EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
28.05.2008 Bulletin 2008/22

(21) Application number: 06008233.6

(22) Date of filing: 20.04.2006

(54) Friction member assembly for disc brake
Reibungsteilvorrichtung für eine Scheibenbremse
Arrangement d'un élément de friction pour un frein à disque

(84) Designated Contracting States:
DE FR GB


(43) Date of publication of application:
02.11.2006 Bulletin 2006/44

(73) Proprietor: AKEBONO BRAKE INDUSTRY CO., LTD.
Chuo-ku
Tokyo (JP)

(72) Inventor: Maehara, Toshifumi
Koami-cho
Chuo-ku
Tokyo (JP)

(74) Representative: Grünecker, Kinkeldey,
Stockmair & Schwanhäusser
Anwaltssozietät
Leopoldstrasse 4
80802 München (DE)

(56) References cited:
WO-A-03/098068
DE-A1- 4 436 457

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description


BACKGROUND OF THE INVENTION

<FIELD OF THE INVENTION>

[0002] The present invention relates to a friction member assembly for a disc brake used in a disc brake apparatus for, for example, a railroad vehicle with the features mentioned in the preamble of claim 1. More particularly, the present invention relates to an improvement for realizing a reduction in cost and promotion of productivity by alleviating a processing accuracy of parts.

<RELATED ART>

[0003] A disc brake apparatus is constituted by a disc rotor fixed to an axle, a torque receive plate arranged oppositely to the disc rotor, a brake caliper including an actuator for driving the torque receive plate to move to and from the disc rotor and fixed to a vehicle body frame, and a lining member integrated to a face of the torque receive plate on a side of the disc rotor. When the torque receive plate is moved to the side of the disc rotor and the lining member is pressed to the disc rotor, a brake force by a sliding friction is generated.

[0004] In a disc brake apparatus for a railroad vehicle, a disc rotor and a brake lining are large-sized. Therefore, when the lining member to be pressed to the disc rotor is formed by an integrated part, a noncontact region is increased owing to a waviness produced at the disc rotor by friction heat or the like. As a result, a stable friction area cannot be maintained and a stable braking characteristic is not provided.

[0005] JP-T-10-507250 and DE 44 36 457 respectively disclose a friction member assembly of the above mentioned type.

[0006] In order to resolve the aforementioned problem, they suggest a brake lining in which a number of pieces of second link plates are laid on a torque receive plate substantially by a plane shape. In addition, a number of pieces of first link plates are laid on the respective second link plates independently from each other and pivotably, and a number of pieces of lining members are arranged on the respective first link plates independently from each other and pivotably. The respective lining members on the respective first link plates are brought into contact with a disc rotor by moving the torque receive plate to the side of the disc rotor.

[0007] According to the brake lining having such a constitution, the respective lining members divided to be small are brought into contact with a surface of the disc rotor by following a waviness of the surface of the disc rotor by respectively individual pivoting operation. Therefore, a stable braking characteristic can be maintained by maintaining a stable friction area.

SUMMARY OF THE INVENTION

[0011] It is the object of the present invention to provide a brake lining capable of realizing a reduction in cost and promotion of productivity by alleviating a processing accuracy of parts, a reduction in a number of lining members used or the like.

[0012] This object is solved with a friction member assembly with the features of claim 1.

(1) In accordance with one or more embodiments of the present invention, in a friction member assembly for a disc brake, hole portions for holding a number of lining members are formed on a guide plate at predetermined intervals in correspondence with an arrangement of link plates. The guide plate arranged in parallel with a face of a disc rotor is fitted with a torque transmitting ring at the hole portion of the guide plate. An outer shape portion of the torque
transmitting ring is constituted by a spherical shape. The lining member is arranged on a side of one face of the guide plate. A spring member is arranged on a side of another face. The lining member is integrated to the guide plate by a rivet or a fastening rod, while the lining member is maintained to be pivotable. When the link plate receives a braking force for braking, the rivet or the fastening rod is pressed by the link plate, and the lining member is pressed onto the face of the disc rotor by way of the torque transmitting ring.

(2) In the constitution described in (1), the link plate for pressing the lining member may be positioned at a predetermined pressing position. A portion of the link plate which is brought into contact with the rivet or the fastening rod is engaged with the rivet or the fastening rod at a predetermined difference of radii of curvature thereof, so that the lining member is prevented from hindering a pivotable performance of the torque transmitting ring in the guide plate hole portion.

