodobenzyl alcohol (1.50 g, 6.42 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The reaction mixture was cooled to room temperature, adjusted to pH 3-4 with 1N hydrochloric acid, and diluted with a mixed solvent of ethyl acetate-THF. The organic layer was washed with water and saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated under reduced pressure to give a pale-yellow powder (1.70 g). To a suspension (10 mL) of the above-mentioned pale-yellow powder (1.14 g) and zinc cyanide (72 mg, 610 \(\mu\)mol) in DMF was added tetrakis(triphenylphosphine)palladium(0) (64 mg, 55 \(\mu\)mol) and the mixture was stirred under a nitrogen atmosphere at 80°C for 6 hrs. After allowing to cool to room temperature, the reaction mixture was concentrated under reduced pressure. The obtained concentrated residue was dissolved in ethyl acetate-THF, and the mixture was washed with water and saturated brine. After drying over anhydrous sodium sulfate, the mixture was concentrated. The obtained concentrated residue was purified by silica gel column chromatography (25-50% ethyl acetate/hexane). The obtained crude crystals were recrystallized from ethanol to give the title compound as a white powder (46 mg, 0.4%).
melting point: 218-220°C

Example 188

Ethyl 4-{[2-\{([3-(methyloxy)phenyl]methyl)amino\[carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy\}methyl]benzoate

[0350] To a suspension of 4-{[2-\{([3-(methyloxy)phenyl]methyl)amino\}carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl}oxy)methyl]benzoic acid (100 mg, 218 \(\mu\)mol) obtained in Example 162 and EtOH (100 \(\mu\)L) in THF (4 mL) were added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (63 mg, 326 \(\mu\)mol) and 4-dimethylaminopyridine (2.5 mg, 21 \(\mu\)mol), and the mixture was stirred at 40°C for 15 hrs. The reaction mixture was diluted with ethyl acetate, and washed with 0.1N hydrochloric acid, water and saturated brine. The mixture was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethanol to give the title compound as a white powder (95 mg, 89%).
melting point: 205-207°C
Example 189

5-({[4-(aminocarbonyl)phenyl]methyl}oxy)-N- {[3-(methyloxy)phenyl]methyl}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

([0351] To a suspension of 4-[[2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl oxy)methyl]benzoic acid (100 mg, 218 μmol) obtained in Example 162 in THF (4 mL) were added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (63 mg, 326 μmol) and 1-hydroxy-1H-benzotriazole ammonium salt (50 mg, 326 μmol), and the mixture was stirred at 40°C for 15 hrs. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (63 mg, 326 μmol), 1-hydroxy-1H-benzotriazole ammonium salt (50 mg, 326 μmol) and DMF (2 mL) were added again, and the mixture was stirred at 40°C for 3 hrs. The reaction mixture was diluted with a mixed solvent of ethyl acetate-THF, and washed with water, 0.1N hydrochloric acid, saturated aqueous sodium hydrogen carbonate and saturated brine. After drying over anhydrous sodium sulfate, the mixture was concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethanol to give the title compound as a white powder (80 mg, 80%).

melting point: 267-269°C

Example 190

5-hydroxy-N- {[3-(methyloxy)phenyl]methyl}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

([0352] To a solution of 2-(4-chlorophenyl)ethanol (87 mg, 556 μmol) in DMA (5 mL) was added sodium hydride (60% in oil, 92 mg, 2.32 mmol), and the mixture was stirred at room temperature for 30 min. 5-Fluoro-N- {[3-(methyloxy)phenyl]methyl}-4-oxo-3,4-dihydroquinazoline-2-carboxamide (150 mg, 463 μmol) obtained in Example 110 was added, and the mixture was stirred with heating at 80°C for 1 hr. The reaction mixture was cooled to room temperature, adjusted to pH 3-4 with 1N hydrochloric acid, and diluted with ethyl acetate. The organic layer was washed with water and concentrated brine, and after drying over anhydrous sodium sulfate, the organic layer was concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethanol to give the title compound as a pale-yellow powder (110 mg, 73%).

melting point: 187-189°C

Example 191

6-fluoro-5-hydroxy-N- {[3-(methyloxy)phenyl]methyl}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

([0353] To a solution of 5,6-difluoro-N- {[3-(methyloxy)phenyl]methyl}-4-oxo-3,4-dihydroquinazoline-2-carboxamide (100 mg, 290 μmol) obtained in Example 113 in N,N-dimethylacetamide (2 mL) was added sodium hydride (60% in oil dispersion, 46 mg, 1.16 mmol), and the mixture was stirred at room temperature for 15 min. 2-Phenylethanol (53 mg, 430 μmol) was added, and the mixture was stirred with heating at room temperature for 3 hrs. The reaction mixture was adjusted to pH 3-4 with 1N hydrochloric acid, and diluted with ethyl acetate. The organic layer was washed with water and saturated brine, and, after drying over anhydrous sodium sulfate, the organic layer was concentrated under reduced pressure. The concentrated residue was purified by preparative HPLC. The obtained crude crystals were crystallized from ethanol to give the title compound as a pale-yellow powder (25 mg, 25%).

melting point: 201-203°C

Example 192

N- {[3-(methyloxy)phenyl]methyl}-4-oxo-5- (((4-(1H-tetrazol-5-yl)phenyl]methyl)oxy)-3,4-dihydroquinazoline-2-carboxamide

([0354] To a solution of 5- [[(4-cyanophenyl)methyl]oxy]-N- {[3-(methyloxy)phenyl]methyl}-4-oxo-3,4-dihydroquinazoline-2-carboxamide (130 mg, 295 μmol) obtained in Example 187 in DMF (5 mL) were added sodium azide (96 mg, 1.48 mmol) and ammonium chloride (79 mg, 1.48 mmol), and the mixture was stirred with heating at 100°C for 15 hrs. Sodium azide (96 mg, 1.48 mmol) and ammonium chloride (79 mg, 1.48 mmol) were added again, and the mixture was stirred with heating at 100°C for 15 hrs. After allowing to cool to room temperature, 1N hydrochloric acid and water were added to the reaction mixture, and the mixture was extracted with a mixed solvent of ethyl acetate-THF. The organic layer was washed with saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethanol to give the title compound as a pale-yellow powder (100 mg, 70%).

melting point: 201-203°C
Example 193

5-[(2-hydroxyethyl)oxy]-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0355] To a solution of N-[[3-(methyloxy)phenyl]methyl]-4-oxo-5-[(2-[[phenylmethyl]oxy]ethyl]oxy]-3,4-dihydroquiazoline-2-carboxamide (670 mg, 1.46 mmol) obtained in Example 172 in THF (14 mL)-methanol (6 mL) was added 10% palladium carbon (300 mg), and the mixture was stirred under a hydrogen atmosphere (1 atm) at room temperature for 18 hrs. Insoluble material was filtered off, and the reaction mixture was concentrated and dissolved in methanol (20 mL). 10% Palladium carbon (300 mg) was added again, under a hydrogen atmosphere (3 atm), and the mixture was stirred at room temperature for 4 hrs. Insoluble material was filtered off, the reaction mixture was concentrated, and the concentrated residue was crystallized from ethanol to give the title compound as a white powder (327 mg, 61%).

Example 194

5-[(2-hydroxyethyl)oxy]-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-1,2,3,4-tetrahydroquinazoline-2-carboxamide

[0356] In the same manner as in Example 193, the title compound was obtained as a pale-yellow amorphous form (62 mg, 11%).

Example 195

1-[2-[[[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy]ethyl)piperidine-4-carboxylic acid

[0357] To a suspension of 5-[(2-hydroxyethyl)oxy]-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (240 mg, 650 μmol) obtained in Example 193 in THF (6 mL) were added triethylamine (181 μL, 1.30 mmol) and p-toluenesulfonyl chloride (186 mg, 975 μmol), and the mixture was stirred at room temperature for 15 hrs. Triethylamine (362 μL, 2.60 mmol), p-toluenesulfonyl chloride (372 mg, 1.95 mmol) and DMF (2 mL) were added again, and the mixture was stirred at room temperature for 15 hrs. The reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography (50-83% ethyl acetate/hexane) to give 2-[[1-(dimethylamino)-2-[[3-(methyloxy)phenyl]methyl]-3,9-dioxo-1,2,3,9-tetrahydroimidazo[5,1-b]quinazolin-8-yl]oxy]ethyl-4-methylbenzenesulfonate as a white powder (164 mg, 44%). To a suspension (10 mL) of the above-mentioned compound (125 mg, 216 μmol) and ethyl isonipeotate (40 mg, 259 μmol) in acetonitrile was added 6N hydrochloric acid (0.8 mL). The mixture was stirred with heating at 80°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, water was added, and the mixture was washed with water and saturated brine. After drying over anhydrous sodium sulfate, the mixture was concentrated. The obtained concentrated residue was dissolved in acetic acid (4 mL). 6N hydrochloric acid (0.8 mL) was added, and the mixture was stirred with heating at 80°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, water was added, and the mixture was adjusted to pH 5 with 1N aqueous sodium hydroxide solution. The precipitated insoluble material was collected by filtration, and the solid was washed with water to give the title compound as a white powder (77 mg, 74% for 2 steps).

Example 196

[0358] A suspension (6 mL) of 5-[(2-[[4-aminophenyl]ethoxy]-6-fluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (100 mg, 216 μmol) obtained in Example 181 and [[(1,1-dimethyl)oxy] carbonyl]...
Example 197

5-\{(2-\{(4-\{([(4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl]amino)methyl\}phenyl)ethoxy\}-6-fluoro-N-\{(3-methoxy)phenyl\}methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

To a solution of 1,1-dimethylethyl \{\{(4-\{([(3-methoxy)phenyl]methyl}amino)carbonyl\}-4-oxo-3,4-dihydroquinazolin-5-yl\}oxy\}ethyl\}amino)sulfonyl\}carbamate (138 mg, 216 \(\mu\)mol) obtained in Example 196 in ethyl acetate (2 mL)-THF (1 mL) was added 4N hydrogen chloride-ethyl acetate (2 mL), and the mixture was stirred at room temperature for 15 hrs. The reaction mixture was concentrated under reduced pressure and crystallized from ethanol to give the title compound as a white powder (58 mg, 50%).

melting point: 204-206°C

Example 198

6-fluoro-N-\{(3-methoxy)phenyl\}methyl\}-4-oxo-5-\{(2-\{(4-5-oxo-1,5-dihydro-4H-1,2,4-triazol-4-yl)phenyl\}ethyl\}oxy\}-3,4-dihydroquinazoline-2-carboxamide

To a suspension of 5-\{(2-(4-aminophenyl)ethyl\}oxy\}-6-fluoro-N-\{(3-methoxy)phenyl\}methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide (100 mg, 216 \(\mu\)mol) obtained in Example 181, methyl carbazate (21 mg, 240 \(\mu\)mol) and trimethyl orthoformate (25 mg, 240 \(\mu\)mol) in methanol (3 mL) was added p-toluenesulfonic acid monohydrate (1.6 mg, 8.6 \(\mu\)mol), and the mixture was stirred with heating at 50°C for 4 hrs. Methyl carbazate (7 mg, 80 \(\mu\)mol) and trimethyl orthoformate (8 mg, 80 \(\mu\)mol) were added again, and the mixture was stirred with heating at 50°C for 2 hrs. The reaction mixture was cooled to room temperature, a solution of sodium methylate (44 mg, 810 \(\mu\)mol) in methanol (1 mL) was added, and the mixture was stirred with heating at 50°C for 5 hrs. The reaction mixture was cooled to room temperature, and adjusted to pH 3-4 with 1N hydrochloric acid. The mixture was extracted with a mixed solvent of ethyl acetate-THF. The organic layer was washed with water and saturated brine and, after drying over anhydrous sodium sulfate, the organic layer was concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethanol to give the title compound as a pale-yellow powder (99 mg, 86%). melting point: 196-198°C

Example 199

5-\{(2-\{(2,5-dioxoimidazolidin-1-yl)phenyl\}ethyl\}oxy\}-6-fluoro-N-\{(3-methoxy)phenyl\}methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

To a solution of ethyl isocyanatoacetate (46 mg, 350 \(\mu\)mol) in THF (3 mL) was added 5-\{(2-(4-aminophenyl)ethyl\}oxy\}-6-fluoro-N-\{(3-methoxy)phenyl\}methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide (150 mg, 324 \(\mu\)mol) obtained in Example 181, and the mixture was stirred at room temperature for 3 hrs. Ethyl isocyanatoacetate (15 mg, 110 \(\mu\)mol) was added again, and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated under reduced pressure, ethanol (4 mL), THF (3 mL) and 6N hydrochloric acid (4 mL) were added and the mixture was heated under reflux for 8 hrs. The reaction mixture was cooled to room temperature, the precipitated solid was collected by filtration, and the solid was washed with ethanol to give the title compound as a pale-yellow powder (155 mg, 88%). melting point: 181-183°C

Example 200

\{\{(4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl\}amino\}methyl\}phenyl\}oxylactic acid

The title compound was obtained in the same manner as in Example 203 from methyl \{\{(4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl\}amino\}methyl\}phenyl\}oxylactic acid.
roquinazolin-2-yl)carbonyl]amino]methyl[phenyl]oxy)acetate obtained in Example 228.
melting point: 223-224°C

Example 201

5-[[3-[[3-(4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl]amino]methyl[phenyl]oxy]pentanoic acid

[0363] The title compound was obtained in the same manner as in Example 203 from methyl 5-[[3-[[3-(4-oxo-3,4-
melting point: 182-183°C

Example 202

N-[[3-([2-(methylamino)-2-oxoethyl]oxy]phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0364] The title compound was obtained in the same manner as in Example 121 from methyl 4-[[3-([2-(methyl-
amino)-2-oxoethyl]oxy]phenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Example 200.
melting point: 201°C

Example 203

4-[[6-(methylxy)-4-oxo-3,4-dihydroquinazolin-2-yl]carbonyl]amino]methyl[benzoic acid

[0365] A mixture of methyl 4-[[6-(methylxy)-4-oxo-3,4-dihydroquinazolin-2-yl]carbonyl]amino]methyl[benzoate (250
mg, 0.681 mmol) obtained in Example 81, 4N aqueous sodium hydroxide solution (1 mL), THF (5 mL), MeOH (5 mL)
and water (5 mL) was stirred at 80°C for 30 min. The solvent was evaporated under reduced pressure, and the mixture
was extracted with a mixture of ethyl acetate-THF. The mixture was washed with 1N hydrochloric acid-saturated brine
and saturated brine. After drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure.
The obtained crude crystals were recrystallized from ethyl acetate to give the title compound (232 mg, 97%) as a white
powder.
melting point: 287-288°C

Example 204

3-[[6-(methylxy)-4-oxo-3,4-dihydroquinazolin-2-yl]carbonyl]amino]methyl[benzoic acid

[0366] The title compound was obtained in the same manner as in Example 203 from methyl 3-[[6-(methylxy)-4-
oxo-3,4-dihydroquinazolin-2-yl]carbonyl]amino]methyl[benzoate obtained in Example 80.
melting point: 290°C

Example 205

5-[[6-(methylxy)-4-oxo-3,4-dihydroquinazolin-2-yl]carbonyl]amino]methyl[phenyl]oxy]pentanoic acid

[0367] The title compound was obtained in the same manner as in Example 203 from methyl 5-[[6-(methylxy)-
melting point: 218°C

Example 206

(-)-6-fluoro-4-oxo-N-([2-[(tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl])methyl]-3,4-dihydroquinazoline-2-carboxamide

[0368] 6-Fluoro-4-oxo-N-([2-[(tetrahydrofuran-3-ylmethyl]oxy]pyridin-4-yl])methyl]-3,4-dihydroquinazoline-2-carboxa-
mide (250 mg) obtained in Example 59 was purified by preparative HPLC, the eluate showing a shorter retention time
was concentrated, added hexane and dried to give the title compound as a white powder (110 mg).
HPLC preparative conditions
Example 207

(+)-6-fluoro-4-oxo-N-\{(2-\{\text{tetrahydrofuran-3-ylmethyl}\}\text{oxy}\text{pyridin-4-yl}\}\text{methyl}\}-3,4-dihydroquinazoline-2-carboxamide

The title compound was obtained in the same manner as in Example 206 as a white powder (109 mg) from the eluate showing a longer retention time and using 6-fluoro-4-oxo-N-\{(2-\{\text{tetrahydrofuran-3-ylmethyl}\}\text{oxy}\text{pyridin-4-yl}\}\text{methyl}\}-3,4-dihydroquinazoline-2-carboxamide (250 mg) obtained in Example 59.

\[\alpha_d^{20}= -12.9^\circ\ (c = 0.498, \text{CHCl}_3)\]

Example 208

1-methyl-N-\{3-(\text{methyloxy}phenyl)\text{methyl}\}-4-oxo-1,4-dihydroquinazoline-2-carboxamide

The compound was synthesized in the same manner as in Example 1 from ethyl 1-methyl-4-oxo-1,4-dihydroquinazoline-2-carboxylate obtained by a method described in Chemical & Pharmaceutical Bulletin (1983), 31(7), 2234-43 etc.

melting point: 209-212°C

Example 209

N-\{3-(\text{methyloxy}phenyl)\text{methyl}\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

melting point: 179-182°C

Example 210

4-oxo-N-\{2-\{\text{tetrahydrofuran-3-ylmethyl}\}\text{oxy}\text{pyridin-4-yl}\text{methyl}\}-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

The compound was synthesized using \{(2-\{\text{tetrahydrofuran-3-ylmethyl}\}\text{oxy}\text{pyridin-4-yl}\}\text{methyl}\}\text{amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.}

melting point: 163-166°C

Example 211

N-\{4-bromo-3-(\text{methyloxy}phenyl)\text{methyl}\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

To a solution of N-\{3-(\text{methyloxy}phenyl)\text{methyl}\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide (281 mg, 892 \(\mu\)mol) obtained in Example 209 in chloroform (6 mL) was added \text{N-bromosuccinimide (159 mg, 892 \(\mu\)mol), and the mixture was stirred at room temperature for 2 hrs. \text{N-Bromosuccinimide (159 mg, 892 \(\mu\)mol) was added again, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was concentrated under reduced pressure and partitioned between ethyl acetate and water. The organic layer was washed with saturated brine, the organic layer was concentrated. The obtained concentrated residue was purified by preparative HPLC and the obtained crude crystals were crystallized from ethanol to give the title compound as a yellow powder (49 mg, 14%).}

melting point: 196-198°C
Example 212
5-methyl-N-\{[3-(methyloxy)phenyl]methyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0375] The compound was synthesized in the same manner as in Example 1 from ethyl 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate obtained by a method described in US 4054656. melting point: 148-151°C

Example 213
5-methyl-4-oxo-N-\{[2-\{(tetrahydrofuran-3-ylmethyl)oxy\}pyridin-4-yl]methyl\}-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0376] The compound was synthesized in the same manner as in Example 1 from ethyl 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate obtained by the method described in US 4054656, using \{[2-\{(tetrahydrofuran-3-ylmethyl)oxy\}pyridin-4-yl]methyl\}amine obtained in Reference Example 29 instead of 3-methoxybenzylamine. melting point: 171°C

Example 214
6-methyl-4-oxo-N-\{[2-\{(tetrahydrofuran-3-ylmethyl)oxy\}pyridin-4-yl]methyl\}-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0377] The compound was synthesized in the same manner as in Example 1 from ethyl 6-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate obtained by a method described in BE 859818 19780417 etc., using \{[2-\{(tetrahydrofuran-3-ylmethyl)oxy\}pyridin-4-yl]methyl\}amine obtained in Reference Example 29 instead of 3-methoxybenzylamine. melting point: 202-203°C

Example 215
5,6-dimethyl-4-oxo-N-\{[2-\{(tetrahydrofuran-3-ylmethyl)oxy\}pyridin-4-yl]methyl\}-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0378] The compound was synthesized in the same manner as in Example 1 from ethyl 5,6-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate obtained by a method described in US 4054656 19771018 etc., using \{[2-\{(tetrahydrofuran-3-ylmethyl)oxy\}pyridin-4-yl]methyl\}amine obtained in Reference Example 29 instead of 3-methoxybenzylamine. melting point: 183°C

Example 216
N-\{[3-(methyloxy)phenyl]methyl\}-4-oxo-5-\{[phenylmethyl]oxy\}methyl\}-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

Step 1
[0379] A mixture of ethyl 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate obtained by the method described in US 4054656 (1.00 g, 4.20 mmol), N-bromosuccinimide (784 mg, 4.41 mmol), 2,2'-azo-bis-isobutyronitrile (68.9 mg, 0.420 mmol) and carbon tetrachloride (30 mL) was refluxed under heating for 3 hrs. The solvent was evaporated under reduced pressure. The obtained residue was extracted with ethyl acetate, and the mixture was washed with water (3 times) and saturated brine and, after drying over anhydrous sodium sulfate, the solvent was evaporated. The obtained crude crystals were recrystallized from ethyl acetate to give ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (662 mg, 50%) as a pale-yellow powder. melting point: 176°C

Step 2
[0380] To a solution of benzyl alcohol (157 µL) in THF (10 mL) was gradually added 60% sodium hydride (116 mg, 3.03 mmol), and the mixture was stirred at room temperature for 10 min. Ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno
[2,3-d]pyrimidine-2-carboxylate (400 mg, 1.26 mmol) obtained in Step 1 was added at once, and the mixture was stirred at room temperature for 1 hr. The solvent was evaporated under reduced pressure and the residue was extracted with ethyl acetate. The mixture was washed with 1N hydrochloric acid and 1N hydrochloric acid-saturated brine and, after drying over anhydrous sodium sulfate, the solvent was evaporated. The residue was suspended in diethyl ether, filtrated, dried and suspended in THF (5 mL). Oxalyl chloride (550 μL, 6.31 mmol) and DMF (one drop) were added, and the mixture was stirred at room temperature for 2.5 hrs. The solvent was evaporated under reduced pressure. The obtained residue was dissolved in EtOH-THF (1:1) solution, and the mixture was stirred at room temperature for 12 hrs. The solvent was evaporated under reduced pressure and the residue was extracted with ethyl acetate, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (20-40% ethyl acetate/hexane) to give ethyl 4-oxo-5-[[[(phenylmethyl)oxy]methyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (68.7 mg, 16%) as a colorless powder. melting point: 155-156°C

Step 3

[0381] The title compound was obtained in the same manner as in Example 1 from ethyl 4-oxo-5-[[[(phenylmethyl)oxy]methyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate obtained in Step 2. melting point: 145°C

Example 217

4-[[2-[((3-(methyloxy)phenyl)methyl]amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy]methyl]benzoic acid

[0382] To a solution of methyl 4-(hydroxymethyl)benzoate (2.88g, 17.3 mmol) in THF (35 mL) was gradually added 60% sodium hydride (664 mg, 17.3 mmol) at 0°C, and the mixture was stirred at the same temperature for 30 min. Ethyl 5-(Bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (1.69 g, 5.33 mmol) obtained in Example 216, Step 1 was added at once, and the mixture was stirred at room temperature for 12 hrs. The solvent was evaporated under reduced pressure and the residue was extracted with ethyl acetate, the mixture was washed with 1N hydrochloric acid and saturated brine and, after drying over anhydrous sodium sulfate, the solvent was evaporated. The residue was suspended in diethyl ether, filtrated, dried and 690 mg (1.84 mmol) was suspended in THF (7 mL). Oxalyl chloride (804 μL, 9.22 mmol) and DMF (one drop) were added, and the mixture was stirred at room temperature for 5 hrs. The solvent was evaporated under reduced pressure. The obtained residue was dissolved in an EtOH-THF (1:1, 5 mL) solution, and the mixture was stirred at room temperature for 12 hrs. The solvent was evaporated under reduced pressure and the residue was extracted with ethyl acetate, washed with saturated aqueous sodium hydrogen carbonate solution (twice), 1N hydrochloric acid and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was suspended in diethyl ether, filtrated, dried and stirred in EtOH (12 mL) with 1-[3-(methyloxy)phenyl]methanamine (707 μL, 5.53 mmol) at 80°C for 12 hrs. The solvent was evaporated under reduced pressure, the residue was extracted with ethyl acetate, washed with 0.1N hydrochloric acid (twice), water and saturated brine. After drying over anhydrous sodium sulfate, the solvent was evaporated. The obtained crude crystals were recrystallized from ethyl acetate to give the title compound (348 mg, 39%) as a white powder. melting point: 229-230°C

1H-NMR (300MHz, DMSO-d6)
δ: ppm 3.73 (3 H, s), 4.41 (2 H, d, J=6.0 Hz), 4.74 (2 H, s), 4.89 (2 H, s), 6.82 (1 H, dd, J=8.5, 1.9 Hz), 6.86 - 6.97 (2 H, m), 7.24 (1 H, t, J=8.1 Hz), 7.51 (2 H, d, J=8.1 Hz), 7.63 (1 H, s), 7.93 (2 H, d, J=8.3 Hz), 9.66 (1 H, t, J=6.4 Hz), 12.51 (1 H, s), 12.87 (1 H, s)

Example 218

[0383] A mixture of 4-[[4-oxo-2-[[[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl]methyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy]methyl]benzoic acid (100 mg, 0.182 mmol) obtained in Example 220, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (46.9 mg, 0.273 mmol), N,N-dimethylpyridine-4-amine (2.2 mg,
0.018 mmol, EtOH (100 μL, 1.72 mmol) and THF (4 mL) was stirred at room temperature for 12 hrs. The solvent was evaporated under reduced pressure, and the mixture was extracted with a mixture of ethyl acetate-THF, and washed with 0.1N hydrochloric acid (twice) and saturated brine and, after drying over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure. The obtained crude crystals were recrystallized from ethyl acetate to give the title compound (78 mg, 74%) as a white powder. melting point: 225°C

Example 219

4-oxo-5-{{[(phenylmethyl)oxy]methyl}N-{{2-[{(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl}methyl}-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0384] The title compound was synthesized in the same manner as in Example 1 from ethyl 4-oxo-5-{{[(phenylmethyl)oxy]methyl}-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate obtained in Example 216, Step 2, using {{2-{(tetrahydrofuran-3-ylmethyl)oxy}pyridin-4-yl}methyl}amine obtained in Reference Example 29 instead of 3-methoxybenzylamine. melting point: 141-142°C

Example 220

4-{{[[4-oxo-2-{{[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl}methyl]amino}carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl}methyl}benzoic acid

[0385] The compound was synthesized in the same manner as in Example 217, using {{2-{(tetrahydrofuran-3-ylmethyl)oxy}pyridin-4-yl}methyl}amine obtained in Reference Example 29, instead of 1-{[3-(methylxy)phenyl]methanamine. melting point: 209°C

[0386] Example 221 and Example 222 were synthesized in the same manner as in Example 1 from ethyl 4-oxo-3,4-dihydrothieno[3,2-d]pyrimidine-2-carboxylate obtained in Reference Example 27.

Example 221

N-{{[3-(methylxy)phenyl]methyl}-4-oxo-3,4-dihydrothieno[3,2-d]pyrimidine-2-carboxamide

[0387] melting point: 201-202°C

Example 222

4-oxo-N-{{[2-{(tetrahydrofuran-3-ylmethyl)oxy}pyridin-4-yl}methyl]-3,4-dihydrothieno[3,2-d]pyrimidine-2-carboxamide

[0388] The compound was synthesized using {{2-{(tetrahydrofuran-3-ylmethyl)oxy}pyridin-4-yl}methyl}amine obtained in Reference Example 29 instead of 3-methoxybenzylamine. melting point: 181-183°C

Example 223

N-{{[3-(methylxy)phenyl]methyl}-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidine-2-carboxamide

[0389] The compound was synthesized in the same manner as in Example 1 from ethyl 4-oxo-3,4-dihydropyrido[2,3-d]pyrimidine-2-carboxylate obtained in Reference Example 24. melting point: 181-183°C

Example 224

N-{{[3-(methylxy)phenyl]methyl}-4-oxo-3,4-dihydropyrido[3,4-d]pyrimidine-2-carboxamide

[0390] The compound was synthesized in the same manner as in Example 1 from ethyl 4-oxo-3,4-dihydropyrido[3,4-d]pyrimidine-2-carboxylate obtained in Reference Example 25. melting point: 231-233°C
Example 225

N-[(3-(methyloxy)phenyl)methyl]-1-oxo-1,2-dihydroisoquinoline-3-carboxamide

[0391] A solution of 1-oxo-1,2-dihydroisoquinoline-3-carboxylic acid (105 mg) obtained in Reference Example'99, 3-methoxybenzylamine (98 mg), 1-hydroxy-1-H-benzotriazole monohydrate (95 mg) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (130 mg) in DMF (5 mL) was stirred at room temperature for 1 day. 10% Aqueous citric acid solution was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, aqueous sodium hydrogen carbonate and saturated brine, dried and concentrated. The obtained crude crystals were washed with ethyl acetate to give the title compound (39 mg).

melting point: 206-210°C

Example 226

1-oxo-N-((2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methyl)-1,2-dihydroisoquinolin-3-carboxamide

[0392] The compound was synthesized in the same manner as in Example 225, using ((2-[(tetrahydrofuran-3-ylmethyl)oxy]pyridin-4-yl)methyl)amine obtained in Reference Example 29 instead of 3-methoxybenzylamine.

melting point: 208-210°C

Example 227

N-[(3-aminophenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0393] The title compound was obtained in the same manner as in Example 1 using 3-aminobenzylamine instead of 3-methoxybenzylamine.

melting point: 229-238°C

Example 228

Methyl [(3-([(4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl]amino)methyl]phenyl)oxy]acetate

[0394] The title compound was obtained in the same manner as in Example 1 using methyl [(3-(aminomethyl)phenyl)oxy]acetate hydrochloride obtained in Reference Example 89 instead of 3-methoxybenzylamine.

melting point: 154°C

[0395] The structural formulas of compounds synthesized in Examples 1-228 are described in the following.

| Table 1 |
|------------------|--------|--------|--------|
| Example No. | Ar | R1 | R2 |
| 1 | Me | H | H |
| 2 | Phenyl | H | H |
| 3 | Phenyl | H | H |

...
Example No.	Ar	R1	R2	R3	R4
4 | | H | H | H | H
5 | | H | H | H | H
6 | | H | H | H | H
7 | | H | H | H | H
8 | | H | H | H | H
9 | | H | H | H | H
10 | | H | H | H | H
11 | | H | H | H | H
12 | | H | H | H | H
13 | | H | H | H | H
14 | | H | H | H | H
15 | | H | H | H | H
16 | | H | H | H | H

[Table 2]
(continued)

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

(Table 3)

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 4

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Example No.</td>
<td>Ar</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>41</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>42</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

(Table 5)

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>44</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>45</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>46</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>47</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>48</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>49</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>50</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>51</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>52</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>53</td>
<td>![Molecule Image]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 6

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 7

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
(continued)

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

[Table 8]

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
Example No. | **Ar** | **R1** | **R2** | **R3** | **R4**
---|---|---|---|---|---
81 | ![Structure 1](image) | H | OMe | H | H
82 | ![Structure 2](image) | H | OMe | H | H
83 | ![Structure 3](image) | H | Cl | H | H
84 | ![Structure 4](image) | H | Cl | H | H
85 | ![Structure 5](image) | H | Cl | H | H
86 | ![Structure 6](image) | H | NO₂ | H | H
87 | ![Structure 7](image) | H | Me | H | H
88 | ![Structure 8](image) | H | Me | H | H
89 | ![Structure 9](image) | H | Me | H | H
90 | ![Structure 10](image) | H | CF₃ | H | H
91 | ![Structure 11](image) | H | CF₃ | H | H
92 | ![Structure 12](image) | H | OCF₃ | H | H
93 | ![Structure 13](image) | H | OCF₃ | H | H
94 | ![Structure 14](image) | OMe | H | H | H

[Table 9]
<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td></td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>H</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>H</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OMe</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OMe</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>H</td>
<td>NH₂</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>H</td>
<td>NH₂</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>H</td>
<td>OCH₂Ph</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>H</td>
<td>OCH₂Ph</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>H</td>
<td>I</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>H</td>
<td>I</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 11

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td></td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>H</td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>H</td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>H</td>
<td></td>
<td>CH₂OMe</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 12

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td></td>
<td>H</td>
<td>CN</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>H</td>
<td>CN</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 13

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Example No.</td>
<td>Ar</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td>H</td>
<td>NHCOEt</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>H</td>
<td>NHCOMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>H</td>
<td>NHMs</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td>H</td>
<td>NHMs</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>H</td>
<td>NHCOCH₂OPh</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>H</td>
<td>OEt</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>H</td>
<td>CN</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td>H</td>
<td>CN</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>148</td>
<td></td>
<td>H</td>
<td>CONH₂</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Example No.</td>
<td>Ar</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>H</td>
<td>Ph</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>152</td>
<td></td>
<td>H</td>
<td></td>
<td>OCSNMe₂</td>
<td>H</td>
</tr>
</tbody>
</table>

[Table 16]

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>153</td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td>SCONMe₂</td>
</tr>
<tr>
<td>154</td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td>SH</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td>SMe</td>
</tr>
<tr>
<td>156</td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td>SO₂Me</td>
</tr>
<tr>
<td>157</td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td>OCH₂COP</td>
</tr>
<tr>
<td>158</td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>OCH₂Ph</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>OCH₂CH₂CH₂Ph</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>SCH₂CH₂Ph</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td></td>
<td></td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 17

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>164</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 18

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>168</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>170</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>171</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>172</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>173</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 19

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>176</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>178</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>179</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>181</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 20

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>186</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 21

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>187</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>188</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>189</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>191</td>
<td></td>
<td></td>
<td>OH</td>
<td>F</td>
<td>H</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>193</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>196</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 22

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>197</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>198</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>199</td>
<td></td>
<td></td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Example No.</td>
<td>Ar</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>202</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>203</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>204</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>205</td>
<td></td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>206</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>207</td>
<td></td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

[Table 23]

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Compound structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
</tr>
</tbody>
</table>
Example No. | Compound structure
--- | ---
5 | ![Chemical Structure](image)
10 | ![Chemical Structure](image)
15 | ![Chemical Structure](image)
20 | ![Chemical Structure](image)

Table 24

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>209</td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>211</td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>212</td>
<td></td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>213</td>
<td></td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>214</td>
<td></td>
<td>H</td>
<td>Me</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td>Me</td>
<td>Me</td>
</tr>
</tbody>
</table>
Example No. Ar R1 R2

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>216</td>
<td></td>
<td>CH₂OCH₂Ph</td>
<td>H</td>
</tr>
<tr>
<td>217</td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>218</td>
<td></td>
<td></td>
<td>H</td>
</tr>
</tbody>
</table>

Table 25

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
<td></td>
<td>CH₂OCH₂Ph</td>
<td>H</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
<td>H</td>
</tr>
</tbody>
</table>

Table 26

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ar</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>221</td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>222</td>
<td></td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 27

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Compound structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>223</td>
<td></td>
</tr>
</tbody>
</table>
Example 229

6-cyano-N-[(2-(methyloxy)pyridin-4-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0396]

Example 230

6-cyano-N-[(2-(ethyloxy)pyridin-4-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0398]
The title compound was obtained by a method similar to that of Example 1 using 2-(ethyloxy)pyridin-4-yl methylamine obtained in Reference Example 69 instead of 3-methoxybenzylamine.

Example 231

6-cyano-4-oxo-N-({2-[(3-thienylmethyl)oxy]pyridin-4-yl}methyl)-3,4-dihydroquinazoline-2-carboxamide

- melting point: 230-231°C

The title compound was obtained by a method similar to that of Example 1 using {2-[(3-thienylmethyl)oxy]pyridin-4-yl}methylamine obtained in Reference Example 39 instead of 3-methoxybenzylamine.

Example 232

6-cyano-4-oxo-N-{{2-[(3-[(phenylmethyl)oxy]propyl)oxy]pyridin-4-yl}methyl}-3,4-dihydroquinazoline-2-carboxamide

- melting point: 244-246°C

The title compound was obtained by a method similar to that of Example 1 using {2-[(3-[(phenylmethyl)oxy] propyl)oxy]pyridin-4-yl}methylamine obtained in Reference Example 106 instead of 3-methoxybenzylamine.

Example 233

4-oxo-N-{{2-[(2-[(phenylmethyl)oxy]ethoxy)pyridin-4-yl]methyl}-3,4-dihydroquinazoline-2-carboxamide

- melting point: 145-146°C
EP 1 740 551 B9

[0405]

\[
\text{[2-\{2-\{(\text{Phenylmethyl})\text{oxy}\text{ethyl})\text{oxy}\text{pyridin-4-yl}\text{methyl}\}\text{amine} \} \text{was obtained as a yellow oil by a method similar to that of Reference Example 31 from 2-\{2-\{(\text{phenylmethyl})\text{oxy}\text{ethyl})\text{oxy}\text{pyridine-4-carbonitrile synthesized in Reference Example 107. The title compound was obtained by a method similar to that of Example 1 using \{2-\{2-\{(\text{phenylmethyl})\text{oxy}\text{ethyl})\text{oxy}\text{pyridin-4-yl}\text{methyl}\}\text{amine instead of 3-methoxybenzylamine. melting point: 171-172°C}}
\]

Example 234

6-cyano-N-\{5-(\text{methyloxy})\text{pyridin-3-yl}\text{methyl}\}-4-\text{oxo}-3,4-\text{dihydroquinazoline-2-carboxamide}

[0406]

[0407]

\[
\text{[5-(\text{Methyloxy})\text{pyridin-3-yl}\text{methyl}\}\text{amine was obtained as a green oil by a method similar to that of Reference Example 29 from 5-(\text{methyloxy})\text{pyridine-3-carbonitrile synthesized in Reference Example 104. The title compound was obtained by a method similar to that of Example 1 using \{5-(\text{methyloxy})\text{pyridin-3-yl}\text{methyl}\}\text{amine instead of 3-methoxybenzylamine. melting point: 267-268°C}}
\]

Example 235

6-cyano-N-\{3-(\text{ethyloxy})\text{phenyl}\text{methyl}\}-4-\text{oxo}-3,4-\text{dihydroquinazoline-2-carboxamide}

[0408]

[0409] The title compound was obtained by a method similar to that of Example 1 using 1\{3-(\text{ethyloxy})\text{phenyl}\text{methyl}\}\text{amine hydrochloride obtained in Reference Example 87 instead of 3-methoxybenzylamine. melting point: 216-218°C}

Example 236

6-cyano-N-\{3-(\text{difluoromethyl})\text{oxy}\text{phenyl}\text{methyl}\}-4-\text{oxo}-3,4-\text{dihydroquinazoline-2-carboxamide}

[0410]
The title compound was obtained by a method similar to that of Example 1 using ([3-[(difluoromethyl)oxy]phenyl]methyl)amine instead of 3-methoxybenzylamine.

Example 237

N-([3-[(difluoromethyl)oxy]phenyl]methyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The title compound was obtained by a method similar to that of Example 1 using ([3-[(difluoromethyl)oxy]phenyl]methyl)amine instead of 3-methoxybenzylamine.

Example 238

Ethyl 4-[[4-oxo-3,4-dihydroquinazolin-2-yl]carbonyl]amino)methyl]phenyl]oxy]butanoate

The title compound was obtained by a method similar to that of Example 1 using ethyl 4-[[3-(aminomethyl)phenyl]oxy]butanoate hydrochloride obtained in Reference Example 109 instead of 3-methoxybenzylamine.

Example 239

4-[[4-oxo-3,4-dihydroquinazolin-2-yl]carbonyl]amino)methyl]phenyl]oxy]butanoic acid
[0417] A mixture of ethyl 4-[[3-[(4-oxo-3,4-dihydroquinazolin-2-yl)carbonyl]amino)methyl]phenyl]oxy]butanoate (525 mg, 1.28 mmol) obtained in Example 238, 4N aqueous sodium hydroxide solution (1.6 mL), THF (10 mL), MeOH (10 mL) and water (10 mL) was stirred at 100°C for 2 hrs. The mixture was allowed to cool to room temperature and the solvent was evaporated under reduced pressure. Water and 1N hydrochloric acid (6.41 mL) were added to the concentrated residue and the resulting precipitate was collected by filtration, washed with water and dried. The obtained crude crystals were recrystallized from ethanol to give the title compound (339 mg, 69%) as a white powder.
melting point: 259-260°C

Example 240

N-(3-methoxybenzyl)-7-oxo-2-(3-phenylpropyl)-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidine-5-carboxamide

[0418]

[0419] A solution of ethyl 7-oxo-2-(3-phenylpropyl)-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidine-5-carboxylate (102 mg, 0.313 mmol) obtained in Reference Example 113 and 3-methoxybenzylamine (90 mg, 0.656 mmol) in ethanol (5 ml) was refluxed under heating overnight. After allowing to cool, the solvent was evaporated under reduced pressure, 10% aqueous citric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried and concentrated. The obtained crude crystals were recrystallized from ethanol-diisopropyl ether to give the title compound (103 mg).

1H-NMR (300 MHz, CDCl3) δ: 2.30-2.41 (2H, m), 2.64 (2H, t, J = 7.4 Hz), 3.89 (3H, s), 4.35 (2H, t, J = 7.0 Hz), 4.58 (2H, d, J = 6.3 Hz), 6.84-6.92 (1H, m), 6.95 (1H, d, J = 8.0 Hz), 7.06 (1H, dd, J = 10.9, 8.4 Hz), 7.16 (2H, d, J = 7.4 Hz), 7.21-7.33 (3H, m), 7.83-7.94 (2H, m), 10.01 (1H, s).
melting point: 122-124°C

Example 241

N-(4-fluoro-3-methoxybenzyl)-7-oxo-2-(3-phenylpropyl)-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidine-5-carboxamide

[0420]

[0421] A solution of ethyl 7-oxo-2-(3-phenylpropyl)-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidine-5-carboxylate (101 mg, 0.309 mmol) obtained in Reference Example 113, 4-fluoro-3-methoxybenzylamine hydrochloride (synthesized by the method described in WO03/029224 A1; 156 mg, 0.814 mmol) and triethylamine (0.13 ml, 0.933 mmol) in ethanol (5 ml) was refluxed under heating overnight. After allowing to cool, the solvent was evaporated under reduced pressure, 10% aqueous citric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried and concentrated. The obtained crude crystals were recrystallized from ethanol-diisopropyl ether to give the title compound (103 mg).

1H-NMR (300 MHz, CDCl3) δ: 2.30-2.41 (2H, m), 2.64 (2H, t, J = 7.4 Hz), 3.89 (3H, s), 4.35 (2H, t, J = 7.0 Hz), 4.58 (2H, d, J = 6.3 Hz), 6.84-6.92 (1H, m), 6.95 (1H, d, J = 8.0 Hz), 7.06 (1H, dd, J = 10.9, 8.4 Hz), 7.16 (2H, d, J = 7.4 Hz), 7.21-7.33 (3H, m), 7.83-7.94 (2H, m), 10.01 (1H, s).
Example 242

4-oxo-N-(piperidin-3-ylmethyl)-3,4-dihydroquinazoline-2-carboxamide

[0422]

A solution of ethyl 4-oxo-3,4-dihydroquinazoline-2-carboxylate (2.19 g, 10.0 mmol) and 1-piperidin-3-ylmethanamine (1.74 g, 15.2 mmol) in DMF (10 ml) was stirred at 100°C for 3 hrs. After wallowing to cool, ethyl acetate was added to the reaction mixture, and the precipitate was collected by filtration. The collected solid was washed with Et₂O to give the title compound (2.612 g).

Example 243

N-(3-methoxybenzyl)-7-oxo-1-(3-phenylpropyl)-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidine-5-carboxamide

[0424]

Example 244

N-(4-fluoro-3-methoxybenzyl)-7-oxo-1-(3-phenylpropyl)-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidine-5-carboxamide

[0426]
[0427] A solution of ethyl 7-oxo-1-(3-phenylpropyl)-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidine-5-carboxylate (203 mg, 0.622 mmol) obtained in Reference Example 115, 4-fluoro-3-methoxybenzylamine hydrochloride (synthesized by the method described in WO03/029224 A1; 237 mg, 1.24 mmol) and triethylamine (0.17 ml, 1.22 mmol) in ethanol (10 ml) was refluxed under heating for 24 hrs. After allowing to cool, water was added. The precipitated crude crystals were collected by filtration, and washed with water, ethanol and diisopropyl ether to give the title compound (199 mg).

1^H-NMR (300 MHz, DMSO-d$_6$) δ: 2.07-2.20 (2H, m), 2.52-2.58 (2H, m), 3.81 (3H, s), 4.40 (2H, d, $J = 6.2$ Hz), 4.59 (2H, t, $J = 6.8$ Hz), 6.86 (1H, s), 7.12-7.19 (5H, m), 7.21-7.27 (2H, m), 8.11 (1H, s), 9.57 (1H, t, $J = 6.4$ Hz), 12.24 (1H, s).

Anal. Calcd for C$_{23}$H$_{22}$N$_5$O$_3$F: C, 63.44; H, 5.09; N, 16.08. Found: C, 63.12; H, 5.07; N, 16.13.

melting point: 155-157°C

Example 245

ethyl 4-[[2-[[3-methoxybenzyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methoxy]benzoate

[0428]

[0429] A solution of ethyl 5-[[4-(ethoxycarbonyl)phenoxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.203 g, 0.504 mmol) obtained in Reference Example 116 and 3-methoxybenzylamine (0.151 g, 1.10 mmol) in ethanol (5 ml) was refluxed under heating for 6 hrs. After allowing to cool, the precipitated crude crystals were collected by filtration, and washed with ethyl acetate and diethyl ether to give the title compound (169 mg).

1^H-NMR (300 MHz, DMSO-d$_6$) δ: 1.31 (3H, t, $J = 7.1$ Hz), 3.74 (3H, s), 4.28 (2H, q, $J = 7.0$ Hz), 4.43 (2H, d, $J = 6.4$ Hz), 5.48 (2H, s), 6.80-6.87 (1H, m), 6.88-6.94 (2H, m), 7.13 (2H, d, $J = 9.0$ Hz), 7.24 (1H, t, $J = 8.1$ Hz), 7.74 (1H, s), 7.93 (2H, d, $J = 8.9$ Hz), 9.68 (1H, t, $J = 6.3$ Hz), 12.56 (1H, s).

melting point: 230-232°C

Example 246

4-[[2-[[3-methoxybenzyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methoxy]benzoic acid

[0430]
To a solution of ethyl 4-[[2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy]benzoate (152 mg, 0.308 mmol) obtained in Reference Example 245 in THF (8 ml) and methanol (4 ml) was added 4N aqueous sodium hydroxide solution and the mixture was refluxed under heating for 6 hrs. After allowing to cool, 10% aqueous citric acid solution was added, and the solvent was evaporated under reduced pressure. The obtained crude crystals were washed with water, ethanol and diethyl ether to give the title compound (143 mg).

Example 247

ethyl 4-[[2-[[4-fluoro-3-methoxybenzyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methoxy]benzoate

A solution of ethyl 5-[[4-(ethoxycarbonyl)phenoxy][methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.301 g, 0.75 mmol) obtained in Reference Example 116, 4-fluoro-3-methoxybenzylamine hydrochloride (0.289 g, 1.5 mmol) and triethylamine (0.32 ml, 2.3 mmol) in ethanol (15 ml) was refluxed under heating for 6 hrs. After allowing to cool, the solvent was evaporated under reduced pressure. The obtained crude crystals were collected by filtration, and washed with water, ethanol and diethyl ether to give the title compound (232 mg).

Example 248

4-[[2-[[4-fluoro-3-methoxybenzyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methoxy]benzole acid
To a solution of ethyl 4-[(2-[[4-fluoro-3-(methyloxy)phenyl]methyl]amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy]benzoate (160 mg, 0.313 mmol) obtained in Example 247 in THF (30 ml) and methanol (10 ml) was added 2N aqueous sodium hydroxide solution (0.5 ml) and the mixture was refluxed under heating for 7 hrs. After allowing to cool, 1N hydrochloric acid was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated. The obtained crude crystals were recrystallized from THF-diisopropyl ether to give the title compound (64 mg).

melting point: 276-281°C

Example 249

methyl 4-[[2-(5-[[3-methoxybenzyl]amino]carbonyl]-7-oxo-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-1-yl)ethoxy]benzoate

[0436]

A solution of ethyl 1-[2-[[4-(methyloxy)carbonyl]phenyl]oxy]ethyl]-7-oxo-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidine-5-carboxylate (0.081 g, 0.21 mmol) obtained in Reference Example 118 and 3-methoxybenzylamine (0.073 g, 0.53 mmol) in ethanol (10 ml) was refluxed under heating for 24 hrs. After allowing to cool, 10% aqueous citric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried and concentrated. The obtained crude crystals were recrystallized from ethyl acetate-hexane to give the title compound (107 mg).

1H-NMR (300 MHz, CDCl3): δ: 3.81 (3H, s), 3.86 (3H, s), 4.51 (2H, t, J = 5.5 Hz), 4.61 (2H, d, J = 6.2 Hz), 5.08 (2H, t, J = 5.5 Hz), 6.86 (4H, d, J = 10.6 Hz), 6.93 (1H, d, J = 7.9 Hz), 7.27-7.32 (1H, m), 7.94 (4H, d, J = 10.7 Hz), 10.20 (1H, s).

melting point: 174-177°C

Example 250

4-[[2-(5-[[3-methoxybenzyl]amino]carbonyl]-7-oxo-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-1-yl)ethoxy]benzoic acid

[0438]
To a solution of methyl 4-[(2-{5-[(3-(methyloxy)phenyl)methyl]amino}carbonyl)-7-oxo-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-1-yl]ethoxy]benzoate (89 mg, 0.186 mmol) obtained in Example 249 in THF (6 ml) and methanol (3 ml) was added 2N aqueous sodium hydroxide solution (0.5 ml), and the mixture was refluxed under heating overnight. After allowing to cool, 10% aqueous citric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, and concentrated. The obtained crude crystals were recrystallized from THF-diisopropyl ether to give the title compound (86 mg).

1H-NMR (300 MHz, DMSO-d6) δ: 3.73 (3H, s), 4.41 (2H, d, J = 6.4 Hz), 4.53 (2H, t, J = 5.2 Hz), 4.99 (2H, t, J = 5.2 Hz), 6.79 - 6.86 (1H, m), 6.87 - 6.97 (4H, m), 7.23 (1H, t, J = 8.1 Hz), 7.83 (2H, d, J = 8.9 Hz), 8.16 (1H, s), 9.57 (1H, p, J = 6.3 Hz), 12.34 (1H, s), 12.62 (1H, s).

