Liquid crystal display device and method for manufacturing the same

Flüssigkristallanzeigevorrichtung und Herstellungsverfahren dafür

Dispositif d’affichage à cristaux liquides et son procédé de fabrication

Designated Contracting States: DE FR GB

Priority: 30.06.2005 KR 20050058301

Date of publication of application: 03.01.2007 Bulletin 2007/01

Proprietor: LG Display Co., Ltd.
Youngdungpo-gu,
Seoul (KR)

Inventor: Yoon, Sung Hoe
801-1202 Dongmun gutmoninghil
Paju-si
Gyeonggi-do (KR)

Representative: Ter Meer Steinmeister & Partner
Patentanwälte
Mauerkircherstrasse 45
81679 München (DE)

References cited:
US-B1- 6 359 667
US-B1- 6 501 527

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The present invention relates to a liquid crystal display (LCD) device, and more particularly, to an LCD device and a method for manufacturing the same, in which a protrusion is arranged to oppose a column spacer.

Discussion of the Related Art

[0003] Demands for various display devices have increased with development of an information society. Accordingly, many efforts have been made to research and develop various flat display devices such as liquid crystal display (LCD), plasma display panel (PDP), electroluminescent display (ELD), and vacuum fluorescent display (VFD). Some species of flat display devices have already been applied to displays for various equipments.

[0004] Among the various flat display devices, liquid crystal display (LCD) devices have been most widely used due to advantageous characteristics of thin profile, lightness in weight, and low power consumption, whereby the LCD devices provide a substitute for a Cathode Ray Tube (CRT). In addition to mobile type LCD devices such as a display for a notebook computer, LCD devices have been developed for computer monitors and televisions to receive and display broadcasting signals.

[0005] In order to use LCD devices in various fields as a general display, the key to developing LCD devices depends on whether LCD devices can implement a high quality picture, such as high resolution and high luminance with a large-sized screen, while still maintaining lightness in weight, thin profile, and low power consumption.

[0006] Meanwhile, a spacer is formed between first and second substrates of the aforementioned LCD device to maintain a constant interval for a liquid crystal layer.

[0007] The spacer may be a ball spacer or a column spacer depending on a shape.

[0008] The ball spacer has a spherical shape, and is dispersed on the first and second substrates. Also, the ball spacer is relatively free in its movement even after the first and second substrates are bonded to each other. The ball spacer has a small contact area with the first and second substrates.

[0009] By contrast, the column spacer is formed by an array process on the first substrate or the second substrate. The column spacer is formed on a predetermined substrate in a column shape having a predetermined height. Therefore, the column spacer has a relatively great contact area with the first and second substrates.

[0010] Hereinafter, a related art LCD device provided with a column spacer will be described with reference to the accompanying drawings.

[0011] FIG. 1 is a sectional view illustrating a related art LCD device provided with a column spacer.

[0012] As shown in FIG. 1, the related art LCD device provided with a column spacer includes first and second substrates 30 and 40 opposing each other, a column spacer 20 formed between the first and second substrates 30 and 40, and a liquid crystal layer (not shown) filled between the first and second substrates 30 and 40.

[0013] The first substrate 30 includes a gate line 31 crossing a data line (not shown) to define a pixel region, a thin film transistor TFT formed on a crossing region of the gate line 31 and the data line, and a pixel electrode or an overcoat layer 43 formed on the color filter layer 42.

[0014] The second substrate 40 includes a black matrix layer 41 corresponding to a region other than the pixel region, a stripe shaped color filter layer 42 corresponding to vertical pixel regions parallel with the data line, and a common electrode or an overcoat layer 43 formed on the color filter layer 42.

[0015] The column spacer 20 is formed to correspond to a predetermined position above the gate line 31.

[0016] The first substrate 30 further includes a gate insulating layer 36 formed on the entire surface including the gate line 31, and a passivation layer 37 formed on the gate insulating layer 36.

[0017] FIGs. 2A and 2b are a plane view and a sectional view illustrating a touch defect of the related art LCD device provided with a column spacer.

[0018] As shown in FIGs. 2A and 2B, in the LCD device provided with the column spacer, if an LCD panel 10 is touched with a finger or another thing along a predetermined direction, a spot is generated on the touched portion. The spot is referred to as a touch spot or a touch defect because the spot is generated on the screen of the LCD panel.

[0019] It is noted that such a touch defect is caused by the frictional force generated by a large contact area between the column spacer 20 and its opposing first substrate 1. In other words, as shown in FIG. 2B, the column spacer 20 is in contact with the first substrate 1 to form a relatively large contact area unlike the ball spacer. Therefore, it takes a long time to restore the first and second substrates 1 and 2 shifted due to the touch to their original state. For this reason, the spot remains until the first and second substrates are restored to their original state.

[0020] The aforementioned related art LCD device provided with the column spacer has the following problems.

[0021] First, when the LCD panel is touched with a finger or another thing, the luminance of the black state of the panel becomes unbalanced. In other words, the substrate may be deformed by the load that pulls the substrate in a deformed direction of a polarizing plate at-
tached onto a surface (rear surface) of the LCD panel when the polarizing plate is contracted or relaxed due to surrounding humidity and temperature change. For this reason, alignment of the liquid crystals may be disordered, and as a result, the unbalanced black state is caused. Also, the upper and lower substrates may be distorted in the range of 20μm to 100μm by touch (rubbing) of the LCD panel. In this case, even though the finger is removed from the LCD panel after touch, the two substrates fail to restore to their original state due to surface tension between them, thereby continuing to generate light leakage. As a result, the black screen becomes unbalanced.