(3) In the constitution described in (1) or (2), the link plate may be arranged between the guide plate integrated with the number of lining members and a torque receive plate, so that a box-shape is constituted by forming the guide plate and the torque receive plate (or, by providing a torque receiving portion at the guide plate and fastening a cover member). Related parts are brought into contact with each other without a clearance therebetween relative to a direction orthogonal to the disc rotor by a load of the spring member and a sufficient strength and swift transmission of an operating force are facilitated to achieve.

(4) In the constitution described in any one of (1) through (3), a pair of first link plates for individually pressing different two of the number of lining members and a single second link plate for simultaneously pressing the pair of first link plates and other one of the number of lining members are provided. A link mechanism of two stages for pressing five pieces of the lining members is constituted. The respective lining members can stably be pressed in correspondence with deformation of the disc rotor face by heat or the like.

(5) In the constitution described in any one of (1) through (4), by selecting respective positions of pressing the first link plate, the second link plate, for example, the lining member is disposed on an outer peripheral side and the lining member disposed on an inner peripheral side can be adjusted to respectively exert pertinent press forces.

[0013] According to the brake lining described in (1), a position of the lining member is restricted by fitting the torque transmitting ring integrally fixed to the lining member and the hole portion of the guide plate in a direction in parallel with the disc rotor face of the lining member and by the portion for bringing the lining member and the first link plate into contact with each other in a direction orthogonal to the rotor face.

[0014] Therefore, a braking torque operated to the lining member in braking is transmitted from the torque transmitting ring to the guide plate, and directly transmitted to the torque receive plate integrated with the guide plate. Further, the press force for pressing the lining member to the disc rotor is transmitted by way of the portion for bringing the lining member and the first link plate into contact with each other from the contact portion of the first link plate and the second link plate to the second link plate, and from the contact portion of the second link plate and the torque receive plate to the torque receive plate.

[0015] That is, a member for receiving the braking torque from the lining member and a member for receiving the press force from the lining members are separately set, and the braking torque constituting a large load is not operated to the contact portion of the lining member and the first link plate, the contact portion of the first link plate and the second link plate and the contact portion of the second link plate and the torque receive plate for transmitting the press force to the lining member.

[0016] Therefore, it is not necessary to constitute the respective contact portions for transmitting the press force by solid engagement of a ball joint or the like for receiving the braking torque and a reduction in cost by alleviating working accuracy and promotion of productivity can be realized.

[0017] According to the brake lining described in (2), the lining member is positioned by the hole portion of the guide plate, further, held pivotably by the torque transmitting ring the outer diameter portion of which is constituted by the spherical shape and therefore, the portions of the lining member and the link plate brought into contact with each other may be engaged with each other by the difference of radii of curvature capable of maintaining a degree of freedom of pivoting and the high accuracy working is not needed therefor.

[0018] According to the brake lining described in (3), the guide plate integrated with the number of lining members receives the braking torque and does not receive the press force and therefore, the plate thickness can be thinned, further, the box-shape is constituted by fastening the guide plate and the torque receive plate (or providing a torque receive at the guide plate and fastening a cover member) and therefore, a further solid structure can be constituted. Further, the link plates are arranged at inside of the box-shape, and brought into contact with each other without a clearance therebetween by the load of the spring member and the accuracy in the direction orthogonal to the disc rotor can easily be ensured.

[0019] According to the brake lining described in (4), the link mechanism of two stages is constituted by five pieces of the lining members by simultaneously pressing two of the first link plates and the single lining member by the second link plate, and a uniform press force can
be transmitted to the respective lining members by a small number of the lining members.

0020 According to the brake lining described in (5), by respectively selecting the positions of pressing the first link plate and the second link plate, depending on which positions the lining members are disposed, the lining members can be adjusted to constitute respective pertinent press forces and further effective braking can be realized.

0021 Other aspects and advantages of the invention will be apparent from the following description and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0022

Fig. 1 is a perspective view of a first exemplary embodiment of a brake lining according to the invention.

Fig. 2 is a perspective view viewing the brake lining shown in Fig. 1 from a rear face side.

Fig. 3 is a front view of the brake lining shown in Fig. 1.