Anal. Calcd for C23H21N5O6·0.5H2O: C, 58.47; H, 4.69; N, 14.82. Found: C, 58.79; H, 4.49; N, 14.62.

Example 251

ethyl (2-{[(3-methoxybenzyl)amino]carbonyl}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)acetate

A solution of ethyl 5-(2-ethoxy-2-oxoethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.805 g, 2.59 mmol) obtained in Reference Example 119 and 3-methoxybenzylamine (0.717 g, 5.19 mmol) in ethanol (30 ml) was refluxed under heating for 6 hrs. After allowing to cool, diethyl ether was added, and the precipitated crude crystals were collected by filtration and washed with diethyl ether to give the title compound (0.849 g).

1H-NMR (300 MHz, DMSO-d6) δ: 1.18 (3H, t, J = 7.2 Hz), 3.73 (3H, s), 3.97 (2H, s), 4.07 (2H, q, J = 7.1 Hz), 4.42 (2H, d, J = 6.4 Hz), 6.79-6.85 (1H, m), 6.88-6.92 (2H, m), 7.24 (1H, t, J = 8.1 Hz), 7.51 (1H, s), 9.64 (1H, p, J = 6.4 Hz), 12.38 (1H, s).

Anal. Calcd for C19H19N3O5S: C, 56.85; H, 4.77; N, 10.47. Found: C, 56.84; H, 4.71; N, 10.44.

Example 252

methyl 4-{[2-{[(4-fluoro-3-methoxybenzyl)amino]carbonyl}-7-oxo-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-1-yl]ethoxy}benzoate

A solution of ethyl 5-(2-ethoxy-2-oxoethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.805 g, 2.59 mmol) obtained in Reference Example 119 and 3-methoxybenzylamine (0.717 g, 5.19 mmol) in ethanol (30 ml) was refluxed under heating for 6 hrs. After allowing to cool, diethyl ether was added, and the precipitated crude crystals were collected by filtration and washed with diethyl ether to give the title compound (0.849 g).

1H-NMR (300 MHz, DMSO-d6) δ: 1.18 (3H, t, J = 7.2 Hz), 3.73 (3H, s), 3.97 (2H, s), 4.07 (2H, q, J = 7.1 Hz), 4.42 (2H, d, J = 6.4 Hz), 6.79-6.85 (1H, m), 6.88-6.92 (2H, m), 7.24 (1H, t, J = 8.1 Hz), 7.51 (1H, s), 9.64 (1H, p, J = 6.4 Hz), 12.38 (1H, s).

Anal. Calcd for C19H19N3O5S: C, 56.85; H, 4.77; N, 10.47. Found: C, 56.84; H, 4.71; N, 10.44.

Example 252
A solution of ethyl 1-{2-[(4-(methyloxy)carbonyl)phenyl]oxy}ethyl]-7-oxo-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidine-5-carboxylate (0.205 g, 0.531 mmol) obtained in Reference Example 118, 4-fluoro-3-methoxybenzylamine hydrochloride (synthesized by the method described in WO03/029224 A1; 0.208 g, 1.09 mmol) and triethylamine (0.16 ml, 1.17 mmol) in ethanol (15 ml) was refluxed under heating for 14 hrs. After allowing to cool, the solvent was evaporated under reduced pressure. The obtained crude crystals were collected by filtration, and washed with water and diethyl ether to give the title compound (217 mg).

1H-NMR (300 MHz, DMSO-d6) δ: 3.79 (3H, s), 3.82 (3H, s), 4.41 (2H, d, J = 6.4 Hz), 4.54 (2H, t, J = 5.1 Hz), 4.99 (2H, t, J = 5.1 Hz), 6.84-6.92 (1H, m, J = 8.2, 4.5, 1.9 Hz), 6.96 (2H, d, J = 8.9 Hz), 7.09-7.22 (2H, m), 7.85 (2H, d, J = 8.7 Hz), 8.15 (1H, s), 9.58 (1H, t, J = 6.4 Hz), 12.38 (1H, s). Anal. Calcd for C24H22N5O6F·0.25H2O: C, 57.66; H, 4.54; N, 14.01. Found: C, 57.62; H, 4.51; N, 14.16.

Example 253

4-[2-[(4-fluoro-3-methoxybenzyl)carbonyl]-7-oxo-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-1-yl]ethoxy]benzoic acid

[0444]

To a solution of methyl 4-[2-[(4-fluoro-3-methoxybenzyl)amino]carbonyl]-7-oxo-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-1-yl]ethoxy]benzoate (183 mg, 0.369 mmol) obtained in Example 252 in THF (12 ml) and methanol (6 ml) was added 2N aqueous sodium hydroxide solution (1.0 ml), and the mixture was refluxed under heating overnight. After allowing to cool, 10% aqueous citric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated. The obtained crude crystals were recrystallized from THF-methanol to give the title compound (129 mg). 1H-NMR (300 MHz, DMSO-d6) δ: 3.82 (3H, s), 4.41 (2H, d, J = 6.2 Hz), 4.53 (2H, t, J = 5.1 Hz), 4.99 (2H, t, J = 5.1 Hz), 6.84-6.91 (1H, m, J = 6.2 Hz), 6.94 (2H, d, J = 8.9 Hz), 7.09-7.20 (2H, m), 7.83 (2H, d, J = 8.9 Hz), 8.16 (1H, s), 9.59 (1H, t, J = 6.2 Hz), 12.27-12.70 (2H, m). Melting point: 228-230°C

Example 254

5-(2-hydroxyethyl)-N-(3-methoxybenzyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0446]
To a solution of ethyl \(\{2-\{[3-(methoxy)phenyl]methyl\}amino\}carbonyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl\)acetate (0.597 g, 1.5 mmol) obtained in Example 251 in THF (15 ml) was added lithium aluminum hydride (0.055 g, 1.4 mmol) at 0°C. The reaction mixture was stirred at 0°C for 1 hr and water was added carefully. The insoluble material was filtered off, and the filtrate was concentrated under reduced pressure. The obtained solid was washed with a mixed solution of ethyl acetate/hexane (1/1) to give the title compound (0.289 g) as an amorphous solid.

\[\delta: 3.08 (2H, t, J = 6.5 Hz), 3.65 (2H, s), 3.73 (3H, s), 4.41 (2H, d, J = 6.2 Hz), 5.19 (1H, s), 6.78-6.86 (1H, m), 6.86-6.95 (2H, m), 7.12 (1H, s), 7.23 (1H, t, J = 8.1 Hz), 9.35 (1H, s).\]

Example 255

3-methoxybenzyl 5-{2-[(methylsulfonyl)oxy]ethyl}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a solution of 5-(2-hydroxyethyl)-N-\{[3-(methyloxy)phenyl]methyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide (319 mg, 0.89 mmol) obtained in Example 254 and triethylamine (0.37 ml, 2.7 mmol) in N,N-dimethylacetamide (8 ml) was added methanesulfonyl chloride (0.21 ml, 2.7 mmol) at 0°C. The reaction mixture was stirred at room temperature for 1 hr, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried, concentrated under reduced pressure. The residue was purified by silica gel chromatography to give the title compound (0.218 g).

\[\delta: 2.97 (3H, s), 3.45 (2H, t, J = 6.2 Hz), 3.82 (3H, s), 4.56 (2H, t, J = 6.4 Hz), 4.62 (2H, d, J = 6.0 Hz), 6.85-6.96 (3H, m), 7.21 (1H, s), 7.30 (1H, td, J = 7.4, 1.6 Hz), 7.93 (1H, t, J = 5.8 Hz), 10.23 (1H, s).\]

Example 256

ethyl \{4-{2-[(3-methoxybenzyl)amino]carbonyl}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl\}methoxy]phenyl\)acetate

To a solution of 5-(2-hydroxyethyl)-N-\{[3-(methyloxy)phenyl]methyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide (319 mg, 0.89 mmol) obtained in Example 254 and triethylamine (0.37 ml, 2.7 mmol) in N,N-dimethylacetamide (8 ml) was added methanesulfonyl chloride (0.21 ml, 2.7 mmol) at 0°C. The reaction mixture was stirred at room temperature for 1 hr, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried, concentrated under reduced pressure. The residue was purified by silica gel chromatography to give the title compound (0.218 g).

\[\delta: 2.97 (3H, s), 3.45 (2H, t, J = 6.2 Hz), 3.82 (3H, s), 4.56 (2H, t, J = 6.4 Hz), 4.62 (2H, d, J = 6.0 Hz), 6.85-6.96 (3H, m), 7.21 (1H, s), 7.30 (1H, td, J = 7.4, 1.6 Hz), 7.93 (1H, t, J = 5.8 Hz), 10.23 (1H, s).\]
To a suspension of 60% oily sodium hydride (0.28 g, 7.0 mmol) in THF (10 ml) was added dropwise a solution of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (1.507 g, 4.8 mmol) obtained in Example 216 step 1 and ethyl p-hydroxyphenylacetate (0.94 g, 5.2 mmol) in THF (30 ml) at 0°C. The reaction mixture was stirred overnight at room temperature, added to 10% aqueous citric acid solution, and the mixture was extracted with THF/ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried, and concentrated under reduced pressure. The obtained solid was washed with a mixed solution of ethyl acetate-hexane (1/1) to give ethyl 5-[(4-[2-(ethyloxy)-2-oxoethyl]phenyloxymethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (479 mg).

A mixed solution of ethyl 5-[(4-[2-(ethyloxy)-2-oxoethyl]phenyloxymethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (479 mg) and 3-methoxybenzylamine (0.34 g, 2.48 mmol) in THF (10 ml)-ethanol (10 ml) was refluxed under heating for 3 hrs. The solvent was evaporated under reduced pressure, and the residue was dissolved in a mixed solution of ethyl acetate and THF. The mixture was washed with 10% aqueous citric acid solution and saturated brine, dried and concentrated under reduced pressure. The obtained crude crystals were dissolved in THF, activated carbon was added, the activated carbon was filtered off and the filtrate was concentrated. The obtained crude crystals were recrystallized from THF-diisopropyl ether to give the title compound (0.407 g).

H-NMR (300 MHz, DMSO-\(d_6\)) \(\delta\): 1.18 (3H, t, \(J = 7.2\) Hz), 3.58 (2H, s), 3.74 (3H, s), 4.06 (2H, q, \(J = 7.2\) Hz), 4.43 (2H, d, \(J = 6.2\) Hz), 5.38 (2H, s), 6.77-6.85 (1H, m), 6.89-6.99 (4H, m), 7.17-7.27 (3H, m), 7.69 (1H, s), 9.67 (1H, t, \(J = 6.4\) Hz), 12.52 (1H, s).

Anal. Calcd for C_{26}H_{25}N_{3}O_{6}S·H_{2}O: C, 59.42; H, 5.18; N, 8.00.
Found: C, 59.40; H, 4.75; N, 8.40.

Example 257

{4-[(2-([(3-methoxybenzyl)amino]carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methoxy]phenyl}acetic acid

To a mixed solution of ethyl 4-[(2-([(3-(methyloxy)phenyl)methyl]amino)carbonyl]-4-oxo-3,4-dihydrothieno
[2,3-d]pyrimidin-5-yl)methyl]oxy]phenylacetate (0.35 g, 0.69 mmol) obtained in Example 256 in THF (5 ml)-methanol (5 ml) was added 2N aqueous sodium hydroxide solution (1.8 ml) and the mixture was refluxed under heating for 8 hrs. After allowing to cool, 1N hydrochloric acid was added, and the mixture was extracted with a mixed solution of THF-ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated under reduced pressure. The obtained crude crystals were recrystallized from THF-diisopropyl ether to give the title compound (0.191 g).

1H-NMR (300 MHz, DMSO-d_6) δ: 3.49 (2H, s), 3.74 (3H, s), 4.43 (2H, d, _J_ = 6.40 Hz), 5.39 (2H, s), 6.82 (1H, ddd, _J_ = 8.19, 2.35, 0.94 Hz), 6.89-6.98 (4H, m), 7.16-7.27 (3H, m), 7.68 (1H, s), 9.67 (1H, t, _J_ = 6.4 Hz), 12.23 (1H, s), 12.52 (1H, s).

Anal. Calcd for C_{24}H_{21}N_{3}O_{6}S: C, 60.12; H, 4.41; N, 8.76.

Found: C, 59.71; H, 4.56; N, 8.54.

melting point: 228-230°C

Example 258

4-{[2-{(3-methoxybenzyl)amino}carbonyl}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]ethoxy]benzoic acid

[0455]

To a solution of ethyl 4-{[2-(6-(dimethylamino)-7-{[3-(methyloxy)phenyl]methyl}-4,8-dioxo-4,6,7,8-tetrahydropyrimidazino[1,5-a]thieno[2,3-d]pyrimidin-3-yl)ethyl]oxy}benzoate (0.100 g, 0.18 mmol) obtained in Reference Example 121 in acetic acid (3 ml) was added 6N hydrochloric acid (1 ml), and the mixture was stirred with heating at 80°C for 24 hrs. After allowing to cool, the precipitated solid was collected by filtration, washed with water, ethanol and diethyl ether, suspended in ethanol, and the mixture was stirred with heating at 80°C for 1 hr. After allowing to cool, the precipitated solid was collected by filtration, and washed with ethanol and diethyl ether to give the title compound (57 mg).

1H-NMR (300 MHz, DMSO-d_6) δ: 3.40 (2H, t, _J_ = 6.8 Hz), 3.73 (3H, s, 3 H), 4.33 (2H, t, _J_ = 6.9 Hz), 4.42 (2H, d, _J_ = 6.4 Hz), 6.79-6.84 (1H, m, 1 H), 6.87-6.93 (2H, m), 7.05 (2H, d, _J_ = 9.0 Hz), 7.24 (1H, t, _J_ = 8.1 Hz), 7.53 (1H, s), 7.87 (2H, d, _J_ = 8.9 Hz), 9.63 (1H, t, _J_ = 6.4 Hz), 12.52 (2H, s).

melting point: 237-241°C

Example 259

5,6-difluoro-N-{[4-fluoro-3-(methyloxy)phenyl]methyl}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0457]

A suspension of ethyl 5,6-difluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate (1.00 g, 3.93 mmol) obtained in Reference Example 22, 1-{[4-fluoro-3-(methyloxy)phenyl]methyl}amidine hydrochloride (1.13 g, 5.90 mmol) synthesized by the method described in WO03/029224 A1 and N,N-disopropylethylamine (1.03 mL, 5.90 mmol) in ethanol (15 mL) was stirred with heating at 80°C for 6 hrs. The reaction mixture was allowed to cool to room temperature, and the
precipitated solid was collected by filtration. The solid was washed with ethanol to give the title compound as a pale-yellow powder (960 mg, 67%).

melting point: 197-199°C

1H-NMR (300MHz, DMSO-d_6)

δ: 3.82 (3H, s), 4.44 (2H, d $J = 6.3$ Hz), 6.86-6.91 (1H, m), 7.12-7.18 (2H, m), 7.59-7.64 (1H, m), 7.92-8.01 (1H, m), 9.57 (1H, t, $J = 6.3$ Hz), 12.45 (1H, bs).

Example 260

5,6-difluoro-N-[2-[[4-(methyloxy)phenyl]methyl]oxy]pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0459]

Example 261

5,6-difluoro-N-(pyridin-4-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0461]

The following Example 262 to Example 265 were synthesized from 5,6-difluoro-N-[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 113, by a method similar to that of Example 159.
Example 262

(4-[[6-fluoro-2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yloxy)methyl]phenyl)acetic acid

[0464]

Example 263

5-[[biphenyl-4-ylmethyl]oxy]-6-fluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0466]

Example 264

5-[[1-benzothien-2-ylmethyl]oxy]-6-fluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0468]
The compound was synthesized using 1-benzothien-2-ylmethanol instead of benzyl alcohol. Melting point: 191-193°C

Example 265

6-fluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-5-[[2-(2-oxopyrrolidin-1-yl)ethyl]oxy]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using 1-(2-hydroxyethyl)pyrrolidin-2-one instead of benzyl alcohol. Melting point: 189-191°C

The following Example 266 to Example 269 were synthesized from 5,6-difluoro-N-[[4-fluoro-3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 259, by a method similar to that of Example 159.

Example 266

4-{[6-fluoro-2-[[[4-fluoro-3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy}methyl benzoic acid

The compound was synthesized using 4-(hydroxymethyl)benzoic acid instead of benzyl alcohol. Melting point: 268-270°C

Example 267

4-{2-[6-fluoro-2-[[[4-fluoro-3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy}ethyl benzoic acid

The compound was synthesized using 4-(hydroxymethyl)benzoic acid instead of benzyl alcohol. Melting point: 268-270°C
The compound was synthesized using 4-(2-hydroxyethyl)benzoic acid instead of benzyl alcohol.
melting point: 242-244°C

Example 268

5-[(4-[3-(ethyloxy)-5-methylisoxazol-4-yl]phenyl)methoxy]-6-fluoro-N-[4-fluoro-3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using (4-[3-(ethyloxy)-5-methylisoxazol-4-yl]phenyl)methanol obtained in Reference Example 122 instead of benzyl alcohol.
melting point: 177-179°C

Example 269

5-[(2-{4-[3-(ethyloxy)-5-methylisoxazol-4-yl]phenyl}ethyl)oxy]-6-fluoro-N-[4-fluoro-3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide
The compound was synthesized using 2-{4-[3-(ethyloxy)-5-methylisoxazol-4-yl]phenyl}ethanol obtained in Reference Example 123 instead of benzyl alcohol.

Example 270

6-fluoro-N-[[4-fluoro-3-(methyloxy)phenyl]methyl]-5-[[2-[(3-hydroxy-5-methylisoxazol-4-yl)phenyl]ethyloxy]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

Example 271

6-fluoro-5-[[4-fluorophenyl]methyl]oxy]-N-[[2-(methyloxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized from 5,6-difluoro-N-[[2-(methyloxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 115 and (4-fluorophenyl)methanol by a method similar to that of Example 159.

melting point: 170-172°C

Example 270

6-fluoro-N-[[4-fluoro-3-(methyloxy)phenyl]methyl]-5-[[2-[(3-hydroxy-5-methylisoxazol-4-yl)phenyl]ethyloxy]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

A mixture of 5-[[2-[(3-hydroxy-5-methylisoxazol-4-yl)phenyl]ethyloxy]-6-fluoro-N-[[4-fluoro-3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (95 mg, 160 μmol) obtained in Example 269 and a 25% solution of hydrogen bromide in acetic acid (3 mL) was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and concentrated under reduced pressure. The concentrated residue was suspended in ethanol (2 mL) and the mixture was heated under reflux for 15 min. The mixture was again allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (67 mg, 74%).

melting point: 240-242°C

Example 271

6-fluoro-5-[[4-fluorophenyl]methyl]oxy]-N-[[2-(methyloxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized from 5,6-difluoro-N-[[2-(methyloxy)pyridin-4-yl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 115 and (4-fluorophenyl)methanol by a method similar to that of Example 159.

melting point: 190-192°C
Example 272

6-fluoro-5-\{[(4-fluorophenyl)methyl]oxy\}-4-oxo-N-(pyridin-4-ylmethyl)-3,4-dihydroquinazoline-2-carboxamide

[0485]

The compound was synthesized from 5,6-difluoro-4-oxo-N-(pyridin-4-ylmethyl)-3,4-dihydroquinazoline-2-carboxamide obtained in Example 261 and (4-fluorophenyl)methanol by a method similar to that of Example 159. Melting point: 218-220°C

Example 273

6-fluoro-5-\{[(4-fluorophenyl)methyl]oxy\}-N-\{[2-\{[(4-(methyloxy)phenyl)methyl]oxy\]pyridin-4-yl\}methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0487]

The compound was synthesized from 5,6-difluoro-N-\{[2-\{[(4-(methyloxy)phenyl)methyl]oxy\]pyridin-4-yl\}methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 260 and (4-fluorophenyl)methanol by a method similar to that of Example 159. Melting point: 165-167°C

Example 274

6-fluoro-5-\{[(4-fluorophenyl)methyl]oxy\}-4-oxo-N-\{[2-oxo-1,2-dihydropyridin-4-yl\}methyl\}-3,4-dihydroquinazoline-2-carboxamide

[0489]
6-Fluoro-5-([(4-fluorophenyl)methyl]oxy)-N-([(2-([(4-(methyloxy)phenyl)methyl]oxy)pyridin-4-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (105 mg, 188 μmol) obtained in Example 273 was dissolved in 0.5% trifluoroacetic acid-containing dichloromethane (6 mL) and the mixture was stirred at room temperature for 3 hrs. The reaction mixture was concentrated under reduced pressure and crystallized from ethyl acetate. The precipitated crystals were collected by filtration, and washed with ethyl acetate to give the title compound as a pale-yellow powder (73 mg, 89%).

Example 275

5,6-difluoro-4-oxo-N-[(2-oxo-1,2-dihydropyridin-4-yl)methyl]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized from 5,6-difluoro-N-([(2-([(4-(methyloxy)phenyl)methyl]oxy)pyridin-4-yl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 260 by a method similar to that of Example 274.

Example 276

N-[(3-(methyloxy)phenyl)methyl]-4-oxo-5-([(phenylmethyl)oxy][methyl]-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using ethyl 4-oxo-5-([(phenylmethyl)oxy][methyl]-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 124 and 3-methoxybenzylamine by a method similar to that of Example 1.

Example 277

N-[(3-(methyloxy)phenyl)methyl]-5-[[methyl(phenylmethyl)amino][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized using ethyl 4-oxo-5-([(phenylmethyl)oxy][methyl]-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 124 and 3-methoxybenzylamine by a method similar to that of Example 1.
The compound was synthesized using ethyl 5-[(methyl(phenylmethyl)amino)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 126 and 3-methoxybenzylamine by a method similar to that of Example 1.

Example 278

5-[[acetyl(phenylmethyl)amino][methyl]-N-[[3-(methyloxy)phenyl][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

To a suspension of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate (300 mg, 0.964 mmol) obtained in Reference Example 125 in THF (6 mL)-DMF (2 mL) were added pyridine (0.078 mL, 0.964 mmol) and 1-phenylmethanamine (0.116 mL, 1.06 mmol) at 0°C, and the mixture was stirred at 0°C for 30 min. and then at room temperature for 30 hrs. The reaction mixture was cooled again to 0°C, and pyridine (0.156 mL, 1.93 mmol) and acetyl chloride (0.150 mL, 2.12 mmol) were added, and the mixture was stirred at room temperature for 15 hrs. The reaction mixture was partitioned between ethyl acetate and water and the organic layer was washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and diethyl ether-ethanol was added to the concentrated residue. The precipitated solid was collected by filtration to give ethyl 5-[[acetyl(phenylmethyl)amino][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxylate as a white powder (190 mg). The title compound was synthesized using the aforementioned ethyl 5-[[acetyl(phenylmethyl)amino][methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxylate and 3-methoxybenzylamine, by a method similar to that of Example 1.

Example 279

ethyl 4-[[([3-(methyloxy)phenyl][methyl]amino)carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl][methyl]oxy[methyl]benzoate

Example 279

Example 278
A suspension of ethyl 5-\([\{4-(\text{ethyl oxy})\text{carbonyl}\}\text{phenyl}methyl]\text{oxy}methyl\}-4-\text{oxo}-3,4-\text{dihydroquinazoline-2-carboxylate} (200 mg, 487 \(\mu\)mol) obtained in Reference Example 151 and 3-methoxybenzylamine (100 mg, 731 \(\mu\)mol) in ethanol (6 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with ethanol and diethyl ether to give the title compound as a white powder (222 mg, 91%).

Example 280

4-\([\{2-\{3-(\text{methyloxy})\text{phenyl}\}methyl\}\text{amino}\}\text{carbonyl}-4-\text{oxo}-3,4-\text{dihydroquinazolin-5-yl}methyl\text{oxy}methyl\}benzoic acid

To a suspension of ethyl 4-\([\{2-\{3-(\text{methyloxy})\text{phenyl}\}methyl\}\text{amino}\}\text{carbonyl}-4-\text{oxo}-3,4-\text{dihydroquinazolin-5-yl}methyl\text{oxy}methyl\}benzoate (160 mg, 319 \(\mu\)mol) obtained in Example 279 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.200 mL, 798 \(\mu\)mol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, acidified with 1N hydrochloric acid (ca. 2 mL), and THF and methanol were evaporated under reduced pressure. The solid in the concentrated residue was collected by filtration, and the obtained solid was washed with water. The obtained solid was again suspended in ethanol, and the mixture was stirred with heating at 80°C for 30 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (130 mg, 86%).
Example 281

4-[2-([3-(methyloxy)phenyl]methyl]amino)carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy]ethyl]benzoic acid

A solution of 5-fluoro-N-[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (1.00 g, 3.06 mmol) obtained in Example 110 and 4-(2-hydroxyethyl)benzoic acid (0.508 g, 3.06 mmol) in DMA (20 mL) was added dropwise to a suspension of 60% sodium hydride (0.466 g, 12.2 mmol) in DMA (10 mL) at room temperature. The reaction mixture was stirred at room temperature for 30 min. and the mixture was stirred with heating at 90°C for 2 hrs. The mixture was allowed to cool to room temperature, water (60 mL) was added, and the aqueous layer was washed with ethyl acetate (60 mLx3). The aqueous layer was acidified with 1N hydrochloric acid (ca. 18 mL), and the object product was extracted with ethyl acetate (60 mLx2). The organic layers were combined, washed with 0.1N hydrochloric acid (60 mLx2) and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was crystallized from methanol to give the title compound as a white powder (170 mg, 12%).

Example 282

Sodium 4-[({6-fluoro-2-[({[3-(methyloxy)phenyl]methyl]amino)carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl]benzoate

A solution of 5-fluoro-N-[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (1.00 g, 3.06 mmol) obtained in Example 110 and 4-(2-hydroxyethyl)benzoic acid (0.508 g, 3.06 mmol) in DMA (20 mL) was added dropwise to a suspension of 60% sodium hydride (0.466 g, 12.2 mmol) in DMA (10 mL) at room temperature. The reaction mixture was stirred at room temperature for 30 min. and the mixture was stirred with heating at 90°C for 2 hrs. The mixture was allowed to cool to room temperature, water (60 mL) was added, and the aqueous layer was washed with ethyl acetate (60 mLx3). The aqueous layer was acidified with 1N hydrochloric acid (ca. 18 mL), and the object product was extracted with ethyl acetate (60 mLx2). The organic layers were combined, washed with 0.1N hydrochloric acid (60 mLx2) and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was crystallized from methanol to give the title compound as a white powder (170 mg, 12%).
in ethanol and the mixture was stirred with heating at 80°C for 30 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (195 mg, 93%).

melting point: 289-292°C

1H-NMR (300 MHz, DMSO-d$_6$) δ: 3.74 (3H, s), 4.45 (2H, d, J = 6.3 Hz), 5.14 (2H, s), 5.83 (1H, dd, J = 8.1, 2.4 Hz), 6.90-6.93 (2H, m), 7.25 (1H, t, J = 8.1 Hz), 7.47-7.52 (3H, m), 7.68 (1H, t, J = 9.6 Hz), 7.88 (2H, d, J = 8.1 Hz), 9.41 (1H, t, J = 6.3 Hz).

Example 283

Potassium 4-[[6-fluoro-2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl]benzoate

[0507]

![Chemical Structure](image)

[0508] 4-[[6-Fluoro-2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl]benzoic acid obtained in Example 177 (100 mg, 209 μmol) was dissolved in a mixed solvent of THF (16 mL) and ethanol (4 mL) with heating at 70°C, and an aqueous solution (2 mL) of potassium hydrogen carbonate (21.0 mg, 209 μmol) was added dropwise to this solution at 70°C. The reaction mixture was heated at 70°C for 15 min. and the mixture was stirred at room temperature for 2 hrs. THF and ethanol were evaporated under reduced pressure, and the concentrated residue was suspended in ethanol. The mixture was stirred with heating at 80°C for 30 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (90 mg, 84%).

melting point: 237-240°C

1H-NMR (300 MHz, DMSO-d$_6$) δ: 3.74 (3H, s), 4.44 (2H, d, J = 6.3 Hz), 5.13 (2H, s), 6.82 (1H, dd, J = 8.1, 2.4 Hz), 6.90-6.93 (2H, m), 7.25 (1H, t, J = 8.1 Hz), 7.44-7.50 (3H, m), 7.66 (1H, t, J = 9.9 Hz), 7.86 (2H, d, J = 7.8 Hz), 9.36 (1H, t, J = 6.3 Hz).

Example 284

[0509]

![Chemical Structure](image)
[0510] 4-[(6-Fluoro-2-[[3-(methyloxy)phenyl]methyl]amino)carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl]benzoic acid (100 mg, 209 µmol) obtained in Example 177 was dissolved in a mixed solvent of THF (16 mL) and ethanol (4 mL) with heating at 70°C. An aqueous solution (2 mL) of sodium hydrogen carbonate (35.0 mg, 419 µmol) was added dropwise to this solution at 70°C and the reaction mixture was heated at 70°C for 15 min. and then stirred at room temperature for 2 hrs. The precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (77 mg, 71%).

melting point: 330°C

1H-NMR (300 MHz, DMSO-d6) δ: 3.74 (3H, s), 4.44 (2H, d, J = 6.0 Hz), 5.10 (2H, s), 6.80-6.83 (1H, m), 6.89-6.92 (2H, m), 7.24 (1H, t, J = 8.1 Hz), 7.39-7.45 (4H, m), 7.83 (2H, d, J = 7.8 Hz), 9.17 (1H, t, J = 6.3 Hz).

Example 285

Dipotassium 4-[(6-fluoro-2-[[3-(methyloxy)phenyl]methyl]amino)carbonyl]-4-oxo-4H-quinazolin-3-id-5-yl]oxy)methyl]benzoate

[0511]

[0512] 4-[(6-Fluoro-2-[[3-(methyloxy)phenyl]methyl]amino)carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)methyl]benzoic acid (100 mg, 209 µmol) obtained in Example 177 was dissolved in a mixed solvent of THF (16 mL) and ethanol (4 mL) with heating at 70°C, and aqueous solution (2 mL) of potassium hydrogen carbonate (41.9 mg, 418 µmol) was added dropwise to this solution at 70°C. The reaction mixture was heated at 70°C for 15 min. and then stirred at room temperature for 2 hrs. The precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (104 mg, 90%).

melting point: 290°C

1H-NMR (300 MHz, DMSO-d6) δ: 3.74 (3H, s), 4.42 (2H, d, J = 6.3 Hz), 5.09 (2H, s), 6.80-6.83 (1H, m), 6.89-6.92 (2H, m), 7.21-7.31 (2H, m), 7.36-7.42 (3H, m), 7.79 (2H, d, J = 7.8 Hz), 9.02 (1H, t, J = 6.3 Hz).

Example 286

Sodium 4-[(6-fluoro-2-[[3-(methyloxy)phenyl]methyl]amino)carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)ethyl]benzoate

[0513]
EP 1 740 551 B9

[0514] 4-[2-((6-Fluoro-2-[[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)ethyl] benzoic acid (300 mg, 610 μmol) obtained in Example 179 was dissolved in a mixed solvent of THF (10 mL) and methanol (2.5 mL) with heating at 80°C, and aqueous solution (2.5 mL) of sodium hydrogen carbonate (51.2 mg, 610 μmol) was added dropwise to this solution at 80°C. The reaction mixture was heated at 80°C for 10 min. and THF and methanol were evaporated under reduced pressure. The concentrated residue was suspended in methanol (10 mL) and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with methanol to give the title compound as a pale-yellow powder (250 mg, 80%).

Example 287

Disodium 4-[2-((6-fluoro-2-[[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)ethyl] benzoate

[0515]

[0516] 4-[2-((6-Fluoro-2-[[[5-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)ethyl] benzoic acid (300 mg, 610 μmol) obtained in Example 179 was dissolved in a mixed solvent of THF (9 mL) and methanol (3 mL) with heating at 80°C, and aqueous solution (3 mL) of sodium hydrogen carbonate (103 mg, 0.122 mmol) was added dropwise to this solution at 80°C. The reaction mixture was heated at 80°C for 10 min. and THF and methanol were evaporated under reduced pressure. The concentrated residue was suspended in ethanol (10 mL) and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (285 mg, 87%).

Example 288

calcium bis (4-[2-[[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyloxy[methyl]benzoate)

[0517]
To a solution of 4-(((3-(methyloxy)phenyl)[methyl]amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl]oxy)methyl]benzoic acid (200 mg, 417 \(\mu \)mol) obtained in Example 217 and 1N aqueous sodium hydroxide solution (4.17 mL, 417 \(\mu \)mol) in methanol (16 mL)-water (4 mL) was added dropwise an aqueous solution (4 mL) of calcium chloride (23.1 mg, 209 \(\mu \)mol) at 80°C. The reaction mixture was heated at 80°C for 30 min., and allowed to cool to room temperature. The precipitated crystals were collected by filtration and washed with water and suspended again in methanol. The mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with methanol to give the title compound as a white powder (190 mg, 91%).

Example 289

ethyl 4-(((3-methylphenyl)methyl]amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]oxy)methyl]benzoate

[0519]

A suspension of ethyl 5-(((4-[(ethyloxy)carbonyl]phenyl)methyl]oxy)methyl]carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-(3-methylphenyl)methanamine (0.175 g, 1.44 mmol) in ethanol (8 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (398 mg, 84%).

Example 290

ethyl 4-(((3-ethylphenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]oxy)methyl]benzoate

[0521]
A suspension of ethyl 5-[[4-{{(ethyloxy)carbonyl}phenyl}methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.300 g, 0.720 mmol) obtained in Reference Example 158 and 1-(3-ethylphenyl)methanamine (0.195 g, 1.44 mmol) obtained in Reference Example 127 in DMA (6 mL) was stirred with heating at 80°C for 15 hrs. The solvent was evaporated under reduced pressure, and the concentrated residue was suspended in ethanol. The precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (276 mg, 76%).

Example 291

ethyl 4-[[2-{{[(3-chlorophenyl)methyl]amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl}methyl]oxy]methyl]benzoate

A suspension of ethyl 5-[[4-{{(ethyloxy)carbonyl}phenyl}methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-(3-chlorophenyl)methanamine (0.204 g, 1.44 mmol) in ethanol (8 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (426 mg, 87%).

Example 292

ethyl 4-[[2-{{[(3-methylthio)phenyl]methyl}amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl}methyl]oxy]methyl]benzoate
A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.300 g, 0.720 mmol) obtained in Reference Example 158, 1-[3-(methylthio)phenyl]methanamine hydrochloride (0.232 g, 1.22 mmol) obtained in Reference Example 129 and triethylamine (0.175 g, 1.73 mmol) in ethanol (15 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (311 mg, 82%).

melting point: 207-209°C

Example 293

[0527]

A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-[3-(trifluoromethyl)phenyl]methanamine (0.252 g, 1.44 mmol) in ethanol (8 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (433 mg, 83%).

melting point: 235-237°C

Example 294

[0529]
A suspension of ethyl 5-[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-{3-[(trifluoromethyl)oxy]phenyl}methanamine (0.276 g, 1.44 mmol) in ethanol (8 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (440 mg, 82%).

Example 295

ethyl 4-[[4-oxo-2-{{(pyridin-4-ylmethyl)amino}carbonyl}]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate

A suspension of ethyl 5-[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.300 g, 0.720 mmol) obtained in Reference Example 158 and 1-pyridin-4-ylmethanamine (0.156 g, 1.44 mmol) in DMA (6 mL) was stirred with heating at 80°C for 15 hrs. The solvent was evaporated under reduced pressure, and the concentrated residue was suspended in ethanol. The precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (252 mg, 73%).

Example 296

ethyl 4-[[2-{{(3-fluorophenyl)methyl}amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate

A suspension of ethyl 5-[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.300 g, 0.720 mmol) obtained in Reference Example 158 and 1-pyridin-4-ylmethanamine (0.156 g, 1.44 mmol) in DMA (6 mL) was stirred with heating at 80°C for 15 hrs. The solvent was evaporated under reduced pressure, and the concentrated residue was suspended in ethanol. The precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (252 mg, 73%).

Example 296

ethyl 4-[[2-{{(3-fluorophenyl)methyl}amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate
A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-(3-fluorophenyl)methanamine (0.204 g, 1.63 mmol) in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (421 mg, 88%).

Example 297

ethyl 4-[[2-[[4-fluorophenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyloxy]methyl] benzoate

A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-(4-fluorophenyl)methanamine (0.204 g, 1.63 mmol) in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (422 mg, 89%).

Example 298

ethyl 4-[[2-[[4-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyloxy] methyl] benzoate
A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-[4-(methyloxy)phenyl]methanamine (0.224 g, 1.63 mmol) in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (429 mg, 88%).

melting point: 206-208°C

Example 299

A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 2-phenylethaneamine (0.198 g, 1.63 mmol) in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (423 mg, 90%).

melting point: 194-196°C

Example 300

A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 2-phenylethaneamine (0.198 g, 1.63 mmol) in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (423 mg, 90%).

melting point: 194-196°C

Example 300
A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-(3,4-difluorophenyl)methanamine (0.234 g, 1.63 mmol) in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (463 mg, 94%).

Example 301

A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-(3-chloro-4-fluorophenyl)methanamine (0.261 g, 1.63 mmol) in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (478 mg, 94%).

Example 302

A suspension of ethyl 5-{[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxy}methyl}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158, 1-(3-bromo-4-fluorophenyl)methanamine hydrochloride (0.393 g, 1.63 mmol) and triethylamine (0.233 g, 2.31 mmol) in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (500 mg, 91%).

Example 303

ethyl 4-{[(4-fluoro-3-methylphenyl)methyl]amino}carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl\)oxy)methyl\)benzoate

[0547]

A suspension of ethyl 5-{[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxy}methyl}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-(4-fluoro-3-methylphenyl)methanamine (0.227 g, 1.63 mmol) in ethanol (15 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (463 mg, 94%).

Example 304

ethyl 4-{[(3-[(methyloxy)methyl]phenyl)methyl]amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl\)oxy)methyl\)benzoate

[0549]
A suspension of ethyl 5-[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-{3-[(methyloxy)methyl]phenyl} methanamine (0.247 g, 1.63 mmol) obtained in Reference Example 131 in ethanol (15 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (450 mg, 90%).

Example 305

ethyl 4-[[2-[[3-(methylsulfonyl)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl]oxy)methyl]benzoate

A suspension of ethyl 5-[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.280 g, 0.672 mmol) obtained in Reference Example 158 and 1-[(3-(methylsulfonyl)phenyl] methanamine (0.212 g, 1.14 mmol) obtained in Reference Example 134 in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (463 mg, 94%).

Example 306

ethyl 4-[[2-[[3-(methylsulfinyl)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl]oxy)methyl]benzoate
To a solution of ethyl 4-(((2-(((3-methylthio)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate (0.300 g, 0.573 mmol) obtained in Example 292 in chloroform (30 mL) was added 3-chloroperbenzoic acid (0.132 g, 0.573 mmol) at room temperature, and the mixture was stirred at room temperature for 4 hrs. The reaction mixture was concentrated under reduced pressure and the concentrated residue was suspended in ethanol (15 mL), and the mixture was stirred with heating at 80°C 15 hr. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with methanol to give the title compound as a white powder (295 mg, 95%).

Example 307
ethyl 4-(((4-oxo-2-(((pyridin-3-ylmethyl)amino)carbonyl)-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate

A suspension of ethyl 5-(((4-((ethyloxy)carbonyl)phenyl)methyl)oxy)methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-pyridin-3-ylmethanamine (0.177 g, 1.63 mmol) in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (429 mg, 93%).

Example 308
ethyl 4-(((2-(((3-methylthio)methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate

Example 309
ethyl 4-(((2-(((3-methylthio)methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate
A suspension of ethyl 5-[(4-[(ethyl)oxy]carbonyl)phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (1.00 g, 2.40 mmol) obtained in Reference Example 158 and 1-[(3-[methylthio)phenyl]methanamine (0.683 g, 4.08 mmol) obtained in Reference Example 136 in ethanol (40 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (1.19 g, 92%).

melting point: 185-186°C

Example 309

ethyl 4-[(2-2-[(3-[methylsulfinyl)methyl]phenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl) methyl]oxy)methyl)benzoate

To a solution of ethyl 4-[(2-2-[(3-[methylthio)methyl]phenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl) methyl]oxy)methyl)benzoate (0.400 g, 0.744 mmol) obtained in Example 308 in chloroform (20 mL) was added 3-chloroperbenzoic acid (0.186 g, 0.744 mmol) at 0°C, and the mixture was stirred at room temperature 2 hr. The reaction mixture was concentrated under reduced pressure and the concentrated residue was suspended in ethanol (15 mL). The mixture was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with methanol to give the title compound as a white powder (380 mg, 92%).

melting point: 195-196°C

Example 310

ethyl 4-[(2-2-[(3-[methylsulfonyl)methyl]phenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl) methyl]oxy)methyl)benzoate
[0562] To a solution of ethyl 4-(((2-(((3-methylthio)methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate (0.280 g, 0.744 mmol) obtained in Example 308 in chloroform (15 mL) was added 3-chloroperbenzoic acid (0.260 g, 1.04 mmol) at room temperature, and the mixture was stirred at room temperature for 4 hrs. The reaction mixture was concentrated under reduced pressure and the concentrated residue was suspended in ethanol (15 mL). The mixture was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with methanol to give the title compound as a white powder (279 mg, 94%).

Example 311

ethyl 4-(((2-(((3-methyl(trifluoroacetyl)amino)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate

[0563]

[0564] A suspension of ethyl 5-(((4-((ethyloxy)carbonyl)phenyl)methyl)oxy)methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.200 g, 0.480 mmol) obtained in Reference Example 158, N-[3-(aminomethyl)phenyl]-2,2,2-trifluoro-N-methylacetamide hydrochloride (0.219 g, 0.816 mmol) obtained in Reference Example 141 and triethylamine (0.121 g, 1.20 mmol) in ethanol (16 mL) was stirred with heating at 80°C for 24 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (216 mg, 75%).

Example 312

ethyl 4-(((4-oxo-2-(((3-propylphenyl)methyl)amino)carbonyl)-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate

[0565]
A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.200 g, 0.480 mmol) obtained in Reference Example 158 and 1-(3-propylphenyl)methanamine (0.122 g, 0.816 mmol) obtained in Reference Example 137 in ethanol (12 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (215 mg, 86%).

Example 313

ethyl 4-[[2-((((3-ethyl-4-fluorophenyl)methyl]amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate

A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.350 g, 0.840 mmol) obtained in Reference Example 158 and 1-(3-ethyl-4-fluorophenyl)methanamine (0.219 g, 1.43 mmol) obtained in Reference Example 138 in ethanol (15 mL) was stirred with heating at 80°C for 48 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (370 mg, 84%).

Example 314

ethyl 4-[[2-((((3-bromophenyl)methyl]amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate
A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158, 1-(3-bromophenyl)methanamine hydrochloride (0.363 g, 1.63 mmol) and triethylamine (0.243 g, 2.40 mmol) in ethanol (16 mL) was stirred with heating at 80°C for 24 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (490 mg, 92%).

Example 315

A suspension of ethyl 5-[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.350 g, 0.840 mmol) obtained in Reference Example 158 and 1-[4-fluoro-3-(trifluoromethyl)phenyl]methanamine (0.315 g, 1.63 mmol) in ethanol (16 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (397 mg, 73%).

Example 316

A suspension of ethyl 5-[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-(3,4-dichlorophenyl)methanamine (0.287 g, 1.63 mmol) in ethanol (16 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (475 mg, 91%).

Example 317

A suspension of ethyl 5-[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.400 g, 0.961 mmol) obtained in Reference Example 158 and 1-[4-chloro-3-(trifluoromethyl)phenyl]methanamine (0.342 g, 1.63 mmol) in ethanol (16 mL) was stirred with heating at 80°C for 24 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (500 mg, 90%).

Example 318

A suspension of ethyl 5-\(((4-\text{-ethyl})\text{-carbonyl})\text{-phenyl})\text{-methyl})\text{-oxy})\text{-methyl})\text{-4-oxo-3,4-dihydrothieno[2,3-d]}\text{-pyrimidine-2-carboxylate}\ (0.400 \text{ g}, 0.961 \text{ mmol}) obtained in Reference Example 158, 1-\{-2-\text{(methyl)}\text{-pyridin-4-yl})\text{-methyl}\text{-amine}\ (\text{synthesized by a method described in Journal of Medicinal Chemistry (1993), 36(15), 2362-2372.})\ (0.226 \text{ g}, 1.63 \text{ mmol})\text{ and triethylamine (0.243 g, 2.40 mmol) in ethanol (16 mL) was stirred with heating at 80°C for 48 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (348 mg, 71%).}

Example 319

5-methyl-N-\{3-\{methyl\text{-oxy})\text{-phenyl})\text{-methyl})\text{-4-oxo-3,4-dihydrothieno[3,4-d]}\text{-pyrimidine-2-carboxamide}

A suspension of ethyl 5-methyl-4-oxo-3,4-dihydrothieno[3,4-d]pyrimidine-2-carboxylate (0.150 g, 0.630 mmol) obtained in Reference Example 142 and 3-\text{-methoxybenzylamine (0.130 g, 0.945 mmol) in ethanol (3 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol. The obtained solid was purified by silica gel column chromatography (50% ethyl acetate/hexane). The obtained crude crystals were crystallized from diethyl ether to give the title compound as a pale-yellow powder (158 mg, 76%).

Example 320

5,6-dimethyl-N-\{3-\{methyl\text{-oxy})\text{-phenyl})\text{-methyl})\text{-4-oxo-3,4-dihydrofuro[2,3-d]}\text{-pyrimidine-2-carboxamide}

A suspension of ethyl 5-methyl-4-oxo-3,4-dihydrothieno[3,4-d]pyrimidine-2-carboxylate (0.150 g, 0.630 mmol) obtained in Reference Example 142 and 3-\text{-methoxybenzylamine (0.130 g, 0.945 mmol) in ethanol (3 mL) was stirred with heating at 80°C for 15 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol. The obtained solid was purified by silica gel column chromatography (50% ethyl acetate/hexane). The obtained crude crystals were crystallized from diethyl ether to give the title compound as a pale-yellow powder (158 mg, 76%).

melting point: 168-170°C
A suspension of ethyl 5,6-dimethyl-4-oxo-3,4-dihydrofuro[2,3-d]pyrimidine-2-carboxylate (0.100 g, 0.423 mmol) obtained in Reference Example 148 and 3-methoxybenzylamine (0.0870 g, 0.635 mmol) in ethanol (4 mL) was stirred with heating at 80°C for 12 hrs. The mixture was allowed to cool to room temperature and the precipitated solid was collected by filtration and washed with ethanol to give the title compound as a white powder (122 mg, 88%).

Example 321

6-methyl-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine-2-carboxamide

![Chemical Structure](image)

Example 322

3-methyl-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-4,5-dihydroisoxazolo[5,4-d]pyrimidine-6-carboxamide

![Chemical Structure](image)

The title compound was synthesized by a method similar to that Example 1 from ethyl 3-methyl-4-oxo-4,5-dihydroisoxazolo[5,4-d]pyrimidine-6-carboxylate (synthesized by a method described in Heterocycles (1996), 42(2), 691.) and 3-methoxybenzylamine.

Example 323

6,7-dimethyl-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine-2-carboxamide

![Chemical Structure](image)
The title compound was synthesized by a method similar to that Example 1 from ethyl 6,7-dimethyl-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine-2-carboxylate obtained in Reference Example 144 and 3-methoxybenzylamine. Melting point: 205-207°C

Example 324

1,3-dimethyl-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidine-6-carboxamide

The title compound was synthesized by a method similar to that Example 1 from ethyl 1,3-dimethyl-4-oxo-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidine-6-carboxylate obtained in Reference Example 149 and 3-methoxybenzylamine. Melting point: 186-188°C

Example 325

Methyl 2-[[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[3,4-d]pyrimidine-5-carboxylate

The title compound was synthesized by a method similar to that Example 1 from 5-methyl 2-ethyl 4-oxo-3,4-dihydrothieno[3,4-d]pyrimidine-2,5-dicarboxylate obtained in Reference Example 150 and 3-methoxybenzylamine. Melting point: 173-174°C

Example 326

6-methyl-N-[[3-(methyloxy)phenyl)methyl]-7-(methylsulfonyl)-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine-2-carboxamide

[0588] [0589] [0590] [0591] [0592] [0593]
Step 1

To a solution of 6-methyl-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine-2-carboxamide (0.100 g, 0.320 mmol) obtained in Example 321 in DMA (2 mL) were added triethylamine (0.648 g, 6.40 mmol) and methanesulfonyl chloride (0.496 g, 6.40 mmol), and the mixture was stirred at room temperature for 27 hrs. The reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was crystallized from ethanol to give 6-methyl-2-[[3-(methyloxy)phenyl]methyl]amino)carbonyl]-7-(methylsulfonyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl methanesulfonate as a pale-yellow powder (100 mg, 73%).

Step 2

To a solution of 6-methyl-2-[[3-(methyloxy)phenyl]methyl]amino)carbonyl]-7-(methylsulfonyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl methanesulfonate (0.099 g, 0.211 mmol) in THF (2 mL)-methanol (2 mL) was added 1N aqueous sodium hydroxide solution (0.247 mL, 0.247 mmol), and the mixture was stirred at room temperature for 2 hrs. 1N Hydrochloric acid (0.247 mL, 0.247 mmol) was added to the reaction mixture, and the reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was crystallized from ethanol to give the title compound as a pale-yellow powder (28 mg, 33%).