[0022] This is because that the pulling load generated as the column spacer is closely attached onto its opposing substrate acts more greatly than the load to be restored to the shape before the deformation of the substrate.

[0023] JP 10-039318 A discloses a liquid crystal display element having first and second substrates opposing each other. Gate and data lines crossing each other are provided on the first substrate to define pixel regions. Thin film transistors are formed at crossing portions of the gate lines and the data lines. Column spacers are formed from the color filter layer materials on a predetermined portion of the second substrate by a patterning process. Further, a protrusion or projecting member is formed on the first substrate corresponding to the column spacers to be in contact with the column spacers after bonding the first and second substrates together. A liquid crystal layer is filled between the first and second substrates.

[0024] JP 2004-301933 A shows a liquid crystal display device having ball spacers provided in a liquid crystal display layer disposed between first and second substrates. In another embodiment column spacers are provided instead of ball spacers. For the spacers an elastic deformation rate is disclosed that should be not less than 60%. Here it is especially preferred that the deformation rate is not less than 80%, especially not less than 70%.

[0025] US 6,359,667 B1 is concerned with organopolysiloxane fine particles, a process for the production thereof and liquid crystal displays. The fine particles, i.e. a kind of ball spacers, are produced by providing seed particles dispersed in a suitable solution and then growing the seed particles to fine particles having a desired size.

[0026] To dispose these fine particles or ball spacers on a substrate for forming a liquid crystal display device, the fine particles are dispersed in a solvent to obtain a spread dispersion. Then, this spread dispersion is spread by spraying through a spray nozzle onto an alignment coating provided on a substrate.

[0027] US 6,501,527 B1 discloses a spacer formed by an ink-jet method used in manufacturing a liquid crystal element device having a spacer bearing substrate and second substrate bonded thereto. A spacer-forming material is ejected by means of an ink-jet head onto the upper surface of a color filter substrate. If a bead containing spacer forming material is used a bead or ball spacer can be formed on the upper surface of a substrate. Such a spacer includes beads or balls which are fixed to the surface by means of an adhesive.

[0028] The spacers that are provided on the spacer bearing substrate to maintain the width of the cell gap between opposing substrates is formed with a bead containing spacer-forming material. According to this spacer, beads or balls are fixed to a transparent conductive film on the spacer bearing color filter substrate with an adhesive.

[0029] JP 2001-083526 A is concerned with a liquid crystal display device and its production and discloses in the substrate and a liquid crystal display device having both, ball spacers and column spacers provided between first and second substrates in a liquid crystal layer. These two types of spacers are each used independently from each other for the same purpose, i.e. for maintaining the correct distance between the two displays.

SUMMARY OF THE INVENTION

[0030] The object of the present invention is to provide an LCD device and a method for manufacturing the same, in which touch defects can be reduced and the capability of the display to be restored to the shape before the deformation caused by touching the display with a finger is improved.

[0031] This object is achieved by the liquid crystal display device according to claim 1 and the method according to claim 9. Advantageous embodiments of the invention are described in the respective depending claims.

[0032] In particular, according to the present invention a ball spacer made of an organic material is used as a protrusion that is formed on a fixed position of the first substrate to oppose the column spacer to provide a contact area between the protrusion and the opposite surface of the column spacer that is smaller than the area of the opposite surface of the column spacer. In this way, it is possible to reduce the contact area between the column spacer and its opposing substrate. Further, the protrusion is formed of an organic material to minimize deformation of the column spacer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:

[0034] FIG. 1 is a sectional view illustrating a related art LCD device provided with a column spacer;

[0035] FIGs. 2A and 2B are a plane view and a sectional view illustrating a touch defect of the related art LCD device provided with a column spacer;
[0036] FIG. 3 is a sectional view illustrating an LCD device provided with a protrusion structure of an inorganic material;

[0037] FIGs. 4A and 4B are sectional views illustrating the state when and after a column spacer corresponding to an protrusion structure of an inorganic material of FIG. 3 is pressurized;

[0038] FIG. 5 is a graph illustrating a deformation range of a column spacer depending on a load;

[0039] FIG. 6 is a graph illustrating recovery displacement of a column spacer per material depending on a time period;

[0040] FIG. 7 is a sectional view illustrating an LCD device having a protrusion structure of an organic material according to the present invention;

[0041] FIGs. 8A and 8B are sectional views illustrating the state when and after a column spacer corresponding to an protrusion structure of an inorganic material of FIG. 7 is pressurized; and

[0042] FIG. 9 is a plane view illustrating an LCD device according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0043] Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

[0044] When an LCD panel of an LCD device is touched with a finger or other thing, a touch defect is caused by great friction generated due to a large contact area between a column spacer and its opposing substrate. For this reason, it takes a long time to restore the substrate shifted due to touch to its original state. Therefore, efforts to remove the touch defect have been suggested. One of the efforts is an LCD device having a protrusion in which the protrusion is formed to oppose a column spacer so that a column spacer is in contact with its opposing substrate at a contact area smaller than an upper surface of the column spacer.

[0045] FIG. 3 is a sectional view illustrating an LCD device having a protrusion of an inorganic material.

[0046] As shown in FIG. 3, the LCD device having a protrusion of an inorganic material includes first and second substrates 50 and 60 opposing each other, a column spacer 70 formed at a predetermined portion on the second substrate 60, a protrusion 55 having a volume relatively smaller than that of the column spacer 70, formed on the first substrate 50 to contact a predetermined portion of the column spacer 70, and a liquid crystal layer (not shown) filled between the first and second substrates 50 and 60.