Fig. 4 is a view viewing Fig. 3 from an arrow mark A-direction.

Fig. 5 is a sectional view taken along a line B-B of Fig. 3.

Fig. 6 is a sectional view taken along a line C-C of Fig. 3.

Fig. 7 is a perspective view showing a state of removing a torque receive plate from the brake lining shown in Fig. 2.

Fig. 8 is a view viewing Fig. 7 from an arrow mark D direction.

Fig. 9 is a perspective view of a state of removing a second link plate from a state shown in Fig. 7.

Fig. 10 is a perspective view of a state of removing a first link plate from a state of Fig. 9 (that is, lining assembly).

Fig. 11 is a view viewing Fig. 11 from an arrow mark F direction.

Fig. 12 is a disassembled perspective view of the lining assembly shown in Fig. 10.

Fig. 13 is a front view of a first link plate shown in Fig. 12.

Fig. 14 is a side view of a first link plate shown in Fig. 12.

Fig. 15 is a view of a second exemplary embodiment of a brake lining according to the invention.

Fig. 18 is a perspective view viewing the brake lining shown in Fig. 17 from a rear face side.

Fig. 19 is a front view of the brake lining shown in Fig. 18.

Fig. 20 is a view viewing Fig. 19 from an arrow mark G direction.

Fig. 21 is a sectional view taken along a line H-H of Fig. 18.

Fig. 22 is a perspective view of a state of removing a torque receive plate from the brake lining shown in Fig. 18.

Fig. 23 is a perspective view of a state of removing a second link plate from a state shown in Fig. 22.

Fig. 24 is an explanatory view of a positional relationship between a first link plate shown in Fig. 23 and three lining members supported by the first link plate 7.

Fig. 25 is a view viewing Fig. 24 from an arrow mark I direction.

Fig. 26 is a disassembled perspective view of the lining member shown in Fig. 24 and a locking member for holding the lining member at a guide hole of a guide plate.

Fig. 27 is a sectional perspective view taken along a line J-J of Fig. 22.

<Reference Numerals and Characters>

0023

1..brake lining
3..torque receive plate
5..second link plate
5a..support hole
7..first link plate
7a..support hole
9..lining assembly
11..guide plate
13..lining member
15..screw hole
17..guide hole
21..joint mechanism
23..torque transmitting ring
25..spring member
27..rivet
27a..shaft portion
27b..head portion
27c..first expanded diameter portion
27d..second expanded diameter portion
27e..spherical concave face (spherical contact portion)
29..joint member
29a..spherical convex face (spherical contact portion)
30..brake lining
31..steel ball (joint member)
DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

[0024] Exemplary embodiments of the invention will be described with reference to the accompanying drawings.

<FIRST EXEMPLARY EMBODIMENT>

[0025] Fig. 1 through Fig. 16B show a first exemplary embodiment of a brake lining according to the invention, Fig. 1 is a perspective view of the first exemplary embodiment of the brake lining according to the invention, Fig. 2 is a perspective view viewing the brake lining shown in Fig. 1 from a rear face side, Fig. 3 is a front view of the brake lining shown in Fig. 1, Fig. 4 is a view viewing Fig. 3 in an arrow mark A direction, Fig. 5 is a sectional view taken along a line B-B of Fig. 3, Fig. 6 is a sectional view taken along a line C-C of Fig. 3, Fig. 7 is a perspective view of a state of removing a torque receive plate from the brake lining shown in Fig. 2, Fig. 8 is a view viewing Fig. 7 from an arrow mark D direction, Fig. 9 is a perspective view of a state of removing a second link plate from a state of Fig. 7, Fig. 10 is a perspective view of a state of removing a first link plate from a state of Fig. 9 (that is, lining assembly), Fig. 11 is a view viewing Fig. 11 from an arrow mark F direction, Fig. 12 is a disassembled perspective view of the lining assembly shown in Fig. 10, Fig. 13 is a sectional view of a guide hole of a guide plate shown in Fig. 2 and a torque transmitting ring fitted to the guide hole, Fig. 14 is a perspective view of a state of attaching a locking member for holding the lining member by the guide hole of the guide plate to the lining member shown in Fig. 12, Fig. 15 is a front view of a first link plate shown in Fig. 12, Fig. 15B is a side view of the first link plate, Fig. 16A is a front view of a second link plate shown in Fig. 12, Fig. 16B is a side view of the second link plate.