Example 327

[0596]

Step 2

To a suspension of ethyl 4-[[2-[[3-methylphenyl]methyl]amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate (0.288 g, 0.586 mmol) obtained in Example 289 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.366 mL, 1.47 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white
Example 328

4-[[2-[[3-ethylphenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy)methyl]benzoic acid

[0598]

To a suspension of ethyl 4-[[2-[[3-ethylphenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy)methyl]benzoate (0.200 g, 0.396 mmol) obtained in Example 290 in THF (2 mL)-methanol (2 mL)-water (2 mL) was added 4N aqueous sodium hydroxide solution (0.248 mL, 0.990 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (177 mg, 94%).

melting point: 240-242°C

Example 329

4-[[2-[[3-chlorophenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy)methyl]benzoic acid

[0600]

To a suspension of ethyl 4-[[2-[[3-chlorophenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy)methyl]benzoate (0.316 g, 0.617 mmol) obtained in Example 291 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.386 mL, 1.54 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol
Example 330

[0602]

To a suspension of ethyl 4-[[2-[[3-(methylthio)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl)oxy]methyl)benzoate (0.200 g, 0.382 mmol) obtained in Example 292 in THF (2 mL)-methanol (2 mL)-water (2 mL) was added 4N aqueous sodium hydroxide solution (0.239 mL, 0.955 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (175 mg, 92%).

melting point: 252-254°C

Example 331

[0604]

To a suspension of ethyl 4-[[4-oxo-2-[[3-(trifluoromethyl)phenyl]methyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl)oxy]methyl)benzoate (0.323 g, 0.592 mmol) obtained in Example 293 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.370 mL, 1.48 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was washed with water. The obtained solid was collected by filtration, and the obtained solid was washed with ethanol to give the title compound as a white powder (180 mg, 94%).

melting point: 236-238°C
hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (285 mg, 93%).

Example 332

4-({[(4-oxo-2-{[(3-trifluoromethyl)oxy]phenyl}methyl)amino]carbonyl}-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl]oxy)methyl)benzoic acid

To a suspension of ethyl 4-{{[(4-oxo-2-{[(3-trifluoromethyl)oxy]phenyl}methyl)amino]carbonyl}-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl]oxy}methyl)benzoate (0.330 g, 0.588 mmol) obtained by Example 294 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.368 mL, 1.47 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (286 mg, 91%).

Example 333

4-{{[(4-oxo-2-{[(pyridin-4-ylmethyl)amino]carbonyl}-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl]oxy}methyl}benzoic acid hydrochloride

To a suspension of ethyl 4-{{[(4-oxo-2-{[(pyridin-4-ylmethyl)amino]carbonyl}-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl]oxy}methyl}benzoate (0.330 g, 0.588 mmol) obtained by Example 294 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.368 mL, 1.47 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (286 mg, 91%).

melting point: 248-250°C
To a suspension of ethyl 4-{[4-oxo-2-{[(pyridin-4-ylmethyl)amino]carbonyl}-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl[oxy]methyl}benzoate (0.200 g, 0.418 mmol) obtained in Example 295 in THF (2 mL)-methanol (2 mL)-water (2 mL) was added 4N aqueous sodium hydroxide solution (0.261 mL, 1.05 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (170 mg, 90%).

Example 334

4-{[2-{[(3-fluorophenyl)methyl]amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl[oxy]methyl}benzoic acid

To a suspension of ethyl 4-{[2-{[(3-fluorophenyl)methyl]amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl[oxy]methyl}benzoate (0.340 g, 0.686 mmol) obtained in Example 296 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.429 mL, 1.72 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (293 mg, 90%).

Example 335

4-{[2-{[(4-fluorophenyl)methyl]amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl[oxy]methyl}benzoic acid

To a suspension of ethyl 4-{[2-{[(3-fluorophenyl)methyl]amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl[oxy]methyl}benzoate (0.340 g, 0.686 mmol) obtained in Example 296 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.429 mL, 1.72 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (293 mg, 90%).

Example 335

4-{[2-{[(4-fluorophenyl)methyl]amino}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl[oxy]methyl}benzoic acid

melting point: 288-291°C
To a suspension of ethyl 4-[[2-[[4-(fluorophenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy]methyl]benzoate (0.340 g, 0.686 mmol) obtained in Example 297 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.429 mL, 1.72 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (298 mg, 93%).

Example 336

4-[[2-[[4-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy][methyl]benzoic acid

To a suspension of ethyl 4-[[2-[[4-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy]methyl]benzoate (0.340 g, 0.670 mmol) obtained in Example 298 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.419 mL, 1.68 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (285 mg, 89%).

Example 337

4-({[(4-oxo-2-[[2-phenylethyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy][methyl]benzoic acid

To a suspension of ethyl 4-[[2-[[4-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy][methyl]benzoate (0.340 g, 0.670 mmol) obtained in Example 298 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.419 mL, 1.68 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (285 mg, 89%).

Example 337

4-({[(4-oxo-2-[[2-phenylethyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy][methyl]benzoic acid
To a suspension of ethyl 4-{[4-oxo-2-[[2-(phenylethyl)amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl}oxy)methyl]benzoate (0.340 g, 0.692 mmol) obtained in Example 299 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.433 mL, 1.73 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 3 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (306 mg, 95%).

Example 338

4-[[2-[[3,4-difluorophenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy)methyl]benzoic acid

To a suspension of ethyl 4-[[2-[[3,4-difluorophenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy)methyl]benzoate (0.380 g, 0.740 mmol) obtained in Example 300 in THF (2 mL)-methanol (2 mL)-water (2 mL) was added 4N aqueous sodium hydroxide solution (0.463 mL, 1.85 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (331 mg, 92%).

melting point: 227-229°C
Example 339

4-[[2-(((3-chloro-4-fluorophenyl)methyl)amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoic acid

To a suspension of ethyl 4-[[2-(((3-chloro-4-fluorophenyl)methyl)amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate (0.390 g, 0.736 mmol) obtained in Example 301 in THF (2 mL)-methanol (2 mL)-water (2 mL) was added 4N aqueous sodium hydroxide solution (0.460 mL, 1.84 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in ethanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (330 mg, 89%).

melting point: 228-230°C
1H-NMR (300MHz, DMSO-d6)
δ: 4.42 (2H, d, J = 6.6 Hz), 4.74 (2H, s), 4.88 (2H, s), 7.34-7.40 (2H, m), 7.48-7.56 (3H, m), 7.63 (1H, s), 7.93 (2H, d, J = 8.1 Hz), 9.71 (1H, t, J = 6.3 Hz), 12.44 (1H, bs), 12.92 (1H, bs).

Example 340

4-[[2-(((3-bromo-4-fluorophenyl)methyl)amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoic acid

To a suspension of ethyl 4-[[2-(((3-bromo-4-fluorophenyl)methyl)amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate (0.430 g, 0.749 mmol) obtained in Example 302 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.468 mL, 1.87 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with ethanol to give the title compound as a white powder (330 mg, 89%).

melting point: 228-230°C
1H-NMR (300MHz, DMSO-d6)
δ: 4.42 (2H, d, J = 6.6 Hz), 4.74 (2H, s), 4.88 (2H, s), 7.34-7.40 (2H, m), 7.48-7.56 (3H, m), 7.63 (1H, s), 7.93 (2H, d, J = 8.1 Hz), 9.71 (1H, t, J = 6.3 Hz), 12.44 (1H, bs), 12.92 (1H, bs).
suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to
cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the
title compound as a white powder (380 mg, 93%).

Example 341

4-[[2-[[[4-fluoro-3-methylphenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy]methyl]benzoic acid

To a suspension of ethyl 4-[[[2-[[[4-fluoro-3-methylphenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy]methyl]benzoate (0.410 g, 0.805 mmol) obtained in Example 303 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.503 mL, 2.01 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (340 mg, 88%).

Example 342

1H-NMR (300MHz, DMSO-d6)

\[\delta: 2.20 (3H, s), 4.38 (2H, d, J = 6.3 Hz), 4.74 (2H, s), 4.88 (2H, s), 7.06 (1H, t, J = 9.0 Hz), 7.14-7.24 (2H, m), 7.50 (2H, d, J = 8.1 Hz), 7.62 (1H, s), 7.93 (2H, d, J = 8.1 Hz), 9.65 (1H, t, J = 6.3 Hz), 12.42 (1H, bs), 12.90 (1H, bs).\]
To a suspension of ethyl 4-\(\text{[2-\{[3-(methylsulfonyl)phenyl]methyl}amino]carbonyl}\)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)benzoate (0.380 g, 0.729 mmol) obtained in Example 304 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.456 mL, 1.82 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (342 mg, 95%).

Melting point: 242-244°C

Example 343

4-\(\text{[2-\{[3-(methylsulfonyl)phenyl]methyl}amino]carbonyl}\)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)benzoic acid

To a suspension of ethyl 4-\(\text{[2-\{[3-(methylsulfonyl)phenyl]methyl}amino]carbonyl}\)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)benzoate (0.27.8 g, 0.500 mmol) obtained in Example 305 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.313 mL, 1.25 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (240 mg, 91%).

Melting point: 265-267°C

Example 344

4-\(\text{[2-\{[3-(methylosulfinyl)phenyl]methyl}amino]carbonyl}\)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)benzoic acid

To a suspension of ethyl 4-\(\text{[2-\{[3-(methylosulfinyl)phenyl]methyl}amino]carbonyl}\)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)benzoate (0.27.8 g, 0.500 mmol) obtained in Example 305 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.313 mL, 1.25 mmol), and the mixture was stirred with heating at 80°C for 2 hrs. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (240 mg, 91%).

Melting point: 265-267°C

Example 344

4-\(\text{[2-\{[3-(methylosulfinyl)phenyl]methyl}amino]carbonyl}\)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)benzoic acid

[0630]
To a suspension of ethyl 4-\{[[2-\{[[3-(methylsulfinyl)phenyl]methyl]amino\}carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl\}oxy]methyl\}benzoate (0.250 g, 0.463 mmol) obtained in Example 306 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.290 mL, 1.16 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (228 mg, 96%).

melting point: 227-228°C

Example 345

4-\{[[4-oxo-2-[[pyridin-3-ylmethyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl\}oxy]methyl\}benzoic acid

To a suspension of ethyl 4-\{[[4-oxo-2-[[pyridin-3-ylmethyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl\}oxy]methyl\}benzoate (0.349 g, 0.729 mmol) obtained in Example 307 in THF (3 mL)-methanol (3 mL)-water (3 mL) was added 4N aqueous sodium hydroxide solution (0.456 mL, 1.82 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and weakly acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (286 mg, 87%).

melting point: 309-311°C

Example 346

[0631] [0632] [0633] [0634]
To suspension of ethyl 4-(((2-(((3-((methylthio)methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate (0.300 g, 0.558 mmol) obtained in Example 308 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.349 mL, 1.39 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (271 mg, 95%).

Example 347

4-(((2-(((3-((methylsulfinyl)methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoic acid

To suspension of ethyl 4-(((2-(((3-((methylsulfonyl)methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate (0.330 g, 0.596 mmol) obtained in Example 309 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.373 mL, 1.49 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (283 mg, 90%).

Example 348

4-(((2-(((3-((methylsulfonyl)methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoic acid

To suspension of ethyl 4-(((2-(((3-((methylsulfonyl)methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate (0.300 g, 0.558 mmol) obtained in Example 308 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.349 mL, 1.39 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (283 mg, 90%).

Example 348

4-(((2-(((3-((methylsulfonyl)methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoic acid
To a suspension of ethyl 4-(((2-(((3-(methyl)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate (0.230 g, 0.404 mmol) obtained in Example 310 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.252 mL, 1.01 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (205 mg, 94%).

Melting point: 246-248°C

Example 349

4-(((2-(((3-(methylamino)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoic acid

To a suspension of ethyl 4-(((2-(((3-(methyl(trifluoroacetyl) amino)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate (0.170 g, 0.282 mmol) obtained in Example 311 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.247 mL, 0.987 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and weakly acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (125 mg, 93%).

Melting point: 223-224°C
Example 350

[0642]

To a suspension of ethyl 4-[[[4-oxo-2-[[[3-propylphenyl]methyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy]methyl]benzoate (0.170 g, 0.327 mmol) obtained in Example 312 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.204 mL, 0.818 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (142 mg, 88%).

melting point: 235-237°C

Example 351

[0644]

To a suspension of ethyl 4-[[[2-[[[3-ethyl-4-fluorophenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy]methyl]benzoate (0.295 g, 0.563 mmol) obtained in Example 313 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.352 mL, 1.41 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (260 mg, 93%).
melting point: 229-231°C

Example 352

[0646]

[0647] To a suspension of ethyl 4-[[[2-[[[3-bromophenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl[methyl]oxy[methyl]benzoate (0.400 g, 0.719 mmol) obtained in Example 314 in THF (4 mL)- methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.449 mL, 1.80 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2.5 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (350 mg, 92%).

melting point: 231-233°C

Example 353

4-[[[2-[[[4-fluoro-3-(trifluoromethyl)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl[methyl]oxy[methyl]benzoic acid

[0648]

[0649] To a suspension of ethyl 4-[[[2-[[[4-fluoro-3-(trifluoromethyl)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl[methyl]oxy[methyl]benzoate (0.310 g, 0.550 mmol) obtained in Example 315 in THF (4 mL)- methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.344 mL, 1.38 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to
cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the
title compound as a white powder (270 mg, 92%).
melting point: 258-259°C

Example 354

[0650]

[0651] To a suspension of ethyl 4-[[2-[[3,4-dichlorophenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate (0.390 g, 0.714 mmol) obtained in Example 316 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.446 mL, 1.78 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (320 mg, 87%).
melting point: 252-253°C

Example 355

[0652]

[0653] To a suspension of ethyl 4-[[2-[[4-chloro-3-(trifluoromethyl)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]oxy)methyl]benzoate (0.400 g, 0.690 mmol) obtained in Example 317 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.431 mL, 1.72 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and acidified with 1N hydrochloric acid (about 2.5 mL). THF and methanol were evaporated under reduced pressure, and the solid...
in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (350 mg, 92%).

melting point: 269-270°C

Example 356

4-[[2-[[2-(methyloxy)pyridin-4-yl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]benzoic acid

[0654]

To a suspension of ethyl 4-[[2-[[2-(methyloxy)pyridin-4-yl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methyl]benzoate (0.210 g, 0.413 mmol) obtained in Example 318 in THF (4 mL)-methanol (4 mL)-water (4 mL) was added 4N aqueous sodium hydroxide solution (0.258 mL, 1.03 mmol), and the mixture was stirred with heating at 80°C for 1 hr. The mixture was allowed to cool to room temperature, and weakly acidified with 1N hydrochloric acid (about 1 mL). THF and methanol were evaporated under reduced pressure, and the solid in the concentrated residue was collected by filtration. The obtained solid was washed with water. The obtained solid was suspended in methanol again, and the mixture was stirred with heating at 80°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, and washed with methanol to give the title compound as a white powder (175 mg, 88%).

melting point: 240-242°C

Example 357

5,6-difluoro-N-[(4-fluoro-3-methylphenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0656]

A suspension of ethyl 5,6-difluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate (1.50 g, 5.90 mmol) obtained in Reference Example 22 and 1-(4-fluoro-3-methylphenyl)methanamine (1.23 g, 8.85 mmol) in ethanol (30 mL) was stirred with heating at 90°C for 3 hrs. The mixture was allowed to cool to room temperature, and the precipitated solid was filtered off. The filtrate was concentrated and the concentrated residue was purified by preparative HPLC. The obtained crude crystals were washed with ethanol to give the title compound as a white powder (170 mg, 8%).

melting point: 185-186°C
Example 358

6-chloro-5-fluoro-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

\[\text{Example 358} \]

A suspension of ethyl 6-chloro-5-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate (1.50 g, 5.54 mmol) obtained in Reference Example 154 and 3-methoxybenzylamine (1.14 g, 8.31 mmol) in ethanol (30 mL) was stirred with heating at 90°C for 3 hrs. The reaction mixture was allowed to cool to room temperature, and the precipitated solid was filtered off. The filtrate was concentrated and the concentrated residue was purified by preparative HPLC. The obtained crude crystals were washed with ethanol to give the title compound as a white powder (175 mg, 9%).

\[\text{melting point: 207-209°C} \]

\[^1H-NMR (300MHz, DMSO-d_6) \]

\[\delta: \ 2.21 \ (3H, d, J = 1.9 \text{ Hz}), \ 4.41 \ (2H, d, J = 6.4 \text{ Hz}), \ 7.04 - 7.13 \ (1H, m), \ 7.15 - 7.29 \ (2H, m), \ 7.56 - 7.67 \ (1H, m), \ 7.88 - 8.04 \ (1H, m), \ 9.54 \ (1H, t, J = 6.3 \text{ Hz}), \ 12.45 \ (1H, s). \]

Example 359

4-(2-[[6-fluoro-2-{{[(4-fluoro-3-methylphenyl)methyl]amino}carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy}ethyl]benzoic acid

\[\text{Example 359} \]

A solution of 5,6-difluoro-N-[(4-fluoro-3-methylphenyl)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide (500 mg, 1.44 mmol) obtained in Example 357 and 4-(2-hydroxyethyl)benzoic acid (263 mg, 1.58 mmol) in DMA (10 mL) was added dropwise to a suspension of 60% sodium hydride (202 mg, 5.04 mmol) in DMA (6 mL) at room temperature, and the mixture was stirred at room temperature for 30 min. and then at 70°C for 2 hrs with heating. The reaction mixture was ice-cooled and water (4 mL), ethyl acetate (8 mL), 1N hydrochloric acid (7 mL) and hexane (8 mL) were successively added dropwise. The precipitated solid was collected by filtration, and washed with ethanol and water. The obtained solid was dissolved in 0.2N aqueous sodium hydroxide solution (40 mL) and washed with ethanol and water. The obtained solid was collected by filtration and washed with...
water. The obtained solid was suspended in methanol and the mixture was stirred with heating at 70°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with methanol to give the title compound as a white powder (182 mg, 26%).

melting point: 267-268°C

1H-NMR (300MHz, DMSO-d6)
δ: 2.21 (3H, d, J = 1.9 Hz), 3.17 (2H, t, J = 6.9 Hz), 4.31 (2H, t, J = 6.8 Hz), 4.41 (2H, d, J = 6.4 Hz), 7.04-7.13 (1H, m), 7.15 - 7.28 (2H, m, J = 21.0, 5.6 Hz), 7.45 (2H, d, J = 8.3 Hz), 7.52 (1H, dd, J = 8.9, 4.6 Hz), 7.78 (1H, dd, J = 10.4, 9.0 Hz), 7.86 (2H, d, J = 8.1 Hz), 9.51 (1H, t, J = 6.3 Hz), 11.86-12.94 (2H, m).

Example 360

4-[2-({6-chloro-2-[({3-(methyloxy)phenyl}methyl]amino)carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)ethyl]benzoic acid

The compound was synthesized by a method similar to that of Example 159 from 6-chloro-5-fluoro-N-({3-(methyloxy)phenyl}methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 358 and 4-(2-hydroxyethyl)benzoic acid.

A solution of 6-chloro-5-fluoro-N-{{3-(methyloxy)phenyl}methyl}-4-oxo-3,4-dihydroquinazoline-2-carboxamide (500 mg, 1.38 mmol) obtained in Example 358 and 4-(2-hydroxyethyl)benzoic acid (253 mg, 1.52 mmol) in DMA (10 mL) was added dropwise to a suspension of 60% sodium hydride (193 mg, 4.84 mmol) in DMA (6 mL) at room temperature, and the mixture was stirred at room temperature for 30 min. and then at 70°C for 1.5 hr with heating. The reaction mixture was ice-cooled, and water (4 mL), ethyl acetate (8 mL), 1N hydrochloric acid (7 mL) and hexane (8 mL) were successively added dropwise. The precipitated solid was collected by filtration, and washed with ethanol and water. The obtained solid was dissolved in 0.2N aqueous sodium hydroxide solution (40 mL) and washed with ethyl acetate (50 mL×2). The aqueous layer was acidified with 2N hydrochloric acid, and the precipitated solid was collected by filtration and washed with water. The obtained solid was suspended in methanol, and the mixture was stirred with heating at 70°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with methanol to give the title compound as a white powder (222 mg, 32%).

melting point: 226-227°C

1H-NMR (300MHz, DMSO-d6)
δ: 3.24 (2H, t, J = 6.8 Hz), 3.74 (3H, s), 4.27 (2H, t, J = 6.9 Hz), 4.44 (2H, d, J = 6.4 Hz), 6.80 - 6.86 (1H, m), 6.88 - 6.94 (2H, m), 7.25 (1H, t, J = 8.1 Hz), 7.47 (2H, d, J = 8.3 Hz), 7.52 (1H, d, J = 8.7 Hz), 7.88 (2H, d, J = 8.3 Hz), 7.92 (1H, d, J = 8.9 Hz), 9.53 (1H, t, J = 6.4 Hz), 12.51 (2H, s).

Example 361

6-fluoro-N-[(4-fluoro-3-methylphenyl)methyl]-5-([(4-fluoro-3-methylphenyl)methyl]amino)-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized by a method similar to that of Example 159 from 6-chloro-5-fluoro-N-[(3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide obtained in Example 358 and 4-(2-hydroxyethyl)benzoic acid.

A solution of 6-chloro-5-fluoro-N-{{3-(methyloxy)phenyl}methyl}-4-oxo-3,4-dihydroquinazoline-2-carboxamide (10 mL) was added dropwise to a suspension of 60% sodium hydride (193 mg, 4.84 mmol) in DMA (10 mL) at room temperature, and the mixture was stirred at room temperature for 30 min. and then at 70°C for 1.5 hr with heating. The reaction mixture was ice-cooled, and water (4 mL), ethyl acetate (8 mL), 1N hydrochloric acid (7 mL) and hexane (8 mL) were successively added dropwise. The precipitated solid was collected by filtration, and washed with ethanol and water. The obtained solid was dissolved in 0.2N aqueous sodium hydroxide solution (40 mL) and washed with ethyl acetate (50 mL×2). The aqueous layer was acidified with 2N hydrochloric acid, and the precipitated solid was collected by filtration and washed with water. The obtained solid was suspended in methanol, and the mixture was stirred with heating at 70°C for 20 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with methanol to give the title compound as a white powder (222 mg, 32%).

melting point: 226-227°C

1H-NMR (300MHz, DMSO-d6)
δ: 3.24 (2H, t, J = 6.8 Hz), 3.74 (3H, s), 4.27 (2H, t, J = 6.9 Hz), 4.44 (2H, d, J = 6.4 Hz), 6.80 - 6.86 (1H, m), 6.88 - 6.94 (2H, m), 7.25 (1H, t, J = 8.1 Hz), 7.47 (2H, d, J = 8.3 Hz), 7.52 (1H, d, J = 8.7 Hz), 7.88 (2H, d, J = 8.3 Hz), 7.92 (1H, d, J = 8.9 Hz), 9.53 (1H, t, J = 6.4 Hz), 12.51 (2H, s).
A suspension of ethyl 5,6-difluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate (1.50 g, 5.90 mmol) obtained in Reference Example 22 and 1-(4-fluoro-3-methylphenyl)methanamine (1.23 g, 8.85 mmol) in ethanol (30 mL) was stirred with heating at 90°C for 3 hrs. The reaction mixture was allowed to cool to room temperature, the precipitated solid was filtered off and the filtrate was concentrated. The concentrated residue was purified by preparative HPLC and the obtained crude crystals were washed with ethanol to give the title compound as a yellow powder (33 mg, 1%).

Melting point: 182-183°C

\[\begin{align*}
\text{1H-NMR (300MHz, DMSO-d\textsubscript{6})} \\
\delta & : 2.17 - 2.24 (6H, m, J = 2.1, 2.1 Hz), 4.39 (2H, d, J = 6.4 Hz), 4.53 - 4.61 (2H, m), 6.89 (1H, dd, J = 8.8, 4.1 Hz), 7.03 - 7.12 (2H, m), 7.13-7.30 (4H, m), 7.47 (1H, dd, J = 14.3, 8.7 Hz), 9.14 (1H, s), 9.43 (1H, t, J = 5.8 Hz), 12.19 (1H, s).
\end{align*} \]

Example 362

6-chloro-N-[[3-(methyloxy)phenyl]methyl]-5-[[[3-(methyloxy)phenyl)methyl]amino]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

The compound was synthesized by a method similar to that of Example 361 from ethyl 6-chloro-5-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 154 and 3-methoxybenzylamine. Melting point: 126-128°C

Example 363

5-[[[4-cyanophenyl)methoxy]methyl]-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

The compound was synthesized by a method similar to that of Example 361 from ethyl 6-chloro-5-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 154 and 3-methoxybenzylamine. Melting point: 126-128°C
A mixture of ethyl 5-([(4-cyanophenyl)methyl]oxy)methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (150 mg, 0.406 mmol) obtained in Reference Example 155, 1-[3-(methyloxy)phenyl]methanamine (0.156 mL, 1.22 mmol) and ethanol (3 mL) was stirred at 80°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (147 mg, 79%).

Example 364

5-([(4-fluorophenyl)methyl]oxy)methyl)-N-[3-(methyloxy)phenyl]methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

A mixture of ethyl 5-([(4-fluorophenyl)methyl]oxy)methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (80 mg, 0.221 mmol) obtained in Reference Example 156, 1-[3-(methyloxy)phenyl]methanamine (0.0848 mL, 0.662 mmol) and ethanol (2 mL) was stirred at 80°C for 12 hrs. The reaction mixture was concentrated under reduced pressure and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (81 mg, 81%).

Example 365

ethyl 4-([(2-[(3-(ethyloxy)phenyl)methyl]amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyloxy]methyl]benzoate

Example 366
To a mixture of ethyl 5-\[\{(4-\{(ethyloxy)carbonyl\}phenyl)methyl)oxy\}methyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (350 mg, 0.840 mmol) obtained in Reference Example 158 and ethanol (15 mL) were added 1-\[3-(ethyloxy)phenyl\]methanamine hydrochloride (315 mg, 1.68 mmol) obtained in Reference Example 87 and N,N-diisopropylethylamine (0.585 mL, 3.36 mmol), and the mixture was stirred at 85°C for 12 hrs. The reaction mixture was concentrated under reduced pressure. Ethyl acetate and THF were added to the obtained residue, and the organic layer was washed with 1N hydrochloric acid, water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (383 mg, 87%).

melting point: 194°C

\[\text{H NMR}\ (300\ MHz, DMSO-d_6) \delta\ 1.27 - 1.39\ (6\ H, m), 3.99\ (2\ H, q, J=7.0\ Hz), 4.31\ (2\ H, q, J=7.0\ Hz), 4.41\ (2\ H, d, J=6.4\ Hz), 4.75\ (2\ H, s), 4.89\ (2\ H, d, J=0.9\ Hz), 6.75 - 6.93\ (3\ H, m), 7.22\ (1\ H, t, J=8.0\ Hz), 7.54\ (2\ H, d, J=8.5\ Hz), 7.63\ (1\ H, s), 7.89 - 8.02\ (2\ H, m), 9.63\ (1\ H, t, J=6.4\ Hz), 12.18\ (1\ H, s).\]

Example 366

4-\{\{(2-\{(3-(ethyloxy)phenyl)methyl}amino)carbonyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl\}methyl\}benzoic acid

A mixture of ethyl 4-\{\{(2-\{(3-(ethyloxy)phenyl)methyl}amino)carbonyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl\}methyl\}benzoate (220 mg, 0.422 mol) obtained in Example 365 and 4N aqueous sodium hydroxide solution (0.527 mL) was stirred in a mixed solvent of water (3 mL), methanol (3 mL) and THF (3 mL) at 80°C for 2 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (192 mg, 92%).

melting point: 240°C

\[\text{H NMR}\ (300\ MHz, DMSO-d_6) \delta\ 1.31\ (3\ H, t, J=7.0\ Hz), 3.99\ (2\ H, q, J=7.0\ Hz), 4.41\ (2\ H, d, J=6.2\ Hz), 4.74\ (2\ H, d, J=0.9\ Hz), 5.8 - 6.93\ (3\ H, m), 7.22\ (1\ H, t, J=8.1\ Hz), 7.51\ (2\ H, d, J=8.5\ Hz), 7.63\ (1\ H, s), 7.94\ (2\ H, d, J=8.3\ Hz), 9.64\ (1\ H, t, J=6.4\ Hz), 12.44\ (1\ H, s), 12.90\ (1\ H, s).\]
Example 367

ethyl 4-((4-oxo-2-(((phenylmethyl)amino)carbonyl)-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate

To a mixture of ethyl 5-(((4-ethoxy)carbonyl)phenyl)methyl)oxy)methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (350 mg, 0.840 mmol) obtained in Reference Example 158 and ethanol (15 mL) was added benzylamine (0.184 mL, 1.68 mmol), and the mixture was stirred at 85°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to the obtained residue. The organic layer was washed with 1N hydrochloric acid, water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (368 mg, 92%).
melting point: 229°C

1H NMR (300 MHz, DMSO-d6) δ 1.32 (3 H, t, J=7.1 Hz), 4.31 (2 H, q, J=7.0 Hz), 4.45 (2 H, d, J=6.4 Hz), 4.75 (2 H, s), 4.89 (2 H, d, J=0.9 Hz), 7.19 - 7.37 (5 H, m), 7.53 (2 H, d, J=8.1 Hz), 7.63 (1 H, s), 7.95 (2 H, d, J=8.3 Hz), 9.67 (1 H, t, J=6.3 Hz), 12.43 (1 H, s).

Example 368

4-((4-oxo-2-(((phenylmethyl)amino)carbonyl)-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoic acid

A mixture of ethyl 4-((4-oxo-2-(((phenylmethyl)amino)carbonyl)-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)oxy)methyl)benzoate (220 mg, 0.461 mmol) obtained in Example 367 and 4N aqueous sodium hydroxide solution (0.576 mL, 2.30 mmol) was stirred in a mixed solvent of water (3 mL), methanol (3 mL) and THF (3 mL) at 80°C for 2 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (187 mg, 90%).
melting point: 268-269°C
Example 369
ethyl 4-\{(2-\{\{4-fluoro-3-(methyloxy)phenyl\}methyl\}amino)carbonyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl\}oxy\}methyl\}benzoate

[0680]

To a mixture of ethyl 5-\{(4-\{(ethyloxy)carbonyl\}phenyl)methyl\}oxy\}methyl\}4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (350 mg, 0.840 mmol) obtained in Reference Example 158 and DMA (10 mL) were added 1-[4-fluoro-3-(methyloxy)phenyl]methanamine hydrochloride (242 mg, 1.26 mmol) (synthesized by a method described in WO03/029224 A1) and N,N-diisopropylethylamine (0.293 mL, 1.68 mmol) and the mixture was stirred at 90°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to the obtained residue. The organic layer was washed with 1N hydrochloric acid, water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as an opalescent powder (283 mg, 64%).

melting point: 215-216°C

1H NMR (300 MHz, DMSO-d$_6$) δ 1.32 (3 H, t, J=7.2 Hz), 3.82 (3 H, s), 4.31 (2 H, q, J=7.1 Hz), 4.41 (2 H, d, J=6.4 Hz), 4.75 (2 H, s), 4.89 (2 H, d, J=1.1 Hz), 6.78 - 6.95 (1 H, m), 7.06 - 7.22 (2 H, m), 7.53 (2 H, d, J=8.5 Hz), 7.63 (1 H, s), 7.88 - 8.01 (2 H, m), 9.66 (1 H, t, J=6.3 Hz), 12.43 (1 H, s).

Example 370
4-\{(2-\{\{4-fluoro-3-(methyloxy)phenyl\}methyl\}amino)carbonyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl\}methyl\}oxy\}methyl\}benzoic acid

[0682]

[0683] A mixture of ethyl 4-\{(2-\{\{4-fluoro-3-(methyloxy)phenyl\}methyl\}amino)carbonyl\}-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl\}methyl\}oxy\}methyl\}benzoate (210 mg, 0.400 mmol) obtained in Example 369 and 4N aqueous sodium hydroxide solution (0.500 mL) was stirred in a mixed solvent of water (3 mL), methanol (3 mL) and THF (3 mL) at 80°C
for 2 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to
the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous
sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate
to give the title compound as a white powder (194 mg, 98%).

melting point: 225-226°C

\[\text{H NMR (300 MHz, DMSO-d$_6$)} \delta \]

\[3.82 (3 H, s), 4.41 (2 H, d, J=6.2 Hz), 4.74 (2 H, s), 4.89 (2 H, d, J=0.9 Hz), 6.83 - 6.95 (1 H, m), 7.08 - 7.21 (2 H, m), 7.51 (2 H, d, J=6.5 Hz), 7.63 (1 H, s), 7.93 (2 H, d, J=6.3 Hz), 12.45 (1 H, s), 12.91 (1 H, s). \]

Example 371

Disodium 4-[[2-[[4-fluoro-3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-4H-thieno[2,3-d]pyrimidin-3-id-5-yl
methyl]oxy]methyl]benzoate

Example 372

benzoate

Example 373

[4-[[4-(hydroxymethyl)phenyl]carbonyl]oxy]methyl]-4-oxo,3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (200 mg, 0.515 mmol) obtained in Reference Example 159 and 1-(3-chlorophenyl)methanamine (219
mg, 1.55 mmol) was stirred in ethanol (5 mL) at 85°C for 2 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (74 mg, 30%).

melting point: 247-248°C

1H NMR (300 MHz, DMSO-d6) δ 4.46 (2 H, d, J=6.2 Hz), 4.58 (2 H, d, J=5.5 Hz), 5.38 (1 H, t, J=5.7 Hz), 5.61 (2 H, s), 7.25 - 7.52 (6 H, m), 7.80 (1 H, s), 7.98 (2 H, d, J=8.3 Hz), 9.74 (1 H, t, J=5.9 Hz), 12.55 (1 H, s).

Example 373

(4-oxo-2-[[3-[(trifluoromethyl)oxy]phenyl]methyl]amino)carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl 4-(hydroxymethyl)benzoate

[0688]

A mixture of ethyl 5-[[4-(hydroxymethyl)phenyl]carbonyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (200 mg, 0.515 mmol) obtained in Reference Example 159 and 4-[[3-[(trifluoromethyl)oxy]phenyl]methyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl 4-(hydroxymethyl)benzoate

[0689]

[0690] A mixture of ethyl 5-[[4-(hydroxymethyl)phenyl]carbonyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (200 mg, 0.515 mmol) obtained in Reference Example 159 and 1-[[3-(ethyloxy)phenyl]methyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl 4-(hydroxymethyl)benzoate

[0691] A mixture of ethyl 5-[[4-(hydroxymethyl)phenyl]carbonyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (200 mg, 0.515 mmol) obtained in Reference Example 159, 1-[[3-(ethyloxy)phenyl]methyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl 4-(hydroxymethyl)benzoate

[0692]

[0693] A mixture of ethyl 5-[[4-(hydroxymethyl)phenyl]carbonyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (200 mg, 0.515 mmol) obtained in Reference Example 159, 1-[[3-(ethyloxy)phenyl]methyl]amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl 4-(hydroxymethyl)benzoate
to give the title compound as a white powder (177 mg, 70%).

melting point: 188°C

1H NMR (300 MHz, DMSO-d_6) δ 1.31 (3 H, t, J=7.0 Hz), 4.00 (2 H, q, J=7.0 Hz), 4.42 (2 H, d, J=6.4 Hz), 4.58 (2 H, d, J=5.7 Hz), 5.38 (1 H, t, J=5.7 Hz), 5.61 (2 H, s), 6.73 - 6.94 (3 H, m), 7.22 (1 H, t, J=8.0 Hz), 7.47 (2 H, d, J=8.1 Hz), 7.79 (1 H, s), 7.98 (2 H, d, J=8.1 Hz), 9.66 (1 H, t, J=6.4 Hz), 12.54 (1 H, s).

Example 375

[2-[[4-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl 4-(hydroxymethyl)benzoate

[0692]

A mixture of ethyl 5-[[4-(hydroxymethyl)phenyl]carbonyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (200 mg, 0.515 mmol) obtained in Reference Example 159 and 1-[4-(methyloxy)phenyl]methanamine (212 mg, 1.55 mmol) was stirred in ethanol (5 mL) at 85°C for 4 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (133 mg, 54%).

melting point: 208°C

1H NMR (300 MHz, DMSO-d_6) δ 3.73 (3 H, s), 4.38 (2 H, d, J=6.4 Hz), 4.59 (2 H, d, J=5.3 Hz), 5.38 (1 H, t, J=5.8 Hz), 5.61 (2 H, s), 6.89 (2 H, d, J=8.3 Hz), 7.27 (2 H, d, J=8.3 Hz), 7.47 (2 H, d, J=7.5 Hz), 7.79 (1 H, s), 7.98 (2 H, d, J=8.1 Hz), 9.62 (1 H, t, J=5.8 Hz), 12.52 (1 H, s).

Example 376

[2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl 4-(hydroxymethyl)benzoate

[0694]

A mixture of ethyl 5-[[4-(hydroxymethyl)phenyl]carbonyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (100 mg, 0.257 mmol) obtained in Reference Example 159, 1-[3-(methyloxy)phenyl]methanamine (0.0494 mL, 0.386 mmol) and N,N-diisopropylethylamine (0.224 mL, 1.29 mmol) was stirred in ethanol (5 mL) at 80°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (87.4 mg, 71%).
melting point: 185-186°C

1H NMR (300 MHz, DMSO-d_6) δ 3.74 (3 H, s), 4.43 (2 H, d, J=6.2 Hz), 4.59 (2 H, d, J=5.1 Hz), 5.38 (1 H, t, J=5.6 Hz), 5.61 (2 H, s), 6.76 - 6.94 (3 H, m), 7.24 (1 H, t, J=8.1 Hz), 7.47 (2 H, d, J=8.1 Hz), 7.79 (1 H, s), 7.98 (2 H, d, J=8.3 Hz), 9.67 (1 H, t, J=6.3 Hz), 12.54 (1 H, s).

Example 377

ethyl 4-[[2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methoxy]methyl]benzoate

To a mixture of 4-[[2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methoxy]methyl]benzoic acid (110 mg, 0.229 mmol) obtained in Example 217, 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide hydrochloride (65.9 mg, 0.344 mol), 4- dimethylaminopyridine (2.70 mg, 0.0220 mol) and THF (5 mL) was added ethanol (0.134 mL, 2.29 mmol), and the mixture was stirred at room temperature for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (85.5 mg, 74%).

melting point: 173°C

1H NMR (300 MHz, DMSO-d_6) δ 1.32 (3 H, t, J=7.1 Hz), 3.73 (3 H, s), 4.31 (2 H, q, J=7.2 Hz), 4.42 (2 H, d, J=6.2 Hz), 4.75 (2 H, s), 4.89 (2 H, d, J=0.9 Hz), 6.79 - 6.85 (1 H, m), 6.87 - 6.93 (2 H, m), 7.24 (1 H, t, J=8.1 Hz), 7.54 (2 H, d, J=8.5 Hz), 7.63 (1 H, s), 7.88 - 8.03 (2 H, m), 9.65 (1H, t, J=6.5 Hz), 12.42 (1 H, s).

Example 378

5-[[4-(methylamino)carbonyl]phenyl][methyl]oxy]methyl]-N-[[3-(methyloxy)phenyl][methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

To a mixture of 4-[[2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]methoxy]methyl]benzoic acid (110 mg, 0.229 mmol) obtained in Example 217, 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide hydrochloride (65.9 mg, 0.344 mol), 4-dimethylaminopyridine (283 mg, 2.31 mol) and THF (5 mL)
was added methylamine hydrochloride (155 mg, 2.29 mmol). The mixture was stirred at room temperature for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (75.9 mg, 67%).

melting point: 190-191°C

1H NMR (300 MHz, DMSO-d_6) δ 2.78 (3 H, d, J=4.5 Hz), 3.73 (3 H, s), 4.42 (2 H, d, J=6.4 Hz), 4.71 (2 H, s), 4.87 (2 H, d, J=0.8 Hz), 6.82 (1 H, dd, J=8.9, 1.8 Hz), 6.86 - 6.97 (2 H, m), 7.24 (1 H, t, J=8.1 Hz), 7.46 (2 H, d, J=8.1 Hz), 7.62 (1 H, s), 7.82 (2 H, d, J=8.1 Hz), 8.42 (1 H, d, J=4.5 Hz), 9.65 (1 H, t, J=6.4 Hz), 12.42 (1 H, s).

Example 379

5-[[4-(aminocarbonyl)phenyl]methyl]oxy)methyl]-N-[[3-(methyloxy)phenyl](methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

melting point: 190-191°C

1H NMR (300 MHz, DMSO-d_6) δ 2.78 (3 H, d, J=4.5 Hz), 3.73 (3 H, s), 4.42 (2 H, d, J=6.4 Hz), 4.71 (2 H, s), 4.87 (2 H, d, J=0.8 Hz), 6.82 (1 H, dd, J=8.9, 1.8 Hz), 6.86 - 6.97 (2 H, m), 7.24 (1 H, t, J=8.1 Hz), 7.46 (2 H, d, J=8.1 Hz), 7.62 (1 H, s), 7.82 (2 H, d, J=8.1 Hz), 8.42 (1 H, d, J=4.5 Hz), 9.65 (1 H, t, J=6.4 Hz), 12.42 (1 H, s).

Example 380

5-[[4-(hydroxymethyl)phenyl]methyl]oxy)methyl]-N-[[3-(methyloxy)phenyl](methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

melting point: 224°C

1H NMR (300 MHz, DMSO-d_6) δ 3.73 (3 H, s), 4.42 (2 H, d, J=6.2 Hz), 4.71 (2 H, s), 4.87 (2 H, d, J=1.1 Hz), 6.76 - 6.95 (3 H, m), 7.18 - 7.28 (1 H, m), 7.34 (1 H, s), 7.47 (2 H, t, J=7.6 Hz), 7.62 (1 H, s), 7.86 (2 H, d, J=8.3 Hz), 7.95 (1 H, s), 9.64 (1 H, t, J=6.4 Hz), 12.43 (1 H, s).

Example 381

5-[[4-(hydroxymethyl)phenyl]methyl]oxy)methyl]-N-[[3-(methyloxy)phenyl](methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

melting point: 224°C

1H NMR (300 MHz, DMSO-d_6) δ 3.73 (3 H, s), 4.42 (2 H, d, J=6.2 Hz), 4.71 (2 H, s), 4.87 (2 H, d, J=1.1 Hz), 6.76 - 6.95 (3 H, m), 7.18 - 7.28 (1 H, m), 7.34 (1 H, s), 7.47 (2 H, t, J=7.6 Hz), 7.62 (1 H, s), 7.86 (2 H, d, J=8.3 Hz), 7.95 (1 H, s), 9.64 (1 H, t, J=6.4 Hz), 12.43 (1 H, s).
To a mixture of 4-{[[2-([3-(methyloxy)phenyl][methyl]amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy}[methyl]benzoic acid (1200 mg, 2.50 mmol) obtained in Example 217 and THF (12 mL) were added oxalyl chloride (0.419 mL, 4.80 mmol) and DMF (1 drop), and the mixture was stirred at room temperature for 1.5 hrs. The reaction mixture was concentrated under reduced pressure. A Mixture of the concentrated residue and sodium borohydride (189 mg, 5.01 mmol) was stirred in DMA (15 mL) at room temperature for 5 min. The reaction mixture was stirred until generation of gas ceased and concentrated under reduced pressure. Ethyl acetate was added to the obtained residue. The organic layer was washed with water, 1N hydrochloric acid, water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (753 mg, 65%).

Example 381

5-{(4-(methyloxy)methyl)phenyl)methyl]oxy}methyl)-N-[(3-(methyloxy)phenyl)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

To a mixture of 5-{[(4-hydroxymethyl)phenyl][methyl]oxy}methyl]N-[(3-(methyloxy)phenyl)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide (100 mg, 0.215 mmol) obtained in Example 380 and THF (2 mL) were added methanesulfonyl chloride (0.0266 mL, 0.344 mmol) and triethylamine (0.0929 mL, 0.667 mmol), and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. To a mixture of the concentrated residue and sodium methylate (58.1 mg, 1.08 mmol) were added methanol (2 mL) and THF (2 mL) and the mixture was stirred at 80°C for 1hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (68.5 mg, 66%).

Example 381

5-{(4-(methyloxy)methyl)phenyl)methyl]oxy}methyl]-N-[(3-(methyloxy)phenyl)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

1H NMR (300 MHz, DMSO-d6) δ 3.73 (3 H, s), 4.42 (2 H, d, J=6.4 Hz), 4.49 (2 H, d, J=5.7 Hz), 4.64 (2 H, s), 4.83 (2 H, d, J=1.1 Hz), 5.16 (1 H, t, J=5.7 Hz), 6.75 - 6.95 (3 H, m), 7.19 - 7.28 (1 H, m), 7.28 - 7.39 (4 H, m), 7.58 (1 H, s), 9.64 (1 H, t, J=6.5 Hz), 12.39 (1 H, s).

Example 381

5-{(4-(methyloxy)methyl)phenyl)methyl]oxy}methyl]-N-[(3-(methyloxy)phenyl)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

1H NMR (300 MHz, DMSO-d6) δ 3.28 (3 H, s), 3.73 (3 H, s), 4.34 - 4.48 (4 H, m), 4.65 (2 H, s), 4.85 (2 H, d, J=0.9 Hz), 6.77 - 6.95 (3 H, m), 7.18 - 7.40 (5 H, m), 7.59 (1 H, s), 9.64 (1 H, t, J=6.0 Hz), 12.42 (1 H, s).
Example 382

(4-[[[4-[[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy][methyl]phenyl[methyl]methyl acetate

[0706]

To a mixture of 5-[[[[4-(hydroxymethyl)phenyl][methyl]oxy][methyl]-N-[[3-(methyloxy)phenyl][methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide (100 mg, 0.215 mmol) obtained in Example 380 and THF (2 mL) were added acetyl chloride (0.0245 mL, 0.344 mmol) and pyridine (0.174 mL, 2.15 mmol) and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (91 mg, 83%).

melting point: 170°C

1H NMR (300 MHz, DMSO-d6) δ 2.06 (3 H, s), 3.73 (3 H, s), 4.42 (2 H, d, J=6.2 Hz), 4.66 (2 H, s), 4.85 (2 H, d, J=1.3 Hz), 5.07 (2 H, s), 6.76 - 6.95 (3 H, m), 7.24 (1 H, t, J=8.1 Hz), 7.31 - 7.44 (4 H, m), 7.59 (1 H, t, J=1.2 Hz), 9.64 (1 H, t, J=6.4 Hz), 12.42 (1 H, s).

Example 383

Sodium 4-[[[4-[[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl][methyl]oxy][methyl]benzoate

[0708]

To a mixed solution of 4-[[4-[[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide (100 mg, 0.313 mmol) obtained in Example 217 in THF (24 mL) and ethanol (6 mL) was added an aqueous solution (3 mL) of sodium hydrogen carbonate (26.3 mg, 0.313 mmol) at 90°C and the mixture was stirred for 30 min. The reaction mixture was concentrated under reduced pressure, and ethanol (18 mL) was added to the obtained residue and the ethanol suspension was stirred at 90°C for 30 min. After allowing to cool to room temperature, the precipitated solid was collected by filtration, washed with ethanol and dried to give the title compound as a white powder (114 mg, 73%).

melting point: 276-278°C

1H NMR (300 MHz, DMSO-d6) δ 3.73 (3 H, s), 4.40 (2 H, d, J=6.2 Hz), 4.69 (2 H, s), 4.89 (2 H, s), 6.73 - 6.94 (3 H, m), 7.15 - 7.30 (2 H, m), 7.40 (2 H, d, J=8.3 Hz), 7.88 (2 H, d, J=8.1 Hz), 9.27 (1 H, s).
Example 384

To a mixed solution of 4-[[[3-(methyl oxy) phenyl]methyl] amino]carbonyl]-4-oxo-4H-thieno[2,3-d]pyrimidin-3-yl[methyl]oxy]methyl]benzoic acid (150 mg, 0.313 mmol) obtained in Example 217 in THF (24 mL) and ethanol (6 mL) was added an aqueous solution (3 mL) of sodium hydrogen carbonate (52.6 mg, 0.626 mmol) and the mixture was stirred for 30 min. The reaction mixture was concentrated under reduced pressure, ethanol (18 mL) was added to the obtained residue, and the ethanol suspension was stirred at 90°C for 30 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, washed with ethanol and dried to give the title compound as a white powder (149 mg, 91%).

melting point: >300°C

1H NMR (300 MHz, DMSO-d₆) δ 3.73 (3 H, s), 4.40 (2 H, d, J=6.4 Hz), 4.63 (2 H, s), 4.88 (2 H, d, J=1.3 Hz), 6.74 - 6.94 (3 H, m), 6.98 (1 H, t, J=1.3 Hz), 7.14 - 7.33 (3 H, m), 7.84 (2 H, d, J=8.1 Hz), 9.03 (1 H, t, J=6.4 Hz).

Example 385

To a mixed solution of 4-[[[3-(methyl oxy) phenyl]methyl] amino]carbonyl]-4-oxo-4H-thieno[2,3-d]pyrimidin-3-yl[methyl]oxy]methyl]benzoic acid (150 mg, 0.313 mmol) obtained in Example 217 in THF (24 mL) and ethanol (6 mL) was added an aqueous solution (3 mL) of potassium hydrogen carbonate (31.3 mg, 0.313 mmol) at 90°C and the mixture was stirred for 30 min. The reaction mixture was concentrated under reduced pressure, ethanol (18 mL) was added to the obtained residue, and the ethanol suspension was stirred at 90°C for 30 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, washed with ethanol and dried to give the title compound as a white powder (140 mg, 87%).

melting point: 281-282°C

1H NMR (300 MHz, DMSO-d₆) δ 3.73 (3 H, s), 4.40 (2 H, d, J=6.4 Hz), 4.69 (2 H, s), 4.89 (2 H, d, J=1.1 Hz), 6.73 - 6.95 (3 H, m), 7.19 - 7.27 (2 H, m), 7.40 (2 H, d, J=8.1 Hz), 7.88 (2 H, d, J=8.1 Hz), 9.24 (1 H, t, J=6.1 Hz).
Example 386

[0714]

To a mixed solution of 4-[[2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-4H-thieno[2,3-d]pyrimidin-3-yl]oxy[methyl]benzoic acid (150 mg, 0.313 mmol) obtained in Example 217 in THF (24 mL) and ethanol (6 mL) was added an aqueous solution (3 mL) of potassium hydrogen carbonate (62.6 mg, 0.626 mmol) at 90°C and the mixture was stirred for 30 min. The reaction mixture was concentrated under reduced pressure, ethanol (18 mL) was added to the obtained residue, and the ethanol suspension was stirred at 90°C for 30 min. The mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration, washed with ethanol and dried to give the title compound as a white powder (161 mg, 93%). melting point: >300°C. ¹H NMR (300 MHz, DMSO-d₆) δ 3.73 (3 H, s), 4.39 (2 H, d, J=6.4 Hz), 4.61 (2 H, s), 4.88 (2 H, d, J=1.3 Hz), 6.74 - 6.92 (3 H, m), 6.94 (1 H, t, J=1.3 Hz), 7.17 - 7.29 (3 H, m), 7.80 (2 H, d, J=8.1 Hz), 8.94 (1 H, t, J=6.4 Hz).