[0047] The first substrate 50 is a thin film transistor array substrate provided with a thin film transistor array, and the second substrate 60 is a color filter array substrate provided with a color filter array.

[0048] The thin film transistor array formed on the first substrate 50 is omitted in the drawing except for the protrusion 55.

[0049] For example, the thin film transistor array includes a gate line, a data line crossing the gate line to define a pixel region, a pixel electrode formed in the pixel region, and a thin film transistor formed at a crossing region of the gate and data lines.

[0050] A black matrix layer 61, a color filter layer 62, and an overcoat layer 63 are formed on the second substrate 60. The column spacer 70 is formed on the overcoat layer 63 of the second substrate 60 corresponding to the protrusion 55. An alignment layer is formed on the entire surface of the overcoat layer 63 including the column spacer 70.

[0051] The column spacer 70 is formed by patterning an organic material using an exposure process.

[0052] For the protrusion 55 of an organic material, when the first substrate 50 or the second substrate 60 is shifted with respect to its opposing substrate as the surface of the first substrate 50 or the second substrate 60 is touched (rubbed or grazed in one direction), a contact area between the column spacer 70 and the protrusion 55 is reduced to an upper area of the protrusion 55 relatively smaller than an upper surface (where the column spacer opposes the protrusion 55, in this case, the portion where the column spacer is formed on the surface of the second substrate 60 is referred to as a lower surface) of the column spacer 70. In this case, a frictional force between the column spacer 70 and its opposing substrate, the first substrate 50 is reduced due to a reduced frictional area. Therefore, when the first substrate 50 or the second substrate 60 is pushed in one direction by touch, it is easy to restore either the first substrate 50 or the second substrate 60 to its original state.

[0053] However, if the protrusion 55 is formed of an inorganic material, since the protrusion 55 has elasticity relatively smaller than that of the column spacer, the column spacer is seriously deformed during a bonding process or when it is pressurized by the external load.

[0054] FIGs. 4A and 4B are sectional views illustrating the state when and after the column spacer corresponding to the protrusion of an inorganic material of FIG. 3 is pressurized.

[0055] As shown in FIG. 4A, after the column spacer of an organic material is formed to correspond to the protrusion of an inorganic material, if the column spacer is in contact with the protrusion by bonding or pressure, the column spacer 70 corresponding to the protrusion 55 may be pushed (imprinted).

[0056] As shown in FIG. 4B, even though the load applied to the upper portion of the column spacer 70 is removed, the shape of the column spacer 70 corresponding to the protrusion 55 remains deformed. The portion where the column spacer 70 is seriously pushed (imprinted) is observed by the naked eye. This acts as a display defect.

[0057] As described with reference to FIGs. 3 to 4B,
the LCD device having a protrusion has been developed in order to improve unbalanced black luminance observed in the LCD device provided with a column spacer. In other words, an protrusion structure is inserted into the first substrate (thin film transistor array substrate) to quickly restore the first substrate to its original state even though stress is applied to the LCD panel, so that the contact area between the first substrate and the column spacer of the second substrate (color filter array substrate) can be reduced. As a result, unbalanced black luminance can remarkably be improved.

In the aforementioned protrusion structure, since the protrusion 55 is formed of an inorganic material, the external load is first contacted with the protrusion 55 on the first and second substrates 50 and 60 and thus concentrated thereon. The external load is transferred to the column spacer 70 contacted with the protrusion 55, and sometimes exceeds a limit load so as not to allow the organic material constituting the column spacer 70 to restore to its original state. For this reason, permanent deformation of the column spacer 70 is caused to locally deteriorate a cell gap, thereby resulting in a side effect in which a spot is found in a corresponding portion.

In other words, the column spacer 70 is designed to be pushed by the protrusion 55 and then restored to its original state (elastic force) if a load pushed by the protrusion 55 is removed. However, even though the load locally concentrated on the protrusion is removed after it is applied to the column spacer beyond its limit range, the column spacer remains deformed without being restored to its original state.

Hereinafter, the LCD device and a method for manufacturing the same will be described with reference to the accompanying drawings, in which unbalanced black luminance is improved by the protrusion structure and at the same time the column spacer and its relevant layers are prevented from being deformed.

FIG. 5 is a graph illustrating a deformation range of the column spacer depending on a load.

As shown in FIG. 5, when a predetermined load is applied to the column spacer in a vertical direction, the column spacer having elasticity is compressed and deformed in its height. If the load is removed, the column spacer is restored to its original state or a similar state depending on its elastic recovery rate. In this case, if the column spacer is restored to its original state well, it is determined that the elastic recovery rate is good. By contrast, if the column spacer is restored to its original state at a low level, it is determined that the elastic recovery rate is low.

As shown in FIG. 5, if a deformation range of the column spacer is tested with increase of pressure against the column spacer, it is noted that the column spacer is almost linearly deformed in proportion to pressure until the deformation range reaches a certain level. Even though the same load is applied to the column spacer under the pressure of a certain level, the column spacer is deformed in a direction of the load. In this case, the deformation range of the column spacer to reach a predetermined time period under the pressure of a certain level is L.

After the load is completely removed under the pressure of a certain level, the column spacer is instantaneously restored to its original state. In other words, even though the load is completely removed, the column spacer is not completely restored to its original state but restored to the state corresponding to L'. In this case, the elastic recovery rate of the column spacer is defined in the range of \([L'/L]*100\%\).