[0026] A brake lining 1 according to the first exemplary embodiment is used in a disc brake apparatus for a railroad vehicle. The brake lining 1 is provided with a torque receive plate 3 driven to be moved to and from a disc rotor by an actuator included in a brake caliper fixed to a vehicle body frame arranged oppositely to a disc rotor on an axle. In addition, the brake lining 1 is provided with a number of lining members 13 integral to a guide plate 11 as shown by Fig. 10. Moreover, the brake lining 1 is provided with four first link plates 7 laid to be brought into contact with different twos of lining members 13 as shown by Fig. 7 and Fig. 9. The brake lining 1 is disposed between the torque receive plate 3 and the lining members 13.

[0027] In addition, the brake lining 1 is provided with two second link plates 5. Each second link plate 5 simultaneously presses a pair of the first link plates 7 in the four first link plates 7 and other one of the lining members 13.

[0028] As shown by Fig. 10 and Fig. 11, a lining assembly 9 is constituted by integrating a number of pieces of the lining members 13 to the single guide plate 11 screwed to be fixed to the torque receive plate 3 to unitize (constitute a subassembly).

[0029] As shown by Fig. 12, the guide plate 11 is constituted by a single plate member and is formed with screw holes 15 to penetrate at pertinent intervals at an outer peripheral edge portion thereof. The guide plate 11 is fixed to the torque receive plate 3 by screw members inserted through the screw holes 15.

[0030] Further, the guide plate 11 is formed with guide holes 17 constituting lining member holding hole portions for integrating the lining members 13 at predetermined intervals. The guide hole 17 is a circular hole having a diameter smaller than the lining member 13.

[0031] Each lining member 13 is arranged on a face of the guide plate 11 on a side of the torque receive plate 3. The each lining member 13 is attached to the guide plate 11 by way of the guide hole 17 of the guide plate 11 by a joint mechanism 21 shown in Fig. 12.

[0032] As shown by Figs. 5, 6 and Fig. 12, the joint mechanism 21 is constituted by a torque transmitting ring 23, a spring member 25, a rivet (or fastening rod) 27, and a joint member 29. The torque transmitting ring 23 is overlapped to a rear face of the lining member 13 and fitted to a guide hole 17. The spring member 25 is overlapped on a rear face side of the torque transmitting ring 23. A shaft portion 27a of the rivet (or fastening rod) 27 is inserted through center portions of the lining member 13 and the torque transmitting ring 23 and the spring member 25 to connect them. The joint member 29 is mounted to a head portion of the rivet 27 and constituting a portion connected with the first link plate 7.

[0033] In the case of the present exemplary embodiment, the lining member 13 is constituted to include a lining main body 13a an outer shape of which is formed substantially in a hexagonal shape, and a back plate 13b pasted to a rear face of the lining main body 13a. As shown by Fig. 5, a hole diameter of a rivet (fastening rod) inserting hole 13c formed to penetrate a center of the back plate 13b is set to be smaller than a rivet (or fastening rod) inserting hole 13d formed to penetrate a center of the lining main body 13a.

[0034] By enlarging to show in Fig. 13, the torque transmitting ring 23 is constituted by a circular plate shape an outer diameter of which is set to be more less smaller than an inner diameter of the guide hole 17. An outer shape of the torque transmitting ring 12 is constituted by a spherical shape. In a center of the torque transmitting ring 12, a rivet (or fastening rod) inserting hole 23a for inserting the shaft portion 27a of the rivet (or fastening rod) 27 is formed.

[0035] In braking, the torque transmitting ring 23 serves to transmit a braking torque to the guide plate 11 by bringing the outer shape spherical face portion into contact with a cylinder inner face portion of the guide hole 17 by the braking torque operated to the lining member 13. The torque transmitting ring 23 ensures a pivotable
performance on the cylinder inner face portion of the guide hole 17 so as to push the lining member(s) 13 uniformly to the disc rotor face.

[0036] The torque transmitting ring 23 is formed by a material having a strength sufficient for receiving the braking torque.