Example 387

N-[[3-(methyloxy)phenyl]methyl]-5-[[methyl(phenylmethyl)amino]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0715]

A mixture of ethyl 5-[[methyl(phenylmethyl)amino]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (150 mg, 0.420 mmol) obtained in Reference Example 160 and 1-[3-(methyloxy)phenyl]methanamine (0.0967 mL, 0.756 mmol) was stirred in ethanol (3 mL) at 90°C for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with phosphate buffer (pH = 6.86) and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (110 mg, 58%). melting point: 127°C. ¹H NMR (300 MHz, DMSO-d₆) δ 2.18 (3 H, s), 3.60 (2 H, s), 3.73 (3 H, s), 3.94 (2 H, s), 4.42 (2 H, d, J=6.4 Hz), 6.78 - 6.86 (1 H, m), 6.87 - 6.93 (2 H, m), 7.17 - 7.44 (6 H, m), 7.59 (1 H, s), 9.63 (1 H, s), 12.34 (1 H, s).
Example 388

N-[[3-(methyloxy)phenyl]methyl]-4-oxo-5-[[phenylmethyl][thio]methyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0717]

A mixture of ethyl 4-oxo-5-[[phenylmethyl][thio]methyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (150 mg, 0.416 mmol) obtained in Reference Example 161 and 1-[3-(methyloxy)phenyl]methanamine (0.133 mL, 1.04 mmol) was stirred in ethanol (3 mL) at 90°C for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from an ethyl acetate-hexane mixed solvent to give the title compound as a white powder (126 mg, 67%).

melting point: 126°C

1H NMR (300 MHz, DMSO-d6) δ 3.73 (2 H, s), 3.74 (3 H, s), 3.99 (2 H, s), 4.42 (2 H, d, J=6.4 Hz), 6.79 - 6.93 (3 H, m), 7.19 - 7.32 (6 H, m), 7.51 (1 H, s), 9.64 (1 H, t, J=6.1 Hz), 12.42 (1 H, s).

Example 389

6-methyl-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0719]

A mixture of ethyl 6-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (synthesized according to a method of BE 859818 19780417 and the like) (180 mg, 0.756 mmol), 1-[3-(methyloxy)phenyl]methanamine (0.145 mL, 1.13 mmol) and ethanol (3 mL) was stirred at 90°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (210 mg, 84%).

melting point: 187°C

1H NMR (300 MHz, DMSO-d6) δ 2.55 (3 H, d, J=1.1 Hz), 3.73 (3 H, s), 3.99 (2 H, d, J=6.4 Hz), 6.79 - 6.93 (3 H, m), 7.13 - 7.30 (2 H, m), 9.63 (1 H, t, J=6.3 Hz), 12.39 (1 H, s).

Example 390

5,6-dimethyl-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0721]
[0722] A mixture of ethyl 5,6-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (synthesized according to a method of US 4054656 19771018 and the like) (200 mg, 0.793 mmol), 1-[3-(methyloxy)phenyl]methanamine (0.203 mL, 1.59 mmol) and ethanol (3 mL) was stirred at 90°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (228 mg, 84%). melting point: 194°C

1H NMR (300 MHz, DMSO-d₆) δ 2.40 (3 H, s), 2.42 (3 H, s), 3.73 (3 H, s), 4.40 (2 H, d, J=6.4 Hz), 6.78 - 6.93 (3 H, m), 7.18 - 7.29 (1 H, m), 9.60 (1 H, t, J=6.3 Hz), 12.17 (1 H, s).

Example 391
5-(cyanomethyl)-N-[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0723]

[0724] A mixture of ethyl 5-(cyanomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (270 mg, 1.03 mmol) obtained in Reference Example 162, 1-[3-(methyloxy)phenyl]methanamine (0.197 mL, 1.54 mmol) and ethanol (5 mL) was stirred at 80°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a brown powder (275 mg, 76%). melting point: 217°C

1H NMR (300 MHz, DMSO-d₆) δ 3.73 (3 H, s), 4.27 (2 H, d, J=0.9 Hz), 4.42 (2 H, d, J=6.4 Hz), 6.78 - 6.94 (3 H, m), 7.24 (1 H, t, J=8.1 Hz), 7.69 (1 H, t, J=0.9 Hz), 9.66 (1 H, t, J=6.4 Hz), 12.60 (1 H, s).

Example 392.
5-(cyanomethyl)-N-[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide
carboxamide (200 mg, 0.564 mmol) obtained in Example 391, 2N aqueous sodium hydroxide solution (4 mL, 8 mmol) and ethanol (2 mL) was stirred at 100°C for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a brown powder (131 mg, 62%).

melting point: 228-229°C

1H NMR (300 MHz, DMSO-d$_6$) δ 3.73 (3 H, s), 3.91 (2 H, s), 4.42 (2 H, d, J=6.2 Hz), 6.77 - 6.93 (3 H, m), 7.24 (1 H, t, J=8.1 Hz), 7.49 (1 H, s), 9.64 (1 H, t, J=6.3 Hz), 12.25 (1 H, s), 12.38 (1 H, s).

Example 393

N-[[3-(methyloxy)phenyl]methyl]-4-oxo-5-[2-oxo-2-(phenylamino)ethyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0727]

![Chemical Structure](image)

[0728] To a mixture of (2-[[[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]acetic acid (200 mg, 0.536 mmol) obtained in Example 392 and THF (3 mL) was added oxalyl chloride (0.140 mL, 1.61 mmol). The mixture was stirred at room temperature for 15 hrs. and the reaction mixture was concentrated under reduced pressure. THF (3.0 mL), aniline (0.146 mL, 1.61 mmol) and pyridine (0.217 mL, 2.68 mmol) were added to the obtained residue and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, 1N hydrochloric acid, and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was crystallized from ethyl acetate to give the title compound as a white powder (154 mg, 64%).

melting point 194-195°C

1H NMR (300 MHz, DMSO-d$_6$) δ 3.73 (3 H, s), 3.94 - 4.12 (2 H, m), 4.42 (2 H, d, J=6.4 Hz), 6.78 - 6.94 (3 H, m), 7.02 (1 H, t, J=7.3 Hz), 7.19 - 7.34 (3 H, m), 7.49 - 7.63 (3 H, m), 9.64 (1 H, t, J=6.4 Hz), 10.14 (1 H, s), 12.42 (1 H, s).

Example 394

[0729]
To a mixture of (2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)acetic acid (350 mg, 0.937 mmol) obtained in Example 392 and THF (3 mL) was added oxalyl chloride (0.245 mL, 2.81 mmol) and the mixture was stirred at room temperature for 15 hrs. The reaction mixture was concentrated under reduced pressure, THF (3 mL), ethyl 4-aminobenzoate (464 mg, 2.81 mmol) and pyridine (0.379 mL, 4.69 mmol) were added to the obtained residue and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with aqueous sodium hydrogen carbonate, 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a pale-yellow powder (370 mg, 76%).

Example 395

4-[[2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]acetyl]amino]benzoic acid

A mixture of ethyl 4-[[2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]acetyl]amino]benzoate (188 mg, 86%) obtained in Example 394, 12N aqueous sodium hydroxide solution (0.0920 mL, 1.11 mmol), THF (1 mL), methanol (1 mL) and water (1 mL) was stirred at 80°C for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a pale-yellow powder (188 mg, 86%).

Example 396

5,6-dibromo-N-[[3-(methyloxy)phenyl][methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

A mixture of ethyl 5,6-dibromo-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (200 mg, 0.524 mmol) obtained in Reference Example 163, 1-[3-(methyloxy)phenyl]methanamine (0.101 mL, 0.785 mmol) and ethanol (5 mL)
was stirred at 80°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a pale-yellow powder (188 mg, 76%).

melting point: 189°C

1H NMR (300 MHz, DMSO-d$_6$) δ 3.73 (3H, s), 4.40 (2 H, d, J=6.4 Hz), 6.80 - 6.92 (3 H, m), 7.23 (1 H, t, J=8.1 Hz), 9.72 (1 H, t, J=6.3 Hz), 12.75 (1 H, s).

Example 397

N-[[3-(methyloxy)phenyl]methyl]-4-oxo-5, [[(phenylacetyl)amino]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

Example 398

6-bromo-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

Example 399

6-bromo-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide
Example 399

5-(3-bromophenyl)-N-[(3-methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide.

[0739]

A mixture of ethyl 5-(3-bromophenyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (800 mg, 2.11 mmol) obtained in Reference Example 168, 1-[3-(methyloxy)phenyl]methanamine (0.472 mL, 3.70 mmol) and ethanol (10 ml) was stirred at 90°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from diethyl ether to give the title compound as a white powder (900 mg, 90.7%).

melting point: 127°C

1H NMR (300 MHz, DMSO-d6) δ 3.74 (3 H, s), 4.44 (2 H, d, J=6.4 Hz), 6.81 (1 H, d, J=2.3 Hz), 6.89 - 6.94 (2 H, m), 7.25 (1 H, t, J=8.1 Hz), 7.37 (1 H, t, J=7.8 Hz), 7.56 (2 H, ddd, J=7.9, 3.2, 1.8 Hz), 7.75 (1 H, t, J=1.7 Hz), 7.79 (1 H, s), 9.68 (1 H, t, J=6.6 Hz), 12.46 (1 H, s).

Example 400

3’-{2-[[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl}biphenyl-4-carboxylic acid

[0741]

A mixture of 5-(3-bromophenyl)-N-[(3-methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide (200 mg, 0.425 mmol) obtained in Example 399, 4-ethoxycarbonylphenylboronic acid (198 mg, 1.02 mmol), tetrakis(triphenylphosphine)palladium (0) (20.0 mg, 0.017 mmol), 2N sodium carbonate (0.532 mL, 1.06 mmol) and toluene (10 mL) was stirred under microwave irradiation at 145°C for 10 min. Ethyl acetate was added to the reaction mixture, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate, water, 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. 12N Aqueous sodium hydroxide solution (0.0883 mL, 1.06 mmol), THF (3 mL), methanol (3 mL) and water (3 mL) were added to the concentrated residue and the mixture was stirred at 80°C for 1.5 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (163 mg, 75%).

melting point: 259-260°C

1H NMR (300 MHz, DMSO-d6) δ 3.74 (3 H, s), 4.44 (2 H, d, J=6.4 Hz), 6.79 - 6.96 (3 H, m), 7.25 (1 H, t, J=8.1 Hz), 7.48
Example 401

N-[[3-(methyloxy)phenyl]methyl]-4-oxo-5-phenyl-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0743]

A mixture of 5-(3-bromophenyl)-N-[[3-(methyloxy)phenyl]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide (200 mg, 0.425 mmol) obtained by Example 399, 10% palladium carbon (50% wet) (300 mg), THF (3 mL) and ethanol (3 mL) was stirred at room temperature under a hydrogen atmosphere (1 atm) for 12 hrs. The insoluble material was filtered off, and the filtrate was concentrated under reduced pressure. The obtained residue was crystallized from ethyl acetate to give the title compound as a white powder (136 mg, 82%).

melting point: 177-178°C

1H NMR (300 MHz, DMSO-d6) δ 3.74 (3 H, s), 4.44 (2 H, d, J=6.4 Hz), 6.78 - 6.95 (3 H, m), 7.19 - 7.30 (1 H, m), 7.32 - 7.46 (3 H, m), 7.49 - 7.58 (2 H, m), 7.68 (1 H, s), 9.68 (1 H, t, J=6.3 Hz).

Example 402

ethyl 5-methyl-2-[[([3-(methyloxy)phenyl]methyl)amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylate

[0745]

A mixture of diethyl 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2,6-dicarboxylate (800 mg, 2.58 mmol) obtained in Reference Example 169, 1-[3-(methyloxy)phenyl]methanamine (0.990 mL, 7.73 mmol), ethanol (40 mL) and THF (40 mL) was stirred at 90°C for 18 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (1010 mg, 98%).

melting point: 223-224°C

1H NMR (300 MHz, DMSO-d6) δ 1.31 (3 H, t, J=7.1 Hz), 2.85 (3 H, s), 3.73 (3 H, s), 4.33 (2 H, q, J=7.0 Hz), 4.41 (2 H, d, J=6.4 Hz), 6.78 - 6.94 (3 H, m), 7.24 (1 H, t, J=8.1 Hz), 9.67 (1 H, t, J=6.0 Hz).

Example 403

5-methyl-2-[[([3-(methyloxy)phenyl]methyl)amino)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylic acid

[0747]
A mixture of ethyl 5-methyl-2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylate obtained in Example 402 (800 mg, 1.99 mmol), 12N aqueous sodium hydroxide solution (0.415 mL, 4.98 mmol), THF (7 mL), methanol (7 mL) and water (7 mL) was stirred at 80°C for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (718 mg, 96%).

melting point: >300°C

\[^{1}H \text{NMR (300 MHz, DMSO-d}_6) \delta 2.83 (3 \text{ H, s}), 3.73 (3 \text{ H, s}), 4.41 (2 \text{ H, d, J=6.4 Hz}), 6.75 - 6.96 (3 \text{ H, m}), 7.24 (1 \text{ H, t, J=8.1 Hz}), 9.72 (1 \text{ H, t, J=6.4 Hz}), 12.53 (1 \text{ H, s}), 13.45 (1 \text{ H, s}). \]

Example 404

5-methyl-N\text{\textsubscript{2}}-[[3-(methyloxy)phenyl][methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2,6-dicarboxamide

To a mixture of 5-methyl-2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylic acid (150 mg, 0.402 mmol) obtained in Example 403 and THF (3 mL) were added oxalyl chloride (0.105 ml, 1.21 mmol) and DMF (1 drop), and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was concentrated under reduced pressure, THF (3 mL) and 28% aqueous ammonia (2.20 mmol, 36.2 mmol) were added to the obtained residue, and the mixture was stirred for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (121 mg, 81%).

melting point: 258°C

\[^{1}H \text{NMR (300 MHz, DMSO-d}_6) \delta 2.73 (3 \text{ H, s}), 3.73 (3 \text{ H, s}), 4.41 (2 \text{ H, d, J=6.4 Hz}), 6.77 - 6.94 (3 \text{ H, m}), 7.24 (1 \text{ H, t, J=8.1 Hz}), 7.70 (2 \text{ H, s}), 9.62 (1 \text{ H, s}), 12.45 (1 \text{ H, s}). \]

Example 405

N-[[3-(methyloxy)phenyl][methyl]-4-oxo-S-[[phenylcarbonyl]amino][methyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

[0751]
A mixture of ethyl 4-oxo-5-[(phenylcarbonyl) amino]methyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (100 mg, 0.280 mmol) obtained in Reference Example 172, 1-[3-(methyloxy)phenyl]methanamine (0.107 mL, 0.840 mmol) and ethanol (3 mL) was stirred at 90°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (103 mg, 82%).

Example 406

methyl 4-[[2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]benzoate

A mixture of ethyl 5-[(4-[(methyloxy)carbonyl]phenyl]carbonyl)amino]methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (350 mg, 0.843 mmol) obtained in Reference Example 173, 1-[3-(methyloxy)phenyl]methanamine (0.324 mL, 2.53 mmol) and ethanol (5 mL) was stirred at 90°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (379 mg, 89%).

Example 407

A mixture of methyl 4-(((2-(((3-(methyloxy)phenyl)methyl)amino)carbonyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)methyl)amino)carbonyl)benzoate (275 mg, 0.543 mmol) obtained in Example 406, 12N aqueous sodium hydroxide solution (0.113 mL, 1.36 mmol), THF (2 mL), methanol (2 mL) and water (2 mL) was stirred at 90°C for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (263 mg, 98%).

Example 408

5-(azidomethyl)-N-((3-(methyloxy)phenyl)methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide

A mixture of ethyl 5-(azidomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (120 mg, 0.430 mmol) obtained in Reference Example 170, 1-[(3-(methyloxy)phenyl)methyl]methanamine (0.0825 mL, 0.645 mmol) and ethanol (5 mL) was stirred at 80°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (147 mg, 92%).

Example 409

N²-((3-(methyloxy)phenyl)methyl)-4-oxo-N⁵-(phenylmethyl)-3,4-dihydrothieno[2,3-d]pyrimidine-2,5-dicarboxamide
Example 410

ethyl 4-[[2-[[3-(methyloxy)phenyl]methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

A mixture of ethyl 4-oxo-5-[[{phenylmethyl}amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (200 mg, 0.560 mmol) obtained in Reference Example 177, 1-[3-(methyloxy)phenyl]methanamine (0.215 mL, 1.68 mmol) and ethanol (5 mL) was stirred at 90°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (214 mg, 85%).

melting point: 217°C

1H NMR (300 MHz, DMSO-d6) \(\delta\) 3.73 (3 H, s), 4.43 (2 H, d, \(J=6.2\) Hz), 4.56 (2 H, d, \(J=5.5\) Hz), 6.80 - 6.85 (1 H, m), 6.89 - 6.93 (2 H, m), 7.21 - 7.29 (2 H, m), 7.30 - 7.38 (4 H, m); 8.52 (1 H, s), 9.74 (1 H, s), 11.29 (1 H, s), 13.16 (1 H, s).

Example 411

A mixture of ethyl 5-[[{4-[(ethyloxy)carbonyl]phenyl}methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (300 mg, 0.699 mmol) obtained in Reference Example 178, 1-[3-(methyloxy)phenyl]methanamine (0.268 mL, 2.10 mmol) and ethanol (10 mL) was stirred at 90°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (331 mg, 91%).

melting point: 229-230°C

1H NMR (300 MHz, DMSO-d6) \(\delta\) 1.31 (3 H, t, \(J=7.1\) Hz), 3.73 (3 H, s), 4.31 (2 H, q, \(J=7.1\) Hz), 4.44 (2 H, d, \(J=6.2\) Hz), 4.64 (2 H, d, \(J=5.3\) Hz), 6.78 - 6.96 (3 H, m), 7.24 (1 H, t, \(J=8.1\) Hz), 7.49 (2 H, d, \(J=8.3\) Hz), 7.88 - 7.97 (2 H, m), 8.51 (1 H, s), 9.73 (1 H, t, \(J=6.0\) Hz), 11.39 (1 H, s), 13.20 (1 H, s).
A mixture of ethyl 4-\(\text{\{\[2-\text{\{[3-(methyloxy)phenyl]methyl}amino\}carbonyl\}-4-\text{oxo}\text{-}3\text{-}4\text{-dihydrothieno\[2,3-d\]pyrimidin-5-yl\}carbonyl}amino\}methyl\}benzoate (330 mg, 0.634 mmol) obtained in Example 410, 12N aqueous sodium hydroxide solution (0.132 mL, 1.59 mmol), THF (2 mL), methanol (2 mL) and water (2 mL) was stirred at 90°C for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and THF were added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (294 mg, 94%).

melting point: 254-255°C

\(^1\)H NMR (300 MHz, DMSO-d\(_6\)) \(\delta\) 3.73 (3 H, s), 4.44 (2 H, d, \(J=6.4\) Hz), 4.64 (2 H, d, \(J=5.5\) Hz), 6.74 - 6.97 (3 H, m), 7.24 (1 H, t, \(J=8.1\) Hz), 7.47 (2 H, d, \(J=8.3\) Hz), 7.91 (2 H, d, \(J=8.3\) Hz), 8.52 (1 H, s), 9.76 (1 H, t, \(J=6.4\) Hz), 11.32 (1 H, t, \(J=5.6\) Hz), 13.19 (1 H, s).

Example 412

2-\{\[3-(methyloxy)phenyl]methyl\}amino\}carbonyl\}-4-\text{oxo}\text{-}3\text{-}4\text{-dihydrothieno\[2,3-d\]pyrimidine-5-carboxylic acid

[0765]

A mixture of 2-\{(ethyloxy) carbonyl\}-4-\text{oxo}\text{-}3\text{-}4\text{-dihydrothieno\[2,3-d\]pyrimidine-5-carboxylic acid (5.00 g, 18.6 mmol) obtained in Reference Example 176, 1-\[3-(methyloxy)phenyl\]methanamine (7.16 mL, 56.0 mmol), N,N-diisopropylethylamine (29.0 mL, 168 mmol) and ethanol (50 mL) was stirred at 90°C for 20 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a brown powder (4.5 g, 67%).

melting point: 236-237°C

\(^1\)H NMR, (300 MHz, DMSO-d\(_6\)) \(\delta\) 3.74 (3 H, s), 4.45 (2 H, d, \(J=6.4\) Hz), 6.76 - 6.96 (3 H, m), 7.24 (1 H, t, \(J=8.1\) Hz), 8.65 (1 H, s), 9.82 (1 H, t, \(J=6.3\) Hz), 13.85 (1 H, s), 15.44 (1 H, s).

Example 413

5-amino-N-\{3-(methyloxy)phenyl\}methyl\}-4-\text{oxo}\text{-}3\text{-}4\text{-dihydrothieno\[2,3-d\]pyrimidine-2-carboxamide

[0767]
To a mixture of 2-[[3-(methyleneoxy)phenyl][methylene]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-5-carboxylic acid (4.45 g, 12.4 mmol) obtained in Example 412 and toluene (45 mL) were added triethylamine (10.0 mL, 74.3 mmol) and diphenyl azidophosphate (6.90 mL, 32.2 mmol) and the mixture was stirred at 100°C for 2 min. t-Butanol (12.0 mL, 124 mmol) was added and the mixture was stirred at 100°C for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and concentrated under reduced pressure. A mixture of the concentrated residue and a 4N solution (45.0 mL) of hydrogen chloride in ethyl acetate was stirred for 12 hrs. and concentrated under reduced pressure. 12N Aqueous sodium hydroxide solution (4.10 mL, 49.5 mmol), THF (15 mL), methanol (15 mL) and water (15 mL) were added to the obtained residue and the reaction mixture was stirred at 80°C for 2 hrs. The reaction mixture was neutralized with 1N hydrochloric acid, and concentrated under reduced pressure. Ethyl acetate was added to the obtained residue, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound as a brown foam (1.18 g, 26%).

Example 414

ethyl 4-[[2-[[3-(methyleneoxy)phenyl][methylene]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]amino]-2-oxoethylbenzoate

[0769]

To a mixture of {4-[(ethyloxy) carbonyl]phenyl}acetic acid (215 mg, 1.033 mmol, obtained by the method described in J. Med. Chem. (2001), 44(5), 814 - 821 and the like) and THF (3 mL) were added oxalyl chloride (0.183 mL, 2.10 mmol) and DMF (1 drop), and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was concentrated under reduced pressure, THF (3 mL), 5-amino-N-[[3-(methyleneoxy)phenyl][methylene]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide (276 mg, 0.837 mmol) obtained in Example 413 and pyridine (0.418 mL, 5.17 mmol) were added to the obtained residue, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was concentrated under reduced pressure and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. 1N Aqueous sodium hydroxide solution (2 mL), ethanol (1 mL) and THF (1 mL) were added to the concentrated residue and the reaction mixture was stirred at room temperature for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a brown powder (29.6 mg, 5.5%).

melting point: 218-219°C

1H NMR (300 MHz, DMSO-d$_6$) δ 3.66 - 3.78 (3 H, m) ; 4.40 (2 H, d, J=6.4 Hz), 6.72 - 7.33 (5 H, m), 9.57 (1 H, t, J=6.3 Hz), 11.59 (1 H, s).

1H NMR (300 MHz, DMSO-d$_6$) δ 3.66 - 3.78 (3 H, m) ; 4.40 (2 H, d, J=6.4 Hz), 6.72 - 7.33 (5 H, m), 9.57 (1 H, t, J=6.3 Hz), 11.59 (1 H, s).

187
Example 415

4-[2-[(3-(methyloxy)phenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl]amino]-2-oxo-ethyl]benzoic acid

9.67 (1 H, t, J=6.1 Hz), 9.95 (1 H, s), 12.79 (1 H, s).

Reference Example

The following Reference Example 1 to Reference Example 4 were synthesized in the same manner as in Example 1.

Reference Example 1

4-oxo-N-(pyridine-2-ylmethyl)-3,4-dihydroquinazoline-2-carboxamide

[0774] The compound was synthesized using 2-(aminomethyl)pyridine instead of 3-methoxybenzylamine.

melting point: 187-188°C

Reference Example 2

4-oxo-N-(pyridine-3-ylmethyl)-3,4-dihydroquinazoline-2-carboxamide

[0775] The compound was synthesized using 3-(aminomethyl)pyridine instead of 3-methoxybenzylamine.

melting point: 228-229°C
Reference Example 3

4-oxo-N-(pyridin-4-ylmethyl)-3,4-dihydroquinazoline-2-carboxamide

[0777] The compound was synthesized using 4(aminomethyl)pyridine instead of 3-methoxybenzylamine.
melting point: 266-267°C

Reference Example 4

4-oxo-N-(phenylmethyl)-3,4-dihydroquinazoline-2-carboxamide

[0778] The compound was synthesized using benzylamine instead of 3-methoxybenzylamine.
melting point: 193-195°C

Reference Example 5

N-methyl-4-oxo-N-(phenylmethyl)-3,4-dihydroquinazoline-2-carboxamide

[0779] The title compound was obtained in the same manner as in Example 121 using N-methylbenzylamine instead of 6,7-bis(methyloxy)-1,2,3,4-tetrahydroisoquinoline hydrochloride.
melting point: 153-154°C

Reference Example 6

3-methyl-N-[3-(methyloxy)phenylmethyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide

[0780] The compound was synthesized using in the same manner as in Example 1 using ethyl 3-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate obtained in Reference Example 97 instead of ethyl 4-oxo-3,4-dihydroquinazoline-2-carboxylate.
melting point: 87-88°C

Reference Example 7

ethyl 6-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0781] To a solution of 2-amino-5-fluorobenzamide (2.00 g, 13.0 mmol) and triethylamine (1.45 g, 14.3 mmol) in THF (40 mL) was added dropwise ethylchloroglyoxylate (1.95 g, 14.3 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was diluted with ethyl acetate, the mixture was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was washed with ethanol to give ethyl ((2-(aminocarbonyl)-4-fluorophenyl)amino)(oxo) acetate as a white powder (2.88 g, 87%).

Step 2

[0782] To a suspension of ethyl ((2-(aminocarbonyl)-4-fluorophenyl)amino)(oxo)acetate, (1.50 g, 5.90 mmol) in EtOH (30 mL) was added dropwise sodium ethylate (20% ethanol solution, 2.40 g, 7.08 mmol) under ice-cooling, and the mixture was stirred for 2 hrs. The reaction mixture was adjusted to pH 3-4 by adding 1N hydrochloric acid, and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give the title compound as a white powder (1.05 g, 75%).

1H-NMR (200MHz, DMSO-d6)
δ: 1.36 (3H, t, J = 7.2 Hz), 4.39 (2H, q, J = 7.2 Hz), 7.77-7.97 (3H, m).
Reference Example 8

ethyl 6-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0783] To a solution of 5-methoxy-2-nitrobenzoic acid (18.0 g, 91.3 mmol) and DMF (0.1 mL) in THF (150 mL) was dropwise added oxalyl chloride (12.7 g, 100 mol) under ice-cooling, and the mixture was stirred at 0°C for 1 hr. The mixture was stirred at room temperature for 3 hrs. and this solution was added dropwise to aqueous ammonia (7% aqueous solution, 200 mL) under ice-cooling. The reaction solution was concentrated under reduced pressure and THF was evaporated. The precipitated insoluble material was collected by filtration and the filtered cake was washed with water to give 5-methoxy-2-nitrobenzamide as a pale-yellow powder (10.0 g, 56%).

Step 2

[0784] To a solution (250 mL) of 5-methoxy-2-nitrobenzamide (9.70 g, 49.4 mmol) in MeOH was added 10% Pd-C (2.00 g), and the mixture was stirred under a hydrogen atmosphere (1 atm) at room temperature for 6 hrs. Insoluble material was filtered off and the filtrate was concentrated to give 2-amino-5-methoxybenzamide as a pale-yellow powder (8.20 g, 99%).

Step 3

[0785] To a solution of 2-amino-5-methoxybenzamide (1.50 g, 9.03 mol) and triethylamine (1.00 g, 9.93 mmol) in THF (40 mL) was added dropwise ethyl chloroglyoxylate (1.36 g, 9.93 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. Water was added to the reaction mixture, and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give ethyl ((2-(aminocarbonyl)-4-methoxyphenyl)amino)(oxo) acetate as a pale-yellow powder (2.42 g, 100%).

Step 4

[0786] To a suspension of ethyl ((2-(aminocarbonyl)-4-methoxyphenyl)amino)(oxo)acetate (1.50 g, 5.63 mol) in EtOH (30 mL) was added dropwise sodium ethylate (20% ethanol solution, 2.30 g, 6.76 mmol) under ice-cooling, and the mixture was stirred for 2 hrs. The reaction mixture was adjusted to pH 3-4 by adding 1N hydrochloric acid, and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give the title compound as a white powder (1.04 g, 74%).

1H-NMR (200MHz, DMSO-d6)
δ: 1.35 (3H, t, J = 7.2 Hz), 3.91 (3H, s), 4.38 (2H, q, J = 7.2 Hz), 7.49 (1H, dd, J = 3.0, 8.8 Hz), 7.57 (1H, d, J = 3.0 Hz), 7.79 (1H, d, J = 8.8Hz).

Reference Example 9

Ethyl 6-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0787] Ethyl 6-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 2

[0788] To a solution of 5-methyl-2-nitrobenzoic acid (17.0 g, 93.8 mmol) and DMF (0.1 mL) in THF (150 mL) was added dropwise oxalyl chloride (13.1 g, 103 mmol) under ice-cooling, and the mixture was stirred at room temperature for 3 hrs. This solution was added dropwise to aqueous ammonia (8% aqueous solution, 210 mL) under ice-cooling. The reaction solution was concentrated under reduced pressure and THF was evaporated. The precipitated insoluble material was collected by filtration and the filtered cake was washed with water to give 5-methyl-2-nitrobenzamide as a pale-yellow powder (15.3 g, 90%).

Step 2

[0789] To a solution of 5-methyl-2-nitrobenzamide (15.0 g, 83.3 mmol) in MeOH (300 mL) was added 10%Pd-C (2.50 g), and the mixture was stirred under a hydrogen atmosphere (1 atm) at room temperature for 12 hrs. Insoluble material was filtered off and the filtrate was concentrated to give 2-amino-5-methylbenzamide as a white powder (12.4 g, 99%).
To a solution of 2-amino-5-methylbenzamide (5.80 g, 38.6 mmol) and triethylamine (4.69 g, 46.3 mmol) in THF (200 mL) was added dropwise ethyl chloroglyoxylate (5.80 g, 42.5 mmol) under ice-cooling, and the mixture was stirred at room temperature for 3 hrs. The reaction mixture was diluted with ethyl acetate, washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was washed with ethanol to give ethyl ((2-(aminocarbonyl)-4-methyl(phenyl)amino)(oxo) acetate as a white powder (9.83 g, 100%).

To a suspension of ethyl ((2-(aminocarbonyl)-4-methyl(phenyl)amino)(oxo)acetate (4.90 g, 19.6 mmol) in EtOH (100 mL) was added dropwise sodium ethylate (20% ethanol solution, 7.33 g, 21.5 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was poured into 0.25N hydrochloric acid (200 mL) under ice-cooling, and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give the title compound as a pale orange powder (2.90 g, 64%).

1H-NMR (200MHz, DMSO-d6) δ: 1.36 (3H, t, J = 7.2 Hz), 2.48 (3H, s), 4.39 (2H, q, J = 7.2 Hz), 7.69-7.79 (2H, m), 7.98 (1H, s).

Reference Example 10
ethyl 4-oxo-6-(trifluoromethyl)-3,4-dihydroquinazoline-2-carboxylate

To a solution of 2-nitro-5-(trifluoromethyl)aniline (5.00 g, 24.3 mmol) and concentrated hydrochloric acid (6.1 mL) in water (50 mL) was added dropwise under ice-cooling, an aqueous solution (15 mL) of sodium nitrite (1.84 g, 26.7 mmol), and the mixture was stirred at room temperature for 1 hr. Insoluble material was filtered off and to the obtained filtrate under ice-cooling, an aqueous solution (20 mL) of copper cyanide (2.91 g, 29.2 mmol) and sodium cyanide (600 mg, 12.2 mmol) was added dropwise. Toluene (9 mL) was added, and the mixture was stirred at room temperature for 15 hrs. The reaction mixture was diluted with chloroform. The mixture was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was suspended in ethanol (100 mL), and hydrazine monohydrate (2.43 g, 48.6 mmol) was added. While heating the mixture to 45°C, Raney Ni (1.2 g) was added in several times, and the mixture was stirred at 60°C for 1 hr. and heated under reflux for 2 hrs. After allowing to cool to room temperature, insoluble material was filtered off and the filtrate was concentrated under reduced pressure. The obtained concentrated residue was dissolved in ethyl acetate, and the mixture was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography (33-50% ethyl acetate/hexane) to give 2-amino-5-trifluoromethylbenzamide as a brown powder (792 mg, 16% for 2 steps).

To a solution of 2-amino-5-trifluoromethylbenzamide (760 mg, 3.72 mmol) and triethylamine (452 mg, 4.46 mmol) in THF (20 mL) was added dropwise ethyl chloroglyoxylate (560 mg, 4.10 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was diluted with ethyl acetate, washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was washed with ethanol to give ethyl ((2-(aminocarbonyl)-4-trifluoromethyl(phenyl)amino)(oxo)acetate as a brown powder (1.13 g, 99%).

To a suspension of ethyl ((2-(aminocarbonyl)-4-trifluoromethyl(phenyl)amino)(oxo)acetate (1.10 g, 3.62 mmol) in EtOH (15 mL) was added dropwise sodium ethylate (20% ethanol solution, 1.23 g, 3.62 mmol) under ice-cooling, and the mixture was stirred under ice-cooling for 30 min. and at room temperature for 30 min. 1N Hydrochloric acid (5 mL) and water (15 mL) were added to the reaction mixture and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give the title compound as a brown powder (545 mg, 53%).

1H-NMR (200MHz, DMSO-d6) δ: 1.37 (3H, t, J = 7.0 Hz), 4.41 (2H, q, J = 7.0 Hz), 8.03 (1H, d, J = 8.8 Hz), 8.20 (1H, dd, J = 2.2, 8.8 Hz), 8.42-8.38 (1H, m).
Reference Example 11

ethyl 4-oxo-6-{(trifluoromethyl)oxy}-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0795] 5-(Trifluoromethoxy)isatin (2.00 g, 8.65 mmol) was dissolved in 1N aqueous sodium hydroxide solution (150 mL) and aqueous hydrogen peroxide (30-35%, 2.45 mL) was added dropwise at room temperature to this solution. The reaction mixture was stirred at room temperature for 20 min., and adjusted to pH 3-4 by adding 1N hydrochloric acid. The precipitated insoluble material was collected by filtration, and washed with water to give 5-(trifluoromethoxy)anthranilic acid as a brown powder (1.88 g, 98%).

Step 2

[0796] To a solution of 5-(trifluoromethoxy)anthranilic acid (1.88 g, 8.50 mmol) in THF (40 mL) bis(trichloromethyl) carbonate (840 mg, 2.83 mmol) was added, and the mixture was stirred with heating at 60°C for 15 hrs. The reaction mixture was concentrated under reduced pressure, 2N aqueous ammonia (50 mL) was added, and the mixture was stirred with heating at 50°C for 2 hrs. The mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was purified by silica gel column chromatography (67% ethyl acetate/hexane) to give 2-amino-5-(trifluoromethoxy)benzamide as a yellow powder (809 mg, 43%).

Step 3

[0797] To a solution of 2-amino-5-(trifluoromethoxy)benzamide (780 mg, 3.54 mmol) and triethylamine (430 mg, 4.25 mmol) in THF (20 mL) was added dropwise ethyl chloroglyoxylate (532 mg, 3.90 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was diluted with ethyl acetate, washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was washed with ethanol to give ethyl ((2-(aminocarbonyl)-4-(trifluoromethoxy)phenyl)amino)(oxo)acetate as a yellow powder (1.13 g, 99%).

Step 4

[0798] To a suspension of ethyl ((2-(aminocarbonyl)-4-(trifluoromethoxy)phenyl)amino) (oxo) acetate (1.10 g, 3.44 mmol) in EtOH (15 mL) was added dropwise sodium ethylate (20% ethanol solution, 1.17 g, 3.44 mmol) under ice-cooling, and the mixture was stirred under ice-cooling for 30 min. and at room temperature for 30 min. 1N Hydrochloric acid (5 mL) and water (15 mL) were added to the reaction mixture. The precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give the title compound as a pale-yellow powder (728 mg, 70%).

1H-NMR (200MHz, DMSO-d6)
δ: 1.36 (3H, t, J = 7.2 Hz), 4.40 (2H, q, J = 7.2 Hz), 7.85-7.91 (1H, m), 7.96-8.02 (2H, m).

Reference Example 12

ethyl 5-(methoxy)-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0800] To a solution of 2,6-dinitrobenzonitrile (6.00 g, 31.1 mmol) in MeOH (120 mL) was added dropwise a solution (30 mL) of sodium methylate (1.68 g, 31.1 mmol) in MeOH at room temperature, and the mixture was heated under reflux for 3 hrs. After allowing to cool to room temperature, the reaction mixture was concentrated under reduced pressure. Ethyl acetate was added to the concentrated residue, and the mixture was washed with water and saturated brine. After drying over sodium sulfate, the mixture was concentrated under reduced pressure to give 2-methoxy-6-nitrobenzonitrile as a brown powder (5.50 g, 99%).
Step 2

[0801] To a suspension of 2-methoxy-6-nitrobenzonitrile (2.60 g, 14.6 mmol) in ethanol (60 mL) was added hydrazine monohydrate (1.53 g, 30.7 mol). While heating the mixture to 45°C, Raney Ni (600 mg) was added in several portions, and the mixture was stirred at 60°C for 2 hrs. Raney Ni (300 mg) was added again, and the mixture was heated under reflux for 2 hrs. After allowing to cool to room temperature, insoluble material was filtered off, and the filtrate was concentrated under reduced pressure. Ethyl acetate was added to the obtained concentrated residue, and the mixture was extracted with 1N hydrochloric acid. The aqueous layer was basified with 1N aqueous sodium hydroxide solution and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure to give 2-amino-6-methoxybenzamide as a brown powder (980 mg, 40%).

Step 3

[0802] To a solution of 2-amino-6-methoxybenzamide (960 mg, 5.78 mmol) and triethylamine (701 mg, 6.93 mmol) in THF (20 mL) was added dropwise ethyl chloroglyoxylate (868 mg, 6.36 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was diluted with ethyl acetate, the mixture was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was washed with ethanol, ethyl ((2-(aminocarbonyl)-3-methoxyphenyl)amino)(oxo)acetate to give a yellow powder (1.56 g, 100%).

Step 4

[0803] To a suspension of ethyl ((2-(aminocarbonyl)-3-methoxyphenyl)amino)(oxo)acetate (1.50 g, 5.63 mmol) in toluene (60 mL) was added p-toluenesulfonic acid monohydrate (535 mg, 2.81 mmol), and the mixture was heated under reflux for 15 hrs. p-Toluenesulfonic acid monohydrate (535 mg, 2.81 mmol) was added again, and the mixture was heated under reflux for 24 hrs. The reaction mixture was diluted with ethyl acetate, washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was washed with ethanol to give the title compound as a pale-yellow powder (304 mg, 22%).

1H-NMR (200MHz, DMSO-d$_6$)
\[\delta: 1.34 (3H, t, J = 7.2 Hz), 3.89 (3H, s), 4.36 (2H, q, J = 7.2 Hz), 7.15 (1H, d, J = 8.0 Hz), 7.32 (1H, d, J = 7.6 Hz), 7.76 (1H, t, J = 8.2 Hz).\]

Reference Example 13

ethyl 7-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0804] To a solution of 2,4-dinitrobenzonitrile (5.00 g, 25.9 mmol) in MeOH (100 mL) was added dropwise a solution (20 mL) of sodium methylate (1.40 g, 25.9 mmol) in MeOH at 0°C, and the mixture was stirred at room temperature for 3 hrs. and heated under reflux for 2 hrs. After allowing to cool to room temperature, insoluble material was filtered off, and the filtrate was concentrated under reduced pressure. MeOH-water (1:1) was added to the concentrated residue to give a suspension and insoluble material was collected by filtration. The solid was washed with MeOH-water (1:1) to give a mixture (2.70 g) of 4-methoxy-2-nitrobenzonitrile and 2-methoxy-4-nitrobenzonitrile as a pale-yellow powder. The obtained pale-yellow powder was suspended in ethanol (80 mL) and hydrazine monohydrate (1.59 g, 31.8 mmol) was added. While heating the mixture to 45°C, Raney Ni (600 mg) was added in several portions, and the mixture was stirred at 60°C for 1 hr. Raney Ni (600 mg) was added again, and the mixture was heated under reflux for 2 hrs. After allowing to cool to room temperature, insoluble material was filtered off, and the filtrate was concentrated under reduced pressure. Ethyl acetate was added to the obtained concentrated residue, and extracted with 1N hydrochloric acid (×3). The aqueous layer was basified with 1N aqueous sodium hydroxide solution and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was purified by silica gel column chromatography (67-75% ethyl acetate/hexane) to give 2-amino-4-methoxybenzamide as a pale-yellow powder (1.45 g, 34% for 2 steps).

Step 2

[0805] To a solution of 2-amino-4-methoxybenzamide (1.40 g, 8.42 mmol) and triethylamine (1.02 g, 10.1 mmol) in
THF (30 mL) was added dropwise ethyl chloroglyoxylate (1.27 g, 9.27 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was diluted with ethyl acetate, washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was washed with ethanol to give ethyl ((2-(aminocarbonyl)-5-methoxyphenyl)amino)(oxo)acetate as a yellow powder (2.30 g, 100%).

Step 3

[0806] To a suspension (100 mL) of ethyl ((2-(aminocarbonyl)-5-methoxyphenyl)amino)(oxo)acetate (2.15 g, 8.08 mmol) in toluene was added p-toluenesulfonic acid monohydrate (1.54 g, 8.08 mmol), and the mixture was heated under reflux for 15 hrs. The reaction mixture was diluted with ethyl acetate-THF, washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. Water was added to the obtained concentrated residue to give a suspension, and insoluble material was collected by filtration to give the title compound as a brown powder (549 mg, 27%).

1H-NMR (200MHz, DMSO-d6)
\[\delta: 1.36 (3H, t, J = 7.2 Hz), 3.92 (3H, s), 4.38 (2H, q, J = 7.2 Hz), 7.21 (1H, dd, J = 2.6, 8.8 Hz), 7.30 (1H, d, J = 2.6 Hz), 8.07 (1H, d, J = 8.8 Hz). \]

Reference Example 14
ethyl 8-(methyloxy)-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0807] To a solution of 3-methoxyanthranilic acid (4.90 g, 29.3 mmol) in THF (40 mL) was added bis(trichloromethyl) carbonate (2.90 g, 9.77 mol), and the mixture was stirred with heating at 60°C for 15 hrs. The reaction mixture was concentrated under reduced pressure, 1N aqueous ammonia (150 mL) was added, and the mixture was stirred with heating at 60°C for 2 hrs. The mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure to give 2-amino-3-methoxybenzamide as a pale-yellow powder (3.65 g, 75%).

Step 2

[0808] To a solution of 2-amino-3-methoxybenzamide (3.50 g, 21.1 mmol) and triethylamine (2.56 g, 25.3 mmol) in THF (100 mL) was added dropwise ethyl chloroglyoxylate (3.16 g, 23.2 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. Water was added to the reaction mixture, and the precipitated insoluble material was collected by filtration. The solid was washed with water to give ethyl ((2-(aminocarbonyl)-6-methoxyphenyl)amino)(oxo)acetate as a white powder (4.54 g, 81%).

1H-NMR (200MHz, DMSO-d6)
\[\delta: 1.36 (3H, t, J = 7.2 Hz), 3.94 (3H, s), 4.39 (2H, q, J = 7.2 Hz), 7.44 (1H, dd, J = 1.4, 7.8 Hz), 7.58 (1H, t, J = 7.8 Hz), 7.72 (1H, dd, J = 1.4, 7.8 Hz). \]

Reference Example 15
ethyl 4-oxo-6-[(phenylmethyl)oxy]-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0809] To a suspension (20 mL) of ethyl ((2-(aminocarbonyl)-6-methoxyphenyl)amino)(oxo)acetate (1.00 g, 3.76 mmol) in EtOH was added dropwise sodium ethylate (20% ethanol solution, 1.41 g, 4.13 mmol) under ice-cooling, and the mixture was stirred at room temperature for 1 hr. 1N Hydrochloric acid (5 mL) and water (20 mL) were added to the reaction mixture and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give the title compound as a pale-yellow powder (357 mg, 38%).

1H-NMR (200MHz, DMSO-d6)
\[\delta: 1.36 (3H, t, J = 7.2 Hz), 3.94 (3H, s), 4.39 (2H, q, J = 7.2 Hz), 7.44 (1H, dd, J = 1.4, 7.8 Hz), 7.58 (1H, t, J = 7.8 Hz), 7.72 (1H, dd, J = 1.4, 7.8 Hz). \]

Reference Example 16

ethyl 4-oxo-6-[[phenylmethyl]oxy]-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0810] To a solution of 5-hydroxy-2-nitrobenzoic acid (10.0 g, 54.6 mmol) in DMF (200 mL) were added benzylbromide (20.5 g, 120 mmol) and potassium carbonate (18.9 g, 137 mmol), and the mixture was stirred at room temperature for
15 hrs. The reaction mixture was concentrated under reduced pressure and water was added to the concentrated residue. The precipitated insoluble material was collected by filtration and the solid was washed with water to give benzyl 5-benzyloxy-2-nitrobenzoate as a yellow powder (19.4 g, 98%).

Step 2

[0811] To a solution of benzyl 5-benzyloxy-2-nitrobenzoate (19.0 g, 52.2 mmol) in MeOH (100 mL) was added an aqueous solution (50 mL) of potassium hydroxide (8.79 g, 157 mmol), and the mixture was heated under reflux for 1 hr. After allowing to cool to room temperature, the reaction mixture was acidified with 4N hydrochloric acid and concentrated under reduced pressure to evaporate MeOH. The mixture was extracted with ethyl acetate, and 1N aqueous sodium hydroxide solution (80 mL) was added to the organic layer. The precipitated insoluble material was collected by filtration and washed with ethyl acetate. The solid was dissolved in methanol and 1N hydrochloric acid (60 mL) was added. The mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine, dried over sodium sulfate and concentrated to give 5-benzyloxy-2-nitrobenzoic acid as a pale-yellow powder (12.0 g, 84%).

Step 3

[0812] To a solution of 5-benzyloxy-2-nitrobenzoic acid (11.9 g, 43.6 mmol) and DMF (0.12 mL) in THF (120 mL) was added dropwise oxalyl chloride (6.08 g, 47.9 mmol) under ice-cooling, and the mixture was stirred at room temperature for 3 hrs. This solution was added dropwise to aqueous ammonia (3% aqueous solution, 270 mL) under ice-cooling. The reaction mixture was stirred at room temperature for 1 hr and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and diethyl ether to give 5-benzyloxy-2-nitrobenzamide as a pale-yellow powder (11.0 g, 93%).

Step 4

[0813] To a suspension of 5-benzyloxy-2-nitrobenzamide (10.5 g, 38.8 mmol) in EtOH (100 mL)-water (100 mL) were added ammonium chloride (10.0 g) and iron (10.0 g), and the mixture was heated under reflux for 1.5 hrs. Insoluble material was filtered off, and the filtrate was concentrated. The concentrated residue was partitioned between ethyl acetate and 1N aqueous sodium hydroxide solution and the organic layer was washed with saturated brine, dried over sodium sulfate and concentrated to give 2-amino-5-(benzyloxy)benzamide as a yellow powder (9.42 g, 100%).

Step 5

[0814] To a solution of 2-amino-5-(benzyloxy)benzamide (9.20 g, 38.0 mmol) and triethylamine (4.61 g, 45.6 mmol) in THF (200 mL) was added dropwise ethyl chloroglyoxylate (5.71 g, 41.8 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. Water was added to the reaction mixture, and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give ethyl ((2-(aminocarbonyl)-4-(benzyloxy)phenyl)amino)(oxo)acetate as a yellow powder (13.0 g, 100%).

Step 6

[0815] To a suspension (180 mL) of ethyl ((2-(aminocarbonyl)-4-(benzyloxy)phenyl)amino)(oxo)acetate (12.5 g, 36.5 mmol) in EtOH was added dropwise sodium ethylate (20% ethanol solution, 13.7 g, 40.2 mmol) under ice-cooling, and the mixture was stirred at room temperature for 1 hr. This reaction mixture was added dropwise 0.3N hydrochloric acid (350 mL) under ice-cooling, and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give the title compound as a pale-yellow powder (10.3 g, 87%).

1H-NMR (200MHz, DMSO-d6) δ: 1.35 (3H, t, J = 7.0 Hz), 4.38 (2H, q, J = 7.0 Hz), 5.28 (2H, s), 7.34-7.59 (6H, m), 7.66 (1H, d, J = 3.0 Hz), 7.80 (1H, d, J = 8.8 Hz).

Reference Example 16

ethyl 6-ido-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0816] To a solution of 5-idoanthranilic acid (25.0 g, 95.0 mmol) in THF (400 mL) was added bis(trichloromethyl)
carbonate (9.40 g, 31.7 mmol), and the mixture was stirred with heating at 60°C for 15 hrs. The reaction mixture was concentrated under reduced pressure, 2N aqueous ammonia (235 mL) was added, and the mixture was stirred with heating at 60°C for 2 hrs. The mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was suspended in diisopropyl ether, and insoluble material was collected by filtration to give 2-amino-5-iodobenzamide as a white powder (15.9 g, 64%).