The initial displacement of the column spacer is referred to as \(P(0)\), and the displacement when the deformed column spacer is instantaneously restored to its original state under the pressure is referred to as \(P\).

FIG. 6 is a graph illustrating recovery displacement of the column spacer per material depending on a time period.

Referring to FIG. 6, the recovery displacement of each column spacer formed of each material of A, B and C is shown depending on a time period when the applied pressure is removed. The recovery displacement of each column spacer is obtained by subtracting the initial displacement \(P(0)\) of the column spacer from the recovery displacement \(P\) when the column spacer is recovered after deformation. In this case, the recovery displacement of the column spacer formed of A is 0, and this value means that the column spacer is restored to its original state without deformation when the pressure applied to the column spacer is removed. The recovery displacement \(P\) of the column spacer formed of C means that the column spacer remains deformed without being restored to its original state after the column spacer is deformed by the pressure. The column spacer formed of B has intermediate characteristics between A and C. In this respect, the materials B and C generate plastic deformation, and especially are likely to generate deformation in the aforementioned protrusion structure of an inorganic material.

Hereinafter, in order to prevent deformation of the column spacer when the substrates are pressurized or bonded to each other, the LCD device having a protrusion of an organic material according to the present invention will be described.

FIG. 7 is a sectional view illustrating an LCD device having a protrusion of an organic material according to the present invention.

As shown in FIG. 7, the LCD device having a protrusion of an organic material according to the present invention includes first and second substrates 100 and 200 opposing each other, a column spacer 210 formed at a predetermined portion on the second substrate 200, a protrusion 110 having a volume relatively smaller than that of the column spacer 210, formed on the first substrate 100 to contact a predetermined portion of the column spacer 210, and a liquid crystal layer (not shown) filled between the first and second substrates 100 and 200.
[0071] The first substrate 100 is a thin film transistor array substrate provided with a thin film transistor array, and the second substrate 200 is a color filter array substrate provided with a color filter array.

[0072] The thin film transistor array formed on the first substrate 100 is omitted in the drawing except for the protrusion 110. For example, the thin film transistor array includes a gate line, a data line crossing the gate line to define a pixel region, a pixel electrode in the pixel region, and a thin film transistor formed at a crossing region of the gate and data lines.

[0073] The protrusion 110 is formed by patterning an organic material when the thin film transistor array is formed on the first substrate 100. In this case, the thin film transistor array is formed by the process steps of forming a gate line including a gate electrode, a gate insulating layer, a semiconductor layer, a data line including source/drain electrodes, a passivation layer, and a pixel electrode. The protrusion 110 is formed by forming a pixel electrode and patterning the pixel electrode at the final step of the array process. Alternatively, the protrusion 110 is formed by additionally forming an organic layer between the process step of forming a gate line and the process step of forming a pixel electrode and patterning the organic layer. In either case, the protrusion 110 is formed at a predetermined portion on the gate and data lines.

[0074] A black matrix layer 201, a color filter layer 202, and an overcoat layer 203 are formed on the second substrate 200. The column spacer 210 is formed on the overcoat layer 203 of the second substrate 200 corresponding to the protrusion 110. An alignment layer is formed on the entire surface of the overcoat layer 203 including the column spacer 210.

[0075] The column spacer 210 is formed by patterning an organic material using an exposure process.

[0076] Main components of the column spacer 210 include a photo-initiator, a thermal-initiator, a responsive monomer (photo-responsive monomer, thermal-responsive monomer, monomer having photo-responsive characteristics and thermal-responsive characteristics, oligomer, or polymer), and an adhesion promoter. When the column spacer is formed using an inkjet device, a non-responsive volatile solvent may be added to the components of column spacer to control viscosity in a head of the inkjet device.

[0077] The protrusion 110 is formed by dotting at a predetermined position (corresponding to the column spacer) using the inkjet device. In this case, the protrusion 110 is formed in such a manner that a resin solution is cured using an exposure process or a thermal treatment process and then fixed to the first substrate 100 after a ball spacer is dispersed in the resin solution and dotted at a predetermined position using the inkjet device. Alternatively, the protrusion 110 is formed in such a manner that an organic insulating material having the same or similar physical properties as or to those of the column spacer 210 is patterned in a column spacer shape having an upper surface smaller than that of the column spacer 210.

[0078] If the protrusion 110 is a ball spacer type, the protrusion 110 is formed after the alignment layer is formed. In more detail, after the solution in which the ball spacer is dispersed in a resin solution is prepared and coated on a corresponding position of the column spacer in a dotting manner using an inkjet nozzle, the resin solution is cured using an exposure process or a thermal treatment process and fixed to the substrate. At this time, the size of the ball spacer is controlled to have a diameter of 20µm or less, more preferably 10µm or less. The ball spacer shaped protrusion 110 is preferably formed to have a small size so that the column spacer 210 and the upper surface (contact area with the protrusion) all overlap the whole portion of the protrusion 110.

[0079] When the protrusion 210 is formed of the ball spacer, the ball spacer is made of at least one of polystyrene, divinyl benzene, poly-vinyl alcohol, and polyacrylate. In more detail, when the protrusion is formed of the ball spacer, a core of the ball spacer is made of at least one of polystyrene and divinyl benzene. A response group (OH-) of the core includes poly-vinyl alcohol, polyacrylate or a structure resulted from poly-vinyl alcohol or poly-acrylate. In this case, the response group of the core of the ball spacer is fixed onto the first substrate by surface treatment (thermal treatment).