[0037] The spring member 25 is a leaf spring provided with notch portions 25a cut in a radius direction at several portions of an outer periphery thereof. An outer shape dimension of the spring member 25 is set to be larger than the inner diameter of the guide hole 17. In a center of the spring member 25, a rivet (or fastening rod) inserting hole 25b for inserting the shaft portion 27a of the rivet (or fastening rod) 27 is formed. A diameter of the rivet (or fastening rod) inserting hole 25b is set to be larger than the rivet (or fastening rod) inserting hole 23a of the torque transmitting ring 23.

[0038] As shown by Fig. 5, the rivet (or fastening rod) 27 includes the shaft portion 27a inserted through center portions of the lining member 13 and the torque transmitting ring 23 and the spring member 25, and a head portion 27b mounted to one end side of the shaft portion 27a. As shown by Fig. 5, the head portion 27b includes an expanded diameter portion set to a diameter larger than the rivet (or fastening rod) inserting hole 23a of the torque transmitting ring 23 and is formed with a spherical concave or convex to a side of being opposed to the link plate 7.

[0039] As shown by Fig. 5, the rivet (or fastening rod) 27 couples the torque transmitting ring 23 and the spring member 25 to the lining member 13 by calking an end portion of the shaft portion 27a inserted through the respective rivet (or fastening rod) inserting holes 25b, 23a, 13c of the spring member 25, the torque transmitting ring 23, the lining member 13 in a state of fitting the torque transmitting ring 23 to the guide hole 17 (or providing a groove portion at the shaft portion 27a and mounting a clip thereto). Further, as shown by Fig. 5, the lining member 13 and the spring member 25 squeeze the guide hole 17. The torque transmitting ring 23 fitted (loosely fitted) into the guide hole 17 is maintained in a state of being held in the guide hole 17.

[0040] The lining assembly 9 is completed when the lining members 13, the torque transmitting rings 23, the spring members 25 are integrated to positions of all of the guide holes 17 on the guide plate 11 by the above-described method.

[0041] In the case of the present exemplary embodiment, as shown by Fig. 5 and Fig. 12, the joint member 29 is constructed by a constitution of having a spherical concave face 29a brought into spherical contact with the spherical concave face 27e of the rivet 27 by a radius of curvature smaller than a radius of curvature of the spherical concave face 27e of the rivet 27 substantially by about 0.5mm on one end side thereof. The joint member 29 includes a shaft portion 29b fitted to be supported by a support hole 7a of the first link plate 7 on other end side thereof. By bringing the spherical concave face 27e and the spherical convex face 29a into contact with each other by a difference between radii of curvature, the pivotable performance is maintained in the lining member 13 at a portion thereof fitted to the hole portion 17 of the guide plate 11. Further, the spherical contact portion constitutes a contact portion for transmitting a press force of the first link plate 7 to the lining members 13.

[0042] As shown by Figs. 9, 15A and 15B, in the first link plate 7, the support holes 7a respectively fitted with the joint members 29 are formed. By engaging the contact portion of the joint member 29 and the lining member 13 fitted to each support hole 7a with a clearance (for example, difference between radii of curvature) in a direction in parallel with a lining face, the lining member 13 is supported to be able to pivot on the cylindrical face of the guide hole 17 of the guide plate 11. Further, in a predetermined position of the first link plate 7, a joint support hole 7b for being brought into contact with a second link plate 5 to be engaged therewith is formed.

[0043] As shown by Figs. 7, 16A and 16B, at a total of three locations of positions in correspondence with the predetermined positions of the contiguous two first link plates 7 and a position in correspondence with the spherical concave face 27e formed at the rivet (or fastening rod) 27 of the single lining member 13 which is not supported by the first link plate 7, the second link plate 5 brings the spherical convex faces 29a of the joint members 29 into contact with the spherical concave faces 27e, so that the first link plates 7 and the single lining member 13 are pivotably support by a predetermined degree of freedom.

[0044] Further, in a predetermined position of the second link plate 5, the support hole 5a to be fitted with the joint member 29 is formed.

[0045] As shown by Fig. 6, the support hole 5a in the predetermined position of the second link plate 5 is mounted with the joint member 29 to direct the spherical convex face 29a to an outer side (side reverse to the first link plate 7). The joint member 29 is brought into contact with a spherical concave face 3b formed on an inner side of a support bar 3a bonded and integrated to a rear face side of the torque receive plate 3 to be supported pivotably with a predetermined degree of freedom.