Step 2

To a solution of 2-amino-5-iodobenzamide (15.8 g, 60.3 mmol) and triethylamine (7.32 g, 72.4 mmol) in THF (300 mL) was added dropwise ethyl chloroglyoxylate (9.05 g, 66.3 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. Water was added to the reaction mixture, and the precipitated insoluble material was collected by filtration. The solid was washed with water to give ethyl ((2-(aminocarbonyl)-4-iodophenyl)amino)(oxo) acetate as a white powder (20.9 g, 96%).

Step 3

To a suspension (300 mL) of ethyl ((2-(aminocarbonyl)-4-iodophenyl)amino)(oxo)acetate (20.9 g, 57.7 mmol) in EtOH was added dropwise sodium ethylate (20% ethanol solution, 21.6 g, 63.5 mmol) under ice-cooling, and the mixture was stirred at room temperature for 1 hr. The reaction mixture was poured into 0.3N hydrochloric acid (600 mL) under ice-cooling and the precipitated insoluble material was collected by filtration. The filtered cake was washed with water and ethanol to give the title compound as a pale-pink powder (17.0 g, 86%).

1H-NMR (200MHz, DMSO-d$_6$)
δ: 1.35 (3H, t, $J = 7.0$ Hz), 4.38 (2H, q, $J = 7.0$ Hz), 7.61 (1H, d, $J = 8.5$ Hz), 8.18 (1H, dd, $J = 2.0$, 8.5 Hz), 8.44 (1H, d, $J = 2.0$ Hz).

Reference Example 17

Ethyl 5-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate Step 1.

To a solution of 6-methylanthranilic acid (10.2 g, 67.5 mmol) in THF (100 mL) was added bis(trichloromethyl) carbonate (6.67 g, 22.5 mmol); and the mixture was stirred with heating at 50°C for 15 hrs. The reaction mixture was concentrated under reduced pressure, 6N aqueous ammonia (100 mL) was added, and the mixture was stirred with heating at 60°C for 3 hrs. The mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was suspended in diisopropyl ether, and insoluble material was collected by filtration to give 2-amino-6-methylbenzamide as a pale-yellow powder (1.35 g, 13%).

Step 2

To a solution of 2-amino-6-methylbenzamide (1.28 g, 8.52 mmol) and triethylamine (1.03 g, 10.2 mmol) in THF (30 mL) was added dropwise ethyl chloroglyoxylate (1.28 g, 9.38 mmol) under ice-cooling, and the mixture was stirred at room temperature for 3 hrs. The mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was suspended in diisopropyl ether-EtOH, and insoluble material was collected by filtration to give ethyl ((2-(aminocarbonyl)-3-methylphenyl)amino)(oxo) acetate as a white powder (1.85 g, 87%).

Step 3

To a suspension (15 mL) of ethyl ((2-(aminocarbonyl)-3-methylphenyl)amino)(oxo) acetate (760 mg, 3.04 mmol) in EtOH was added dropwise sodium ethylate (20% ethanol solution, 1.14 g, 3.34 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was suspended in diisopropyl ether-EtOH, and insoluble material was collected by filtration to give ethyl ((2-(aminocarbonyl)-3-methylphenyl)amino)(oxo)acetate as a white powder (450 mg, 64%).

1H-NMR (200MHz, DMSO-d$_6$)
δ: 1.36 (3H, t, $J = 7.2$ Hz), 2.79 (3H, s), 4.37 (2H, q, $J = 7.2$ Hz), 7.37 (1H, d, $J = 7.5$ Hz), 7.61 (1H, d, $J = 7.5$ Hz), 7.70 (1H, t, $J = 7.5$ Hz), 12.35 (1H, bs).
Reference Example 18

Ethyl 5-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0822] To a solution of 2-amino-6-fluorobenzamide (3.80 g, 24.7 mmol) and triethylamine (2.99 g, 29.6 mmol) in THF (50 mL) was added dropwise ethyl chloroglyoxylate (3.70 g, 27.1 mmol) under ice-cooling, and the mixture was stirred at room temperature for 3 hrs. The mixture was partitioned between ethyl acetate and water, and the organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was suspended in EtOH, and insoluble material was collected by filtration to give ethyl ((2-(aminocarbonyl)-3-fluorophenyl)amino)(oxo)acetate as a white powder (4.95 g, 79%).

Step 2

[0823] To a suspension of ethyl ((2-(aminocarbonyl)-3-fluorophenyl)amino)(oxo)acetate (2.45 g, 9.64 mmol) in EtOH (50 mL) was added dropwise sodium ethylate (20% ethanol solution, 3.61 g, 10.6 mmol) under ice-cooling, and the mixture was stirred at room temperature for 1 hr. 1N Hydrochloric acid (20 mL) was added to the reaction mixture and insoluble material was collected by filtration. The solid was washed with water and diethyl ether to give the title compound as a pale-yellow powder (1.29 g, 57%).

1H-NMR (200MHz, DMSO-d6) 8: 1.35 (3H, t, J = 7.2 Hz), 4.37 (2H, q, J = 7.2 Hz), 7.34-7.41 (1H, m), 7.62 (1H, d, J = 8.1 Hz), 7.81-7.89 (1H, m), 12.64 (1H, bs).

Reference Example 19

Ethyl 4-oxo-5-[(2-phenylethyl)oxy]-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0824] To a solution of 2-phenylethanol (2.00 g, 10.4 mmol) in DMF (20 mL) - THF (5 mL) was added sodium hydride (60% oil dispersion, 460 mg, 11.4 mmol) under ice-cooling, and the mixture was stirred at room temperature for 30 min. A solution of 2,6-dinitrobenzonitrile (2.00 g, 10.4 mmol) in THF (5 mL) was added to this reaction mixture, and the mixture was stirred with heating at 90°C for 3 hrs. After allowing to cool to room temperature, the reaction mixture was concentrated under reduced pressure. Ethyl acetate was added to the concentrated residue and the mixture was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was suspended in EtOH and insoluble material was collected by filtration. The solid was washed with EtOH to give 2-nitro-6-((2-phenylethyl)oxy)benzonitrile as a brown powder (894 mg, 32%).

Step 2

[0825] To a suspension (20 mL) of 2-nitro-6-((2-phenylethyl)oxy)benzonitrile (850 mg, 3.17 mmol) in ethanol was added hydrazine monohydrate (333 mg, 6.65 mmol). While heating the mixture to 45°C, Raney Ni (300 mg) was added in several portions, and the mixture was stirred at 60°C for 1 hr., and heated under reflux for 1 hr. After allowing to cool to room temperature, insoluble material was filtered off and concentrated under reduced pressure. Ethyl acetate was added to the obtained concentrated residue, and the mixture was extracted with 1N hydrochloric acid (×3). The aqueous layer was basified with 4N aqueous sodium hydroxide solution and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was suspended in disopropylether, and insoluble material was collected by filtration to give 2-amino-6-((2-phenylethyl)oxy)benzamide as a brown powder (358 mg, 44%).

Step 3

[0826] To a solution of 2-amino-6-((2-phenylethyl)oxy)benzamide (330 mg, 1.29 mmol) and triethylamine (170 mg, 1.68 mmol) in THF (8 mL) was added dropwise ethyl chloroglyoxylate (212 mg, 1.55 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was diluted with ethyl acetate, the mixture was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was suspended in disopropylether, and insoluble material was collected by filtration to
give ethyl \((2-(\text{aminocarbonyl})-3-((2\text{-phenylethyl}oxy)\text{phenyl})\text{amino})(\text{oxo})\text{acetate}\) as a whit powder (459 mg, 100%).

Step 4

[0827] To a suspension (9 mL) of ethyl \((2-(\text{aminocarbonyl})-3-((2\text{-phenylethyl}oxy)\text{phenyl})\text{amino})(\text{oxo})\text{acetate}\) (450 mg, 1.26 mmol), in EtOH was added dropwise sodium ethylate (20% ethanol solution, 516 mg, 1.52 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. Sodium ethylate (20% ethanol solution, 516 mg, 1.52 mmol) was added dropwise again, and the mixture was stirred at room temperature for 1 hr. 0.5N Hydrochloric acid (10 mL) was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was washed with ethanol to give the title compound as a pale-yellow powder (200 mg, 47%).

\[\text{H-NMR (200MHz, DMSO-}^d_6\text{)} \]

\[\delta: 1.35 \text{ (3H, t, } J = 7.2 \text{ Hz), 3.10 \text{ (2H, t, } J = 6.6 \text{ Hz), 4.23-4.32 \text{ (2H, m), 4.37 \text{ (2H, q, } J = 7.2 \text{ Hz), 6.94-8.04 \text{ (8H, m), 12.20 \text{ (1H, bs).}}) } \]

Reference Example 20

Ethyl 6-(morpholin-4-ylmethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0828] To a suspension (25 mL) of ethyl 6-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate (500 mg, 2.15 mmol) obtained in Reference Example 9 and N-bromosuccinimide (402 mg, 2.26 mmol) in chloroform was added 2,2’-azobis(isobutyronitrile) (18 mg, 110 \(\mu\)mol), and the mixture was heated under reflux for 2 hrs. Ethyl acetate was added to the reaction mixture, and insoluble material was collected by filtration. The solid was washed with ethyl acetate to give ethyl 6-(bromomethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate as a white powder (547 mg, 100%).

Step 2

[0829] A suspension (10 mL) of ethyl 6-(bromomethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate (500 mg, 1.61 mmol), morpholine (168 \(\mu\)L, 1.93 mmol) and triethylamine (367 \(\mu\)L, 2.41 mmol) in THF was stirred with heating at 40°C for 1 hr. The reaction mixture was diluted with ethyl acetate, and extracted with 1N hydrochloric acid. The aqueous layer was basified with saturated aqueous sodium hydrogen carbonate and the mixture was extracted with a mixed solvent of ethyl acetate-THF (3:2). The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated. The obtained solid was washed with diethyl ether to give the title compound as a white powder (240 mg, 47%).

\[\text{H-NMR (200MHz, DMSO-}^d_6\text{)} \]

\[\delta: 1.36 \text{ (3H, t, } J = 7.2 \text{ Hz), 2.40-2.60 \text{ (4H, m), 3.60-3.80 \text{ (6H, m), 4.39 \text{ (2H, q, } J = 7.2 \text{ Hz), 8.13 \text{ (1H, bs).}}) } \]

Reference Example 21

Methyl 6-[(methyloxy)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxylate

[0831] To a suspension (3 mL) of ethyl 6-(bromomethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate (320 mg, 1.03 mmol) obtained in Reference Example 20, Step 1 in MeOH was added a solution (3 mL) of sodium methylate (111 mg, 2.06 mmol) in MeOH under ice-cooling and the mixture was stirred for 1 hr. A solution (3 mL) of sodium methylate (166 mg, 3.07 mmol) in MeOH was added again, and the mixture was stirred at room temperature for 2 hrs. The mixture was acidified with 1N hydrochloric acid and extracted with ethyl acetate (×2). The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated. The obtained solid was washed with diethyl ether to give the title compound as a white powder (160 mg, 63%).

\[\text{H-NMR (200MHz, DMSO-}^d_6\text{)} \]

\[\delta: 3.35 \text{ (3H, s), 3.93 \text{ (3H, s), 4.59 \text{ (2H, s), 7.80-7.83 \text{ (2H, m), 8.11-8.12 \text{ (1H, m).}}) } \]
Reference Example 22

Ethyl 5,6-difluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0832] To a solution of tert-butyl (3,4-difluorophenyl)carbamate (5.00 g, 21.8 mmol) synthesized according to the method described in literature (Tetrahedron, 1992, 48, 7373) in THF (50 mL) was added dropwise n-butyllithium (1.6 M hexane solution, 30 mL, 48.0 mmol) at -78°C, and the mixture was stirred at -78°C for 3 hrs. A solution (15 mL) of ethyl chlorocarbonate (2.60 g, 24.0 mmol) in THF was added to the reaction mixture, and the mixture was stirred at -78°C for 1 hr. Saturated aqueous ammonium chloride solution (50 mL) was added, and the mixture was partitioned between ethyl acetate and water. The organic layer was washed with saturated brine, dried over sodium sulfate, and the mixture was concentrated under reduced pressure to give a yellow oil (7.14 g). The obtained oil was dissolved in ethyl acetate (10 mL), 4N Hydrochloric acid-ethyl acetate solution (40 mL) was added, and the mixture was stirred at room temperature for 3 hrs. Diethyl ether (20 mL) was added to the reaction mixture, and insoluble material was collected by filtration. The solid was washed with ethanol and ether to give ethyl 5,6-difluoroanthranilate hydrochloride as a white powder (2.91 g, 70% for 2 steps).

Step 2 -

[0833] Ethyl 5,6-difluoroanthranilate hydrochloride (2.50 g, 10.5 mmol) was suspended in 1N hydrochloric acid-acetic acid solution (50 mL), ethyl cyanoformate (1.14 g, 11.6 mmol) was added, and the mixture was stirred with heating at 80°C for 3 hrs. After allowing to cool to room temperature, the reaction mixture was concentrated under reduced pressure. Ethanol was added to the obtained concentrated residue to give a suspension, and insoluble material was collected by filtration to give the title compound as a white powder (2.18 g, 82%).

1H-NMR (300MHz, DMSO-d6) δ: 1.35 (3H, t, J = 7.2 Hz), 4.38 (2H, q, J = 7.2 Hz), 7.70 (1H, ddd, J = 2.1, 7.5, 9.0 Hz), 7.92-8.02 (1H, m), 12.78 (1H, bs).

Reference Example 23

Ethyl 6-cyano-4-oxo-3,4-dihydroquinazoline-2-carboxylate

[0834] A suspension (10 mL) of ethyl 6-iodo-4-oxo-3,4-dihydroquinazoline-2-carboxylate (2.00 g, 5.81 mmol) synthesized in Reference Example 16, zinc cyanide (375 mg, 3.19 mmol) and tetrakis (triphenylphosphine) palladium (336 mg, 0.29 mmol) in DMF was stirred under an argon atmosphere at 80°C for 5 hrs. After cooling to room temperature, ethyl acetate was added to the reaction mixture. The precipitated solid was collected by filtration, washed with ethyl acetate, diisopropyl ether and water and dried over phosphorus pentoxide under reduced pressure to give the title compound as a pale-yellow powder (965 mg, 68%). 1H-NMR (200 MHz, DMSO-d6) δ: 1.35 (3H, t, J = 6.8 Hz), 4.39 (2H, q, J = 6.8 Hz), 7.96 (1H, d, J = 8.4 Hz), 8.23 (1H, dd, J = 1.8, 8.4 Hz), 8.55 (1H, d, J = 1.8 Hz).

Reference Example 24

Ethyl 4-oxo-3,4-dihydropyrido[2,3-d]pyrimidine-2-carboxylate

[0835] To a suspension (30 mL) of 2-aminonicotinic acid (2.50 g, 18.1 mmol) in pyridine was added dropwise ethyl chloroglyoxylate (4.94 g, 36.2 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The mixture was further stirred at 50°C for 1 hr, and the reaction mixture was concentrated under reduced pressure. Water was added to the concentrated residue to give a suspension, and insoluble material was collected by filtration to give ethyl 4-oxo-3,4-dihydropyrido[2,3-d]-1,3-oxazine-2-carboxylate as a pale-yellow powder (2.21 g, 56%).

1H-NMR (200MHz, CDCl3) δ: 1.47 (3H, t, J = 7.2 Hz), 4.52 (2H, q, J = 7.2 Hz), 7.64 (1H, dd, J = 8.0, 4.8 Hz), 8.61 (1H, dd, J = 8.0, 1.8 Hz), 9.11 (1H, dd, J = 4.8, 1.8 Hz)

Step 2

[0836] A suspension (30 mL) of ethyl 4-oxo-3,4-dihydropyrido[2,3-d]-1,3-oxazine-2-carboxylate (2.20 g, 9.99 mmol),
ammonium acetate (770 mg, 9.99 mmol) and acetic acid (240 mg, 4.00 mmol) in EtOH was heated under reflux for 1 hr. The reaction mixture was cooled to room temperature and insoluble material was collected by filtration. The solid was washed with EtOH to give the title compound as a pale-yellow powder (1.11 g, 51%).

1H-NMR (200MHz, DMSO-d_6)

δ: 1.38 (3H, t, $J = 7.0$ Hz), 4.41 (2H, q, $J = 7.0$ Hz), 7.65 (1H, dd, $J = 7.8, 4.4$ Hz), 8.56 (1H, dd, $J = 7.8, 1.8$ Hz), 9.04 (1H, dd, $J = 4.4, 1.8$ Hz).

Reference Example 25

Ethyl 4-oxo-3,4-dihydropyrido[3,4-d]pyrimidine-2-carboxylate

Step 1

[0837] To 10% aqueous sodium hydroxide solution (100 mL) was added bromine (1.93 mL, 38.6 mmol) under ice-cooling, and 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione (5.20 g, 35.1 mmol) was subsequently added. 10% Aqueous sodium hydroxide solution (60 mL) was added to the reaction mixture, and the mixture was stirred with heating at 90°C for 40 min. After allowing to cool to room temperature, 50% sulfuric acid was added to adjust the reaction mixture to pH 3. The precipitated insoluble material was collected by filtration, and the solid was washed with water to give 3-aminoisonicotinic acid as a pale-yellow powder (5.00 g, 100%).

1H-NMR (200MHz, DMSO-d_6)

δ: 7.46 (1H, d, $J = 5.1$ Hz), 7.73 (1H, d, $J = 5.1$ Hz), 8.21 (1H, s).

Step 2

[0838] To a suspension (60 mL) of 3-aminoisonicotinic acid (4.84 g, 35.1 mmol, 100%) in pyridine was added dropwise ethyl chloroglyoxylate (9.58 g, 70.2 mmol) under ice-cooling, and the mixture was stirred at room temperature for 15 hrs. The reaction mixture was concentrated under reduced pressure and water was added to the concentrated residue to give a suspension. The insoluble material was collected by filtration to give, 3-[(ethyloxy)(oxo)acetyl]amino}pyridine-4-carboxylic acid as a pale-yellow powder (3.74 g, 45%).

1H-NMR (200MHz, DMSO-d_6)

δ: 1.33 (3H, t, $J = 7.0$ Hz), 4.33 (2H, q, $J = 7.0$ Hz), 7.88 (1H, d, $J = 5.0$ Hz), 8.53 (1H, d, $J = 5.0$ Hz), 9.71 (1H, s), 12.10 (1H, s).

Step 3

[0839] To a solution of 3-[(ethyloxy)(oxo)acetyl]amino}pyridine-4-carboxylic acid (100 mg, 420 µmol) and DMF (30 µL) in THF (3 mL) was added dropwise oxalyl chloride (40 µL, 460 µmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was cooled with ice, 2 M ammoniaethanol solution (693 µL, 1.39 mmol) was added, and the mixture was stirred at 0°C for 1 hr. The mixture was partitioned between ethyl acetate and water, and the organic layer was washed with saturated brine and dried over sodium sulfate. The filtrate was concentrated under reduced pressure to give ethyl [[4-(aminocarbonyl)pyridin-3-yl]amino]oxo)acetate as a white powder (76 mg, 76%).

1H-NMR (200MHz, DMSO-d_6)

δ: 1.32 (3H, t, $J = 7.0$ Hz), 4.31 (2H, q, $J = 7.4$ Hz), 7.78 (1H, d, $J = 5.2$ Hz), 8.17 (1H, bs), 8.50 (1H, d, $J = 5.2$ Hz), 8.60 (1H, bs), 9.68 (1H, s).

Step 4

[0840] To a suspension (4 mL) of ethyl [[4-(aminocarbonyl)pyridin-3-yl]amino]oxo)acetate (76 mg, 320 µmol) in EtOH was added dropwise sodium ethylate (20% ethanol solution, 120 mg, 350 µmol) under ice-cooling, and the mixture was stirred at room temperature for 1 hr. 1N Hydrochloric acid (0.5 mL) was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure to give the title compound as a white amorphous form (22 mg, 30%). The obtained compound was used for the next reaction without purification.
Reference Example 26

Ethyl 4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

Step 1

[0841] A solution (100 mL) of 2,5-dihydroxy-1,4-dithiane (11.8 g, 155 mmol), cyanoacetamide (17.0 g, 202 mmol) and triethylamine (20 mL) in EtOH was heated at 70°C for 4 hrs. The reaction mixture was cooled to room temperature, and concentrated under reduced pressure to about a half amount of the solution. Water was added to the concentrated residue and the precipitated insoluble material was collected by filtration. The solid was washed with water to give 2-amino-3-thiophenecarboxylic amide as a brown powder (15.3 g, 69%).

1H-NMR (200MHz, DMSO-d$_6$)
\[\delta: 6.22 (1H, d, J = 6.0 Hz), 7.04 (1H, d, J = 6.0 Hz), 7.21 (2H, bs).\]

Step 2

[0842] To a solution of 2-amino-3-thiophenecarboxylic amide (5.00 g, 35.2 mmol) and triethylamine (5.39 mL, 38.7 mmol) in THF (200 mL) was added dropwise ethyl chloroglyoxylate (4.81 g, 35.2 mmol) under ice-cooling, and the mixture was stirred at room temperature for 1 hr. The mixture was partitioned between ethyl acetate and water, and the organic layer was washed with saturated brine and concentrated under reduced pressure. The obtained concentrated residue was suspended in EtOH, and insoluble material was collected by filtration to give ethyl (3-(aminocarbonyl)-2-thiopheneamino)(oxo)acetate as a pale-yellow powder (8.32 g, 97%).

1H-NMR (200MHz, DMSO-d$_6$)
\[\delta: 1.32 (3H, t, J = 7.0 Hz), 4.33 (2H, q, J = 7.0 Hz), 7.15 (1H, d, J = 6.0 Hz), 7.50 (1H, d, J = 6.0 Hz), 7.67 (1H, bs), 8.03 (1H, bs).\]

Step 3

[0843] To a suspension (50 mL) of ethyl (3-(aminocarbonyl)-2-thiopheneamino)(oxo)acetate (2.00 g, 8.26 mmol) in xylene was added p-toluenesulfonic acid monohydrate (314 mg, 1.65 mmol), and the mixture was heated under reflux for 3 hrs. p-Toluenesulfonic acid monohydrate (200 mg, 1.05 mmol) was added again, and the mixture was heated under reflux for 8 hrs. The reaction mixture was diluted with ethyl acetate, washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was purified by silica gel column chromatography (67% ethyl acetate/hexane) to give the title compound as a pale-yellow powder (531 mg, 29%).

1H-NMR (200MHz, DMSO-d$_6$)
\[\delta: 1.35 (3H, t, J = 7.2 Hz), 4.38 (2H, q, J = 7.2 Hz), 7.49 (1H, d, J = 5.6 Hz), 7.81 (1H, d, J = 5.6 Hz).\]

Reference Example 27

Ethyl 4-oxo-3,4-dihydrothieno[3,2-d]pyrimidine-2-carboxylate

Step 1

[0844] To a suspension (100 mL) of 3-amino-2-thiophenecarboxylic acid (3.84 g, 26.5 mmol) in pyridine was added dropwise ethyl chloroglyoxylate (7.69 g, 56.3 mmol) under ice-cooling, and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was concentrated under reduced pressure. Water was added to the concentrated residue to give a suspension, and insoluble material was collected by filtration to give ethyl 4-oxo-3,4-dihydrothieno-[3,2-d]-1,3-oxazine-2-carboxylate as a brown powder (4.86 g, 81%).

1H-NMR (200MHz, DMSO-d$_6$)
\[\delta: 1.35 (3H, t, J = 7.2 Hz), 4.39 (2H, q, J = 7.2 Hz), 7.64 (1H, d, J = 5.6 Hz), 8.49 (1H, d, J = 5.6 Hz).\]

Step 2

[0845] A suspension (30 mL) of ethyl 4-oxo-3,4-dihydrothieno[3,2-d]-1,3-oxazine-2-carboxylate (2.50 g, 11.1 mmol) and ammonium acetate (941 mg, 12.2 mmol) in EtOH was heated under reflux for 1 hr. The reaction mixture was cooled to room temperature, and concentrated under reduced pressure. The concentrated residue was diluted with ethyl acetate and the mixture was washed with water and saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was purified by silica gel column chromatography (67-80% ethyl acetate/
hexane) to give the title compound as a brown powder (478 mg, 19%).

\[\text{H-NMR (200MHz, DMSO-}d_6) \delta: 1.35 (3H, t, J = 7.2 Hz), 4.38 (2H, q, J = 7.2 Hz), 7.56 (1H, d, J = 5.6 Hz), 8.28 (1H, d, J = 5.6 Hz). \]

Reference Example 28

2-\{(tetrahydrofuran-3-ylmethyl)oxy\}pyridine-4-carbonitrile

\[\text{[0846]} \] To a suspension (1.0 mL) of sodium hydride (100 mg, 2.50 mmol) in THF was added tetrahydrofuran-3-ylmethanol (138 \(\mu \)L, 1.43 mmol) at room temperature, and the mixture was stirred at 50 °C for 30 min. The reaction mixture was cooled to room temperature, and a solution (1.0 mL) of 2-chloropyridine-4-carbonitrile (200 mg, 1.44 mmol) in THF was gradually added at room temperature. The mixture was stirred at room temperature for 30 min. and at 50°C for 12 hrs. The reaction mixture was cooled to room temperature, water was added and THF was evaporated under reduced pressure. The concentrated residue was extracted with ethyl acetate. The organic layer was washed with saturated brine and, after drying over anhydrous sodium sulfate, concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (10%-20%ethyl acetate/hexane) to give the title compound as a colorless oil (202 mg, 68%).

\[\text{H-NMR (300 MHz, CDCl}_3) \delta: 1.64-1.83 (1H, m), 2.05-2.20 (1H, m), 2.64-2.86 (1H, m), 3.68 (1H, dd, \ J = 8.9, 5.3 Hz), 3.74-3.84 (1H, m), 3.85-3.96 (2H, m), 4.19-4.42 (2H, m), 6.99 (1H, s), 7.07 (1H, dd, \ J = 5.3, 1.1 Hz), 8.28 (1H, d, \ J = 5.1 Hz). \]

Reference Example 29

\{(2-\{(tetrahydrofuran-3-ylmethyl)oxy\}pyridin-4-yl)methyl\}amine

\[\text{[0847]} \] A solution of 2-\{(tetrahydrofuran-3-ylmethyl)oxy\}pyridine-4-carbonitrile (200 mg, 0.98 mmol) synthesized in Reference Example 28 and Raney Ni (3.0 g) in 5N ammonia solution in methanol was stirred at room temperature under 4.8 atm for 9 hrs. The catalyst was filtered off, and the filtrate was concentrated. The obtained green oil was purified by silica gel column chromatography (0%-25%methanol/ethyl acetate) to give the title compound as a pale yellow oil (89 mg, 44%).

\[\text{H-NMR (300 MHz, CDCl}_3) \delta: 1.58 (2H, s), 1.69.-1.82 (1H, m), 2.01-2.18 (1H, m), 2.65-2.85 (1H, m), 3.61-3.99 (6H, m), 4.15-4.37 (2H, m), 6.71 (1H, s), 6.83 (1H, dd, \ J = 5.4, 0.9 Hz), 8.07 (1H, d, \ J = 5.5 Hz). \]

Reference Example 30

2-\{(tetrahydro-2H-pyran-4-ylmethyl)oxy\}pyridine-4-carbonitrile

\[\text{[0848]} \] The title compound was obtained as a white powder (184.2 mg, 63%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and tetrahydro-2H-pyran-4-ol.

\[\text{H-NMR (300 MHz, CDCl}_3) \delta: 1.45 (2H, m), 1.73 (2H, m, \ J = 13.0, 1.9 Hz), 2.06 (1H, m), 3.44 (2H, dt, \ J = 11.8, 2.5 Hz), 4.02 (2H, m), 4.19 (2H, d, \ J = 6.6 Hz), 6.98 (1H, m), 7.06 (1H, dd, \ J = 5. 1, 0.8 Hz), 8.28 (1H, d, \ J = 5.3 Hz). \]

Reference Example 31

\{(2-\{(tetrahydro-2H-pyran-4-ylmethyl)oxy\}pyridin-4-yl)methyl\}amine

\[\text{[0849]} \] A solution (100 mL) of 2-\{(tetrahydro-2H-pyran-4-ylmethyl)oxy\}pyridine-4-carbonitrile (10.6 g, 0.049 mol) synthesized in Reference Example 30 in THF was gradually added to a suspension (100 mL) of aluminum lithium hydride (1.85 g, 0.049 mol) in THF at 0°C, and the mixture was stirred for 15 min. Water and 1N aqueous sodium hydroxide solution were added to the reaction mixture. Insoluble material was filtered off and the filtrate was dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The obtained oil was purified by silica gel column chromatography (0%-25% methanol/ethyl acetate) to give the title compound as a pale-yellow oil (11.0 g, 94%).

\[\text{H-NMR (300 MHz, CDCl}_3) \delta: 1.45 (2H, m), 1.75 (2H, m), 2.04 (1H, m), 3.44 (2H, dt, \ J = 11.8, 2.1 Hz), 3.85 (2H, s), 4.01 (2H, dd, \ J = 11.5, 2.5 Hz), 4.15 (2H, d, \ J = 6.6 Hz), 6.71 (1H, s), 6.82 (1H, m), 8.07 (1H, d, \ J = 5.3 Hz). \]
Reference Example 32

2-([(3-methyloxetan-3-yl)methyl]oxy)pyridine-4-carbonitrile

[0850] The title compound was obtained as a colorless oil (3.47 g, 79%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and (3-methyloxetan-3-yl)methanol.

1H-NMR (200 MHz, CDCl3) δ: 1.43 (3H, s), 4.43 (2H, s), 4.46 (2H, d, J = 5.8 Hz), 4.62 (2H, d, J = 5.8 Hz), 7.05-7.06 (1H, m), 7.10 (1H, dd, J = 1.6, 5.2 Hz), 8.30 (1H, dd, J = 1.6, 5.2 Hz).

Reference Examples 33

[(2-[(3-methyloxetan-3-yl)methyl]oxy)pyridin-4-yl]methyl]amine

[0851] The title compound was obtained as a yellow oil (2.12 g, 60%) in the same manner as in Reference Example 31 from 2-[(3-methyloxetan-3-yl)methyl]oxy)pyridine-4-carbonitrile synthesized in Reference Example 32.

1H-NMR (300 MHz, CDCl3) δ: 1.43 (3H, s), 1.69 (2H, s), 3.86 (2H, s), 4.37 (2H, s), 4.44 (2H, d, J = 5.8 Hz), 4.66. (2H, d, J = 5.8 Hz), 6.78 (1H, s), 6.85 (1H, dd, J = 5.3, 1.5 Hz), 8.08 (1H, d, J = 5.3 Hz).

Reference Example 34

2-[(furan-3-ylmethyl)oxy]pyridine-4-carbonitrile

[0852] The title compound was obtained as a white powder (3.93 g, 91%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and furan-3-ylmethanol.

1H-NMR (300 MHz, CDCl3) δ: 5.29 (2H, s), 6.49 (1H, d, J = 1.3 Hz), 7.01 (1H, s), 7.08 (1H, dd, J = 5.3, 1.3 Hz), 7.42 (1H, t, J = 1.6 Hz), 7.54 (1H, s), 8.32 (1H, d, J = 5.3 Hz).

Reference Example 35

{(2-[(furan-3-ylmethyl)oxy]pyridin-4-yl) methyl]amine

[0853] The title compound was obtained as a yellow oil (1.84 g, 60%) in the same manner as in Reference Example 29 from 2-[(furan-3-ylmethyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 34.

1H-NMR (300 MHz, CDCl3) δ: 1.43 (2H, s), 3.84 (2H, s), 5.25 (2H, s), 6.50 (1H, d, J = 1.3 Hz), 6.73 (1H, s), 6.84 (1H, d, J = 5.3 Hz), 7.41 (1H, dd, J = 1.6 Hz), 7.52 (1H, s), 8.11 (1H, d, J = 5.3 Hz).

Reference Example 36

2-[(furan-2-ylmethyl)oxy]pyridine-4-carbonitrile

[0854] The title compound was obtained as a yellow oil (2.54 g, 59%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and furan-2-ylmethanol.

1H-NMR (300 MHz, CDCl3) δ: 5.37 (2H, s), 6.38 (1H, dd, J = 3.2, 1.9 Hz), 6.47 (1H, d, J = 3.0 Hz), 7.01 (1H, s), 7.09 (1H, dd, J = 5.2, 1.2 Hz), 7.43-7.47 (1H, m), 8.32 (1H, d, J = 5.3 Hz).

Reference Example 37

{(2-[(furan-2-ylmethyl)oxy]pyridin-4-yl) methyl]amine

[0855] The title compound was obtained as a yellow oil (1.91 g, 75%) in the same manner as in Reference Example 31 from 2-[(furan-2-ylmethyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 36.

1H-NMR (300 MHz, CDCl3) δ: 1.54 (2H, s), 3.84 (2H, s), 5.33 (2H, s), 6.37 (1H, dd, J = 3.1, 1.8 Hz), 6.44 (1H, d, J = 3.2 Hz), 6.74 (1H, s), 6.85 (1H, dd, J = 5.3, 0.9 Hz), 7.41-7.46 (1H, m), 8.11 (1H, d, J = 5.3 Hz).
Reference Example 38

2-[(3-thienylmethyl)oxy]pyridine-4-carbonitrile

- **0856** The title compound was obtained as a colorless oil (3.87 g, 83%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and 3-thienylmethanol.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{)} \delta: 5.41 (2H, s), 7.02 (1H, s), 7.08 (1H, dd, \textit{J} = 5.2, 1.2 Hz), 7.16 (1H, dd, \textit{J} = 4.8, 1.2 Hz), 7.34 (2H, m), 8.32 (1H, d, \textit{J} = 5.1 Hz). \]

Reference Example 39

(2-[(3-thienylmethyl)oxy]pyridin-4-yl)amine

- **0857** The title compound was obtained as a yellow oil (3.54 g, 90%) in the same manner as in Reference Example 31 from 2-[(3-thienylmethyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 38.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{)} \delta: 3.85 (2H, s), 5.39 (2H, s), 6.76 (1H, s), 6.85 (1H, dd, \textit{J} = 5.3, 1.3 Hz), 7.17 (1H, dd, \textit{J} = 4.9, 1.3 Hz), 7.33 (2H, m), 8.11 (1H, d, \textit{J} = 5.5 Hz). \]

Reference Example 40

2-[[5-methylisoxazol-3-yl]methyl]oxy]pyridine-4-carbonitrile

- **0858** The title compound was obtained as a white powder (575 mg, 25%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and 5-methylisoxazol-3-yl)methanol.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{)} \delta: 2.43 (3H, d, \textit{J} = 0.75 Hz), 5.45 (2H, s), 6.07 (1H, s), 7.06 (1H, d, \textit{J} = 1.13 Hz), 7.13 (1H, dd, \textit{J} = 5.27, 1.32 Hz), 8.28-8.37 (1H, m). \]

Reference Example 41

(2-[[5-methylisoxazol-3-yl]methyl]oxy]pyridin-4-yl)methyl]amine

- **0859** The title compound was obtained as a yellow oil (398 mg, 72%) in the same manner as in Reference Example 31 from 2-[[5-methylisoxazol-3-yl]methyl]oxy]pyridine-4-carbonitrile synthesized in Reference Example 40.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{)} \delta: 2.32-2.51 (5H, m), 3.87 (2H, s), 5.42 (2H, s), 6.07 (1H, s), 6.77 (1H, d, \textit{J} = 0.75 Hz), 6.88 (1H, dd, \textit{J} = 5.27, 1.51 Hz), 8.11 (1H, d, \textit{J} = 5.27 Hz). \]

Reference Example 42

2-[(3,5-dimethylisoxazol-4-yl)methyl]oxy]pyridine-4-carbonitrile

- **0860** The title compound was obtained as a white powder (1.18 g, 48%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and (3,5-dimethylisoxazol-4-yl)methanol.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{)} \delta: 2.32 (3H, s), 2.46 (3H, s), 5.18 (2H, s), 6.98 (1H, s), 7.10 (1H, dd, \textit{J} = 5.09, 1.32 Hz), 8.30 (1H, d, \textit{J} = 5.27 Hz). \]

Reference Example 43

(2-[(3,5-dimethylisoxazol-4-yl)methyl]oxy]pyridin-4-yl)methyl]amine

- **0861** The title compound was obtained as a yellow oil (880 mg, 77%) in the same manner as in Reference Example 31 from 2-[(3,5-dimethylisoxazol-4-yl)methyl]oxy]pyridine-4-carbonitrile synthesized in Reference Example 42.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{)} \delta: 2.09 (2H, d, \textit{J} = 8.85 Hz), 2.32 (3H, s), 2.45 (3H, s), 3.85 (2H, s), 5.14 (2H, s), 6.69 (1H, s), 6.85 (1H, dd, \textit{J} = 5.27, 1.32 Hz), 8.09 (1H, d, \textit{J} = 5.27 Hz). \]
Reference Example 44

2-[(3-(methyl oxy)propyl)oxy]pyridine-4-carbonitrile

[0862] The title compound was obtained as a yellow oil (2.46 g, 59%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and 3-(methyl oxy)propan-1-ol.

\[\text{H-NMR (300 MHz, CDCl}_3 \] \(\delta \): 1.95-2.14 (2H, m), 3.35 (3H, s), 3.54 (2H, t, \(J = 6.2 \text{ Hz} \)), 4.42 (2H, t, \(J = 6.5 \text{ Hz} \)), 6.98 (1H, d, \(J = 1.3 \text{ Hz} \)), 7.05 (1X, dd, \(J = 5.3, 1.3 \text{ Hz} \)), 8.07 (1H, m), 10.07 (1H, m).

Reference Example 45

[(2-[(3-(methyl oxy)propyl)oxy]pyridin-4-yl)methyl]amine

[0863] The title compound was obtained as a yellow oil (649 mg, 64%) in the same manner as in Reference Example 29 from 2-[(3-(methyl oxy)propyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 44.

\[\text{H-NMR (300 MHz, CDCl}_3 \] \(\delta \): 1.61 (2H, s), 1.91-2.15 (2H, m), 1.94-2.15 (2H, m), 3.21-3.45 (3H, m), 3.55 (2H, d, \(J = 6.2 \text{ Hz} \)), 3.83 (2H, s), 6.60-6.88 (2H, m), 7.95-8.16 (1H, m, \(J = 3.6 \text{ Hz} \)).

Reference Example 46

2-[(3-methyl-3-(methyl oxy)butyl)oxy]pyridine-4-carbonitrile

[0864] The title compound was obtained as a yellow oil (2.91 g, 61%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and 3-methyl-3-(methyl oxy)butan-1-ol.

\[\text{H-NMR (300 MHz, CDCl}_3 \] \(\delta \): 1.24 (6H, s), 2.00 (2H, m), 3.23 (3H, s), 4.43 (2H, m), 6.96 (1H, m), 7.05 (1H, dd, \(J = 5.2, 1.2 \text{ Hz} \)), 8.29 (1H, d, \(J = 5.3 \text{ Hz} \)).

Reference Example 47

[(2-[(3-methyl-3-(methyl oxy)butyl)oxy]pyridin-4-yl)methyl]amine

[0865] The title compound was obtained as a yellow oil (2.05 g, 80%) in the same manner as in Reference Example 29 from 2-[(3-methyl-3-(methyl oxy)butyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 46.

\[\text{H-NMR (300 MHz, CDCl}_3 \] \(\delta \): 1.24 (6H, s), 1.67 (2H, s), 1.99 (2H, t, \(J = 7.4 \text{ Hz} \)), 3.23 (3H, s), 3.84 (2H, s), 4.38 (2H, t, \(J = 7.4 \text{ Hz} \)), 6.68 (1H, s), 6.80 (1H, d, \(J = 5.3 \text{ Hz} \)), 8.09 (1H, d, \(J = 5.3 \text{ Hz} \)).

Reference Example 48

2-[(phenylmethyl)oxy]pyridine-4-carbonitrile

[0866] The title compound was obtained as a yellow oil (2.98 g, 65%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and phenylmethanol.

\[\text{H-NMR (300 MHz, CDCl}_3 \] \(\delta \): 5.41 (2H, s), 7.04 (1H, s), 7.08 (1H, dd, \(J = 5.2, 1.2 \text{ Hz} \)), 7.29-7.51 (5H, m), 8.32 (1H, d, \(J = 5.1 \text{ Hz} \)).

Reference Example 49

[(2-[(phenylmethyl)oxy]pyridin-4-yl)methyl]amine

[0867] The title compound was obtained as a yellow oil (2.40 g, 80%) in the same manner as in Reference Example 31 from 2-[(phenylmethyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 48.

\[\text{H-NMR (300 MHz, CDCl}_3 \] \(\delta \): 1.55 (2H, s), 3.85 (2H, s), 5.38 (2H, s), 6.78 (1H, s), 6.85 (1H, dd, \(J = 5.3, 0.9 \text{ Hz} \)), 7.29 - 7.51 (5H, m), 8.11 (1H, d, \(J = 5.3 \text{ Hz} \)).
Reference Example 50

2-(((3-fluorophenyl)methyl)oxy)pyridine-4-carbonitrile

[0868] The title compound was obtained as a white powder (3.66 g, 74%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and (3-fluorophenyl)methanol.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{) \delta: 5.40 (2H, s), 6.96-7.23 (5H, m), 7.30-7.39 (1H, m), 8.31 (1H, dd, } J = 5.2, 0.9 \text{ Hz).} \]

Reference Example 51

[[[(3-fluorophenyl)methyl]oxy]pyridin-4-yl]methyl]amine

[0869] The title compound was obtained as a yellow oil (2.70 g, 83%) in the same manner as in Reference Example 29 from 2-(((3-fluorophenyl)methyl)oxy)pyridine-4-carbonitrile synthesized in Reference Example 50.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{) \delta: 3.86 (2H, s), 5.38 (2H, s), 6.80 (1H, s), 6.86 (1H, dd, } J = 5.3, 0.9 \text{ Hz), 6.99 (1H, td, } J = 8: 4, 2.7 \text{ Hz), 7.13-7.24 (2H, m), 7.28-7.38 (1H, m), 8.10 (1H, d, } J = 5.3 \text{ Hz).} \]

Reference Examples 52

2-(((4-fluorophenyl)methyl)oxy)pyridine-4-carbonitrile

[0871] The title compound was obtained as a white powder (3.14 g, 64%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and (4-fluorophenyl)methanol.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{) \delta: 5.37 (2H, s), 7.00-7.12 (m, 4 H), 7.36-7.48 (2H, m), 8.31 (1H, d, } J = 5.1 \text{ Hz).} \]

Reference Example 53

[[[4-fluorophenyl)methyl]oxy]pyridin-4-yl]methyl]amine

[0872] The title compound was obtained as a yellow oil (2.54 g, 83%) in the same manner as in Reference Example 29 from 2-(((4-fluorophenyl)methyl)oxy)pyridine-4-carbonitrile synthesized in Reference Example 52.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{) \delta: 1.47 (2H, s), 3.85 (2H, s), 5.34 (2H, s), 6.77 (1H, s), 6.85 (1H, dd, } J = 5.3, 1.1 \text{ Hz), 7.00-7.11 (2H, m), 7.39-7.47 (2H, m), 8.10 (1H, d, } J = 5.3 \text{ Hz).} \]

Reference Example 54

2-({[3-(methyloxy)phenyl]methyl}oxy)pyridine-4-carbonitrile

[0873] The title compound was obtained as a colorless oil (2.71 g, 52%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and [3-(methyloxy)phenyl]methanol.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{) \delta: 3.82 (3H, s), 5.38 (2H, s), 6.88 (1H, dd, } J = 8.2, 2.5 \text{ Hz), 6.94-7.13 (4H, m), 7.22-7.37 (1H, m), 8.32 (1H, d, } J = 5.3 \text{ Hz).} \]

Reference Examples 55

[[[3-(methyloxy)phenyl]methyl]oxy]pyridin-4-yl]methyl]amine

[0874] The title compound was obtained as a yellow oil (2.00 g, 76%) in the same manner as in Reference Example 31 from 2-(((3-(methyloxy)phenyl)methyl)oxy)pyridine-4-carbonitrile synthesized in Reference Example 54.

\[\text{1H-NMR (300 MHz, CDCl}_3\text{) \delta: 1.46 (2H, s), 3.82 (3H, s), 3.85 (2H, s), 5.36 (2H, s), 6.79 (1H, s), 6.82-6.92 (2H, m), 6.98-7.09 (2H, m), 7.23-7.35 (1H, m), 8.11 (1H, d, } J = 5.3 \text{ Hz).} \]

Reference Example 56

2-({[4-(methyloxy)phenyl]methyl}oxy)pyridine-4-carbonitrile

[0875] The title compound was obtained as a white powder (3.43 g, 66%) in the same manner as in Reference Example
28 from 2-chloropyridine-4-carbonitrile and [4-(methyloxy)phenyl]methanol.

1H-NMR (300 MHz, CDCl$_3$) δ: 3.82 (3H, s), 5.33 (2H, s), 6.91 (2H, m), 7.01 (1H, s), 7.07 (1H, dd, $J = 5.2, 1.2$ Hz), 7.38 (2H, m), 8.32 (1H, d, $J = 5.3$ Hz).

Reference Example 57

[(2-[[4-(methyloxy)phenyl]methyl]oxy]pyridin-4-yl)methyl]amine

[0876] The title compound was obtained as a yellow oil (2.37 g, 68%) in the same manner as in Reference Example 31 from 2-[[4-(methyloxy)phenyl]methyl]oxy]pyridine-4-carbonitrile synthesized in Reference Example 56.

1H-NMR (300 MHz, CDCl$_3$) δ: 3.81 (3H, s), 5.31 (2H, s), 6.75 (1H, s), 6.84 (1H, dd, $J = 5.3, 1.3$ Hz), 6.91 (2H, m), 8.11 (1H, d, $J = 5.3$ Hz).

Reference Example 58

2-[[1,3-benzodioxol-5-ylmethyl]oxy]pyridine-4-carbonitrile

[0877] The title compound was obtained as a white powder (3.09 g, 56%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and 1,3-benzodioxol-5-ylmethanol.

1H-NMR (300 MHz, CDCl$_3$) δ: 5.30 (2H, s), 5.97 (2H, s), 6.77-6.83 (1H, m), 6.88-6.96 (2H, m), 7.01 (1H, s), 7.08 (1H, dd, $J = 5.2, 1.2$ Hz), 8.31 (1H, d, $J = 5.3$ Hz).

Reference Example 59

({2-[[1,3-benzodioxol-5-ylmethyl]oxy]pyridin-4-yl}methyl)amine

[0878] The title compound as a pale-yellow powder (6.87 g, 45%) in the same manner as in Reference Example 31 from 2-[[1,3-benzodioxol-5-ylmethyl]oxy]pyridine-4-carbonitrile synthesized in Reference Example 58.

1H-NMR (300 MHz, CDCl$_3$) δ: 1.55 (2H, s), 3.85 (2H, d), 5.28 (2H, s), 5.96 (2H, s), 6.75 (1H, s), 6.78-6.82 (1H, m), 6.84 (1H, dd, $J = 5.3, 0.9$ Hz), 6.89-6.99 (2H, m), 8.10 (1H, d, $J = 5.3$ Hz).

Reference Example 60

2-[[biphenyl-4-ylmethyl]oxy]pyridine-4-carbonitrile

[0879] The title compound was obtained as a white powder (230 mg, 47%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and biphenyl-4-ylmethanol.

1H-NMR (300 MHz, CDCl$_3$) δ: 5.45 (2H, s), 7.05-7.07 (1H, m), 7.09 (1H, dd, $J = 5.1, 1.3$ Hz), 7.31-7.65 (m, 9 H), 8.33 (1H, dd, $J = 5.3, 0.8$ Hz).

Reference Example 61

({2-[[biphenyl-4-ylmethyl]oxy]pyridin-4-yl}methyl)amine

[0880] The title compound as a pale-yellow powder (6.87 g, 45%) in the same manner as in Reference Example 31 from 2-[[biphenyl-4-ylmethyl]oxy]pyridine-4-carbonitrile synthesized in Reference Example 60.

1H-NMR (300 MHz, CDCl$_3$) δ: 1.52 (2H, s), 3.85 (2H, s), 5.42 (2H, s), 6.79 (1H, s), 6.85 (1H, dd, $J = 5.3, 0.8$ Hz), 7.29-7.65 (9H, m), 8.12 (1H, d, $J = 5.3$ Hz).

Reference Example 62

2-[[pyridin-4-ylmethyl]oxy]pyridine-4-carbonitrile

[0881] The title compound was obtained as a white powder (3.01 g, 66%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and pyridin-4-ylmethanol.

1H-NMR (300 MHz, CDCl$_3$) δ: 5.44 (2H, s), 7.13 (2H, m), 7.33 (2H, d, $J = 5.6$ Hz), 8.30 (1H, m), 8.62 (2H, m).
Reference Example 63

\((\text{2-[(pyridin-4-ylmethyl)oxy]pyridin-4-yl} \text{methyl}) \text{amine}\)

[0882] The title compound was obtained as a yellow oil (1.12 g, 69%) in the same manner as in Reference Example 29 from 2-[(pyridin-4-ylmethyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 62.

\(^1H \text{-NMR (300 MHz, CDCl}_3 \): 1.61 (2H, s), 3.88 (2H, s), 5.42-5.46 (2H, m), 6.68-7.04 (2H, m), 7.29-7.38 (2H, m), 8.07 (1H, d, \(J = 5.27 \) Hz), 8.52-8.63 (2H, m).

Reference Example 64 2-[(pyridine-3-ylmethyl)oxy]pyridine-4-carbonitrile

[0883] The title compound was obtained as a white powder (2.52 g, 55%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and pyridin-3-ylmethanol.

\(^1H \text{-NMR (300 MHz, CDCl}_3 \): 5.44 (2H, s), 7.05 (1H, s), 7.11 (1H, dd, \(J = 5.1, 1.3 \) Hz), 7.32 (1H, dd, \(J = 7.6, 4.6 \) Hz), 7.73-7.82 (1H, m), 8.27-8.37 (1H, m), 8.59 (1H, dd, \(J = 4.9, 1.7 \) Hz), 8.71 (1H, d, \(J = 1.9 \) Hz).