[0080] If the protrusion 110 is formed of the column spacer, the alignment layer is formed after the protrusion 110 is formed. In this case, the protrusion 110 is formed of a photo-initiator, a thermal-initiator, a responsive monomer, and an adhesion promoter. In the LCD device of the present invention, the column spacer and the protrusion corresponding to the column spacer are formed of a material obtained by adding acryl or acryl epoxy resin to a responsive monomer.

[0081] The process of forming the column spacer includes the steps of coating an organic insulating material, exposing a predetermined portion of the organic insulating material, removing the exposed portion or the non-exposed portion using a developer, and performing a baking process. In this case, the column spacer is formed using an organic insulating layer having good elastic recovery rate (60% or greater). Also, the lower surface (corresponding to the second substrate) of the column spacer has a critical dimension (CD) greater than that of the upper surface (corresponding to the first substrate) of the column spacer. At this time, the critical dimension of the lower surface is controlled in the range of 20µm to 50µm, more preferably 30µm to 40µm.

[0082] The protrusion 110 and the column spacer 210 are formed of a material obtained by adding acryl or acryl epoxy resin to a responsive monomer so that they have similar physical properties. Particularly, materials having similar elastic recovery rates are used as the protrusion 110 and the column spacer 210.

[0083] FIGs. 8A and 8B are sectional views illustrating the state when and after the column spacer correspond-
As shown in FIG. 8A, the external load is concentrated on a portion where the column spacer 210 is first contacted with the protrusion 110, in the same manner as the general protrusion structure. However, since the protrusion 110 is formed of an organic material having physical properties similar to those of the column spacer unlike a protrusion of a metal or semiconductor, the load applied to the first substrate 100 or the second substrate 200 is uniformly dispersed in the protrusion and the column spacer 210.

Therefore, the load applied to the column spacer 210 is reduced to half. This reduces the probability of the threshold load that causes plastic deformation of the column spacer 210. As shown in FIG. 8B, if the external load is removed, the external load is dispersed in a column spacer 210a and a protrusion 110a. In this case, the load less than the external load that causes plastic deformation is applied to the column spacer 210a. As a result, the column spacer 210a is completely restored to its original state (dimensions) even though it may take time in pressurizing and bonding processes.

As described above, the LCD device of the present invention depends on the mechanism in which the column spacer 210 and the protrusion 110 are deformed by the external load and together restored to their original state when the external load is removed.

Hereinafter, the thin film transistor array formed below the protrusion 110 will be described with reference to FIG. 9.

FIG. 9 is a plane view illustrating the LCD device according to the present invention.

As shown in FIG. 9, in the LCD device of the present invention, the protrusion 110 of an organic material is formed before or after the alignment layer is formed.

The LCD device of the present invention includes first and second substrates 100 and 200 opposing each other, a protrusion 110 formed of an organic material on the first substrate 100, and a column spacer 210 formed on the second substrate 200 to correspond to the protrusion 110 (see FIG. 7).

In more detail, the first substrate 100 includes gate lines 101 including gate electrodes 101a, formed in a first direction, a gate insulating layer (not shown) formed on the entire surface of the first substrate 100 including the gate lines 101, island shaped semiconductor layers 104 formed on the gate insulating layer to cover the gate electrodes 101a, data lines 102 formed on the gate insulating layer in a second direction vertical to the gate lines 101 and provided with source electrodes 102a extended therefrom, a passivation layer (not shown) formed on the entire surface of the first substrate 100 including the data lines 102, and pixel electrodes 103 and common electrodes 107a alternately formed in pixel regions above the passivation layer. The common electrodes 107a are extended from common lines 107 adjacent to and parallel with the gate lines 101.

Each of the thin film transistor includes a gate electrode 101a extended from the gate line 101, a source electrode 102a extended from the data line 102 in a 'U' shape, a drain electrode 102b spaced apart from the source electrode 102a and partially inserted into the 'U' shaped pattern of the source electrode 102a, and a semiconductor layer 104 formed above the gate electrodes 101a to partially adjoin lower portions of the source/drain electrodes 102a/102b. The semiconductor layer 104 is formed by depositing an amorphous silicon layer on a lower portion and an impurity layer on an upper portion.

The impurity layer is removed from a portion between the source electrode 102a and the drain electrode 102b.

The second substrate 200 includes a black matrix layer 201 shielding regions (gate and data lines) other than the pixel regions along with the region for the thin film transistor, a color filter layer 202 formed on the second substrate 200 including the black matrix layer 201 to correspond to the pixel regions, an overcoat layer 203 formed on the entire surface of the second substrate 200 including the black matrix layer 201 and the color filter layer 202, and a column spacer 210 formed on the overcoat layer 203 to correspond to the protrusion 110.

Meanwhile, a reference numeral 108, which is not described, denotes a contact hole that partially exposes the drain electrode 102b in the passivation layer 106. The contact hole serves to electrically connect the drain electrode 102b with the pixel electrode 103.

A method for manufacturing the LCD device of the present invention will now be described in brief.

First, the first and second substrates 100 and 200 opposing each other are prepared.

The thin film transistor array (gate and data lines, pixel electrode, and thin film transistor) is formed on the first substrate, while the color filter array (black matrix layer, color filter layer, and overcoat layer) is formed on the second substrate 200.

Subsequently, the column spacer of a first organic material is formed on a predetermined portion of the second substrate 200.