[0046] Further, a spherical convex face 29a of the joint member 29 mounted to the support hole 5a in the predetermined position of the second link plate 5 is formed to be larger than the joint member used at other location as is apparent in comparing these on Fig. 6. This because the spherical convex face 29a is operated with a large press force necessary for pressing a total of five pieces of lining members 13 to the disc rotor.

[0047] The lining assembly 9 is assembled to integrate all of the lining members 13 at the guide plate 11 as shown by Fig. 10, beforehand. Successively, as shown by Fig. 9 and Fig. 7, the first link plates 7 and the second link plate 5 are assembled onto the lining assembly 9. Thereafter, the guide plate 11 is fixed to the torque receive plate 3, so that the above-described brake lining 1 is com-
According to the brake lining 1 explained above, the position of the lining member 13 above the torque receive plate 3 is restricted by fitting the torque transmitting ring 23 to the guide plate 11 and is directly transmitted to the torque receive plate 3 fixed with the guide plate 11. Further, the press force for pressing the lining member 13 to the disc rotor is transmitted from the torque receive plate 3 to the second link plate 5, from the second link plate 5 to the first link plate 7, and from the first link plate 7 to the lining member 13.

That is, a member by which the lining member 13 receives the braking torque and a member by which the lining member 13 receives the press force are separately and independently set. Further, the spherical portions which are difficult to work are formed with the difference of radii of curvature of about 0.5mm and used mainly for transmitting the press force. Therefore, the spherical portions need not to be worked with high accuracy. As a result, the spherical portions can easily be processed. By constructing the constitution for separating the members for transmitting the press force and receiving the braking torque in this way, solid positioning for firmly receiving the braking torque even when the working accuracy is alleviated can be realized. Therefore, a reduction in cost, promotion of productivity can be realized.

Further, a number of the lining members 13 are integrated to the first link plate 7 and the second link plate 5, after constituting the lining assembly 9 by previously integrating the lining members 13 to the guide plate 11 as described above. As a result, an assembling performance is promoted and the promotion of productivity can be achieved.

<SECOND EXEMPLARY EMBODIMENT>

Fig. 17 through Fig. 27 show a second exemplary embodiment of a brake lining 30 according to the invention. Fig. 17 is a perspective view of the second exemplary embodiment of the brake lining 30 according to the invention. Fig. 19 is a front view of the brake lining 30 shown in Fig. 17. Fig. 20 is a view viewing Fig. 19 from an arrow mark G direction. Fig. 21 is a sectional view taken along a line H-H of Fig. 19. Fig. 22 is a perspective view of a state of removing the torque receive plate 3 of the brake lining 30. Fig. 23 is a perspective view of a state of removing the second link plate 5 from the state shown in Fig. 22. Fig. 24 is an explanatory view of a positional relationship between the first link plate 7 shown in Fig. 23 and three of the lining members 13 brought into contact with the first link plate 7. Fig. 25 is a view viewing Fig. 25 from an arrow mark I direction. Fig. 26 is a disassembled perspective view of the lining member 13 shown in Fig. 24 and a locking member for holding the lining member 13 at the guide hole 17 of the guide plate 11. Fig. 27 is a sectional perspective view taken along a line J-J of Fig. 22.

According to the brake lining 30 of the second exemplary embodiment, a number of mounting the lining members 13 is increased. In accordance therewith, although the shape of the torque receive plate 3 is changed by positions of arranging the first link plate 7 with which the lining member 13 above the lining assembly 9 is brought into contact while maintaining the individually pivotable state and the second link plate 5 for pressing gravitational center positions of a number of the first link plates 7, the basic constitution is common to that in the case of the first exemplary embodiment. Therefore, an explanation of constitutions of respective portions will be omitted by attaching numerals common to those of the first exemplary embodiment.

Further, in the case of the present exemplary embodiment, a steel ball 31 is used in place of the joint member 29 at a portion for bringing the first link plate 7 and the lining member 13 into contact with each other. It is common to the first exemplary embodiment that the joint member 29 is used for bringing the second link plate 5 into pivotable contact with the torque receive plate 3.

According to the present exemplary embodiment, a number of mounting the lining members 13 are increased. Therefore, a performance of being brought into contact with the disc rotor can be improved by a unit of a smaller contact area. As a result, the braking characteristic can further be stabilized.