Reference Example 65

\((\text{2-[(pyridine-3-ylmethyl)oxy]pyridin-4-yl} \text{methyl}) \text{amine}\)

[0884] The title compound was obtained as a yellow oil (1.92 g, 75%) in the same manner as in Reference Example 29 from 2-[(pyridine-3-ylmethyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 64.

\(^1H \text{-NMR (300 MHz, CDCl}_3 \): 1.62 (2H, s), 3.86 (2H, s), 5.31-5.50 (2H, m), 6.78 (1H, s), 6.87 (1H, d, \(J = 4.9 \) Hz), 7.20-7.34 (1H, m), 7.71-7.82 (1H, m), 8.10 (1H, d, \(J = 5.3 \) Hz) 8.56 (1H, dd, \(J = 4.8, 1.6 \) Hz), 8.71 (1H, d, \(J = 1.5 \) Hz).

Reference Example 66

2-[(pyridin-2-ylmethyl)oxy]pyridine-4-carbonitrile

[0885] The title compound was obtained as a white powder (2.15 g, 47%) in the same manner as in Reference Example 28 from 2-[(pyridin-2-ylmethyl)oxy]pyridine-4-carbonitrile and pyridin-2-ylmethanol.

\(^1H \text{-NMR (300 MHz, CDCl}_3 \): 5.54 (2H, s), 7.06-7.15 (2H, m), 7.18-7.32 (1H, m), 7.43 (1H, d, \(J = 7.9 \) Hz), 7.63-7.78 (1H, m), 8.30 (1H, d, \(J = 5.3 \) Hz), 8.62 (1H, d, \(J = 4.7 \) Hz).

Reference Example 67

\((\text{2-[(pyridin-2-ylmethyl)oxy]pyridin-4-yl} \text{methyl}) \text{amine}\)

[0886] The title compound was obtained as a yellow oil (803 mg, 37%) in the same manner as in Reference Example 31 from 2-[(pyridin-2-ylmethyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 66.

\(^1H \text{-NMR (300 MHz, CDCl}_3 \): 3.87 (2H, s), 5.53 (2H, m), 6.85 (2H, m), 7.21 (1H, dd, \(J = 7.0, 5.5 \) Hz), 7.45 (1H, d, \(J = 7.9 \) Hz), 7.69 (1H, m), 8.09 (1H, m) 8.61 (1H, m).

Reference Example 68

2-(ethyloxy)pyridine-4-carbonitrile

[0887] The title compound was obtained as a white powder (9.8 g, 92%) in the same manner as in Reference Example 28 from 2-(ethyloxy)pyridine-4-carbonitrile and ethanol.

\(^1H \text{-NMR (300 MHz, CDCl}_3 \): 1.40 (3H, t, \(J = 7.2 \) Hz), 4.39 (2H, q, \(J = 7.2 \) Hz), 6.96 (1H, dd, \(J = 0.6, 1.2 \) Hz), 7.04 (1H, dd, \(J = 1.2, 5.4 \) Hz), 8.29 (1H, d, \(J = 5.4 \) Hz).

Reference Example 69

\((\text{2-(ethyloxy)pyridin-4-yl} \text{methyl}) \text{amine}\)

[0888] The title compound was obtained as a yellow oil (6.18 g, 63%) in the same manner as in Reference Example 31 from 2-(ethyloxy)pyridine-4-carbonitrile synthesized in Reference Example 68.
1H-NMR (300 MHz, CDCl₃) δ: 1.39 (3H, t, J = 7.2 Hz), 3.75 (2H, s), 3.85 (2H, s), 4.35 (2H, q, J = 7.2 Hz), 6.69 (1H, s), 6.81 (1H, dd, J = 0.9, 5.4 Hz), 8.09 (1H, d, J = 5.4 Hz).

Reference Example 70

2-[(4-fluorophenyl)oxy]pyridine-4-carbonitrile

[0889] To a suspension of sodium hydride (300 mg, 7.50 mmol) in DMF (5.0 mL) was added 4-fluorophenol (810 mg, 7.23 mmol) at room temperature, and the mixture was stirred for 10 min. A solution (5.0 mL) of 2-chloropyridine-4-carbonitrile (1.0 g, 7.22 mmol) in DMF was gradually added at room temperature, and the mixture was stirred overnight at room temperature. The reaction mixture was extracted with water and ethyl acetate. The organic layer was washed with saturated brine and, after drying over anhydrous sodium sulfate, concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (2%-20% ethyl acetate/hexane) to give the title compound as a colorless oil (1.3 g, 81%).

1H-NMR (300 MHz, CDCl₃) δ: 7.10 (2H, s), 7.12 (1H, d, J = 0.9 Hz), 7.17 (1H, s), 7.20 (1H, dd, J = 5.1, 1.3 Hz), 8.30 (1H, d, J = 5.1 Hz).

Reference Example 71

[(2-[(4-fluorophenyl)oxy]pyridin-4-yl)methyl]amine

[0890] The title compound was obtained as a yellow oil (1.53 g, 60%) in the same manner as in Reference Example 29 from 2-[(4-fluorophenyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 70.

1H-NMR(300MHz, CDCl₃) δ: 1.44 (2H, s), 3.90 (2H, s), 6.88 (1H, s), 6.94 (1H, d, J = 5.1 Hz), 7.07 (m, 4 H), 8.09 (1H, d, J = 5.1 Hz).

Reference Example 72

2-[(3,4-bis(methyloxy)phenyl)oxy]pyridine-4-carbonitrile

[0891] The title compound was obtained as a white powder (2.14 g, 40%) in the same manner as in Reference Example 70 from 2-chloropyridine-4-carbonitrile and 3,4-bis(methyloxy)phenol.

1H-NMR (300 MHz, CDCl₃) δ: 3.86 (3H, s), 3.90 (3H, s), 6.70 (2H, m), 6.90 (1H, d, J = 9.4 Hz), 7.13 (1H, s), 7.19 (1H, dd, J = 5.1, 1.1 Hz), 8.34 (1H, d, J = 5.1 Hz).

Reference Example 73

[[2-[(3,4-bis(methyloxy)phenyl)oxy]pyridin-4-yl)methyl]amine

[0892] The title compound was obtained as a yellow oil (1.46 g, 67%) in the same manner as in Reference Example 31 from 2-[(3,4-bis(methyloxy)phenyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 72.

1H-NMR (300 MHz, CDCl₃) δ: 3.85 (3H, s), 3.89 (3H, s), 3.89 (2H, s), 6.69 (2H, m), 6.87 (2H, m), 6.94 (1H, d, J = 5.3 Hz), 8.13 (1H, d, J = 5.3 Hz).

Reference Example 74

2-(tetrahydrofuran-3-yl)oxy)pyridine-4-carbonitrile

[0893] The title compound was obtained as a yellow oil (2.22 g, 54%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and tetrahydrofuran-3-ol.

1H-NMR (300 MHz, CDCl₃) δ: 2.07-2.20 (1H, m), 2.20-2.36 (1H, m), 3.86-4.08 (m, 4 H), 5.51-5.63 (1H, m), 6.97-7.02 (1H, m), 7.08 (1H, dd, J = 5.3, 1.3 Hz), 8.28 (1H, dd, J = 5.3, 0.9 Hz).

Reference Example 75

[[2-(tetrahydrofuran-3-yl)oxy]pyridin-4-yl)methyl]amine

[0894] The title compound was obtained as a yellow oil (1.84 g, 60%) in the same manner as in Reference Example
29 from 2-[(furan-3-ylmethyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 74.

\(^{1}H\text{-NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta: 1.50 (2 \text{H, s}), 2.07-2.32 (2 \text{H, m}), 3.83-4.08 (6 \text{H, m}), 5.53-5.61 (1 \text{H, m}), 6.71 (1 \text{H, s}), 6.83 (1 \text{H, d, } J = 5.3 \text{ Hz}), 8.06 (2 \text{H, d, } J = 5.3 \text{ Hz}). \)

Reference Example 76

2-(tetrahydro-2H-pyran-4-yl)oxy]pyridine-4-carbonitrile

[0895] The title compound was obtained as a white powder (3.20 g, 73%) in the same manner as in Reference Example 28 from 2-chloropyridine-4-carbonitrile and tetrahydro-2H-pyran-4-ol.

\(^{1}H\text{-NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta: 1.8 (2 \text{H, m}), 2.1 (2 \text{H, m}), 3.6 (2 \text{H, ddd, } J = 11.9, 9.0, 3.0 \text{ Hz}), 4.0 (2 \text{H, ddd, } J = 11.9, 4.7, 4.5 \text{ Hz}), 5.3 (1 \text{H, tt, } J = 8.5, 4.2 \text{ Hz}), 7.0 (1 \text{H, s}), 7.1 (1 \text{H, dd, } J = 5.2, 1.2 \text{ Hz}), 8.3 (1 \text{H, dd, } J = 5.1, 0.6 \text{ Hz}). \)

Reference Example 77

((2-[(tetrahydro-2H-pyran-4-yl)oxy]pyridin-4-yl)methyl)amine

[0896] The title compound was obtained as a yellow oil (2.59 g, 79%) in the same manner as in Reference Example 31 from 2-(tetrahydro-2H-pyran-4-yl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 76.

\(^{1}H\text{-NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta: 1.47 (2 \text{H, m}), 1.71 (2 \text{H, m}), 1.99 (2 \text{H, m}), 3.55 (2 \text{H, m}), 3.77 (2 \text{H, s}), 3.91 (2 \text{H, m}), 5.18 (1 \text{H, m}), 6.64 (1 \text{H, s}), 6.74 (1 \text{H, d, } J = 5.1 \text{ Hz}), 7.99 (1 \text{H, d, } J = 5.1 \text{ Hz}). \)

Reference Example 78

2-[(3-(methyloxy)propyl)amino]pyridine-4-carbonitrile

[0897] A solution (20 mL) of [3-(methyloxy)propyl]amine (1.61 mL, 14.44 mmol) and 2-chloropyridine-4-carbonitrile (1.0 g, 7.22 mmol) in THF was refluxed overnight with stirring. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (20%-50%ethyl acetate/hexane) to give the title compound as a yellow powder (429 mg, 43%).

\(^{1}H\text{-NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta: 1.90 (2 \text{H, tt, } J = 6.2, 6.0 \text{ Hz}), 3.36 (3 \text{H, s}), 3.41 (2 \text{H, dt, } J = 6.4 \text{ Hz}), 3.52 (2 \text{H, t, } J = 5.7 \text{ Hz}), 5.24 (1 \text{H, m}), 6.57 (1 \text{H, s}), 6.71 (1 \text{H, dd, } J = 5.1, 1.1 \text{ Hz}), 8.18 (1 \text{H, d, } J = 5.3 \text{ Hz}). \)

Reference Example 79

4-(aminomethyl)-N-[3-(methyloxy)propyl]pyridine-2-amine

[0898] The title compound was obtained as a yellow oil (161 mg, 79%) in the same manner as in Reference Example 29 from 2-[4-(4-fluorophenyl)oxy]pyridine-4-carbonitrile synthesized in Reference Example 78.

\(^{1}H\text{-NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta: 1.62 (2 \text{H, s}), 1.89 (2 \text{H, tt, } J = 6.4, 6.2 \text{ Hz}), 3.33-3.44 (m, 5 \text{ H}), 3.51 (2 \text{H, t, } J = 5.9 \text{ Hz}), 3.78 (2 \text{H, s}), 4.83 (1 \text{H, s}), 6.37 (1 \text{H, s}), 6.50 (1 \text{H, dd, } J = 5.2, 1.2 \text{ Hz}), 8.01 (1 \text{H, d, } J = 5.3 \text{ Hz}). \)

Reference Example 80

2-[(3-(ethyloxy)propyl)amino]pyridine-4-carbonitrile

[0899] The title compound was obtained as a yellow oil (1.82 g, 41%) in the same manner as in Reference Example 78 from 2-chloropyridine-4-carbonitrile and [3-(ethyloxy)propyl]amine.

\(^{1}H\text{-NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta: 1.23 (3 \text{H, t, } J = 7.1 \text{ Hz}), 1.82-1.97 (2 \text{H, m}), 3.35-3.61 (6 \text{H, m}), 5.31 (1 \text{H, s}), 6.57 (1 \text{H, d, } J = 1.1 \text{ Hz}), 6.70 (1 \text{H, dd, } J = 5.1, 1.3 \text{ Hz}), 8.18 (1 \text{H, d, } J = 5.1 \text{ Hz}). \)

Reference Example 81

4-(aminomethyl)-N-[3-(ethyloxy)propyl]pyridine-2-amine

[0900] The title compound was obtained as a yellow oil (1.14 g, 75%) in the same manner as in Reference Example 29 from 2-[(3-ethyloxy)propyl]amino]pyridine-4-carbonitrile synthesized in Reference Example 80.

\(^{1}H\text{-NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta: 1.22 (3 \text{H, t, } J = 7.0 \text{ Hz}), 1.59 (2 \text{H, s}), 1.89 (2 \text{H, tt, } J = 6.3 \text{ Hz}), 3.33-3.60 (m, 6 \text{ H}), 3.77
Reference Example 82

2-([1-methylethyl]oxy)propyl]amino)pyridine-4-carbonitrile

The title compound was obtained as a yellow oil (1.97 g, 41%) in the same manner as in Reference Example 78 from 2-chloropyridine-4-carbonitrile and [3-([1-methylethyl]oxy)propyl]amine.

H-NMR (300 MHz, CDCl₃) δ: 1.18 (6H, d, J = 6.0 Hz), 1.81-1.94 (2H, m), 3.41 (2H, q, J = 6.3 Hz), 3.50-3.64 (3H, m), 5.39 (1H, s), 6.55 (1H, s), 6.69 (1H, dd, J = 5.2, 1.2 Hz), 8.18 (1H, d, J = 5.1 Hz).

Reference Example 83

4-(aminomethyl)-N-([1-methylethyl]oxy)propyl]pyridine-2-amine

The title compound was obtained as a yellow oil (1.23 g, 77%) in the same manner as in Reference Example 29 from 2-([1-methylethyl]oxy)propyl] amino pyridine-4-carbonitrile synthesized in Reference Example 82.

H-NMR (300 MHz, CDCl₃) δ: 1.17 (6H, d, J = 6.0 Hz), 1.60 (2H, s), 1.87 (2H, tt, J = 6.4, 6.2 Hz), 3.39 (2H, q, J = 6.3 Hz), 3.49 - 3.64 (3H, m), 3.77 (2H, s), 4.88 (1H, s), 6.35 (1H, s), 6.47-6.53 (1H, m), 8.01 (1H, d, J = 5.3 Hz).

Reference Example 84

3-((tetrahydrofuran-3-ylmethyl)oxy)benzonitrile

A mixture of 3-((tetrahydrofuran-3-ylmethyl)oxy)benzonitrile (1.54 g, 7.58 mmol) obtained in Reference Example 84, Raney-nickel (1.54 g), 28% aqueous ammonia, EtOH (15 mL) and THF (15 mL) was stirred under a hydrogen atmosphere at room temperature for 12 hrs. The precipitate was removed by filtration and filtrate was concentrated under reduced pressure to give the title compound as a pale-green oil (1.57 g, quantitatively).

H-NMR (300 MHz, DMSO-d₆) δ: 1.52-2.23 (4H, m), 2.55-2.85 (1H, m), 3.38-4.17 (8H, m), 6.27-7.58 (4H, m).

Reference Example 85

1-3-((tetrahydrofuran-3-ylmethyl)oxy)phenyl)methanamine

A mixture of 3-((tetrahydrofuran-3-ylmethyl)oxy)benzonitrile (1.54 g, 7.58 mmol) obtained in Reference Example 84, Raney-nickel (1.54 g), 28% aqueous ammonia, EtOH (15 mL) and THF (15 mL) was stirred under a hydrogen atmosphere at room temperature for 12 hrs. The precipitate was removed by filtration and filtrate was concentrated under reduced pressure to give the title compound as a pale-green oil (1.57 g, quantitatively).

H-NMR (300 MHz, DMSO-d₆) δ: 1.52-2.23 (4H, m), 2.55-2.85 (1H, m), 3.38-4.17 (8H, m), 6.27-7.58 (4H, m).

Reference Example 86

3-(ethyloxy)benzonitrile

The title compound was obtained as a colorless oil (5.76 g, 93%) in the same manner as in Reference Example 84 from 3-hydroxybenzonitrile.

H-NMR (300 MHz, CDCl₃) δ: 1.43 (3H, t, J=7.1 Hz), 4.05 (2H, q, J = 7.0 Hz), 7.11 (2H, m), 7.23 (1H, m), 7.36 (1H, m).
Reference Example 87

1-[3-(ethyloxy)phenyl]methanamine hydrochloride

[0906] The title compound was obtained as a white powder (6.00 g, 85%) in the same manner as in Reference Example 85 from 3-(ethyloxy)benzonitrile obtained in Reference Example 86. melting point: 137°C

Reference Example 88

Methyl [(3-cyanophenyl)oxy]acetate

[0907] The title compound was obtained as a white powder (1.42 g, 88%) in the same manner as in Reference Example 84 from 3-hydroxybenzonitrile and methyl bromoacetate. melting point: 66°C

Reference Example 89

Methyl [(3-(aminomethyl)phenyl)oxy]acetate hydrochloride

[0908] A mixture of methyl [(3-cyanophenyl)oxy]acetate (1.00 g, 5.23 mmol) obtained in Reference Example 88, 10% palladium on carbon (containing 50% water), formic acid (10 mL) and MeOH (10 mL) was stirred under a hydrogen atmosphere at room temperature for 12 hrs. The precipitate was filtered off, and the filtrate was concentrated under reduced pressure. A solution (1.50 mL, 6.00 mmol) of 4N hydrogen chloride in ethyl acetate was added to the obtained residue. The mixture was stirred and the solvent was concentrated under reduced pressure. The obtained crude crystals were recrystallized from ethyl acetate to give the title compound as a white powder (854 mg, 70%). melting point: 121°C

Reference Example 90

Methyl 5-[(3-cyanophenyl)oxy]pentanoate

[0909] The title compound was obtained in the same manner as in Reference Example 84 as a white powder (4.29 g, 86%) from 3-hydroxybenzonitrile and methyl 5-bromopentanoate. melting point: 36-37°C

Reference Example 91

Methyl 5-[(3-(aminomethyl)phenyl)oxy]pentanoate hydrochloride

[0910] The title compound was obtained in the same manner as in Reference Example 89 as a white powder (788 mg, 79%) from methyl 5-[(3-cyanophenyl)oxy]pentanoate obtained in Reference Example 90. melting point: 88°C

Reference Example 92

3-(3-oxo-3,4-dihydro-2H-1,4-benzooxazin-6-yl)benzonitrile

[0911] A mixture of 6-bromo-2H-1,4-benzooxazin-3(4H)-one (synthesized by a method described in Indian Journal of Chemistry (1969), 7(7), 658-61 etc.) (3.00 g, 13.2 mmol), (3-cyanophenyl)boronic acid (1.93 g, 13.2 mmol), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (1.10 g, 1.32 mmol), triethylamine (9.20 mL, 65.8 mmol) and DME (300 mL) was heated under reflux under a nitrogen atmosphere at 90°C for 10 days. The solvent was evaporated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (20-50% ethyl acetate/ hexane). The obtained crude crystals were recrystallized from ethyl acetate to give the title compound as a colorless powder (1.58 g, 48%). melting point: 242°C
Reference Example 93

6-[3-(aminomethyl)phenyl]-2H-1,4-benzooxazin-3(4H)-one

[0912] The title compound was obtained in the same manner as in Reference Example 85 as a white powder (34.2 mg, 84%) from 3-(3-oxo-3,4-dihydro-2H-1,4-benzooxazin-6-yl)benzonitrile obtained in Reference Example 92. melting point: 235-236°C

Reference Example 94

1-(3-morpholin-4-ylphenyl)methanamine

[0913] The title compound was obtained as a pale-green oil (1.00 g, 98%) in the same manner as in Reference Example 85 from 3-morpholin-4-ylbenzonitrile (synthesized by a method described in WO 9808848 A1 19980305 etc.).

1H-NMR (300 MHz, DMSO-d6) δ: 3.09 (4H, m), 3.22 (4H, s), 3.73 (4H, m), 7.07 (4H, m).

Reference Example 95

Ethyl 6-nitro-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0914] A mixture of 2-amino-5-nitrobenzonitrile (25.39 g) and sulfuric acid (70 ml) was stirred at 130°C for 40 min. The reaction mixture was gradually added to ice water, and the precipitate was collected by filtration and washed with water, ethanol and diethyl ether to give 2-amino-5-nitrobenzamide (24.63 g).

1H NMR (300 MHz, DMSO-d6) δ: 1.4 (t, J = 7.1 Hz, 2 H) 3.3 (s, 3 H) 4.4 (q, J = 7.1 Hz, 2 H) 8.0 (d, J = 8.8 Hz, 1 H) 8.6 (dd, J = 8.8, 2.7 Hz, 1 H) 8.8 (d, J = 2.2 Hz, 1 H)

Step 2

[0915] To a solution of 2-amino-5-nitrobenzamide (18.10 g) and triethylamine (15 ml) in THF (100 mL) was added dropwise a solution of ethyl chloroglyoxylate (14.36 g) in THF (20 ml) under ice-cooling, and the mixture was stirred at 0°C for 1 hr. 1N Hydrochloric acid was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogen carbonate and saturated brine, dried and concentrated. The obtained crude crystals were washed with diisopropy ether to give ethyl ([2-(aminocarbonyl)-4-nitrophenyl]amino)(oxo)acetate (8.1 g).

1H NMR (300 MHz, DMSO-d6) δ: 1.4 (t, J = 7.1 Hz, 2 H) 3.3 (s, 3 H) 4.4 (q, J = 7.1 Hz, 2 H) 8.0 (d, J = 8.8 Hz, 1 H) 8.6 (dd, J = 8.8, 2.7 Hz, 1 H) 8.8 (d, J = 2.2 Hz, 1 H)

Step 3

[0916] To a suspension of ethyl ([2-(aminocarbonyl)-4-nitrophenyl]amino)(oxo)acetate (2.292 g) obtained in Reference Example 95, Step 2 in THF (100 ml)-ethanol (50 ml) was added dropwise sodium ethylate (20% ethanol solution, 3.47 g) under ice-cooling, and the mixture was stirred at room temperature for 12 hrs. 10% Aqueous citric acid solution was added to the reaction mixture, and the precipitate was washed with water, ethanol and diethyl ether to give the title compound (1.886 g).

melting point: 227-228°C

Reference Example 96

Ethyl 6-amino-4-oxo-3,4-dihydroquinazoline-2-carboxylate

Step 1

[0917] To a mixed solution of ethyl ([2-(aminocarbonyl)-4-nitrophenyl]amino)(oxo)acetate (2.292 g) obtained in Reference Example 95, Step 2 in THF (100 ml)-ethanol (50 ml) was added 10% palladium carbon (405 mg), and the mixture was subjected to catalytic reduction under a hydrogen atmosphere at room temperature for 8 hrs. The catalyst was filtered off and the filtrate was concentrated. The obtained crude crystals were washed with diisopropyl ether to give ethyl ([4-amino-2-(aminocarbonyl)phenyl]amino)(oxo)acetate (1.96 g).
To a mixed solution of ethyl [(4-amino-2-(amin-6-carbonyl)phenyl)aminol(oxo)acetate (1.96 g) obtained in Step 1 in THF (60 ml)-ethanol (30 ml) was added dropwise sodium ethylate (20% ethanol solution, 2.82 g), and the mixture was stirred at room temperature for 12 hrs. 10% Aqueous citric acid solution was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was dried and concentrated, and the obtained crude crystals were washed with diisopropyl ether to give the title compound (738 mg).

Reference Example 97
Ethyl 3-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate

A mixture of ethyl 4-oxo-1,4-dihydroquinazoline-2-carboxylate (1.091 g), methyl iodide (0.47 ml), potassium carbonate (1.031 g) and DMF (30 ml) was stirred at room temperature for 3 hrs. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried and concentrated. The obtained crude crystals were recrystallized from ethyl acetate/hexane to give the title compound (432 mg).

Reference Example 98
Ethyl 6-chloro-4-oxo-3,4-dihydroquinazoline-2-carboxylate

2-Amino-5-chlorobenzamide (2.387 g) and diethyl oxalate were stirred at 175°C for 6 hrs. The mixture was allowed to cool and the obtained crude crystals were washed with hot EtOH to give the title compound (2.051 g).

Reference Example 99
1-oxo-1,2-dihydroisoquinoline-3-carboxylic acid

To a mixed solution of methyl 1-oxo-1,2-dihydroisoquinoline-3-carboxylate (914 mg, synthesized by a method described in Tetrahedron Lett., 1999, 40, 7935) in THF (10 ml)-methanol (10 ml) was added 1N aqueous sodium hydroxide solution (10 ml), and the mixture was stirred at room temperature for 12 hrs. The reaction mixture was acidified with 1N hydrochloric acid and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated. The obtained crude crystals were washed with diisopropyl ether to give the title compound (803 mg).

Reference Example 100
Ethyl 2-quinazolinecarboxylate

To a solution of ethyl 4-chloro-quinazoline-2-carboxylate (1.128 g) arid triethylamine (0.80 ml) in ethanol (8 ml) was added 10% palladium carbon (125 mg), and the mixture was subjected to catalytic reduction at room temperature and atmospheric pressure for 3 days. The catalyst was filtered off and the filtrate was concentrated. 10% Aqueous citric acid solution was added to the residue and the mixture was extracted with ethyl acetate. The organic layer was washed with water, aqueous sodium hydrogen carbonate and brine, dried and concentrated. The obtained crude crystals were recrystallized from ethyl acetate/hexane to give the title compound (618 mg).

Reference Example 101
N-(3-methoxybenzyl)-2-quinazolinecarboxamide

A solution of ethyl 2-quinazolinecarboxylate (136 mg) obtained in Reference Example 100, m-methoxyben-
zylamine (190 mg) and diisopropylethylamine (0.24 ml) in toluene (1 ml) was refluxed with heating for 7 hrs. 10% Aqueous citric acid solution was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, aqueous sodium hydrogen carbonate and brine, dried and concentrated. The residue was purified by silica gel chromatography (ethyl acetate/hexane=1/2-ethyl acetate) to give the title compound (163 mg, 83%).

melting point: 91-93°C

Reference Example 102

Methyl 4-methoxy-2-quinazolinecarboxylate

To a solution of ethyl 4-chloro-quinazoline-2-carboxylate (985 mg) in methanol (10 ml) was added 28% sodium methylate methanol solution (4.05 g). The reaction mixture was refluxed with heating for 4 hrs. After allowing to cool, 10% aqueous citric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, aqueous sodium hydrogen carbonate and saturated brine, dried and concentrated. The obtained crude crystals were washed with diisopropyl ether to give the title compound (169 mg, 19%).

melting point: 129-130°C

Reference Example 103

4-methoxy-N-(3-methoxybenzyl)-2-quinazolinecarboxamide

A solution of methyl 4-methoxy-2-quinazolinecarboxylate (60 mg) obtained in Reference Example 102, m-methoxybenzylamine (172 mg) and diisopropylethylamine (0.05 ml) in toluene (2 ml) was refluxed with heating for 16 hrs. 10% Aqueous citric acid solution was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, aqueous sodium hydrogen carbonate and brine, dried and concentrated. The residue was purified by silica gel chromatography (ethyl acetate/hexane=1/2-ethyl acetate) to give the title compound (60 mg, 67%).

melting point: 129-130°C

Reference Example 104

5-(methyloxy)pyridine-3-carbonitrile

A suspension of 3,5-dibromopyridine (3.0 g, 12.6 mmol) and sodium methoxide (3.4 g, 62.9 mmol) in DMF (20 mL) was stirred at room temperature for 15 hrs and the solvent was evaporated under reduced pressure. The concentrated residue was extracted with ethyl acetate and water. The organic layer was washed with saturated sodium sulfate and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (2%-20% ethyl acetate/hexane) to give 3-bromo-5-(methyloxy)pyridine as a white powder (1.25 g, 53%). A suspension of the obtained 3-bromo-5-(methyloxy)pyridine (500 mg, 2.659 mmol), zinc cyanide (187 mg, 1.59 mmol) and tetrakistriphenylphosphine palladium (154 mg, 0.133 mmol) in DMF was reacted in a microwave reaction apparatus at 80°C for 10 min. and then at 120°C for 10 min. The mixture was allowed to cool to room temperature and the solvent was evaporated under reduced pressure. The concentrated residue was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (2% - 30% ethyl acetate/hexane) to give the title compound as a colorless oil (300 mg, 84%).

1H-NMR (300 MHz, CDCl₃) δ: 3.91 (3H, s), 7.40 (1H, dd, J = 2.8, 1.7 Hz), 8.49 (1H, d, J = 1.5 Hz), 8.51 (1H, d, J = 3.0 Hz).
Reference Example 105

2-((3-[(phenylmethyl)oxy]propyl)oxy)pyridine-4-carbonitrile

[0928]

The title compound was obtained as a white powder (6.27 g, 65%) from 2-chloropyridine-4-carbonitrile and 3-((phenylmethyl)oxy)propan-1-ol by a method similar to that of Reference Example 28.

1H-NMR (300 MHz, CDCl$_3$) δ: 2.04-2.14 (2H, m), 3.63 (2H, t, $J = 6.1$ Hz), 4.45 (2H, t, $J = 6.3$ Hz), 4.52 (2H, s), 6.94 (1H, s), 7.05 (1H, dd, $J = 5.1$, 1.3 Hz), 7.27-7.34 (5H, m), 8.28 (1H, d, $J = 5.1$ Hz).

Reference Example 106

[2-((3-[(phenylmethyl)oxy]propyl)oxy)pyridin-4-yl]methyl]amine

[0930]

The title compound was obtained as a yellow oil (1.89 g, 62%) from 2-((3-[(phenylmethyl)oxy]propyl)oxy)pyridine-4-carbonitrile synthesized in Reference Example 105 by a method similar to that of Reference Example 31.

1H-NMR (300 MHz, CDCl$_3$) δ: 1.39 (2H, s), 2.04-2.14 (2H, m), 3.65 (2H, t, $J = 6.4$ Hz), 3.84 (2H, s), 4.41 (2H, t, $J = 6.4$ Hz), 4.52 (2H, s), 6.68 (1H, s), 6.81 (1H, dd, $J = 5.3$, 1.3 Hz), 7.23-7.36 (5H, m), 8.08 (1H, d, $J = 5.3$ Hz).

Reference Example 107

2-((2-[(phenylmethyl)oxy]ethyl)oxy)pyridine-4-carbonitrile

[0932]

The title compound was obtained as a yellow oil (11.8 g, 64%) from 2-chloropyridine-4-carbonitrile and 2-[(phenylmethyl)oxy]ethanol by a method similar to that of Reference Example 28.

1H-NMR (300 MHz, CDCl$_3$) δ: 3.79-3.86 (2H, m), 4.50-4.56 (2H, m), 4.61 (2H, s), 7.01-7.09 (2H, m), 7.27-7.40 (5H, m), 8.27 (1H, d, $J = 5.3$ Hz).

Reference Example 108

Ethyl 4-[(3-cyanophenyl)oxy]butanoate

[0934]
The title compound was obtained as a white powder (10.3 g, 99%) from 3-hydroxybenzonitrile and ethyl 4-hydroxybutanoate by a method similar to that of Reference Example 84.

1H-NMR (300 MHz, CDCl$_3$) δ: 1.27 (3H, t, $J = 7.2$ Hz), 2.13 (2H, tt, $J = 6.7$ Hz), 2.52 (2H, t, $J = 7.2$ Hz), 4.03 (2H, t, $J = 6.1$ Hz), 4.16 (2H, q, $J = 7.2$ Hz), 7.08-7.16 (2H, m), 7.21-7.26 (1H, m), 7.32-7.40 (1H, m).

Reference Example 109

Ethyl 4-[[3-(aminomethyl)phenyl]oxy]butanoate hydrochloride

The title compound was obtained as a white powder (7.79 g, 78%) from ethyl 4-[[3-cyanophenyl]oxy]butanoate obtained in Reference Example 108 by a method similar to that of Reference Example 89.

1H-NMR (300 MHz, DMSO-d_6) δ: 1.18 (3H, t, $J = 7.2$ Hz), 1.98 (2H, tt, $J = 6.8$ Hz), 2.46 (2H, t, $J = 7.3$ Hz), 3.95-4.03 (4H, m), 4.07 (2H, q, $J = 7.1$ Hz), 6.92 (1H, dd, $J = 8.2, 2.2$ Hz), 7.04 (1H, d, $J = 7.3$ Hz), 7.12 (1H, s), 7.31 (1H, t, $J = 7.9$ Hz), 8.26 (3H, s).

Reference Example 110

Methyl 4-nitro-1-(3-phenylpropyl)-1H-pyrazole-5-carboxylate

Reference Example 111

Methyl 4-nitro-1-(3-phenylpropyl)-1H-pyrazole-3-carboxylate
Thionyl chloride (9.2 mL) was added dropwise to a solution of 4-nitro-1H-pyrazole-3-carboxylic acid (19.77 g, 125.9 mmol) in methanol (200 mL) at 0°C. The reaction mixture was stirred at room temperature overnight and the solvent was evaporated under reduced pressure. The residue was combined with water and extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried and concentrated. The obtained crude crystal was washed with diisopropyl ether to give methyl 4-nitro-1H-pyrazole-5-carboxylate (17.77 g, 82%). 1H NMR (300 MHz, CDCl₃) δ: 4.06 (3H, s), 8.50 (1H, s).

Methyl 4-nitro-1-(3-phenylpropyl)-1H-pyrazole-5-carboxylate

1H-NMR (300 MHz, DMSO-d₆) δ: 2.16-2.28 (2H, m), 2.65 (2H, t, J = 7.5 Hz), 3.96 (3H, s), 4.27 (2H, t, J = 7.5 Hz), 7.14-7.34 (5H, m), 8.04 (1H, s).

Methyl 4-nitro-1-(3-phenylpropyl)-1H-pyrazole-3-carboxylate

melting point: 80-82°C

Methyl 4-amino-1-(3-phenylpropyl)-1H-pyrazole-3-carboxylate

To a mixed solution of methyl 4-nitro-1-(3-phenylpropyl)-1H-pyrazole-3-carboxylate (638 mg, 2.21 mmol) obtained in Reference Example 111 in methanol (10 ml) and ethyl acetate (5 ml) was added 10% palladium carbon (0.20 g) to perform catalytic reduction under a hydrogen atmosphere (1 atm) overnight at room temperature. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. The obtained crude crystals were washed with diisopropyl ether to give the title compound (564 mg).

1H-NMR (300 MHz, CDCl₃) δ: 2.11-2.27 (2H, m), 2.62 (2H, t, J = 7.7 Hz), 3.92 (3H, s), 4.07 (2H, t, J = 7.3 Hz), 6.95 (1H,
Reference Example 113

ethyl 7-oxo-2-(3-phenylpropyl)-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidine-5-carboxylate

[0944]

\[\text{Reference Example 113} \]

ethyl 7-oxo-2-(3-phenylpropyl)-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidine-5-carboxylate

\[\text{Reference Example 114} \]

Methyl 4-amino-1-(3-phenylpropyl)-1H-pyrazole-5-carboxylate

[0946]

\[\text{Reference Example 115} \]

ethyl 7-oxo-1-(3-phenylpropyl)-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidine-5-carboxylate

[0948]
Methyl 4-amino-1-(3-phenylpropyl)-1H-pyrazole-5-carboxylate (1280 mg, 4.94 mmol) obtained in Reference Example 114 and ethyl cyanoformate (549 mg, 5.54 mmol) were added to 1N hydrogen chloride-acetic acid (30 ml), and the mixture was stirred with heating at 90°C for 5 hrs. After allowing to cool, water was added, and the precipitated crude crystals were collected by filtration and washed with water, ethanol and diisopropyl ether to give the title compound (1.031 g).

\[\text{1H-NMR (300 MHz, DMSO-d}_6\text{): } \delta: 1.33 (3H, t, J = 7.2 Hz), 2.09-2.19 (2H, m), 2.51-2.58 (2H, m), 4.34 (2H, q, J = 7.1 Hz), 4.59 (2H, t, J = 6.9 Hz), 7.12-7.19 (3H, m), 7.21-7.27 (2H, m), 8.18 (1H, s), 12.66 (1H, s). \]

Anal. Calcd for C\textsubscript{17}H\textsubscript{18}N\textsubscript{4}O\textsubscript{3}: C, 62.57; H, 5.56; N, 17.17. Found: C, 62.44; H, 5.57; N, 17.2.

melting point: 180-182°C

Reference Example 116

ethyl 5-([4-(ethoxycarbonyl)phenoxy]methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a suspension of 60% oily sodium hydride (0.276 g, 11.5 mmol) in THF (10 ml) was added dropwise a solution of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (1.500 g, 4.73 mmol) obtained in Example 216, step 1 and ethyl p-hydroxybenzoate (0.865 g, 5.21 mmol) in THF (30 ml) at 0°C. The reaction mixture was stirred overnight at room temperature and added to a 10% aqueous citric acid solution, and the mixture was extracted with THF/ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried and concentrated under reduced pressure. The obtained crude crystals were washed with a mixed solution of ethyl acetate-hexane (1/1) to give the title compound (820 mg).

melting point: 205-208°C

Reference Example 117

Methyl 4-amino-1-[2-([4-([(methyloxy)carbonyl][phenyloxy]ethyl]-1H-pyrazole-5-carboxylate

To a suspension of 60% oily sodium hydride (0.276 g, 11.5 mmol) in THF (10 ml) was added dropwise a solution of ethyl 5-([methyloxy][ethyloxy])pyrazole-5-carboxylate (0.865 g, 5.21 mmol) obtained in THF (30 ml) at 0°C. The reaction mixture was stirred overnight at room temperature and added to a 10% aqueous citric acid solution, and the mixture was extracted with THF/ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried and concentrated under reduced pressure. The obtained crude crystals were washed with a mixed solution of ethyl acetate-hexane (1/1) to give the title compound (820 mg).

melting point: 205-208°C
[0953] Methyl 4-nitro-1H-pyrazole-5-carboxylate (5.37 g, 31.4 mmol) obtained in Reference Example 110, step 1, methyl 4-[(2-bromoethyl)oxy]benzoate (8.15 g, 31.5 mmol) and potassium carbonate (4.37 g, 31.6 mmol) were added to acetone (150 ml). The reaction mixture was refluxed under heating for 4 hrs. After allowing to cool, a mixed solution of water and ethyl acetate/THF was added to separate the organic layer. The organic layer was washed with saturated brine, dried and concentrated under reduced pressure. The obtained solid was washed with hexane to give a mixture (7.42 g) of methyl 1-2-{4-[(methyloxy)carbonyl]phenyl}oxy)ethyl]-4-nitro-1H-pyrazole-5-carboxylate and methyl 1-{2-{4-[(methyloxy)carbonyl]phenyl}oxy)ethyl]-4-nitro-1H-pyrazole-3-carboxylate.

(Step 2)

[0954] To a mixed solution of the mixture (7.42 g) of methyl 1-{2-{4-[(methyloxy)carbonyl]phenyl}oxy)ethyl]-4-nitro-1H-pyrazole-5-carboxylate and methyl 1-{2-{4-[(methyloxy)carbonyl]phenyl}oxy)ethyl]-4-nitro-1H-pyrazole-3-carboxylate in THF (200 ml)-methanol (100 ml) was added 10% palladium carbon (1.17 g) to perform catalytic reduction under a hydrogen atmosphere overnight at room temperature. The catalyst was filtered off, and the filtrate was concentrated. The precipitated methyl 4-amino-1-2-{4-[(methyloxy)carbonyl]phenyl}oxy)ethyl]-1H-pyrazole-3-carboxylate (3.62 g) was filtered off and the filtrate was concentrated. The residue was purified by silica gel column chromatography to give the title compound (2.18 g).

1H-NMR (300 MHz, CDCl$_3$): δ: 3.88 (3H, s), 3.93 (3H, s), 4.33-4.40 (2H, m), 4.44-4.51 (2H, m), 6.85-6.91 (2H, m), 7.15 (1H, s), 7.95-8.01 (2H, m).

Reference Example 118

ethyl 1-{2-{4-[(methyloxy)carbonyl]phenyl}oxy)ethyl]-7-oxo-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidine-5-carboxylate

[0955]

[0956] Methyl 4-amino-1-2-{4-[(methyloxy)carbonyl]phenyl}oxy)ethyl]-1H-pyrazole-5-carboxylate (2.180 g, 6.83 mmol) obtained in Reference Example 117 and ethyl cyanoformate (811 mg, 8.18 mmol) were added to 1N hydrogen chloride-acetic acid (40 ml) and the mixture was stirred with heating at 90°C for 4 hrs. After allowing to cool, diethyl ether was added, and the precipitated crude crystals were collected by filtration and washed with diethyl ether to give the title compound (2.180 g).
compound (1.793 g).

1H-NMR (300 MHz, CDCl3) δ: 1.48 (3H, t, J = 7.1 Hz), 3.87 (3H, s), 4.49-4.59 (4H, m), 5.09 (2H, t, J = 5.5 Hz), 6.85 (2H, d, J = 9.0 Hz), 7.94 (2H, d, J = 9.0 Hz), 8.13 (1H, s), 9.99 (1H, s).

melting point: 194-196°C

Reference Example 119

ethyl 5-(2-ethoxy-2-oxoethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[0957]

[0958] Ethyl 2-amino-4-[2-(ethylxoy)-2-oxoethyl]thiophene-3-carboxylate (synthesized by a method described in Monatshefet Chemie, 132, 279 (2001), 2.197 g, 8.538 mmol) and ethyl cyanoformate (1.017 g, 10.0 mmol) were added to 1N hydrogen chloride-acetic acid (50 ml), and the mixture was stirred with heating at 90°C for 5 hrs. After allowing to cool, diethyl ether was added, the precipitated solid was collected by filtration, and dissolved in ethanol (100 ml). Thionyl chloride (0.3 ml, 4.1 mmol) was added dropwise to this solution at 0°C and the mixture was stirred at room temperature for 1 hr. The solvent was evaporated under reduced pressure and the obtained crude crystals were washed with ethyl acetate to give the title compound (1.026 g). 1H-NMR (300 MHz, DMSO-d6) δ: 1.18 (3H, t, J = 7.1 Hz), 1.34 (3H, t, J = 7.1 Hz), 3.98 (2H, s), 4.08 (2H, q, J = 7.0 Hz), 4.37 (2H, q, J = 7.2 Hz), 7.58 (1H, s), 12.79 (1H, s).

[0959] Anal. Calcd for C13H14N2O5S·0.5H2O: C, 48.90; H, 4.73; N, 8.77. Found: C, 49.2; H, 4.64; N, 9.25.

melting point: 182-184°C

Reference Example 120

2-[6-(dimethylamino)-7-(3-methoxybenzyl)-4,8-dioxo-4,6,7,8-tetrahydroimidazo[1,5-a]thieno[2,3-d]pyrimidin-3-yl]ethy methanesulfonate

[0960]

[0961] To a solution of oxalyl chloride (0.11 ml, 1.2 mmol) in THF (10 ml) was added DMF (0.1 ml, 1.3 mmol) at 0°C. The obtained suspension was stirred at room temperature for 30 min. and a solution of [3-(methyloxyl)phenyl]methyl 5-[2-[(methylsulfonyl)oxyl]ethyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (0.213 g, 0.49 mmol) obtained in Example 255 in THF (10 ml) was added at room temperature. The reaction mixture was stirred at room temperature for 4 hrs., and water was added. The mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give the title compound (0.164 g).

1H-NMR (300 MHz, CDCl3) δ: 2.47 (6H, s), 2.94 (3H, s), 3.34-3.59 (2H, m), 3.80 (3H, s), 4.04-4.18 (1H, m), 4.45-4.60 (2H, m), 5.26 (1H, d, J = 14.1 Hz), 5.98 (1H, s), 6.84-6.94 (3H, m), 7.21-7.32 (2H, m).
Reference Example 121

ethyl 4-{2-[6-(dintethylamino)-7-(3-methoxybenzyl)-4,8-dioxo-4,6,7,8-tetrahydroimidazo[1,5-a]thieno[2,3-d]pyrimidin-3-yl]ethoxy}benzoate

Reference Example 122

{4-[3-(ethylthoxy)-5-methylisoxazol-4-yl]phenyl}methanol

Reference Example 123

2-{4-[3-(ethylthoxy)-5-methylisoxazol-4-yl]phenyl}ethanol
[0967] To a solution of 2-(4-bromophenyl)ethanol (3.00 g, 14.9 mmol) in THF (60 mL) was added 1.6 M butyllithium/hexane solution (23.3 mL, 37.3 mmol) at -78°C and the mixture was stirred at -78°C for 1 hr and then at room temperature for 30 min. The reaction mixture was cooled again to -78°C and triisopropylboric acid (7.02 g, 37.3 mmol) was added. The mixture was gradually heated to room temperature. Saturated aqueous ammonium chloride solution (150 mL) was added and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was purified by silica gel column chromatography (67-100% ethyl acetate/hexane-9% methanol/ethyl acetate) to give [4-(2-hydroxyethyl)phenyl]boronic acid as a colorless amorphous form (925 mg, 37%).

(Step 2)

[0968] To a solution of 3-(ethyloxy)-4-iodo-5-methylisoxazole (0.864 g, 3.41 mmol, synthesized by the method described in Tetrahedron, 2001, 57, 2195) in DMA (15 mL) was added bis(triphenylphosphine)dichloropalladium (II) (0.120 g, 0.171 mmol), and the mixture was stirred under a nitrogen atmosphere for 15 min. Water (10 mL), sodium hydrogen carbonate (0.859 g, 10.2 mmol) and the above-mentioned [4-(2-hydroxyethyl)phenyl]boronic acid (0.850 g, 5.12 mmol) were added, and the mixture was stirred with heating at 80°C for 15 hrs. under an argon atmosphere. The mixture was allowed to cool to room temperature, and partitioned between diethyl ether and water. The organic layer was washed with 1N aqueous sodium hydroxide solution, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was purified by silica gel column chromatography (33% ethyl acetate/hexane) to give the title compound as a brown powder (770 mg, 91%).

Reference Example 124

ethyl 4-oxo-5-{{(phenylmethyl)oxy}methyl}-3,4-dihydroquinazoline-2-carboxylate

[0970]

(Step 1)

[0971] To a solution of ethyl 5-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate (1.50 g, 6.46 mmol) obtained in Reference Example 17 in DMF (30 mL) was added 60% sodium hydride (284 mg, 7.10 mmol) at 0°C, and the mixture was stirred at room temperature for 30 min. The reaction was cooled to 0°C again, [2-({chloromethyl}oxy)ethyl]((trimethyl) silane (1.25 mL, 7.10 mmol) was added at 0°C, and the mixture was stirred at room temperature for 12 hrs. The reaction...
mixture was partitioned between ethyl acetate and water, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was purified by silica gel column chromatography (17-50% ethyl acetate/hexane) to give ethyl 5-methyl-4-oxo-3-[[2-(trimethylsilyl)ethyl]oxy]methyl)-3,4-dihydroquinazoline-2-carboxylate as a pale-yellow oil (1.80 g, 77%).

(Step 2)

[0972] To a suspension of ethyl 5-methyl-4-oxo-3-[[2-(trimethylsilyl)ethyl]oxy]methyl)-3,4-dihydroquinazoline-2-carboxylate (1.70 g, 4.69 mmol) and N-bromosuccinimide (918 mg, 5.16 mmol) in chloroform (30 mL) was added 2,2'-azobis(isobutyronitrile) (38 mg, 234 μmol) and the mixture was heated under reflux for 3 hrs. The reaction mixture was partitioned between ethyl acetate and water, and the organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was suspended in diethyl ether and the precipitated solid was collected by filtration. The obtained solid was purified by silica gel column chromatography (17% ethyl acetate/hexane) to give ethyl 5-(bromomethyl)-4-oxo-3-[[2-(trimethylsilyl)ethyl]oxy]methyl)-3,4-dihydroquinazoline-2-carboxylate as a pale-yellow oil (819 mg, 40%).

(Step 3)

[0973] To a solution of benzyl alcohol (108 mg, 0.996 mmol) in THF (2 mL) was added 60% sodium hydride (36.0 mg, 0.906 mmol), and the mixture was stirred at room temperature for 30 min. To this suspension was added a solution of ethyl 5-(bromomethyl)-4-oxo-3-[[2-(trimethylsilyl)ethyl]oxy]methyl)-3,4-dihydroquinazoline-2-carboxylate (200 mg, 0.453 mmol) in THF (3 mL), and the mixture was stirred at room temperature for 3 hrs. Saturated ammonium chloride was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give ethyl 4-oxo-5-[[phenylmethyl]oxy]methyl)-3-[[2-(trimethylsilyl)ethyl]oxy]methyl)-3,4-dihydroquinazoline-2-carboxylate as a yellow oil (220 mg). To a solution of the obtained yellow oil (200 mg) in dichloromethane (8 mL) was added trifluoroacetic acid (2 mL) at 0°C and the mixture was stirred at 0°C for 1 hr. and then at room temperature for 2 hrs. The solvent was evaporated under reduced pressure from the reaction mixture, and the concentrated residue was purified by silica gel column chromatography (33% - 100% ethyl acetate/hexane) to give the title compound as a brown powder (42 mg, 27%).

1H-NMR (300MHz, CDCl₃)
δ: 1.36 (3H, t, J = 6.9 Hz), 4.39 (2H, q, J = 6.9 Hz), 5.32 (2H, s), 7.67-7.69 (1H, m), 7.78-7.87 (2H, m), 7.97-8.01 (1H, m), 9.92 (1H, bs).

Reference Example 125

ethyl 5-(bromomethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate

[0974]

[0975] To a suspension of ethyl 5-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxylate (3.00 g, 12.9 mmol) obtained in Reference Example 17 and N-bromosuccinimide (2.53 g, 14.2 mmol) in chloroform (60 mL) was added 2,2’-azobis(isobutyronitrile) (106 mg, 645 μmol), and the mixture was heated under reflux for 1 hr. The reaction mixture was concentrated under reduced pressure, ethyl acetate was added to the concentrated residue, and the precipitated solid was collected by filtration and washed with ethyl acetate to give the title compound as a white powder (3.17 g, 79%).