The protrusion 110 of a second organic material is then formed on a portion of the first substrate 100 corresponding to the column spacer 210, and has an upper surface of a critical dimension relatively smaller than that of the column spacer 210.

Afterwards, liquid crystals (not shown) are dropped onto any one of the first substrate 100 and the second substrate 200.

Next, the first and second substrates 100 and 200 are bonded to each other so that the protrusion 110 on the first substrate 100 opposes the column spacer 210 on the second substrate 200.

The protrusion can be formed by the following methods.

First, the protrusion can be formed by preparing a solution in which resin including the ball spacer is dis-
Second, the protrusion can be formed by preparing a negative photoresist film including the ball spacer, and dotting the negative photoresist film using the inkjet device.

Finally, the protrusion can be formed by coating the second organic material on the first substrate and selectively exposing and developing the coated material.

The column spacer opposing the protrusion is formed by coating the first organic material on the second substrate and selectively exposing and developing the coated material.

The first organic material and the second organic material have the same as or similar to that of the column spacer and the same protrusion.

Although the aforementioned LCD device has been described based on the IPS mode, it may be applied to a twisted nematic (TN) mode using the same column spacer and the same protrusion.

As described above, the LCD device and the method for manufacturing the same according to the present invention have the following advantages.

Since the protrusion having a relatively small upper surface is formed to oppose the column spacer, the frictional force between the column spacer and the substrate can be reduced. In this case, even though distortion between the substrates occurs due to rubbing (touch), the substrates can be restored to their original state, thereby improving unbalanced black luminance.

In addition, since the protrusion is formed of an organic material the same as or similar to that of the column spacer, it is possible to prevent the column spacer from being deformed by the external load or the pressure during the bonding process and to easily restore the column spacer to its original state when the external load is removed.

Moreover, since the material of the protrusion is varied, the load is uniformly dispersed in the protrusion and the column spacer when the external load is applied or the substrates are bonded to each other. As a result, it is possible to prevent plastic deformation of the protrusion or the column spacer from occurring and also avoid imprinting defect due to such plastic deformation.

Claims

1. An LCD device comprising:
 - first and second substrates (100, 200) opposing each other;
 - gate and data lines crossing each other on the first substrate to define pixel regions;
 - thin film transistors formed at crossing portions of the gate lines and the data lines;
 - a column spacer (210) formed of a first organic material on a predetermined portion of the second substrate (200);
 - a protrusion (110) formed of a second organic material on the first substrate (100), the protrusion (110) including a ball spacer formed on a fixed position of the first substrate (100) to oppose the column spacer (210), wherein the contact area between the protrusion (110) and the opposite surface of the column spacer (210) is smaller than the area of such opposite surface: and
 - a liquid crystal layer filled between the first and second substrates (100, 200).

2. The LCD device as claimed in claim 1, wherein the first organic material and the second organic material have elastic recovery rate of 60% or greater.

3. The LCD device as claimed in claim 2, wherein the first organic material is the same as the second organic material.

4. The LCD device as claimed in claim 1, wherein the ball spacer is made of at least one of polystyrene, divinyl benzene, poly-vinyl alcohol, and poly-acrylate.

5. The LCD device as claimed in claim 1, wherein the ball spacer has a diameter of 20 μm or less.

6. The LCD device as claimed in claim 5, wherein the ball spacer has a diameter of 10 μm or less.

7. The LCD device as claimed in claim 1, wherein the lower surface of the column spacer (210) corresponding to the second substrate has a width of 20 μm to 50 μm.

8. The LCD device as claimed in claim 1, wherein the first organic material for forming the column spacer (210) includes a photo-initiator, a thermal-initiator, a responsive monomer, and an adhesion promoter.

9. A method for manufacturing an LCD device comprising:
 - preparing first and second substrates (100, 200) opposing each other;
 - forming a thin film transistor array on the first substrate (100) and a color filter array (202) on the second substrate (200);
 - forming a column spacer (210) of a first organic material on a predetermined portion of the second substrate (200);
 - forming a protrusion (110) formed of a second organic material on the first substrate (100), the protrusion (110) including a ball spacer formed on a fixed position of the first substrate (100) to oppose the column spacer (210), wherein the contact area between the protrusion and the op-
positive surface of the column spacer (210) is smaller than the area of such opposite surface; - dropping liquid crystals onto any one of the first substrate (100) and the second substrate (200); and - bonding the first and second substrates (100, 200) to each other so that the protrusion (110) on the first substrate (100) opposes the column spacer (210) on the second substrate (200).

10. The method as claimed in claim 9, wherein the protrusion (110) is formed by preparing a solution in which a resin including the ball spacer is dispersed and dotting the solution using an inkjet device.

11. The method as claimed in claim 9, wherein the protrusion (110) is formed by preparing a negative photoresist film including a ball spacer and dotting the negative photoresist film using an inkjet device.

12. The method as claimed in claim 9, wherein the column spacer (210) is formed by coating the first organic material on the second substrate and selectively exposing and developing the coated organic material.

13. The method as claimed in claim 9, wherein the first organic material and the second organic material have elastic recovery rate of 60% or greater.