Further, in the brake lining according to the invention, a number of mounting the lining members 13 to the single guide plate 11 is not limited to that in the above-described exemplary embodiments.

Further, although in the above-described exemplary embodiments, in transmitting the press force from the torque receive plate 3 to the lining member 13, two sheets of link plates of the second link plate 5 and the first link plate 7 are interposed, also the number of the interposed link plates is not limited to that in the above-described exemplary embodiments.

For example, when the number of mounting the lining members 13 is increased more than that in the second exemplary embodiment, the number of the second link plate for pressing the first link plate may be increased and a third link plate for pressing a number of the second link plates may be added between the second link plates and the torque receive plate 3.

It will be apparent to those skilled in the art that various modifications and variations can be made to the described preferred embodiments of the present invention without departing from the spirit or scope of the invention.
vention. Thus, it is intended that the present invention cover all modifications and variations of this invention consistent with the scope of the appended claims.

Claims

1. A friction member assembly for a disc brake comprising a number of lining members (13), a rivet or a fastening rod (27), a spring member (25) and a link plate (5, 7), a guide plate (11) having a number of hole portions and a torque transmitting ring (23), having a circular plate shape and being fitted to the hole portion (17), wherein the torque transmitting ring (23) is pivotable in the hole portion (17) and transmits a braking torque applied to the lining member (13) to the guide plate (11); wherein the torque transmitting ring (23) is fitted to the hole portion (17) by the rivet (27) or the fastening rod by interposing the torque transmitting ring (23) between the lining member (13) and the spring member (25) and integrated to the guide plate (11), and wherein

the respective lining members (13) are pivotable and pressed to a face of a disc rotor by the link plate (5, 7),

characterised in that

an outer shape of the torque transmitting ring (23) being in contact with a cylindrical inner surface of the hole portion (17) is constituted by a spherical shape.

2. The friction member assembly according to claim 1, wherein the guide plate (11) is arranged in parallel with the face of the disc rotor, and at least two or more of the lining members (13) are pressed by a single one of the link plates (5, 7), while each of the lining members (13) is pivotable.

3. The friction member assembly according to claims 1 or 2, further comprising:

a torque receive plate (3), fastened to the guide plate (3), interposing the link plate (5, 7) between the guide plate (11) and the torque receive plate (3),

wherein a box-shape structure is formed by the guide plate (11) and the torque receive plate (3).

4. The friction member assembly according to one of claims 1 to 3, wherein the link plate includes:

a pair of first link plates (7), wherein each of the first link plates (7) individually presses two of the number of lining members (13); and

a second link plate (5) that simultaneously presses the pair of first link plates (7) and other

one of the number of lining members (13).

5. The friction member assembly according to one of claims 1 to 4, wherein positions of pressing the respective link plates (5, 7) are determined such that the respective lining members (13) are pressed to the face of the disc rotor by a pertinent load distribution.

Patentansprüche

1. Reibelementanordnung für eine Scheibenbremse, die eine Anzahl von Belagelementen (13), einen Niet oder einen Befestigungsstab (27), ein Federelement (25) und eine Verbindungplatte (5, 7), eine Führungsplatte (11) mit einer Anzahl von Lochabschnitten und einen Moment-Übertragungsring (23) umfasst, der eine kreisrunde Plattenform hat und in den Lochabschnitt (17) eingepasst ist, wobei der Moment-Übertragungsring (23) in dem Lochabschnitt (17) schwenkbar ist und ein Bremsmoment, das auf das Belagelement (13) ausgeübt wird, auf die Führungsplatte (11) überträgt; wobei der Moment-Übertragungsring (23) durch den Niet (27) oder den Befestigungsstab in den Lochabschnitt (17) eingepasst wird, indem der Moment-Übertragungsring (23) zwischen dem Belagelement (13) und dem Federelement (25) angeordnet und in die Führungsplatte (11) integriert wird, und wobei die jeweiligen Belagelemente (13) schwenkbar sind und durch die Verbindungsplatten (5, 7) an eine Fläche eines Scheibenrotors gepresst werden,

dadurch gekennzeichnet, dass

eine Außenform des Moment-Übertragungsringes (23), die in Kontakt mit einer zylindrischen Innenfläche des Lochabschnitts (17) ist, durch eine sphärische Form gebildet wird.