1H-NMR (300MHz, CDCl₃)
δ: 1.36 (3H, t, J = 6.9 Hz), 4.39 (2H, q, J = 6.9 Hz), 5.38 (2H, s), 7.67-7.69 (1H, m), 7.77-7.87 (2H, m), 12.66 (1H, bs).
Reference Example 126

ethyl 5-[(methyl(phenylmethyl)amino)methyl]-4-oxo-3,4-dihydroquinazoline-2-carboxylate

[0976]

To a suspension of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydroquinazoline-2-carboxylate (300 mg, 0.964 mmol) obtained in Reference Example 125 in THF (6 mL)-DMF (2 mL) were added pyridine (0.078 mL, 0.964 mmol) and N-methyl-1-phenylmethanamine (117 mg, 0.964 mmol) at 0°C and the mixture was stirred at room temperature for 2 hrs. 1N Hydrochloric acid (2 mL) and water were added to the reaction mixture and the mixture was washed with ethyl acetate. 1N Aqueous sodium hydroxide solution (4 mL) was added to the aqueous layer and the object product was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure. Diethyl ether was added to the concentrated residue and the precipitated solid was collected by filtration to give the title compound as a white powder (200 mg, 59%).

1H-NMR (300MHz, CDCl₃)
δ: 1.67 (3H, t, J = 7.2 Hz), 2.50 (3H, s), 3.99 (2H, bs), 4.58 (2H, s), 4.69 (2H, q, J = 6.9 Hz), 7.56-7.71 (5H, m), 8.02 (1H, d, J = 9.0 Hz), 8.13-8.22 (2H, m), 12.69 (1H, bs).

Reference Example 127

1-(3-ethylphenyl)methanamine

[0978]

(Step 1)

A suspension of 1-bromo-3-ethylbenzene (2.00 g, 10.8 mmol), zinc cyanide (698 mg, 5.94 mmol) and tetrakis(triphenylphosphine)palladium (624 mg, 0.540 mmol) in DMF (20 mL) was stirred at 80°C for 4 hrs. under an argon atmosphere. The reaction mixture was concentrated under reduced pressure and ethanol was added to the concentrated residue. The insoluble material was filtered off and the filtrate was concentrated to give 3-ethylbenzonitrile as a brown oil (1.07 g, 76%).

1H-NMR (200MHz, DMSO-d₆)
δ: 1.18 (3H, t, J = 7.6 Hz), 2.58 (2H, q, J = 7.6 Hz), 3.20-3.35 (4H, m), 6.99-7.66 (4H, m).

(Step 2)

A suspension of 1-bromo-3-ethylbenzene (2.00 g, 10.8 mmol), zinc cyanide (698 mg, 5.94 mmol) and tetrakis(triphenylphosphine)palladium (624 mg, 0.540 mmol) in DMF (20 mL) was stirred at 80°C for 4 hrs. under an argon atmosphere. The reaction mixture was concentrated under reduced pressure and ethanol was added to the concentrated residue. The insoluble material was filtered off and the filtrate was concentrated to give 3-ethylbenzonitrile as a brown oil (1.07 g, 76%).

1H-NMR (200MHz, DMSO-d₆)
δ: 1.18 (3H, t, J = 7.6 Hz), 2.58 (2H, q, J = 7.6 Hz), 3.20-3.35 (4H, m), 6.99-7.66 (4H, m).
Reference Example 128

1,1-dimethylethyl {[3-(methylthio)phenyl]methyl}carbamate

[0981]

To a solution of [3-(methylthio)phenyl]acetic acid (6.81 g, 37.4 mmol) in toluene (120 mL) were added triethyl-amine (3.97 g, 39.2 mmol) and diphenylphosphoryl azide (10.8 g, 39.2 mmol), and the mixture was stirred at room temperature for 1 hr. and then with heating at 90°C for 1 hr. 2-Methyl-2-propanol (71.5 mL, 747 mmol) was added to the reaction mixture and the mixture was stirred with heating at 90°C 3 days. The reaction mixture was concentrated under reduced pressure and the concentrated residue was purified by silica gel column chromatography (14% - 17% ethyl acetate/hexane) to give the title compound as a pale-yellow oil (5.00 g, 53%).

δ: 1.46 (9H, s), 2.48 (3H, s), 4.28 (1H, d, $J = 5.8$ Hz), 4.82 (1H, bs), 7.02-7.28 (4H, m).

Reference Example 129

1-[3-(methylthio)phenyl]methanamine hydrochloride

[0983]

To a solution of 1,1- dimethylethyl {[3-(methylthio)phenyl]methyl}carbamate (4.90 g, 19.3 mmol) obtained in Reference Example 128 in ethyl acetate (25 mL) was added 4N hydrogen chloride-ethyl acetate solution (19.3 mL, 77.4 mmol), and the mixture was stirred at room temperature for 15 hrs. Diethyl ether (50 mL) was added and the precipitated solid was collected by filtration and washed with diethyl ether to give the title compound as a white powder (3.33 g, 91%).

δ: 2.50 (3H, s), 3.99 (2H, s), 7.27-7.23 (2H, m), 7.31-7.37 (1H, m), 7.44 (1H, s), 8.45 (3H, bs).

Reference Example 130

3-[(methyloxy)methyl]benzonitrile

[0985]

To a solution of 1,1-dimethylethyl {[3-(methylthio)phenyl]methyl}carbamate (4.90 g, 19.3 mmol) obtained in Reference Example 128 in ethyl acetate (25 mL) was added 4N hydrogen chloride-ethyl acetate solution (19.3 mL, 77.4 mmol), and the mixture was stirred at room temperature for 15 hrs. Diethyl ether (50 mL) was added and the precipitated solid was collected by filtration and washed with diethyl ether to give the title compound as a white powder (3.33 g, 91%).

δ: 2.50 (3H, s), 3.99 (2H, s), 7.27-7.23 (2H, m), 7.31-7.37 (1H, m), 7.44 (1H, s), 8.45 (3H, bs).
and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give the title compound as a pale-yellow oil (7.04 g, 94%).

1H-NMR (200MHz, CDCl$_3$) δ: 3.42 (3H, s), 4.48 (2H, s), 7.41-7.49 (1H, m), 7.54-7.64 (3H, m).

Reference Example 131

1-{3-[(methyloxy)methyl]phenyl}methanamine

![Chemical Structure](image1.png)

To a suspension of aluminum lithium hydride (2.90 g, 61.2 mmol) in diethyl ether (70 mL) was added dropwise a solution of 3-{[(methyloxy)methyl]phenyl}benzonitrile (6.00 g, 40.8 mmol) obtained in Reference Example 130 in diethyl ether (50 mL) at room temperature, and the mixture was stirred at room temperature for 2 hrs. and then heated under reflux for 1 hr. Aluminum lithium hydride (1.00 g, 21.1 mmol) was added again, and the mixture was heated under reflux for 1 hr. After cooling to 0°C, water (60 mL) and 4N aqueous sodium hydroxide solution (80 mL) were added dropwise. The insoluble material was filtered off through celite and the filtrate was extracted 3 times with ethyl acetate. The organic layers were combined, washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give the title compound as a yellow oil (4.43 g, 72%).

1H-NMR (300MHz, CDCl$_3$) δ: 3.40 (3H, s), 3.88 (2H, s), 4.46 (2H, s), 7.19-7.36 (4H, m).

Reference Example 132

Phenylmethyl {[3-(methylthio)phenyl]methyl}carbamate

![Chemical Structure](image2.png)

To a solution of [3-(methylthio)phenyl]acetic acid (1.00 g, 5.49 mmol) in toluene (20 mL) were added triethylamine (0.583 g, 5.76 mmol) and diphenylphosphoryl azide (1.76 g, 5.76 mmol), and the mixture was stirred at room temperature stirred for 1 hr. and then with heating at 90°C for 1 hr. Benzyl alcohol (0.653 g, 6.04 mmol) was added to the reaction mixture, and the mixture was stirred with heating at 90°C for 4 hrs. The reaction mixture was concentrated under reduced pressure and the concentrated residue was purified by silica gel column chromatography (25% ethyl acetate/hexane) to give the title compound as a pale-yellow oil (1.33 g, 80%).

1H-NMR (200 MHz, DMSO-d$_6$) δ: 2.46 (3H, s), 4.34-4.40 (2H, m), 5.14 (2H, s), 7.16-7.39 (9H, m).

Reference Example 133

Phenylmethyl {[3-(methylsulfonyl)phenyl]methyl}carbamate

![Chemical Structure](image3.png)

To a solution of phenylmethyl {[3-(methylthio)phenyl]methyl}carbamate (0.710 g, 2.47 mmol) obtained in Reference Example 132 in chloroform (10 mL) was added 3-chloroperbenzoic acid (1.24 g, 4.94 mmol) at room temperature,
and the mixture was stirred at room temperature for 2 hrs. The reaction mixture was concentrated under reduced pressure and the concentrated residue was partitioned between ethyl acetate and water. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was purified by silica gel column chromatography (50% ethyl acetate/hexane) to give the title compound as a pale-yellow oil (0.540 g, 68%).

\[^{1}H\text{-NMR (200MHz, CDCl}_3\text{)}\]
\[\delta: 3.03 (3\text{H, s}), 4.47 (2\text{H, d, } J= 6.0 \text{ Hz}), 5.14 (2\text{H, s}), 5.30 (1\text{H, m}), 7.30-7.38 (5\text{H, m}), 7.52-7.57 (2\text{H, m}), 7.82-7.86 (2\text{H, m}).\]

Reference Example 134
1-\[3-(\text{methylsulfonyl})\text{phenyl}\]methanamine

\[\text{[0993]}\]

\[\text{[0994]}\] To a solution of phenylmethyl \[\{3-(\text{methylsulfonyl})\text{phenyl}\}\text{methyl} \text{carbamate (0.490 g, 1.53 mmol) obtained in Reference Example 133 in MeOH (10 mL) was added 10\% Pd-C (200 mg), and the mixture was stirred under a hydrogen atmosphere (1 atm) at room temperature for 1.5 hrs. The insoluble material was filtered off and the filtrate was concentrated to give the title compound as a colorless oil (251 mg, 88%).

\[^{1}H\text{-NMR (300MHz, CDCl}_3\text{)}\]
\[\delta: 3.06 (3\text{H, s}), 4.00 (2\text{H, s}), 7.54 (1\text{H, t, } J= 7.5 \text{ Hz}), 7.64 (1\text{H, d, } J= 7.5 \text{ Hz}), 7.83 (1\text{H, d, } J= 7.5 \text{ Hz}), 7.93 (1\text{H, s}).\]

Reference Example 135
3-\{(\text{methylthio})\text{methyl}\}benzonitrile

\[\text{[0995]}\]

\[\text{[0996]}\] To a suspension of sodium methanethiolate (3.75 g, 53.6 mmol) in DMF (50 mL) was added 3-(bromomethyl) benzonitrile (10.0 g, 51.0 mmol) at 0°C, and the mixture was stirred at room temperature for 15 hrs. The reaction mixture was partitioned between ethyl acetate and water, and the organic layer was washed with water (3 times) and saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give the title compound as a pale-yellow oil (8.16 g, 98%).

\[^{1}H\text{-NMR (300MHz, CDCl}_3\text{)}\]
\[\delta: 2.00 (3\text{H, s}), 3.68 (2\text{H, s}), 7.43 (1\text{H, t, } J= 7.8 \text{ Hz}), 7.54-56 (2\text{H, m}), 7.61 (1\text{H, s}).\]

Reference Example 136
1-\[3-(\text{methylthio})\text{methyl}\]phenylmethanamine

\[\text{[0997]}\]
[0998] The title compound was obtained as a yellow oil (3.35 g, 82%) from 3-[(methylthio)methyl]benzonitrile obtained in Reference Example 135 by a method similar to that of Reference Example 131.

δ: 2.01 (3H, s), 3.68 (2H, s), 3.87 (2H, s), 7.17-7.33 (4H, m).

Reference Example 137

1-(3-propylphenyl)methanamine

[0999]

(Step 1)

[1000] A suspension of 3-(bromomethyl)benzonitrile (1.25 g, 6.38 mmol), tetraethyltin (3.00 g, 12.8 mmol) and tetrakis(triphenylphosphine)palladium (148 mg, 0.128 mmol) in HMPA (6 mL) was stirred at 60°C for 15 hrs. The reaction mixture was partitioned between diethyl ether and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was purified by silica gel column chromatography (20% ethyl acetate/hexane) to give 3-propylbenzonitrile as a pale-yellow oil (1.25 g, crude).

(Step 2)

[1001] The title compound was obtained as a yellow oil (0.560 g, 59% by 2 steps) from 3-propylbenzonitrile by a method similar to that of Reference Example 131.

δ: 0.95 (3H, t, $J = 7.2$ Hz), 1.60-1.68 (2H, m), 2.58 (2H, t, $J = 7.5$ Hz), 3.84 (2H, s), 7.04-7.12 (3H, m), 7.21-7.26 (1H, m).

Reference Example 138

1-(3-ethyl-4-fluorophenyl)methanamine

[1002]

(Step 1)

[1003] A suspension of 3-bromo-4-fluorobenzonitrile (0.851 g, 4.26 mmol), tetraethyltin (2.00 g, 8.51 mmol) and tetrakis(triphenylphosphine)palladium (98.4 mg, 0.0851 mmol) in HMPA (4 mL) was stirred at 60°C for 15 hrs. The reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the concentrated residue was purified by silica gel column chromatography (20% ethyl acetate/hexane) to give 3-ethyl-4-fluorobenzonitrile.
as a pale-yellow oil (1.25 g, crude).

(Step 2)

[1004] The title compound was obtained as a yellow oil (0.354 g, 54% by 2 steps) from 3-ethyl-4-fluorobenzonitrile by a method similar to that of Reference Example 131.

1H-NMR (300MHz, CDCl$_3$)

δ: 1.23 (3H, t, J = 7.5 Hz), 2.66 (2H, q, J = 7.5 Hz), 3.82 (2H, s), 6.91-6.99 (1H, m), 7.07-7.16 (2H, m).

Reference Example 139

N-(3-cyanophenyl)-2,2,2-trifluoroacetamide

[1005]

[1006] To a solution of 3-aminobenzonitrile (10.0 g, 84.6 mmol) and triethylamine (23.6 mL, 169 mmol) in THF (150 mL) was added dropwise trifluoroacetic acid anhydride (18.7 g, 88.9 mmol) at 0°C, and the mixture was stirred at room temperature for 3 hrs. The reaction mixture was concentrated under reduced pressure. The concentrated residue was partitioned between ethyl acetate and water. The organic layer was washed with 0.1N hydrochloric acid, water, saturated aqueous sodium hydrogen carbonate and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and hexane was added to the concentrated residue. The precipitated solid was collected by filtration to give the title compound as a brown powder (16.8 g, 93%).

1H-NMR (300MHz, DMSO-d$_6$) -

δ: 6.43 (1H, t, J = 8.1 Hz), 7.72 (1H, dt, J = 8.1, 1.5 Hz), 7.96 (1H, ddd, J = 1.5, 2.1, 8.1 Hz), 8.10 (1H, t, J = 1.5 Hz), 11.58 (1H, bs).

Reference Example 140

N-(3-cyanophenyl)-2,2,2-trifluoro-N-methylacetamide

[1007]

[1008] To a solution of N-(3-cyanophenyl)-2,2,2-trifluoroacetamide (5.00 g, 23.3 mmol) obtained in Reference Example 139 and iodomethane (4.97 g, 35.0 mmol) in DMF (50 mL) was added potassium carbonate (6.45 g, 46.7 mmol) at room temperature, and the mixture was stirred at room temperature for 3 hrs. The reaction mixture was partitioned between ethyl acetate and 1N hydrochloric acid. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and hexane-diisopropyl ether was added to the concentrated residue. The precipitated solid was collected by filtration to give the title compound as a pale-brown powder (4.70 g; 88%).

1H-NMR (300MHz, DMSO-d$_6$) -

δ: 3.30 (3H, s), 7.72 (1H, t, J = 8.1 Hz), 7.86 (1H, d, J = 7.5 Hz), 7.96 (1H, d, J = 7.2 Hz), 8.10 (1H, s).
Reference Example 141

N-[3-(aminomethyl)phenyl]-2,2,2-trifluoro-N-methylacetamide hydrochloride

To a solution of N-(3-cyanophenyl)-2,2,2-trifluoro-N-methylacetamide (2.00 g, 8.77 mmol) obtained in Reference Example 140 and acetic acid (0.502 mL, 8.77 mmol) in THF (20 mL)-MeOH (20 mL) was added 10% Pd-C (2.00 g), and the mixture was stirred under a hydrogen atmosphere (1 atm) at room temperature for 2 hrs. The insoluble material was filtered off, and the filtrate was concentrated and dissolved again in ethyl acetate. 4N Hydrogen chloride-ethyl acetate solution (3.5 mL) and diethyl ether were added dropwise and the precipitated solid was collected by filtration to give the title compound as a white powder (800 mg, 34%).

1H-NMR (300MHz, DMSO-d_6) δ: 3.29 (3H, s), 4.06 (2H, q, J = 5.4 Hz), 7.44-7.60 (4H, m), 8.46 (3H, bs).

Reference Example 142

ethyl 5-methyl-4-oxo-3,4-dihydrothieno[3,4-d]pyrimidine-2-carboxylate

1H-NMR (300MHz, DMSO-d_6) δ: 1.33 (3H, d, J = 7.2 Hz), 2.88 (3H, s), 4.34 (2H, q, J = 7.2 Hz), 7.79 (1H, s), 11.72 (1H, bs).

Reference Example 143

ethyl 6-methyl-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine-2-carboxylate

1H-NMR (300MHz, DMSO-d_6) δ: 1.33 (3H, d, J = 7.2 Hz), 2.88 (3H, s), 4.34 (2H, q, J = 7.2 Hz), 7.79 (1H, s), 11.72 (1H, bs).
The title compound was obtained as a white powder (650 mg, 50%) from ethyl 2-amino-5-methyl-1H-pyrrole-3-carboxylate (synthesized by a method described in J. Heterocyclic. Chem., 1986, 23, 1555.) by a method similar to that of Reference Example 22, Step 2.

1H-NMR (300MHz, DMSO-d$_6$)

δ: 1.33 (3H, t, J = 7.2 Hz), 2.31 (3H, s), 4.33 (2H, q, J = 7.2 Hz), 6.26 (1H, s), 11.97 (1H, bs), 12.12 (1H, bs).

Reference Example 144

ethyl 6,7-dimethyl-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine-2-carboxylate

![Chemical Structure](image)

Reference Example 145

2-amino-4,5-dimethylfuran-3-carboxamide

![Chemical Structure](image)

Reference Example 146

5,6-dimethyl-4-oxo-3,4-dihydrofuro[2,3-d]pyrimidine-2-carboxylic acid

![Chemical Structure](image)
To a suspension of 2-amino-4,5-dimethylfuran-3-carboxamide (1.50 g, 10.7 mmol) obtained in Reference Example 145 and diethyl oxalate (6.26 g, 42.8 mmol) in ethanol (70 mL) was added sodium ethylate (18.2 g, 53.5 mmol) at 0°C, and the mixture was heated under reflux for 5 hrs. Sodium ethylate (9.10 g, 26.7 mmol) was added again, and the mixture was heated under reflux for 15 hrs. The reaction mixture was allowed to cool to room temperature, and poured into 1N hydrochloric acid cooled to 0°C. Ethanol was evaporated under reduced pressure, and the precipitated solid was collected by filtration, washed with water and dried to give the title compound as a brown powder (1.67 g, 75%).

\[\delta: 2.07 \text{ (3H, s)}, 2.15 \text{ (3H, s)}, 11.21 \text{ (1H, bs)}, 12.67 \text{ (1H, bs)}. \]

Reference Example 147

Ethyl [(3-(aminocarbonyl)-4,5-dimethylfuran-2-yl)amino](oxo)acetate

To a suspension of 5,6-dimethyl-4-oxo-3,4-dihydrofuro[2,3-d]pyrimidine-2-carboxylic acid (500 mg, 2.40 mmol) obtained in Reference Example 146 and DMF (0.1 mL) in THF (10 mL) was added dropwise oxalyl chloride (457 mg, 3.60 mmol) at 0°C, and the mixture was stirred at room temperature for 3 hrs. The reaction mixture was concentrated under reduced pressure and ethanol (5 mL) and THF (5 mL) were added to the concentrated residue. Pyridine (0.291 mL, 3.60 mmol) was further added dropwise. The mixture was stirred at room temperature for 2 hrs. and then with heating at 50°C for 15 hrs. The reaction mixture was concentrated under reduced pressure and the concentrated residue was partitioned between ethyl acetate and water. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, diethyl ether-ethanol was added to the concentrated residue. The precipitated solid was collected by filtration to give the title compound as a yellow powder (297 mg, 49%).

\[\delta: 1.29 \text{ (3H, t, J = 6.9 Hz)}, 2.02 \text{ (3H, s)}, 2.16 \text{ (3H, s)}, 4.28 \text{ (2H, q, J = 6.9 Hz)}, 6.85-7.38 \text{ (2H, m)}, 11.17 \text{ (1H, bs)}. \]

Reference Example 148

Ethyl 5,6-dimethyl-4-oxo-3,4-dihydrofuro[2,3-d]pyrimidine-2-carboxylate
To a suspension of ethyl [(3-(aminocarbonyl)-4,5-dimethylfuran-2-yl)amino](oxo)acetate (280 mg, 1.10 mmol) obtained in Reference Example 147 in toluene (20 mL) were added p-toluene sulfonic acid monohydrate (105 mg, 0.550 mmol), and the mixture was heated under reflux for 4 hrs. The reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure. The solvent was evaporated under reduced pressure and the obtained concentrated residue was crystallized from ethanol to give the title compound as a pale-yellow powder (150 mg, 58%).

\[\text{1H-NMR (300MHz, DMSO-}d_6\text{)} \]
\[\delta: 1.33 (3\text{H, t, } J = 7.2 \text{ Hz}), 2.19 (3\text{H, s}), 2.34 (3\text{H, s}), 4.35 (2\text{H, q, } J = 7.2 \text{ Hz}), 12.81 (1\text{H, bs}). \]

Reference Example 149

ethyl 1,3-dimethyl-4-oxo-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidine-6-carboxylate

To a solution of 5-amino-1,3-dimethyl-1H-pyrazole-4-carboxamide (3.00 g, 19.5 mmol) synthesized by the method described in J. Org. Chem., 1956, 21, 1240 and diethyl oxalate (11.4 g, 77.8 mmol) in ethanol (500 mL) was added sodium ethylate (33.1 g, 97.3 mmol) at 0°C, and the mixture was heated under reflux for 18 hrs. The reaction mixture was allowed to cool to room temperature and poured into 1N hydrochloric acid (about 100 mL) cooled to 0°C. Ethanol was evaporated under reduced pressure, and the precipitated solid was collected by filtration and washed with water and ethanol to give the title compound as a pale-yellow powder (2.52 g, 55%).

\[\text{1H-NMR (300MHz, DMSO-}d_6\text{)} \]
\[\delta: 1.35 (3\text{H, t, } J = 7.2 \text{ Hz}), 2.44 (3\text{H, s}), 3.86 (3\text{H, s}), 4.38 (2\text{H, q, } J = 7.2 \text{ Hz}), 12.40 (1\text{H, bs}). \]

Reference Example 150

2-ethyl 5-methyl 4-oxo-3,4-dihydrothieno[3,4-d]pyrimidine-2,5-dicarboxylate

To a solution of 5-amino-1,3-dimethyl-1H-pyrazole-4-carboxamide (3.00 g, 19.5 mmol) synthesized by the method described in J. Org. Chem., 1956, 21, 1240 and diethyl oxalate (11.4 g, 77.8 mmol) in ethanol (500 mL) was added sodium ethylate (33.1 g, 97.3 mmol) at 0°C, and the mixture was heated under reflux for 18 hrs. The reaction mixture was allowed to cool to room temperature and poured into 1N hydrochloric acid (about 100 mL) cooled to 0°C. Ethanol was evaporated under reduced pressure, and the precipitated solid was collected by filtration and washed with water and ethanol to give the title compound as a pale-yellow powder (2.52 g, 55%).

\[\text{1H-NMR (300MHz, DMSO-}d_6\text{)} \]
\[\delta: 1.35 (3\text{H, t, } J = 7.2 \text{ Hz}), 2.44 (3\text{H, s}), 3.86 (3\text{H, s}), 4.38 (2\text{H, q, } J = 7.2 \text{ Hz}), 12.40 (1\text{H, bs}). \]

Reference Example 150

2-ethyl 5-methyl 4-oxo-3,4-dihydrothieno[3,4-d]pyrimidine-2,5-dicarboxylate

[1027]
dicarboxylate hydrochloride (synthesized by a method described in Synth. Commun., 2002, 32(16), 2565) by a method similar to that of Reference Example 22, Step 2.

\[^1 \text{H-NMR (300MHz, DMSO-}d_6) \delta: 1.34 (3H, t, J = 7.2 Hz), 3.88 (3H, s), 4.37 (2H, q, J = 7.2 Hz), 8.41 (1H, s). \]

Reference Example 151

ethyl 5-\{[[4-[(ethyloxy)carbonyl]phenyl]methyl]oxy]methyl\}-4-oxo-3,4-dihydroquinazoline-2-carboxylate

![Chemical Structure](image)

(Step 1)

\[^1 \text{H-NMR (300MHz, DMSO-}d_6) \delta: 1.30-1.38 (6H, m), 4.28-4.42 (4H, m), 4.81 (2H, s), 5.23 (2H, s), 7.57 (2H, d, J = 7.8 Hz), 7.72-7.74 (1H, m), 7.86-7.89 (2H, m), 7.98 (2H, d, J = 8.1 Hz), 12.55 (1H, bs). \]

Reference Example 152

1,1-dimethylethyl (4-chloro-3-fluorophenyl)carbamate

\[^1 \text{H-NMR (300MHz, DMSO-}d_6) \delta: 1.30-1.38 (6H, m), 4.28-4.42 (4H, m), 4.81 (2H, s), 5.23 (2H, s), 7.57 (2H, d, J = 7.8 Hz), 7.72-7.74 (1H, m), 7.86-7.89 (2H, m), 7.98 (2H, d, J = 8.1 Hz), 12.55 (1H, bs). \]
A solution of 4-chloro-3-fluoroaniline (9.90 g, 68.0 mmol) and bis(1,1-dimethylethyl) dicarbonate (16.3 g, 74.8 mmol) in THF (100 mL) was stirred with heating at 60°C for 15 hrs. Bis(1,1-dimethylethyl) bicarbonate (4.75 g, 21.8 mmol) was added again, and the mixture was further stirred at 60°C for 3 days. The reaction mixture was concentrated under reduced pressure and crystallized from hexane to give the title compound as a white powder (11.8 g, 71%).

1H-NMR (300MHz, DMSO-d6)
δ: 1.48 (9H, s), 7.24 (1H, ddd, J=8.9, 2.4, 0.9 Hz), 7.45 (1H, t, J=8.8 Hz), 7.56 (1H, dd, J=12.2, 2.3 Hz), 9.73 (1H, s).

Reference Example 153
ethyl 6-amino-3-chloro-2-fluorobenzoate hydrochloride

To a solution of 1,1-dimethylethyl (4-chloro-3-fluorophenyl)carbamate (10.0 g, 40.7 mmol) obtained in Reference Example 152 in THF (150 mL) was added dropwise n-butyllithium (1.6 M hexane solution, 56 mL, 89.5 mmol) at -78°C, and the mixture was stirred at -78°C for 4 hrs. Ethyl chlorocarbonate (4.64 g, 42.7 mmol) was added to the reaction mixture and the mixture was stirred at -78°C for 1 hr. Saturated aqueous ammonium chloride solution (150 mL) was added, and the mixture was partitioned between ethyl acetate and water. The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated under reduced pressure to give ethyl 3-chloro-6-({[(1,1-dimethylethyl)oxy]carbonyl}amino)-2-fluorobenzoate as a pale-yellow powder (12.8 g).

1H-NMR (300MHz, DMSO-d6)
δ: 1.29 (3H, t, J=7.2 Hz), 1.45 (9H, s), 4.27 (2H, q, J=7.2 Hz), 7.35 (1H, dd, J=9.0, 1.5 Hz), 7.64 - 7.72 (1H, m), 9.58 (1H, s).

(Step 2)

Ethyl 3-chloro-6-({[(1,1-dimethylethyl)oxy]carbonyl}amino)-2-fluorobenzoate (12.8 g) was dissolved in ethyl acetate (20 mL), 4N hydrogen chloride-ethyl acetate solution (70 mL) was added, and the mixture was stirred at room temperature for 4 hrs. Diethyl ether (70 mL) was added to the reaction mixture, and the precipitated solid was collected by filtration. The solid was washed with diethyl ether to give the title compound as a pale-yellow powder (8.40 g, 81% by 2 steps).

1H-NMR (300MHz, DMSO-d6)
δ: 1.29 (3H, t, J=7.2 Hz), 4.30 (2H, q, J=7.1 Hz), 6.48 (3H, s), 6.63 (1H, dd, J=9.1, 1.6 Hz), 7.34 (1H, dd, J=9.0, 8.1 Hz).

Reference Example 154
ethyl 6-chloro-5-fluoro-4-oxo-3,4-dihydroquinazoline-2-carboxylate
Ethyl 6-amino-3-chloro-2-fluorobenzoate hydrochloride (5.00 g, 19.7 mmol) obtained in Reference Example 153 was suspended in 1N hydrogen chloride-acetic acid solution (100 mL), ethyl cyanoformate (2.92 g, 29.5 mmol) was added, and the mixture was stirred with heating at 80°C for 4 hrs. The mixture was allowed to cool to room temperature, diethyl ether (50 mL) was added, and the precipitated solid was collected by filtration. The solid was washed with ethanol and diethyl ether to give the title compound as a white powder (4.81 g, 90%).

\[\text{1H-NMR (300MHz, DMSO-d6)} \]
\[\delta: 1.35 (3H, t, J=7.2 Hz), 4.38 (2H, q, J=7.2 Hz), 7.67 (1H, dd, J=8.9, 1.5 Hz), 8.03 (1H, dd, J=8.9, 7.5 Hz), 12.86 (1H, s). \]

Reference Example 155

ethyl 5-\{[(4-cyanophenyl)methyl]oxy\}methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[1039]

To a solution (10 mL) of 4-(hydroxymethyl)benzonitrile (176 mg, 1.32 mmol) in THF was added sodium hydride (60%-in-oil dispersion, 102 mg, 2.65 mmol) by small portions, and the mixture was stirred at room temperature for 10 min. Ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (400 mg, 1.26 mmol) obtained in Example 216, Step 1, was added to the reaction mixture and the mixture was further stirred for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. Diethyl ether was added to the concentrated residue and the precipitated solid was collected by filtration. To a mixture of the obtained solid, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (363 mg, 1.89 mmol), 4-dimethylaminopyridine (15.4 mg, 0.126 mmol) and THF (5 mL) was added ethanol (0.735 mL, 12.6 mmol), and the mixture was stirred at room temperature for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (244 mg, 52%).

melting point: 236-237°C

\[\text{1H NMR (300 MHz, DMSO-d6)} \]
\[\delta: 1.34 (3H, t, J=7.1 Hz), 4.37 (2H, q, J=7.1 Hz), 4.76 (2H, s), 4.90 (2H, d, J=1.1 Hz), 7.59 (2H, d, J=8.5 Hz), 7.71 (1H, t, J=1.1 Hz), 7.77 - 7.89 (2H, m), 12.87 (1H, s). \]

Reference Example 156

ethyl 5-\{[(4-fluorophenyl)methyl]oxy\}methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[1041]
To a solution of (4-fluorophenyl)methanol (0.181 mL, 1.66 mmol) in THF (10 mL) was added sodium hydride (60% oil dispersion, 127 mg, 3.31 mmol) by small portions, and the mixture was stirred at room temperature for 10 min. Ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (500 mg, 1.58 mmol) obtained in Example 216, Step 1 was added to the reaction mixture, and the mixture was further stirred for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Diethyl ether was added to the concentrated residue, and the precipitated solid was collected by filtration. To a mixture of the obtained solid, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (453 mg, 2.36 mmol), 4-dimethylaminopyridine (19.3 mg, 0.158 mmol) and THF (5 mL) was added ethanol (0.919 mL, 15.8 mmol), and the mixture was stirred at room temperature for 12 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (105 mg, 8%).

Melting point: 195-196°C

1H NMR (300 MHz, DMSO-d$_6$) δ 1.34 (3 H, t, J=7.1 Hz), 4.37 (2 H, q, J=7.0 Hz), 4.64 (2 H, s), 4.85 (2 H, d, J=1.3 Hz), 7.18 (2 H, t, J=8.9 Hz), 7.44 (2 H, dd, J=8.7, 5.7 Hz), 7.66 (1 H, t, J=1.2 Hz), 12.85 (1 H, s).

Reference Example 157

5-{[(4-carboxyphenyl)methyl]oxy}methyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylic acid

[1043]
mmol) were added to the concentrated residue, and the mixture was stirred at room temperature for 30 min. The reaction mixture was concentrated under reduced pressure. Diethyl ether and 1N hydrochloric acid were added to the concentrated residue and the precipitated solid was collected by filtration, washed 3 times with 1N hydrochloric acid, 4 times with water and 3 times with diethyl ether and dried to give a pale-yellow powder (5.17 g). A suspension of the obtained solid (3.52 g) and 4N aqueous sodium hydroxide solution (10.6 mL, 42.3 mmol) in water (45 mL), methanol (45 mL) and THF (45 mL) was stirred at 90°C for 1 hr. The reaction mixture was concentrated under reduced pressure, and the concentrated residue was oxidized with 1N hydrochloric acid (10.6 mL) and extracted with THF (1000 mL). The organic layer was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization from methanol-THF mixed solvent gave the title compound as a pale-yellow powder (2.88 g, 46%).

Reference Example 158

ethyl 5-[(4-[(ethyloxy)carbonyl]phenyl)methyl]oxymethyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[1045]

[1046] To a mixture of 5-([(4-carboxyphenyl)methyl]oxymethyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylic acid (2.88 g, 7.99 mmol) obtained in Reference Example 157 and THF (30 mL) was added oxalyl chloride (4.60 mL, 52.7 mmol) and DMF (1 drop), and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated, and THF (15 mL) and ethanol (15 mL) were added to the concentrated residue. Pyridine (5.69 mL, 70.3 mmol) was added to the mixture, and the mixture was stirred at room temperature for 12 hrs. The reaction mixture was concentrated under reduced pressure and ethyl acetate and 1N hydrochloric acid were added to the concentrated residue. The precipitated solid was collected by filtration and washed twice with 1N hydrochloric acid, 4 times with water and once with diethyl ether. The obtained crude crystals were recrystallized from THF-ethyl acetate to give the title compound as a white powder (1.87 g, 56%).

Reference Example 159

ethyl 5-[(4-(hydroxymethyl)phenyl]carbonyl]oxy)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[1047]
A mixture of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (1000 mg, 3.15 mmol) obtained in Example 216, Step 1, 4-(hydroxymethyl)benzoic acid (504 mg, 3.31 mmol) and DMA (20 mL) was added dropwise to a mixture of sodium hydride (60% oil dispersion, 363 mg, 9.46 mmol) and DMA (10 mL) at 0°C. The reaction mixture was stirred for 1 hr. 45 min. and added dropwise to a mixture of 2N hydrochloric acid (100 mL) and dry ice. After dropwise addition, the mixture was added to ethyl acetate, washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethyl acetate-diethyl ether to give the title compound as a pale-yellow powder (347 mg, 28%).

melting point: 196°C

1H NMR (300 MHz, DMSO-d6) δ 1.35 (3 H, t, J=7.1 Hz), 4.38 (2 H, q, J=7.1 Hz), 4.59 (2 H, d, J=5.7 Hz), 5.38 (1 H, t, J=5.7 Hz), 5.62 (2 H, s), 7.47 (2 H, d, J=8.3 Hz), 7.86 (1 H, s), 7.99 (2 H, d, J=8.3 Hz), 12.95 (1 H, s).

Reference Example 160

ethyl 5-[(methyl(phenylmethyl)amino)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a mixture of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (600 mg, 1.89 mmol) obtained in Example 216, Step 1 and THF (12 mL) were added N-methyl-1-phenylmethanamine (0.269 mL, 2.08 mmol) and triethylamine (0.527 mL, 3.78 mmol) at room temperature and the mixture was stirred for 1 hr. The reaction mixture was concentrated under reduced pressure and ethyl acetate was added to the residue. The mixture was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography (1-8% methanol/ethyl acetate). The obtained crude crystals were crystallized from ethyl acetate/hexane mixed solvent to give the title compound as a white powder (351 mg, 52%).

melting point: 129°C

1H NMR (300 MHz, DMSO-d6) δ 1.33 (3 H, t, J=7.2 Hz), 2.32 (3 H, s), 4.15 (4 H, s), 4.32 (2 H, q, J=7.0 Hz), 7.28 - 7.51 (5 H, m), 7.64 (1 H, s).

Reference Example 161

ethyl 4-oxo-5-[[phenyl(methyl)thio)methyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a mixture of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (600 mg, 1.89 mmol) obtained in Example 216, Step 1 and THF (12 mL) were added N-methyl-1-phenylmethanamine (0.269 mL, 2.08 mmol) and triethylamine (0.527 mL, 3.78 mmol) at room temperature and the mixture was stirred for 1 hr. The reaction mixture was concentrated under reduced pressure and ethyl acetate was added to the residue. The mixture was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography (1-8% methanol/ethyl acetate). The obtained crude crystals were crystallized from ethyl acetate/hexane mixed solvent to give the title compound as a white powder (351 mg, 52%).

melting point: 129°C

1H NMR (300 MHz, DMSO-d6) δ 1.33 (3 H, t, J=7.2 Hz), 2.32 (3 H, s), 4.15 (4 H, s), 4.32 (2 H, q, J=7.0 Hz), 7.28 - 7.51 (5 H, m), 7.64 (1 H, s).
To a mixture of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (600 mg, 1.89 mmol) obtained in Example 216, Step 1 and DMA (12 mL) were added phenylmethanethiol (0.244 mL, 2.08 mmol) and triethylamine (0.527 mL, 3.78 mmol) at room temperature and the mixture was stirred for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The mixture was washed with 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography (5-50% ethyl acetate/hexane). The obtained crude crystals were recrystallized from a mixed solvent of ethyl acetate/hexane to give the title compound as a white powder (207 mg, 30%).

Reference Example 162

ethyl 5-(cyanomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a mixture of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (2000 mg, 6.31 mmol) obtained in Example 216, step 1 and DMF (10 mL) was added sodium cyanide (649 mg, 13.2 mmol) at room temperature, and the mixture was stirred for 12 hrs. The reaction mixture was acidified with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a pale-brown powder (300 mg, 18%).

Reference Example 163

ethyl 5,6-dibromo-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a mixture of ethyl 4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (1000 mg, 4.46 mmol) obtained in Reference Example 26 and acetic acid (20 mL) was added bromine (6.90 mL, 134 mmol), and the mixture was stirred at room temperature for 12 hrs. Bromine (6.90 mL, 134 mmol) was further added, and the mixture was stirred at room temperature for 12 hrs. 1N Sodium hydrogen carbonate was added until the color of bromine disappeared, and the precipitated solid was collected by filtration, washed 3 times with water and once with diethyl ether and dried to give the title compound as a gray powder (1.20 g, 70%).
melting point: 269-270°C

1H NMR (300 MHz, DMSO-d_6) δ 1.34 (3 H, t, J=7.2 Hz), 4.37 (2 H, q, J=7.0 Hz), 13.17 (1 H, s).

Reference Example 164

ethyl 6-bromo-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

Reference Example 165

ethyl 6-bromo-5-nitro-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

Reference Example 166

ethyl 5-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate hydrobromide
A mixture of ethyl 6-bromo-5-nitro-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (600 mg, 1.72 mmol) obtained in Reference Example 165, 10% palladium carbon (50% wet, 240 mg), ethanol (15 mL) and THF (15 mL) was stirred under a hydrogen atmosphere (1 atm) at room temperature for 12 hrs. The catalyst was filtered off, and the filtrate was concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethanol. The obtained crude crystals were dissolved in methanol and an insoluble material was filtered off and the filtrate was concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethanol to give the title compound as a brown powder (198 mg, 36%).

Reference Example 167

ethyl 4-oxo-5-[(phenylacetyl)amino]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a mixture of ethyl 5-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate hydrobromide (160 mg, 0.500 mmol) obtained in Reference Example 166 and THF (2 mL) were added phenylacetyl chloride (0.0727 mL, 0.550 mmol) and triethylamine (0.146 mL, 1.05 mmol) at room temperature. The mixture was stirred for 1 hr at room temperature and concentrated under reduced pressure. Ethyl acetate was added to the obtained residue, and the organic layer was washed with 1N hydrochloric acid, water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a pale-purple powder (138 mg, 77%).

Reference Example 168

ethyl 5-(3-bromophenyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a mixture of ethyl 5-amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate hydrobromide (160 mg, 0.500 mmol) obtained in Reference Example 166 and THF (2 mL) were added phenylacetyl chloride (0.0727 mL, 0.550 mmol) and triethylamine (0.146 mL, 1.05 mmol) at room temperature. The mixture was stirred for 1 hr at room temperature and concentrated under reduced pressure. Ethyl acetate was added to the obtained residue, and the organic layer was washed with 1N hydrochloric acid, water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a pale-purple powder (138 mg, 77%).

Reference Example 169

ethyl 5-(3-bromophenyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate
A mixture of 2-amino-4-(3-bromophenyl)thiophene-3-carboxylic acid (1.00 g, 3.20 mmol), ethyl cyanoformate (0.348 ml, 3.52 mmol) and a 1N solution (10.0 ml) of hydrogen chloride in acetic acid was stirred at 90°C for 1.5 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a pale-yellow powder (1.05 g, 86.4%).

melting point: 190°C

1H NMR (300 MHz, DMSO-d6) δ 1.36 (3 H, t, J=7.1 Hz), 4.39 (2 H, q, J=7.2 Hz), 7.38 (1 H, t, J=7.9 Hz), 7.53 - 7.60 (2 H, m), 7.75 (1 H, t, J=1.8 Hz), 7.86 (1 H, s), 12.88 (1 H, s).

Reference Example 169

Diethyl 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2,6-dicarboxylate

A mixture of diethyl 5-amino-3-methylthiophene-2,4-dicarboxylate (5.00 g, 19.4 mmol), ethyl cyanoformate (2.11 ml, 21.4 mmol) and a 1N solution (50.0 ml) of hydrogen chloride in acetic acid was stirred at 90°C for 2 hrs. The reaction mixture was concentrated under reduced pressure and the concentrated residue was crystallized from diethyl ether to give the title compound as a white powder (4.98 g, 82.6%).

melting point: 237-238°C

1H NMR (300 MHz, DMSO-d6) δ 1.33 (6 H, q, J=7.2 Hz), 2.85 (3 H, s), 4.29 - 4.41 (4 H, m), 13.06 (1 H, s).

Reference Example 170

ethyl 5-(azidomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a mixture of ethyl 5-(bromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (2000 mg, 6.31 mmol) obtained in Example 216, Step 1 and DMF (20 mL) was added sodium azide (861 mg, 13.2 mmol), and the mixture was stirred at room temperature for 12 hrs. 1N Hydrochloric acid was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed 5 times with water and once with saturated...
brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (1330 mg, 76%).

melting point: 192°C

1H NMR (300 MHz, DMSO-d$_6$) δ 1.35 (3 H, t, J=7.2 Hz), 4.37 (2 H, q, J=7.2 Hz), 4.76 (2 H, s), 7.81 (1 H, s), 12.97 (1 H, s).

Reference Example 171

ethyl 5-(aminomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate hydrochloride

[1071]

[1072] A mixture of ethyl 5-(azidomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (100 mg, 0.358 mmol) obtained in Reference Example 170, 2N hydrogen chloride ethanol solution (0.268 ml, 1.07 mmol), 10% palladium carbon (50% wet) (25.0 mg), ethanol (1 mL) and THF (1 mL) was stirred at room temperature under a hydrogen atmosphere (1 atm) for 1 hr. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. The obtained concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (104 mg, 94%).

melting point: 262-263°C

1H NMR (300 MHz, DMSO-d$_6$) δ 1.35 (3 H, t, J=7.1 Hz), 4.05 - 4.64 (4 H, m), 7.87 (1 H, s), 8.34 (3 H, s), 13.23 (1 H, s).

Reference Example 172

ethyl 4-oxo-5-[(phenylcarbonyl)amino][methyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[1073]

[1074] To a mixture of ethyl 5-(aminomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate hydrochloride (250 mg, 0.863 mmol) obtained in Reference Example 171 and THF (3.0 ml) were added benzoyl chloride (0.110 ml, 0.949 mmol) and triethylamine (0.253 ml, 1.81 mmol), and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution, saturated brine, 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (223 mg, 72%).

melting point: 204°C

1H NMR (300 MHz, DMSO-d$_6$) δ 1.35 (3 H, t, J=7.1 Hz), 4.38 (2 H, q, J=7.0 Hz), 4.80 (2 H, d, J=4.9 Hz), 7.43 - 7.60 (4 H, m), 7.86 - 7.94 (2 H, m), 9.03 (1 H, t, J=5.7 Hz), 12.93 (1 H, s).
Reference Example 173

ethyl 5-[[4-{(methyloxy)carbonyl}phenyl]carbonyl]amino)methyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[1075]

To a mixture of 4-{(methyloxy)carbonyl}benzoic acid (373 mg, 2.07 mmol) and THF (5.0 ml) were added oxalyl chloride (0.450 ml, 5.18 mmol) and DMF (1 drop), and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated under reduced pressure, and THF (5.0 mL) was added to the concentrated residue. To this mixture were added ethyl 5-(aminomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate hydrochloride (500 mg, 1.73 mmol) obtained in Reference Example 171 and triethylamine (0.960 ml, 6.90 mmol), and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated under reduced pressure, and ethyl acetate was added to the obtained residue. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution, saturated brine, 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (558 mg, 82%).

melting point: 236°C

H NMR (300 MHz, DMSO-d6) δ 1.35 (3 H, t, J=7.2 Hz), 3.89 (3 H, s), 4.37 (2 H, q, J=7.2 Hz), 4.82 (2 H, d, J=5.5 Hz), 7.52 (1 H, s), 7.77 - 8.22 (4 H, m), 9.23 (1 H, s), 12.93 (1 H, s).

Reference Example 174

ethyl 5-(dibromomethyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[1077]

A mixture of ethyl 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate (3000 mg, 12.6 mmol) obtained by the method described in US4054656 and the like, N-bromosuccinimide (5.15 g, 29.0 mmol) and 2,2'-azobis(isobutyronitrile) (207 mg, 1.26 mmol) was stirred in carbon tetrachloride (60 mL) at 80°C for 1.5 hrs. The reaction mixture was concentrated under reduced pressure, and ethyl acetate and water were added to the obtained residue. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from diethyl ether to give the title compound as a white powder (4.62 g, 93%).

melting point: 214-215°C

H NMR (300 MHz, DMSO-d6) δ 1.35 (3 H, t, J=7.2 Hz), 4.38 (2 H, q, J=7.0 Hz), 7.57 (1 H, d, J=0.6 Hz), 8.26 (1 H, s), 13.15 (1 H, s).
Reference Example 175

ethyl 5-formyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[1079]

Reference Example 176

2-[(ethyloxy)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-5-carboxylic acid

[1081]

Reference Example 177

ethyl 4-oxo-5-[(phenylmethyl)amino]carbonyl]-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

[1083]
To a mixture of 2-[(ethyloxy)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-5-carboxylic acid (400 mg, 1.49 mmol) obtained in Reference Example 176 and THF (10 mL) were added oxalyl chloride (0.390 mL, 4.47 mmol) and DMF (0.0500 mL, 0.646 mmol), and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated under reduced pressure. To a suspension of the concentrated residue in THF (10 mL) were added benzylamine (0.326 mL, 2.98 mmol) and triethylamine (0.415 mL, 2.98 mmol) and the mixture was stirred at room temperature for 12 hrs. The reaction mixture was concentrated under reduced pressure and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution, 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (373 mg, 70%).

Reference Example 178

ethyl 5-[(4-[(ethyloxy)carbonyl]phenyl)methyl]amino]carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxylate

To a mixture of 2-[(ethyloxy)carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-5-carboxylic acid (600 mg, 2.24 mmol) obtained in Reference Example 176 and THF (6 mL) were added oxalyl chloride (0.590 mL, 6.72 mmol) and DMF (0.0500 mL, 0.650 mmol) and the mixture was stirred at room temperature for 1 hr. The reaction mixture was concentrated under reduced pressure. To a suspension of the concentrated residue in THF (6 mL) were added ethyl 4-(aminomethyl) benzoate hydrochloride (966 mg, 4.48 mmol) and triethylamine (1.20 mL, 8.96 mmol), and the mixture was stirred at room temperature for 12 hrs. The reaction mixture was concentrated under reduced pressure and ethyl acetate was added to the obtained residue. The organic layer was washed with 1N hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution, 1N hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrated residue was crystallized from ethyl acetate to give the title compound as a white powder (771 mg, 80%).

Formulation Example 1
The above-mentioned (1)-(6) were mixed by a conventional method and compressed by a tableting machine to give tablets.

Formulation Example 2

A mixture of the compound of Example 2 (10.0 mg) and lactose (60.0 mg) and cornstarch (35.0 mg) was granulated using 10% aqueous gelatin solution (0.03 ml, 3.0 mg as gelatin) and passing through a 1 mm mesh sieve, dried at 40°C and passed through a sieve again. The granules thus obtained are mixed with magnesium stearate (2.0 mg) and compressed. The obtained core tablet is sugar-coated with an aqueous suspension of sucrose, titanium dioxide, talc and gum arabic. The coated tablet is polished with bee wax to give a coated tablet.

Formulation Example 3

The compound of Example 3 (10.0 mg) and magnesium stearate (3.0 mg) are granulated with an aqueous solution (0.07 ml) of soluble starch (7.0 mg as soluble starch), dried and mixed with lactose (70.0 mg) and cornstarch (50.0 mg). The mixture is compressed to give tablets.