Patentansprüche

1. LCD-Vorrichtung, die umfasst:
 - ein erstes und ein zweites Substrat (100, 200), die einander gegenüberliegen;
 - Gate- und Datenleitungen, die einander auf dem ersten Substrat kreuzen, um Pixelbereiche zu definieren;
 - Dünnschichttransistoren, die an den Kreuzungsabschnitten der Gate-Leitungen und der Datenleitungen gebildet sind;
 - einen Säulenabstandshalter (210), der aus einem ersten organischen Material auf einem vorgegebenen Abschnitt des zweiten Substrats (200) gebildet ist;
 - einen Vorsprung (110), der aus einem zweiten organischen Material auf dem ersten Substrat (100) gebildet ist, wobei der Vorsprung (110) einen kugelförmigen Abstandshalter enthält, der an einer festen Position des ersten Substrats (100) gebildet ist, um dem Spaltenabstandshalter (210) gegenüberzuliegen, wobei die Kontaktfläche zwischen dem Vorsprung (110) und der gegenüberliegenden Fläche des Säulenabstandshalters (210) kleiner als der Bereich einer solchen gegenüberliegenden Fläche ist, und - eine Flüssigkristallschicht, die zwischen dem ersten und dem zweiten Substrat (100, 200) eingefüllt ist.

2. LCD-Vorrichtung nach Anspruch 1, wobei das erste organische Material und das zweite organische Material elastische Wiederherstellungsraten von 60 % oder mehr haben.

3. LCD-Vorrichtung nach Anspruch 2, wobei das erste organische Material dasselbe wie das zweite organische Material ist.

4. LCD-Vorrichtung nach Anspruch 1, wobei der kugelförmige Abstandshalter aus Polystyrol und/oder Divinylbenzol und/oder Polyvinyl-Alkohol und/oder Polyacrylat hergestellt ist.

5. LCD-Vorrichtung nach Anspruch 1, wobei der kugelförmige Abstandshalter einen Durchmesser von 20 \(\mu \text{m} \) oder weniger hat.

6. LCD-Vorrichtung nach Anspruch 5, wobei der kugelförmige Abstandshalter einen Durchmesser von 10 \(\mu \text{m} \) oder weniger hat.

7. LCD-Vorrichtung nach Anspruch 1, wobei die untere Fläche des Säulenabstandshalters (210), die dem zweiten Substrat entspricht, eine Breite von 20 \(\mu \text{m} \) bis 50 \(\mu \text{m} \) aufweist.

8. LCD-Vorrichtung nach Anspruch 1, wobei das erste organische Material zum Bilden des Säulenabstandshalters (210) einen Photoinitiator, einen thermischen Initiator, ein reaktionsfähiges Monomer und ein Haftmittel enthält.

9. Verfahren zum Herstellen einer LCD-Vorrichtung, das umfasst:
 - Bereitstellen eines ersten und eines zweiten Substrats (100, 200), die einander gegenüberliegen;
 - Bilden einer Dünnschichttransistoranordnung auf dem ersten Substrat (100) und einer Farbfilteranordnung (202) auf dem zweiten Substrat (200);
 - Bilden eines Säulenabstandshalters (210) aus einem ersten organischen Material auf einem vorgegebenen Abschnitt des zweiten Substrats (200);
 - Bilden eines Vorsprungs (110), der aus einem zweiten organischen Material auf dem ersten Substrat (100) gebildet ist, wobei der Vorsprung (110) einen kugelförmigen Abstandshalter enthält, der an einer festen Position des ersten Substrats (100) gebildet ist, um dem Spaltenabstandshalter (210) gegenüberzuliegen, wobei die Kontaktfläche zwischen dem Vorsprung (110) und der gegenüberliegenden Fläche des Säulenabstandshalters (210) kleiner als der Bereich einer solchen gegenüberliegenden Fläche ist, und
wobei die Kontaktfläche zwischen dem Vor-
sprung und der gegenüberliegenden Fläche des
Säulenabstandshalters (210) kleiner als die Flä-
che einer solchen gegenüberliegenden Fläche
ist;
- Tröpfeln von Flüssigkristallen auf ein beliebi-
ges des ersten Substrats (100) und des zweiten
Substrats (200); und
- Verbinden des ersten und des zweiten Sub-
strats (100, 200) miteinander, so dass der Vor-
sprung (110) auf dem ersten Substrat (100) dem
Säulenabstandshalter (210) auf dem zweiten
Substrat (200) gegenüberliegt.

10. Verfahren nach Anspruch 9, wobei der Vorsprung
(110) durch Zubereiten einer Lösung, in der ein Harz,
das den kugelförmigen Abstandshalter enthält, di-
spergiert ist, und Erzeugen von Tupfen der Lösung
unter Verwendung einer Tintentrichtung ge-
bildet wird.

11. Verfahren nach Anspruch 9, wobei der Vorsprung
(110) durch Zubereiten einer negativen Photoresis-
tschicht, die einen kugelförmigen Abstandshalter ent-
hält, und Erzeugen von Tupfen der negativen Pho-
toresichtschütze unter Verwendung einer Tintent-
richtung gebildet wird.

12. Verfahren nach Anspruch 9, wobei der Säulenab-
standshalter (210) durch Auftragen des ersten orga-
nischen Materials auf das zweite Substrat und se-
lektivem Belichten und Entwickeln des beschichte-
ten organischen Materials gebildet wird.

13. Verfahren nach Anspruch 9, wobei das erste orga-
nische Material und das zweite organische Material
elastische Wiederherstellungsraten von 60 % oder
mehr haben.