2. Reibelementanordnung nach Anspruch 1, wobei die Führungsplatte (11) parallel zu der Fläche des Scheibenrotors angeordnet ist, und wenigstens zwei oder mehr der Belagelemente (13) durch eine einzelne der Verbindungsplatten (5, 7) gepresst werden und dabei jedes der Belagelemente (13) schwenkbar ist.

3. Reibelementanordnung nach den Ansprüchen 1 oder 2, die des Weiteren umfasst:

eine Moment-Aufnahmeplatte (3), die an der Führungsplatte (3) befestigt ist, dass die Verbindungsplatten (5, 7) zwischen der Führungsplatte (11) und der Momentaufnahmeplatte (3) angeordnet ist.

wobei durch die Führungsplatte (11) und die Moment-Aufnahmeplatte (3) eine kastenförmige Struk-
tur gebildet wird.

4. Reibelementanordnung nach einem der Ansprüche 1 bis 3, wobei die Verbindungsplatte enthält:

- ein Paar erste Verbindungsplatten (7), wobei jedes der ersten Verbindungsplatten (7) einzeln zwei der Anzahl von Belagelementen (13) presst; und
- eine zweite Verbindungsplatte (5), die gleichzeitig das Paar erste Verbindungsplatten (7) und ein anderes der Anzahl von Belagelementen (13) presst.

5. Reibelementanordnung nach einem der Ansprüche 1 bis 4, wobei die Positionen, an denen die jeweiligen Verbindungsplatten (5, 7) gepresst werden, so bestimmt sind, dass die jeweiligen Belagelemente (13) durch eine angemessene Lastverteilung an die Fläche des Scheibenrotors gepresst werden.

Revendications

1. Ensemble d’élément de friction pour un frein à disque comportant plusieurs éléments de garniture (13), un rivet ou une tige de fixation (27), un élément de ressort (25) et une plaque de liaison (5, 7), une plaque de guidage (11) ayant plusieurs parties de trou et un anneau de transmission de couple (23), ayant une forme de plaque circulaire et qui est montée sur la partie de trou (17), l’anneau de transmission de couple (23) pouvant pivoter dans la partie de trou (17) et transmettant un couple de freinage appliqué sur l’élément de garniture (13) à la plaque de guidage (11) ; l’anneau de transmission de couple (23) étant monté sur la partie de trou (17) grâce au rivet (27) ou la tige de fixation en interposant l’anneau de transmission de couple (23) entre l’élément de garniture (13) et l’élément de ressort (25) et intégré à la plaque de guidage (11), et les éléments de garniture (13) respectifs pouvant pivoter et étant pressés sur une face d’un rotor de disque par la plaque de liaison (5, 7), caractérisé en ce que

une forme extérieure de l’anneau de transmission de couple (23) qui est en contact avec une surface cylindrique interne de la partie de trou (17) est constituée par une forme sphérique.

2. Ensemble d’élément de friction selon la revendication 1, dans lequel la plaque de guidage (11) est disposée parallèlement à la face du disque de rotor, et au moins deux éléments de garniture (13) ou plus sont pressés par une seule des plaques de liaison (5, 7), alors que chacun des éléments de garniture (13) peut pivoter.

3. Ensemble d’élément de friction selon les revendications 1 ou 2, comportant en outre :

une plaque de réception de couple (3), fixée sur la plaque de guidage (3), interposant la plaque de liaison (5, 7) entre la plaque de guidage (11) et la plaque de réception de couple (3), une structure en forme de boîte étant formée par la plaque de guidage (11) et la plaque de réception de couple (3).

4. Ensemble d’élément de friction selon l’une des revendications 1 à 3, dans lequel la plaque de liaison comprend :

une paire de premières plaques de liaison (7), chacune des premières plaques de liaison (7) pressant individuellement deux des différents éléments de garniture (13) ; et une deuxième plaque de liaison (5) qui presse simultanément la paire de premières plaques de liaison (7) et l’autre des différents éléments de garniture (13).

5. Ensemble d’élément de friction selon l’une des revendications 1 à 4, dans lequel des positions de pression des plaques de liaison (5, 7) respectives sont déterminées de telle sorte que les éléments de garniture (13) respectifs sont pressés sur la face du rotor de disque grâce à une distribution de charge pertinente.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP P2005128168 B [0001]
• JP 10507250 T [0005] [0008]
• DE 4436457 [0005]