Experimental Example 1 MMP-13 inhibitory activity

[Method]

To 10 μg of MMP-13 precursor (GenzymeTechne) was added 1 ml of assay buffer (50 mM Tris-HCl (pH 7.5), 10 mM CaCl₂, 150 mM NaCl, 0.05% Brij-35), and 4-aminophenylmercuric acid (Sigma) was added to the final concentration of 1 mM. The MMP-13 precursor was activated by incubating at 37°C for 2 hrs.

In a 96 well black plate (Corning), to 6.3 ng/ml of MMP-13 solution (49 μl) diluted with assay buffer was added the test compound (1 μl) diluted with dimethyl sulfoxide (DMSO) and 620 nM Cy3-PLGLK(Cy5Q)AR-NH₂ (50 μl, synthesized by Amersham Biosciences) in assay buffer was added to start the enzyme reaction. After incubation at 37°C for 40 min, 500 mM EDTA solution (6 μl) was added to stop the reaction. For measurement, Farcyte (Amersham Biosciences) was used to measure at excitation wavelength 535 nm and measurement wavelength 595 nm. The enzyme inhibitory activity was calculated in inhibitory rate (% inhibition) by the following formula:
% inhibition = \(100 - \frac{(X-C)}{(T-C)} \times 100\)

T: value of well with addition of DMSO instead of test compound
C: value of well with addition of DMSO instead of test compound and addition of EDTA solution before addition of substrate solution
X: value of well with addition of test compound

[Results]

The MMP-13 activity inhibitory rates of the compound (1 \(\mu\)M) are described below.

<table>
<thead>
<tr>
<th>Example Compound</th>
<th>MMP-13 activity inhibitory rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>179</td>
<td>99</td>
</tr>
<tr>
<td>209</td>
<td>94</td>
</tr>
<tr>
<td>217</td>
<td>100</td>
</tr>
<tr>
<td>286</td>
<td>97</td>
</tr>
<tr>
<td>287</td>
<td>98</td>
</tr>
<tr>
<td>339</td>
<td>96</td>
</tr>
<tr>
<td>341</td>
<td>98</td>
</tr>
<tr>
<td>366</td>
<td>93</td>
</tr>
<tr>
<td>383</td>
<td>91</td>
</tr>
<tr>
<td>384</td>
<td>91</td>
</tr>
<tr>
<td>385</td>
<td>96</td>
</tr>
<tr>
<td>386</td>
<td>94</td>
</tr>
</tbody>
</table>

[Industrial Applicability]

Since compound [I], a salt thereof of the present invention have a superior MMP inhibitory action, particularly an MMP-13 inhibitory action, they are useful as safe drugs for the prophylaxis or treatment of all MMP associated diseases, such as joint disease (e.g., osteoarthritis, rheumatoid arthritis and the like), osteoporosis, cancer, periodontal disease, cornea ulcer, chronic ulcer, pathologic bone resorption (Paget's disease and the like), nephritis, angiogenesis, aneurysm, arteriosclerosis, emphysema, chronic obstructive pulmonary disease (COPD), liver cirrhosis, autoimmune disease (Crohn's disease, Sjogren's disease and the like), infiltration or metastasis of cancer and the like, or as contraceptives.

This application is based on a patent application No. 2004-135596 filed in Japan, the contents of which are hereby incorporated by reference.

[Claims]

1. A compound represented by the formula
wherein ring A is a 6-membered nitrogen-containing heterocycle containing besides carbon atom, 2 nitrogen atoms, ring B is an optionally substituted monocyclic homocycle or optionally substituted monocyclic heterocycle, Z is N or NR₁₁, R₁ is a hydrogen atom, --- is a single bond or a double bond, R² is a hydrogen atom or an optionally substituted hydrocarbon group, X is an optionally substituted C1-6 alkylene group, ring C is (1) an optionally substituted homocycle or (2) an optionally substituted heterocycle other than a ring represented by the formula

(X⁺ is S, O, SO or CH₂), and at least one of ring B and ring C has substituent(s), or a salt thereof.

2. The compound of claim 1, wherein, when the partial structure represented by the formula

is

X is an optionally substituted spacer having 1, 3 or 4 carbon atoms or a salt thereof.

3. The compound of claim 1, wherein ring A is
4. The compound of claim 1, wherein ring B is an optionally substituted 5- or 6-membered monocyclic heterocycle containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom or a salt thereof.

5. The compound of claim 1, wherein ring B is an optionally substituted benzene ring or a salt thereof.

6. The compound of claim 1, wherein the partial structure represented by the formula

![Diagram](image)

is

or a salt thereof.

7. The compound of claim 1, wherein the partial structure represented by the formula

![Diagram](image)

is

or a salt thereof.

8. The compound of claim 1, wherein the substituent of ring B is selected from (1) a C₁₋₆ alkyl group, (2) a C₁₋₆ alkyl group substituted by a C₇₋₁₆ aralkyloxy optionally substituted by a carboxyl group, (3) a C₁₋₆ alkyl group substituted by a C₆₋₁₄ aryl-aminocarbonyl optionally substituted by a carboxyl group, (4) a C₁₋₆ alkyl group substituted by a C₆₋₁₄ aryl-carbonylamino optionally substituted by a carboxyl group, (5) a C₁₋₆ alkyl group substituted by a C₆₋₁₄ arylxoy optionally substituted by a carboxyl group, (6) a C₆₋₁₄ arylxoy group optionally substituted by a carboxyl group, (7) a C₇₋₁₈ aralkyloxy group optionally substituted by a carboxyl group, (8) a C₆₋₁₄ aryl group optionally...
9. The compound of claim 1, wherein the partial structure represented by the formula

![Formula](image)

is

![Alternative Structure](image)

wherein \(R^a\) and \(R^b\) are each (1) a C\(_{1-6}\) alkyl group, (2) a C\(_{1-6}\) alkyl group substituted by a C\(_{7-16}\) aralkyl optionally substituted by a carboxyl group, (3) a C\(_{1-6}\) alkyl group substituted by a C\(_{6-14}\) aryl-aminocarbonyl optionally substituted by a carboxyl group, (4) a C\(_{1-6}\) alkyl group substituted by a C\(_{6-14}\) aryl-carbonylamino optionally substituted by a carboxyl group, (5) a C\(_{1-6}\) alkyl group substituted by a C\(_{6-14}\) aryloxy optionally substituted by a carboxyl group, (6) a C\(_{6-14}\) aryloxy group optionally substituted by a carboxyl group, (7) a C\(_{6-14}\) aralkyloxy group optionally substituted by a carboxyl group, (8) a C\(_{6-14}\) aryl group optionally substituted by a carboxyl group, (9) a carbamoyl group optionally substituted by a C\(_{7-16}\) aralkyl optionally substituted by a carboxyl group or (10) an amino group optionally substituted by a C\(_{7-16}\) aralkyl-carbonyl or a salt thereof.

10. The compound of claim 1, wherein \(X\) is an optionally substituted methylene group or a salt thereof.

11. The compound of claim 1, wherein ring \(C\) is an optionally substituted benzene ring or optionally substituted pyridine ring or a salt thereof.

12. The compound of claim 1 being -4-\[2-\{(6-fluoro-2-[{[3-(methoxy)phenyl]methyl}amino]carbonyl]-4-oxo-3,4-dihydro-quinazolin-5-yl]oxy\}ethyl\]benzoic acid, 4-\[\{2-\{(3-chloro-4-fluorophenyl)amino\}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl\}methyl\]benzoic acid, 4-\[\{2-\{(4-fluoro-3-methylphenyl)amino\}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl\}methyl\]benzoic acid, 4-\[\{2-\{(3-methoxy)phenylamino\}carbonyl]-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl\}methyl\]benzoic acid or a salt thereof.

13. A pharmaceutical agent comprising the compound of claim 1 or a salt thereof.

14. A pharmaceutical agent of claim 13, which is an agent for the prophylaxis or treatment of osteoarthritis or rheumatoid arthritis.

15. A production method of the compound of claim 1 or a salt thereof, which comprises [1] reacting a compound represented by the formula
wherein L is a leaving group, and other symbols are as defined in claim 1, or a salt thereof, with a compound represented by the formula

wherein each symbol is as defined in claim 1, or a salt thereof, or [2] reacting a compound represented by the formula

wherein L^2 is a leaving group, and other symbols are as defined in claim 1, or a salt thereof, with a compound represented by the formula R-H wherein R is a substituent of ring B, or a salt thereof.

16. A matrix metalloproteinase inhibitor comprising a compound defined in claim 1

17. The inhibitor of claim 16, wherein the matrix metalloproteinase is matrix metalloproteinase-13 (MMP-13).

18. A Compound as defined in claim 1, or a salt thereof for the use as a matrix metalloproteinase inhibitor.

19. A compound as defined in claim 1 represented by the formula

wherein R^4, R^5, R^6 and R^7 are each

(i) a hydrogen atom,
(ii) a halogen atom,
(iii) a cyano group,
(iv) a hydroxy group,
(v) an amino group optionally substituted by substituent(s) selected from (a) a C1-16 aralkyl group optionally substituted by a C1-6 alkoxy group, (b) a C1-6 alkyl-carbonyl group optionally substituted by a C6-14 arylalkoxy group and (c) a C1-6 alkoxyalkyl group.

(vi) a C1-6 alkyl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a C1-6 alkoxy group, (c) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 4 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom and (d) a C7-16 aralkoxy optionally substituted by a carboxy group.

(vii) a C6-14 aryl group.

(viii) C1-6 aralkoxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a hydroxy group, (c) C3-7 cycloalkyl group, (d) a C7-16 aralkoxy group, (e) a 5- to 8-membered aromatic heterocyclic group having, besides carbon atom, 1 to 4 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom, (f) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which optionally have a carboxy group, and (g) a C6-14 arylcarbonyl group.

(ix) a C7-16 aralkoxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) a cyano group, (c) a carboxy group, (d) a C1-6 alkyl group optionally having a carboxy group, (e) a C1-6 alkyl group optionally having a carboxy group, (f) an amino group, (g) a C1-6 alkoxy-alkyl group, (h) a carbamoyl group, (i) a 5-to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, (j) an amino-sulfonlamino group optionally having a C1-6 alkoxy-alkyl group and (k) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom.

(x) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom.

(xi) a thiol group, (xii) a C1-6 alkoxythio group, (xiii) a C7-16 aralkoxythio group.

(xiv) a 5- to 8-membered aromatic heterocycle containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom-thio group,

(xv) a C1-6 alkoxyalkyl group, (xvi) a carbamoyl group, (xvii) a mono- or di-C1-6 alkylamino-thiocarbonyloxy group, (xviii) a mono- or di-C1-6 alkylcarbamoyl-thio group, (xix) a nitro group or (xx) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom.

ring C’ is a C6-14 aryl ring or a 5- to 8-membered heterocyclic group containing 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which is optionally substituted by substituent(s) selected from

(i) a halogen atom,

(ii) a cyano group, (iii) an amino group optionally substituted by substituent(s) selected from (a) C1-6 alkyl optionally having C1-6 alkoxy, (b) C1-6 alkyl-carbonyl, (c) C1-6 alkoxyalkyl, (d) C1-6 alkoxy-carbonyl, (e) C1-6 alkoxy-carbonyl-carbonyl, (f) C1-6 alkoxy-carbonyl-C1-6 alkyl-carbonyl and (g) a 5- to 8-membered non-aromatic heterocyclic group having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonyl,

(iv) a C1-6 alkyl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) C1-6 alkyl-carbonylamino, (c) C1-6 alkoxy-carbonylamino, (d) a 5- to 8-membered aromatic heterocyclic group having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonylamino, (e) C1-6 alkoxy-carbonyl-carbonylamino group, (f) a 5- to 8-membered aromatic heterocyclic group having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom-carbonylamino and (g) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom.

(v) a C6-14 aryl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) amino optionally having C1-6 alkoxy-carbonyl, (c) C1-6 alkoxy and (d) carboxylic acid,

(vi) a C7-16 aralkyl group optionally substituted by C1-6 alkoxy.

(vii) a C1-6 alkyl group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) C1-6 alkoxy, (c) C1-6 alkoxy-carbonyl, (d) carboxylic acid, (e) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom.
and sulfur atom, which is optionally substituted by C\textsubscript{1-6} alkyl, (f) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom and (g) carbamoyl optionally having C\textsubscript{1-6} alkyl, (viii) a C\textsubscript{6-14} aryloxy group optionally substituted by substituent(s) selected from (a) a halogen atom and (b) C\textsubscript{1-6} alkoxy, (ix) a C\textsubscript{6-14} aryloxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) amino optionally having C\textsubscript{1-6} alkoxy-carbonyl, (c) C\textsubscript{1-6} alkoxy and (d) carboxyl, (x) a C\textsubscript{7-16} aralkyloxy group optionally substituted by substituent(s) selected from (a) a halogen atom, (b) C\textsubscript{1-6} alkoxy, (c) C\textsubscript{1-3} alkylenedioxy and (d) C\textsubscript{6-14} aryloxy, (xi) a 5- to 8-membered non-aromatic heterocyclic-oxy group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, (xii) a 5- to 8-membered aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom optionally substituted by C\textsubscript{6-14} aryloxy optionally having a halogen atom, (xiii) a 5- to 8-membered non-aromatic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, (xiv) a C\textsubscript{1-6} alkoxy-carbonyl group and (xv) a C\textsubscript{1-6} alkylureido group provided that when R\textsubscript{4}, R\textsubscript{5}, -R\textsubscript{6} and -R\textsubscript{7} are hydrogen atoms, ring C' is an aromatic ring or a heterocycle containing 1 to 3 hetero atoms selected from nitrogen atom and oxygen atom, which has the aforementioned substituent(s), or a salt thereof.

20. The compound of claim 19 being 4-[[6-fluoro-2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-dihydropyrimidin-5-yl]oxy)methyl[benzoic acid, 5-(2-[4-(2,5-dioxoimidazolidin-1-yl)phenyl]ethyl]oxy)-6-fluoro-N{-[3-(methyloxy)phenyl][methyl]-4-oxo-3,4-diarylquinazolone-2-carboxamide, 4-[[6-fluoro-2-[[3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-diarylquinazolin-5-yl]oxy)methyl[phenyl]acetic acid, 4-[[6-fluoro-3-(methyloxy)phenyl][methyl]amino]carbonyl]-4-oxo-3,4-diarylquinazolin-5-yl]oxy)methyl[benzoic acid, or a salt thereof.

Patentansprüche

1. Verbindung, die repräsentiert wird durch die Formel

\begin{equation}
\text{[I]}
\end{equation}

worin Ring A ein 6-gliedriger stickstoffhaltiger Heterocyclus ist, der neben einem Kohlenstoffatom zwei Stickstoffatome enthält, Ring B ein optional substituierter monocyclischer Homocyclus oder ein optional substituierter monocyclischer Heterocyclus ist, Z für N oder NR\textsubscript{1-2} (- steht, R\textsubscript{1} ein Wasserstoffatom ist, --- für eine Einfachbindung oder eine Doppelbindung steht, R\textsubscript{2} ein Wasserstoffatom oder eine optional substituierte Kohlenwasserstoffgruppe ist, X eine optional substituierte C\textsubscript{1-6}-Alkylengruppe ist, Ring C (1) ein optional substituierter Homocyclus oder (2) ein optional substituierter Heterocyclus ist, der verschieden ist von einem Ring, der durch die folgende Formel repräsentiert wird:
EP 1 740 551 B9

(X‘ ist S, O, SO oder CH₂), und mindestens einer von Ring B und Ring C einen oder mehrere Substituenten hat, oder ein Salz davon.

2. Verbindung nach Anspruch 1, wobei dann, wenn es sich bei der durch Formel [II] repräsentierten Teilstruktur

![Diagramm II]

handelt, X ein optional substituierter Spacer mit 1, 3 oder 4 Kohlenstoffatomen oder ein Salz davon ist.

3. Verbindung nach Anspruch 1, wobei Ring A

![Diagramm]

oder ein Salz davon ist.

4. Verbindung nach Anspruch 1, wobei Ring B ein optional substituierter 5- oder 6-gliedriger monocyclischer Heterocyclus ist, der neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus der aus Stickstoffatom, Sauerstoffatom und Schwefelatom bestehenden Gruppe ausgewählt sind, oder ein Salz davon.

5. Verbindung nach Anspruch 1, wobei Ring B ein optional substituierter Benzolring oder ein Salz davon ist.

6. Verbindung nach Anspruch 1, wobei es sich bei der durch Formel [II] repräsentierten Teilstruktur

![Diagramm II]

um
oder ein Salz davon handelt.

7. Verbindung nach Anspruch 1, wobei es sich bei der durch Formel [II] repräsentierten Teilstruktur

oder ein Salz davon handelt.

8. Verbindung nach Anspruch 1, wobei der Substituent von Ring B aus (1) einer C$_{1-6}$-Alkylgruppe, (2) einer C$_{1-6}$-Alkylgruppe, die mit einem optional mit einer Carboxylgruppe substituierten C$_{7-16}$-Aralkyloxy substituiert ist, (3) einer C$_{1-6}$-Alkylgruppe, die mit einem optional mit einer Carboxylgruppe substituierten C$_{6-14}$-Arylaminocarbonyl substituiert ist, (4) einer C$_{1-6}$-Alkylgruppe, die mit einem optional mit einer Carboxylgruppe substituierten C$_{6-14}$-Arylcarbonylamino substituiert ist, (5) einer C$_{1-6}$-Alkylgruppe, die mit einem optional mit einer Carboxylgruppe substituierten C$_{6-14}$-Aryloxy substituiert ist, (6) einer C$_{7-16}$-Aralkyloxygruppe, die optional mit einer Carboxylgruppe substituiert ist, (7) einer C$_{7-16}$-Aralkyloxygruppe, die optional mit einer Carboxylgruppe substituiert ist, (8) einer C$_{6-14}$-Arylgruppe, die optional mit einer Carboxylgruppe substituiert ist, (9) einer Aminogruppe, die optional mit einem C$_{7-16}$-Arylcarbonyl substituiert ist, und (11) Halogenatomen oder einem Salz davon ausgewählt ist.

9. Verbindung nach Anspruch 1, wobei es sich bei der durch Formel [II] repräsentierten Teilstruktur

oder ein Salz davon handelt.
handelt, worin R\(^a\) und R\(^b\) jeweils (1) eine C\(_{1-6}\)-Alkylgruppe, (2) eine C\(_{1-6}\)-Alkylgruppe, die mit einem optional mit einer Carboxylgruppe substituierten C\(_{7-16}\)-Aralkyloxy substituiert ist, (3) eine C\(_{1-6}\)-Alkylgruppe, die mit einem optional mit einer Carboxylgruppe substituierten C\(_{6-14}\)-Arylamino-carbonyl substituiert ist, (4) eine C\(_{1-6}\)-Alkylgruppe, die mit einem optional mit einer Carboxylgruppe substituierten C\(_{6-14}\)-Arylcarbonylamino substituiert ist, (5) eine C\(_{1-6}\)-Alkylgruppe, die mit einem optional mit einer Carboxylgruppe substituierten C\(_{6-14}\)-Aryloxy substituiert ist, (6) eine C\(_{6-14}\)-Aralkyloxygruppe, die optional mit einer Carboxylgruppe substituiert ist, (7) eine C\(_{7-16}\)-Aralkyloxygruppe, die optional mit einer Carboxylgruppe substituiert ist, (8) eine C\(_{6-14}\)-Arylcarbonylgruppe, die optional mit einer Carboxylgruppe substituiert ist, (9) eine Carboxamidgruppe, die optional mit einer Carboxylgruppe substituiert ist, oder (10) eine Aminogruppe, die optional mit einem C\(_{7-16}\)-Aralkyl-carbonyl substituiert ist, oder ein Salz davon sind.

10. Verbindung nach Anspruch 1, wobei X eine optional substituierte Methylengruppe oder ein Salz davon ist.

11. Verbindung nach Anspruch 1, wobei Ring C ein optional substituierter Benzolring oder optional substituierter Pyridinderivat oder ein Salz davon ist.

13. Pharmazeutisches Mittel, das die Verbindung nach Anspruch 1 oder ein Salz davon umfasst.

15. Verfahren zur Herstellung der Verbindung nach Anspruch 1 oder eines Salzes davon, mit den folgenden Schritten: [1] Umsetzen einer Verbindung, die durch die folgende Formel repräsentiert wird:

worin L eine Abgangsgruppe ist und andere Symbole der Definition in Anspruch 1 entsprechen, oder eines Salzes davon, mit einer Verbindung, die durch die folgende Formel repräsentiert wird:
worin jedes Symbol der Definition in Anspruch 1 entspricht, oder mit einem Salz davon, oder

[2] Umsetzen einer Verbindung die durch die folgende Formel repräsentiert wird:

worin \(L^2 \) eine Abgangsgruppe ist und andere Symbole der Definition in Anspruch 1 entsprechen, oder eines Salzes davon, mit einer Verbindung, die durch die Formel \(R-H \) repräsentiert wird, worin \(R \) ein Substituent von Ring B ist, oder mit einem Salz davon.

16. Matrixmetalloproteinase-Inhibitor, der eine Verbindung nach Anspruch 1 oder ein Salz davon umfasst.

17. Inhibitor nach Anspruch 16, wobei die Matrixmetalloproteinase eine Matrixmetalloproteinase 13 (MMP-13) ist.

18. Verbindung nach Anspruch 1 oder ein Salz davon zur Verwendung als Matrixmetalloproteinase-Inhibitor.

19. Verbindung nach Anspruch 1, die repräsentiert wird durch die folgende Formel:

worin \(R^4, R^5, R^6 \) und \(R^7 \) jeweils Folgendes sind:

(i) ein Wasserstoffatom,
(ii) ein Halogenatom,
(iii) eine Cyanogruppe
(iv) eine Hydroxygruppe,
(v) eine Aminogruppe, die optional mit einem oder mehreren Substituenten substituiert ist, die aus (a) einer \(C_{7-16}\)-Aralkylgruppe, die optional mit einer \(C_{1-6}\)-Alkoxygruppe substituiert ist, (b) einer \(C_{1-6}\)-Alky-carbonylgruppe, die optional mit einer \(C_{6-14}\-Aryloxygruppe substituiert ist, und (c) einer \(C_{1-6}\)-Alky-sulfonylgruppe ausgewählt sind,
(vi) eine \(C_{1-6}\)-Alkylgruppe, die optional mit einem oder mehreren Substituenten substituiert ist, die aus (a) einem Halogenatom, (b) einer \(C_{1-6}\)-Alkoxygruppe, (c) einer 5- bis 8-gliedrigen nicht-aromatischen heterocyclischen Gruppe, die neben einem Kohlenstoffatom 1 bis 4 Heteroatome enthält, die aus Stickstoffatom, Sauerstoffatom und Schwefelatom ausgewählt sind, und (d) einem \(C_{7-16}\)-Aralkylxoy, das optional mit einer Carboxylgruppe
substituiert ist, ausgewählt sind,
(vii) eine C₆-₁₄-Arylgruppe,
(viii) eine C₁₋₆-Alkoxygruppe, die optional mit einem oder mehreren Substituenten substituiert ist, die aus (a) einem Halogenatom, (b) einer Hydroxygruppe, (c) einer C₃₋₇-Cycloalkylgruppe, (d) einer C₇₋₁₆-Aralkyloxygruppe, (e) einer 5- bis 8-gliedrigen aromatischen heterocyclischen Gruppe, die neben einem Kohlenstoffatom 1 bis 4 Heteroatome besitzt, die aus Stickstoffatom, Sauerstoffatom und Schwefelatom ausgewählt sind, (f) einer 5- bis 8-gliedrigen nicht- aromatischen heterocyclischen Gruppe, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind, die optional eine Carboxylgruppe besitzen, und (g) einer C₆₋₁₄-Arylcarbonylgruppe ausgewählt sind,
(ix) eine C₇₋₁₆-Aralkyloxygruppe, die optional mit einem oder mehreren Substituenten substituiert ist, die aus
(a) einem Halogenatom, (b) einer Cyanogruppe, (c) einer Carboxylgruppe, (d) einer C₁₋₆-Alkylgruppe, die optional eine Carboxylgruppe besitzt, (e) einer C₁₋₆-Alkoxygruppe, die optional eine Carboxylgruppe besitzt, (f) einer Aminogruppe, (g) einer C₁₋₆-Alkoxycarbonylgruppe, (h) einer Carbamoylgruppe, (i) einer 5- bis 8-gliedrigen aromatischen heterocyclischen Gruppe, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus der aus Stickstoffatom, Sauerstoffatom und Schwefelatom bestehenden Gruppe ausgewählt sind, (j) einer Amino-sulfonyleamino-Gruppe, die optional eine C₆₋₁₄-Alkoxy carbonylgruppe besitzt, und (k) einer 5- bis 8-gliedrigen nicht-aromatischen heterocyclischen Gruppe ausgewählt sind, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom, Sauerstoffatom und Schwefelatom ausgewählt sind,
(x) eine 5- bis 8-gliedrige nicht-aromatische heterocyclische Gruppe, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind,
(x) eine Thiogruppe,
(xii) eine C₁₋₆-Alkylthiogruppe,
(xiii) eine C₇₋₁₆-Aralkythiogruppe,
(xiv) einen 5- bis 8-gliedrigen aromatischen Heterocyclus, der neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus der aus Stickstoffatom-, Sauerstoffatom- und Schwefelatom-Thiogruppe bestehenden Gruppe ausgewählt sind,
(xv) eine C₁₋₆-Alkylsulfonylgruppe,
(xvi) eine Carbamoylgruppe,
(xvii) eine Mono- oder Di-C₁₋₆-Alkylthiogruppe-thiocarbonyloxy-Gruppe,
(xviii) eine Mono- oder Di-C₁₋₆-Alkylthiogruppe-thiocarbonylthiogruppe,
(xix) eine Nitrogruppe, oder
(xx) eine 5- bis 8-gliedrige aromatische heterocyclische Gruppe, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind,
Ring C' ist ein C₆₋₁₄-Arylring oder eine 5- bis 8-gliedrige heterocyclische Gruppe, die 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind, optional substituiert mit einem oder mehreren Substituen- den, die aus substituiert sind aus
(i) einem Halogenatom,
(ii) einer Cyanogruppe,
(iii) einer Aminogruppe, die optional mit einem oder mehreren Substituenten substituiert ist, die ausgewählt sind aus (a) einer C₁₋₆-Alkyl, optional mit C₁₋₆-Alkoxy, (b) einer C₁₋₆-Alkyl-carbonyl, (c) einer C₁₋₆-Alkylsulfonyl, (d) einer C₁₋₆-Alkoxy-carbonyl, (e) einer C₁₋₆-Alkoxy-carbonyl-carbonyl, (f) einer C₁₋₆-Alkoxy-carbonyl-carbonyl-carbonyl und (g) einem 5- bis 8-gliedrigen nicht-aromatischen Heterocyclus, der neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom- und Sauerstoffatom-Carbonylgruppe ausgewählt sind,
(iv) einer C₁₋₆-Alkylgruppe, die optional mit einem oder mehreren Substituenten substituiert ist, die aus (a) einem Halogenatom, (b) einer C₁₋₆-Alkylcarbonylamino, (c) einer C₁₋₆-Alkylsulfonylamino, (d) einem 5- bis 8-gliedrigen nicht-aromatischen Heterocyclus, der neben einem Kohlenstoffatom 1 bis 3 Heteroatome besitzt, die aus Stickstoffatom- und Sauerstoffatom-Carbonylamino ausgewählt sind, (e) einer C₁₋₆-Alkoxy-carbonyl-carbonylamino-gruppe, (f) einem 5- bis 8-gliedrigen aromatischen Heterocyclus, der neben einem Kohlenstoffatom 1 bis 3 Heteroatome besitzt, die aus Stickstoffatom- und Sauerstoffatom-Carbonylamino ausgewählt sind, und (g) einer 5- bis 8-gliedrigen nicht-aromatischen heterocyclischen Gruppe ausgewählt sind, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind,
(v) einer C₁₋₄-Arylgruppe, die optional mit einem oder mehreren Substituenten substituiert ist, die aus (a) einem Halogenatom, (b) einer Amino, optional mit C₁₋₆-Alkoxy-carbonyl, (c) einer C₁₋₆-Alkoxy und (d) einer Carboxyl ausgewählt sind,
(vi) einer C₁₋₄-Alkoxygruppe, die optional mit einem oder mehreren Substituenten substituiert ist, die aus (a) einem Halogenatom, (b) einer C₁₋₄-Alkoxy, (c) einer C₁₋₆-Alkoxy-carbonyl, (d) einer Carboxyl ausgewählt sind,
matrischen heterocyclischen Gruppe, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus der aus Stickstoffatom, Sauerstoffatom und Schwefelatom bestehenden Gruppe ausgewählt sind, optional substituiert mit C1-6-Alkyl, (f) einer 5- bis 8-gliedrigen nicht-aromatischen heterocyclischen Gruppe, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind, und (g) Carbamoyl, optional mit C1-Alkyl ausgewählt sind.

(viii) einer C6-14-Aryloxygruppe, optional substituiert mit einem oder mehreren Substituenten, die aus (a) einem Halogenatom und (b) C1-Alkyl, (ix) einer C6-14-Aryloxygruppe, optional substituiert mit einem oder mehreren Substituenten, die aus (a) einem Halogenatom, (b) Amino, optional mit C1-Alkoxy-carbonyl, (c) C1-Alkoxy und (d) Carboxyl ausgewählt sind, (x) einer C7-16-Alkylendioxid gruppe, optional substituiert mit einem oder mehreren Substituenten, die aus (a) einem Halogenatom, (b) C1-Alkoxy, (c) C1-Alkylendioxid und (d) C6-Aryl ausgewählt sind, (xi) einer 5- bis 8-gliedrigen nicht-aromatischen heterocyclischen Oxy-Gruppe, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind, (xii) einer 5- bis 8-gliedrigen aromatischen heterocyclischen Gruppe, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind, (xiii) einer 5- bis 8-gliedrigen nicht-aromatischen heterocyclischen Gruppe, die neben einem Kohlenstoffatom 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind, (xiv) einer C1-Alkoxy-carbonyl-Gruppe, und (xv) einer C1-Alkyleurdogruppe.

mit der Maßgabe, dass wenn R4, R5, R6 und R7 Wasserstoffatome sind, Ring C' ein aromatischer Ring oder ein Heterocyclicus ist, der 1 bis 3 Heteroatome enthält, die aus Stickstoffatom und Sauerstoffatom ausgewählt sind, das die obengenannten ein oder mehr Substituenten besitzt, oder ein Salz davon.

20. Verbindung nach Anspruch 19, bei der es sich um 4-((6-Fluor-2-(((3-(methyloxy)phenyl)[methyl]amino]carbonyl]-4-oxo-3,4-dihydrochinazolin-5-yl]oxy)methyl)benzoësäure, 5-(2-[4-(2,5-Dioxoimidazolidin-1-yl)phenyl]ethyl)oxy)-6-fluor-N-[3-(methyloxy)phenyl][methyl]aminocarbonyl]-4-oxo-3,4-dihydrochinazolin-2-carboxamid, 4-((6-Fluor-2-(((3-(methyloxy)phenyl)aminocarbonyl]-4-oxo-3,4-dihydrochinazolin-5-yl]oxy)methyl)benzoësäure, 4-((6-Fluor-2-(((4-fluor-3-(methyloxy)phenyl)[methyl]amino)carbonyl]-4-oxo-3,4-dihydrochinazolin-5-yl]oxy)methyl)benzoësäure oder ein Salz davon handelt.

Revendications

1. Composé représenté par la formule

2. Composé représenté par la formule

3. Composé représenté par la formule

4. Composé représenté par la formule

5. Composé représenté par la formule

Dans laquelle

- le cycle A est un hétérocycle azoté à 6 chaînons comportant, outre des atomes de carbone, 2 atomes d’azote,
- le cycle B est un homocycle monocyclique, en option porteur de substituant(s), ou un hétérocycle monocyclique, en option porteur de substituant(s),
- Z représente un chaînon symbolisé par N ou NR1, où R1 représente un atome d’hédrogène,
- ___ représente une liaison simple ou une double liaison,
- R2 représente un atome d’hédrogène ou un groupe hydrocarboné, en option porteur de substituant(s),
- X représente un groupe alcanciède en C1-Alkoxy, en option porteur de substituant(s),
- et le cycle C est

1) un homocycle, en option porteur de substituant(s),
2) ou un hétérocycle, en option porteur de substituant(s), autre qu’un
cycle représenté par la formule

\[
\text{COOH}
\]

dans laquelle \(X' \) représente un chaînon symbolisé par S, O, SO ou CH₂, étant entendu qu’au moins l’un des cycles B et C porte un ou des substituant(s).

ou sel d’un tel composé.

2. Composé conforme à la revendication 1, dans lequel la partie de structure représentée par la formule

\[
\begin{array}{c}
\text{O} \\
\text{Z} \\
\text{A} \\
\text{B}
\end{array}
\]

est la suivante :

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{S} \\
\text{Me} \\
\text{N} \\
\text{O}
\end{array}
\]

et \(X \) représente un groupe espaceur comportant 1, 3 ou 4 atomes de carbone et en option porteur de substituant(s), ou sel d’un tel composé.

3. Composé conforme à la revendication 1, dans lequel le cycle A est le suivant :

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{N}
\end{array}
\]

ou sel d’un tel composé.

4. Composé conforme à la revendication 1, dans lequel le cycle B est un hétérocycle monocyclique à 5 ou 6 chaînons, en option porteur de substituant(s), qui comporte, outre des atomes de carbone, de 1 à 3 hétéroatome(s) choisi(s) parmi des atomes d’azote, d’oxygène et de soufre, ou sel d’un tel composé.

5. Composé conforme à la revendication 1, dans lequel le cycle B est un cycle benzénique, en option porteur de substituant(s), ou sel d’un tel composé.

6. Composé conforme à la revendication 1, dans lequel la partie de structure représentée par la formule
7. Composé conforme à la revendication 1, dans lequel la partie de structure représentée par la formule est l’une des suivantes :

8. Composé conforme à la revendication 1, dans lequel le ou les substituant(s) porté(s) par le cycle B est ou sont choisis(s) parmi les suivants :

1) les groupes alkyle en C_{1-6},
2) les groupes alkyle en C_{1-6} porteurs d’un substituant aralcoxy en C_{7-16}, en option porteur d’un substituant carboxyle,
3) les groupes alkyle en C_{1-6} porteurs d’un substituant (aryle en C_{6-14})-amino-carbonyle, en option porteur d’un substituant carboxyle,
4) les groupes alkyle en C_{1-6} porteurs d’un substituant (aryle en C_{6-14})-carbonyl-amino, en option porteur d’un substituant carboxyle,
5) les groupes alkyle en C_{1-6} porteurs d’un substituant aryloxy en C_{6-14}, en option porteur d’un substituant carboxyle.
carboxyle,
6) les groupes aryloxy en C6-14, en option porteurs d'un substituant carboxyle,
7) les groupes aralcoxy en C7-16, en option porteurs d'un substituant carboxyle,
8) les groupes aryle en C6-14, en option porteurs d'un substituant carboxyle,
9) le groupe carbamyle, en option porteur d'un substituant aralkyle en C7-16, en option porteur d'un substituant
carboxyle,
10) le groupe amino, en option porteur d'un substituant (aralkyle en C7-16)-carbonyle,
11) et les atomes d'halogène,
ou sel d'un tel composé.

9. Composé conforme à la revendication 1, dans lequel la partie de structure représentée par la formule

![Diagramme](image)

est l'une des suivantes :

![Diagrams](image)
dans lesquelles R⁸ et R⁹ représentent chacun :

1) un groupe alkyle en C1-6,
2) un groupe alkyle en C1-6 porteur d'un substituant aralcoxy en C7-16, en option porteur d'un substituant
carboxyle,
3) un groupe alkyle en C1-6 porteur d'un substituant (arylé en C6-14)-amino-carbonyle, en option porteur d'un substituant
carboxyle,
4) un groupe alkyle en C1-6 porteur d'un substituant (arylé en C6-14)-carbonyl-amino, en option porteur d'un substituant
carboxyle,
5) un groupe alkyle en C1-6 porteur d'un substituant aryloxy en C6-14, en option porteur d'un substituant carboxyle,
6) un groupe aralcoxy en C7-16, en option porteur d'un substituant carboxyle,
7) un groupe aryle en C6-14, en option porteur d'un substituant carboxyle,
8) un groupe aralcoxy en C7-16, en option porteur d'un substituant carboxyle,
9) un groupe carbamyle, en option porteur d'un substituant aralkyle en C7-16, en option porteur d'un substituant
carboxyle,
10) ou un groupe amino, en option porteur d'un substituant (aralkyle en C7-16)-carbonyle,
ou sel d'un tel composé.

10. Composé conforme à la revendication 1, dans lequel X représente un groupe méthanediyle, en option porteur de
substituant(s), ou sel d'un tel composé.

11. Composé conforme à la revendication 1, dans lequel le cycle C est un cycle benzénique, en option porteur de
substituant(s), ou un cycle pyridinique, en option porteur de substituant(s), ou sel d'un tel composé.

12. Composé conforme à la revendication 1, qui est l’un des suivants :

- acide 4-[2-((6-fluoro-[[{{3-(méthoxy)phényl[méthyl]amino]-carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl} oxy]
étethyl]benzoïque
- acide 4-[[((3-chloro-4-fluoro-phényl)méthyl]amino]-carbonyl]-4-oxo-3,4-dihydrothiéno[2,3-d]pyrimidin-5-
ou un sel de l'un de ces composés.

13. Agent pharmaceutique comprenant un composé conforme à la revendication 1 ou un sel d'un tel composé.

14. Agent pharmaceutique conforme à la revendication 13, qui est un agent destiné à la prophylaxie ou au traitement d'une ostéoarthrite ou d'un polyarthrite rhumatoïde.

15. Procédé de préparation d'un composé conforme à la revendication 1 ou d'un sel d'un tel composé, lequel procédé comporte :

1) le fait de faire réagir un composé de formule

\[
\begin{array}{c}
\text{L} \\
\end{array}
\]

dans laquelle \(L \) représente un groupe partant et les autres symboles ont les significations indiquées dans la revendication 1, ou un sel d'un tel composé, avec un composé de formule

\[
\begin{array}{c}
\text{R-H} \\
\end{array}
\]

dans laquelle \(R \) représente un substituant porté par le cycle \(B \), ou avec un sel d'un tel composé.

16. Inhibiteur de métalloprotéase matricielle, comprenant un composé conforme à la revendication 1 ou un sel d'un tel...
17. Inhibiteur conforme à la revendication 16, pour lequel la métalloprotéase matricielle est la métalloprotéase matricielle 13 (MMP-13).

18. Composé conforme à la revendication 1, ou sel d’un tel composé, pour utilisation en tant qu’inhibiteur de métalloprotéase matricielle.

19. Composé conforme à la revendication 1, représenté par la formule suivante :

\[
\begin{array}{c}
\text{C} \\
\text{H} \\
\text{N} \\
\text{O} \\
\text{R}^4 \\
\text{R}^5 \\
\text{R}^6 \\
\text{R}^7
\end{array}
\]

dans laquelle R^4, R^5, R^6 et R^7 représentent chacun :

i) un atome d’hydrogène,
ii) un atome d’halogène,
iii) un groupe cyano,
iv) un groupe hydroxyde,
v) un groupe amino, en option porteur d’un ou de substituant(s) choisi(s) parmi
 a) les groupes aralkyle en C_{7-16}, en option porteurs d’un substituant alcoxy en C_{1-6},
 b) les groupes (alkyle en C_{1-6})-carbonyle, en option porteurs d’un substituant aryloxy en C_{6-14},
 c) et les groupes (alkyle en C_{1-6})-sulfonyle,
vi) un groupe alkyle en C_{1-6}, en option porteur d’un ou de substituant(s) choisi(s) parmi
 a) les atomes d’halogène,
 b) les groupes alcoxy en C_{1-6},
 c) les groupes hétérocycliques non-aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 4 hétéroatomes choisi(s) parmi les atomes d’azote, d’oxygène et de soufre,
 d) et les groupes aralcoxy en C_{7-16}, en option porteurs d’un substituant carboxyle,

vii) un groupe aryle en C_{6-14},

viii) un groupe alcoxy en C_{1-6}, en option porteur d’un ou de substituant(s) choisi(s) parmi
 a) les atomes d’halogène,
 b) le groupe hydroxyde,
 c) les groupes cycloalkyle en C_{3-7},
 d) les groupes aralcoxy en C_{7-16},
 e) les groupes hétérocycliques aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 4 hétéroatomes choisi(s) parmi les atomes d’azote, d’oxygène et de soufre,
 f) les groupes hétérocycliques non-aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisi(s) parmi les atomes d’azote et d’oxygène, et en option porteurs d’un substituant carboxyle,
 g) et les groupes (aryl en C_{6-14})-carbonyle,

ix) un groupe aralcoxy en C_{7-16}, en option porteur d’un ou de substituant(s) choisi(s) parmi
 a) les atomes d’halogène,
 b) le groupe cyano,
 c) le groupe carboxyle,
 d) les groupes alkyle en C_{1-6}, en option porteurs d’un substituant carboxyle,
e) les groupes alcoxy en C₁₋₆, en option porteurs d’un substituant carboxyle,

f) le groupe amino,

g) les groupes (alcoxy en C₁₋₆)-carbonyle,

h) le groupe carbamyle,

i) les groupes hétérocycliques aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisis parmi les atomes d’azote, d’oxygène et de soufre,

j) le groupe amino-sulfonyle-aminoglycolique, en option porteur d’un substituant (alcoxy en C₁₋₆)-carbonyle,

k) et les groupes hétérocycliques non-aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisis parmi les atomes d’azote, d’oxygène et de soufre,

x) un groupe hétérocyclique non-aromatique, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisis parmi les atomes d’azote et d’oxygène,

xi) un groupe sulfhydryle,

xii) un groupe alkyl-thio en C₁₋₆,

xiii) un groupe aralkyl-thio en C₇₋₁₆,

xiv) un groupe hétérocyclique-thio à hétérocyclique aromatique comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisis parmi les atomes d’azote, d’oxygène et de soufre,

xv) un groupe alcoxy-carbonyl-carbonyl-carbonyl,

xvi) un groupe carbamyle,

xvii) un groupe mono(alkyle en C₁₋₆)-amino-thiocarbonyl-oxy ou di(alkyle en C₁₋₆)-amino-thiocarbonyl-oxy,

xviii) un groupe mono(alkyle en C₁₋₆)-carbamyle-thio ou di(alkyle en C₁₋₆)-carbamyle-thio,

xix) un groupe nitro,

xx) ou un groupe hétérocyclique aromatique, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisis parmi les atomes d’azote et d’oxygène ;

et le cycle C’ est un cycle aryle en C₆₋₁₄ ou un groupe hétérocyclique comportant de 5 à 8 chaînons et comportant de 1 à 3 hétéroatomes choisis parmi les atomes d’azote et d’oxygène, lequel cycle ou groupe hétérocyclique peut en option porter un ou des substituant(s) choisis parmi :

i) les atomes d’halogène,

ii) le groupe cyano,

iii) le groupe amino, en option porteur d’un ou de substituant(s) choisis parmi :

a) les groupes alkylen C₁₋₆, en option porteurs d’un substituant alcoxy en C₁₋₆,

b) les groupes (alkyle en C₁₋₆)-carbonyl-carbonyl,

c) les groupes (alkyle en C₁₋₆)-sulfonyle,

d) les groupes (alcoxy en C₁₋₆)-carbonyl-carbonyl,

e) les groupes (alcoxy en C₁₋₆)-carbonyl-carbonyl-carbonyl,

f) les groupes (alcoxy en C₁₋₆)-carbonyl-(alkyle en C₁₋₆)-carbonyl,

g) et les groupes hétérocyclyl-carbonyl-amino-carbonyl à hétérocyclique non-aromatique comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisis parmi les atomes d’azote et d’oxygène,

iv) les groupes alkylen C₁₋₆, en option porteurs d’un ou de substituant(s) choisis parmi :

a) les atomes d’halogène,

b) les groupes (alkyle en C₁₋₆)-carbonyl-amino,

c) les groupes (alkyle en C₁₋₆)-sulfonyle-amino,

d) les groupes (alcoxy en C₁₋₆)-carbonyl-carbonyl-amino à hétérocyclique non-aromatique comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisis parmi les atomes d’azote et d’oxygène,

e) les groupes (alcoxy en C₁₋₆)-carbonyl-carbonyl-carbonyl-amino,

f) les groupes hétérocyclyl-carbonyl-amino à hétérocyclique aromatique comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisis parmi les atomes d’azote et d’oxygène,

g) et les groupes hétérocycliques non-aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisis parmi les atomes d’azote et d’oxygène,
v) les groupes aryle en C_{6-14}, en option porteurs d'un ou de substituant(s) choisi(s) parmi
 a) les atomes d'halogène,
 b) le groupe amino, en option porteur d'un substituant (alcoxy en C_{1-6})-carbonyle,
 c) les groupes alcoxy en C_{1-6},
 d) et le groupe carboxyle,

vi) les groupes aralkyle en C_{7-16}, en option porteurs d'un ou de substituant(s) alcoxy en C_{1-6},

vii) les groupes alcoxy en C_{1-6}, en option porteurs d'un ou de substituant(s) choisi(s) parmi
 a) les atomes d'halogène,
 b) les groupes alcoxy en C_{1-6},
 c) les groupes (alcoxy en C_{1-6})-carbonyle,
 d) et le groupe carboxyle,
 e) les groupes hétérocycliques aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisi(s) parmi les atomes d'azote, d'oxygène et de soufre, en option porteurs d'un substituant alkyle en C_{1-6},
 f) les groupes hétérocycliques non-aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisi(s) parmi les atomes d'azote et d'oxygène,
 g) et le groupe carbamyle, en option porteur d'un substituant alkyle en C_{1-6},

viii) les groupes aryloxy en C_{6-14}, en option porteurs d'un ou de substituant(s) choisi(s) parmi
 a) les atomes d'halogène,
 b) et les groupes alcoxy en C_{1-6},

ix) les groupes aryloxy en C_{6-14}, en option porteurs d'un ou de substituant(s) choisi(s) parmi
 a) les atomes d'halogène,
 b) le groupe amino, en option porteur d'un substituant (alcoxy en C_{1-6})-carbonyle,
 c) les groupes alcoxy en C_{1-6},
 d) et le groupe carboxyle,

x) les groupes aralcoxy en C_{7-16}, en option porteurs d'un ou de substituant(s) choisi(s) parmi
 a) les atomes d'halogène,
 b) les groupes alcoxy en C_{1-6},
 c) les groupes alcane-diyl-dioxy en C_{1-3},
 d) et les groupes aryle en C_{6-14},

xi) les groupes hétérocycl-oxy à hétérocycle non-aromatique comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisi(s) parmi les atomes d'azote et d'oxygène,

xii) les groupes hétérocycliques aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisi(s) parmi les atomes d'azote, d'oxygène et de soufre, en option porteurs d'un substituant aryloxy en C_{6-14}, lui-même en option porteur d'un atome d'halogène,

xiii) les groupes hétérocycliques non-aromatiques, comportant de 5 à 8 chaînons et comportant, outre des atomes de carbone, de 1 à 3 hétéroatomes choisi(s) parmi les atomes d'azote et d'oxygène,

xiv) les groupes (alcoxy en C_{1-6})-carbonyle,

xv) et les groupes (alkyle en C_{1-6})-uréido ;

sous réserve que, si R^4, R^5, R^6 et R^7 représentent des atomes d'hydrogène, le cycle C' est un cycle aromatique, ou un hétérocycle comportant de 1 à 3 hétéroatomes choisi(s) parmi les atomes d'azote et d'oxygène, qui porte l'un ou plusieurs des substituants cités ;

ou sel d'un tel composé.

\[\text{20. Composé conforme à la revendication 19, qui est l'un des suivants :} \]

\[\text{acide 4-[(6-fluoro-2-[[[3-(méthyloxy)phényl]méthyl]amino]-carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yl]oxy)} \]
méthyl]benzoïque
- 5-{{2-[4-((2,5-dioxo-imidazolidin-1-yl)phényl)éthyl]oxy}-6-fluoro-N-[[3-(méthyloxy)phényl]méthyl]-4-oxo-3,4-dihydroquinazoline-2-carboxamide
- acide 4-{{(6-fluoro-2-{{[[3-(méthyloxy)phényl]méthyl]amino}-carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yloxy}méthyl}phényl}-acétique
- acide 4-{{(6-fluoro-2-{{[4-fluoro-3-(méthyloxy)phényl]méthyl}-amino)carbonyl]-4-oxo-3,4-dihydroquinazolin-5-yloxy}méthyl]-benzoïque
ou un sel de l’un de ces composés.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 20048111 A [0005]
- WO 200391247 A [0005]
- WO 200355851 A [0005]
- WO 200335610 A [0005]
- WO 200419312 A [0005]
- WO 200419310 A [0005]
- WO 200419312 A [0005]
- WO 200419310 A [0005]
- WO 9817267 A [0121]
- WO 9857966 A [0121]
- WO 9856377 A [0121]
- WO 9825619 A [0121]
- WO 9807425 A [0121]
- US 5739143 A [0121]
- WO 9735855 A [0121]
- WO 9733883 A [0121]
- WO 9732583 A [0121]
- WO 9725048 A [0121]
- WO 9725046 A [0121]
- WO 9725045 A [0121]
- WO 9725047 A [0121]
- WO 9725046 A [0121]
- US 6096711 A [0121]
- WO 9964400 A [0121]
- WO 9959959 A [0121]
- WO 9953211 A [0121]
- WO 9958523 A [0121]
- WO 9958502 A [0121]
- WO 9957101 A [0121]
- WO 9952940 A [0121]
- WO 9952937 A [0121]
- WO 9952958 A [0121]
- WO 9952956 A [0121]
EP 1 740 551 B9

Non-patent literature cited in the description

- Bulletin of The Chemical Society of Japan, 1990, 72-83 [0006]
- Journal of Medicinal Chemistry, 1993, vol. 36 (15), 2362-2372 [0150] [0203] [0267] [0271] [0397] [0578]
- Pharmazie, 1967, vol. 22 (9), 465-70 [0220]
- Journal of Medicinal Chemistry, 1979, vol. 22 (1), 44-8 [0279]
- Chemische Berichte, 1988, vol. 121 (3), 485-92 [0293] [0295]