Revendications

1. Dispositif d’affichage à cristaux liquides, com-pre-nant :
- des premier et deuxième substrats (100, 200)
à l’opposé l’un de l’autre ;
- des lignes de grille et de données en intersec-
tion sur le premier substrat pour définir des ré-
gions de pixels ;
- des transistors à film mince formés à des por-
tions d’intersection des lignes de grille et des
lignes de données ;
- une entretoise de colonne (210) constituée
da première matière organique sur une por-
tion prédéterminée du deuxième substrat (200) ;
- une protubérance (110) constituée d’une
deuxième matière organique sur le premier
substrat (100), la protubérance (110) compre-
nant une entretoise de bille formée à une posi-
tion fixe du premier substrat (100) à l’opposé de
l’entretoise de colonne (210), dans lequel la zo-
ne de contact entre la protubérance (110) et la
surface opposée de l’entretoise de colonne
(210) est plus petite que la zone de ladite surface
opposée ; et
- une couche de cristaux liquides remplie entre
les premier et deuxième substrats (100, 200).

2. Dispositif d’affichage à cristaux liquides selon la re-
vendication 1, dans lequel la première matière orga-
nique et la deuxième matière organique ont un taux
de rétablissement élastique de 60 % ou plus.

3. Dispositif d’affichage à cristaux liquides selon la re-
vendication 2, dans lequel la première matière orga-
nique est la même que la deuxième matière organi-
que.

4. Dispositif d’affichage à cristaux liquides selon la re-
vendication 1, dans lequel l’entretoise de bille est
constituée d’au moins l’un de polystyrène, benzène
divinyle, alcool polyvinyle et polyacrylate.

5. Dispositif d’affichage à cristaux liquides selon la re-
vendication 1, dans lequel l’entretoise de bille a un
diamètre de 20 \(\mu m\) ou moins.

6. Dispositif d’affichage à cristaux liquides selon la re-
vendication 5, dans lequel l’entretoise de bille a un
diamètre de 10 \(\mu m\) ou moins.

7. Dispositif d’affichage à cristaux liquides selon la re-
vendication 1, dans lequel la surface inférieure de
l’entretoise de colonne (210) correspondant au
deuxième substrat a une longueur de 20 \(\mu m\) à 50 \(\mu m\).

8. Dispositif d’affichage à cristaux liquides selon la re-
vendication 1, dans lequel la première matière orga-
nique constituant l’entretoise de colonne (210) com-
prend un initiateur photosensible, un initiateur ther-
mique, un monomère réactif et un promoteur d’ad-
hérence.

9. Procédé de fabrication d’un dispositif d’affichage à
cristaux liquides, comprenant :
- la préparation de premier et deuxième sub-
strats (100, 200) à l’opposé l’un de l’autre ;
- la formation d’un réseau de transistors à film
mince sur le premier substrat (100) et d’un ré-
seau de filtres de couleur (202) sur le deuxième
substrat (200) ;
- la formation d’une entretoise de colonne (210)
da première matière organique sur une por-
tion prédéterminée du deuxième substrat (200) ;
- la formation d’une protubérance (110) constituée d’une deuxième matière organique sur le premier substrat (100), la protubérance (110) comprenant une entretoise de bille formée à une position fixe du premier substrat (100) à l’opposé de l’entretoise de colonne (210), dans lequel la zone de contact entre la protubérance et la surface opposée de l’entretoise de colonne (210) est plus petite que la zone de ladite surface opposée ;
- le largage de cristaux liquides sur l’un quelconque du premier substrat (100) et du deuxième substrat (200) ; et
- la liaison des premier et deuxième substrats (100, 200) l’un à l’autre de sorte que la protubérance (110) sur le premier substrat (100) soit à l’opposé de l’entretoise de colonne (210) sur le deuxième substrat (200).

10. Procédé selon la revendication 9, dans lequel la protubérance (110) est constituée en préparant une solution dans laquelle une résine comprenant l’entretoise de bille est dispersée et en appliquant la solution en utilisant un dispositif à jet d’encre.

11. Procédé selon la revendication 9, dans lequel la protubérance (110) est constituée en préparant un film de résine photosensible négatif comprenant une entretoise de bille et en appliquant le film de résine photosensible négatif en utilisant un dispositif à jet d’encre.

12. Procédé selon la revendication 9, dans lequel l’entretoise de colonne (210) est constituée en enduisant la première matière organique sur le deuxième substrat et sélectivement en exposant et en développant la matière organique enduite.

13. Procédé selon la revendication 9, dans lequel la première matière organique et la deuxième matière organique ont un taux de rétablissement élastique de 60 % ou plus.
FIG. 1
Related Art
FIG. 2A
Related Art

TOUCH PORTION

10
FIG. 2B
Related Art

LIQUID CRYSTALS ARE COLLECTED

LIQUID CRYSTALS ARE NOT RESTORED TO THEIR ORIGINAL POSITION AS SPACERS ARE IN CONTACT WITH SUBSTRATE
FIG. 5

DEFORMATION RANGE OF COLUMN SPACER, \(\mu m \)

LOAD, mN

DEFORMATION STEP OF COLUMN SPACER DUE TO LOAD

INSTANTANEOUS RECOVERY OF COLUMN SPACER

REMOVAL OF LOAD AFTER LAPSE OF CERTAIN TIME PERIOD

L

L'

P(0)

FIG. 6

RECOVERY DISPLACEMENT OF COLUMN SPACER, \(P - P(0) \)

PLASTIC DEFORMATION

COMPLETE RECOVERY

TIME
FIG. 7
FIG. 8A

LOAD

210

110

FIG. 8B

LOAD

210a

110a
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- KR P200558301 [0001]
- JP 10039318 A [0023]
- JP 2004301933 A [0024]
- US 6359667 B1 [0025]
- US 6501527 B1 [0027]