EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 14.11.2007 Bulletin 2007/46

Application number: 04804425.9

Date of filing: 30.12.2004

Int Cl.: C07D 471/10 (2006.01) A61K 31/435 (2006.01) A61P 25/00 (2006.01)

DIAZA-SPIROPIPERIDINE DERIVATIVES AS INHIBITORS OF GLYCINE TRANSPORTER 1 AND GLYCINE TRANSPORTER 2

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

Priority: 08.01.2004 EP 04100034

Date of publication of application: 02.11.2006 Bulletin 2006/44

Proprietor: F. HOFFMANN-LA ROCHE AG
4070 Basel (CH)

Inventors:
• JOLIDON, Synese
 CH-4223 Blauen (CH)

Representative: Poppe, Regina
F. Hoffmann-La Roche AG
Patent Department (PLP),
124 Grenzacherstrasse
4070 Basel (CH)

References cited:
WO-A-94/13678
WO-A-03/053942
WO-A-97/37630
US-B1- 6 645 973

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to compounds of formula I, to pharmaceutical compositions containing them and their use in the treatment of neurological and neuropsychiatric disorders.

It has surprisingly been found that the compounds of general formula I are good inhibitors of the glycine transporter 1 (GlyT-1), and that they have a good selectivity to glycine transporter 2 (GlyT-2) inhibitors.

Schizophrenia is a progressive and devastating neurological disease characterized by episodic positive symptoms such as delusions, hallucinations, thought disorders and psychosis and persistent negative symptoms such as flattened affect, impaired attention and social withdrawal, and cognitive impairments (Lewis DA and Lieberman JA, Neuron, 2000, 28:325-33). For decades research has focused on the "dopaminergic hyperactivity" hypothesis which has led to therapeutic interventions involving blockade of the dopaminergic system (Vandenberg RJ and Aubrey KR., Exp. Opin. Ther. Targets, 2001, 5(4): 507-518; Nakazato A and Okuyama S, et al., 2000, Exp. Opin. Ther. Patents, 10 (1): 75-98). This pharmacological approach poorly address negative and cognitive symptoms which are the best predictors of functional outcome (Sharma T., Br. J. Psychiatry, 1999, 174(suppl. 28): 44-51).

A complementary model of schizophrenia was proposed in the mid-1960’ based upon the psychotomimetic action caused by the blockade of the glutamate system by compounds like phencyclidine (PCP) and related agents (ketamine) which are non-competitive NMDA receptor antagonists. Interestingly in healthy volunteers, PCP-induced psychotomimetic action incorporates positive and negative symptoms as well as cognitive dysfunction, thus closely resembling schizophrenia in patients (Javitt DC et al., 1999, Biol. Psychiatry, 45: 668-679 and refs. herein). Furthermore transgenic mice expressing reduced levels of the NMDAR1 subunit displays behavioral abnormalities similar to those observed in pharmacologically induced models of schizophrenia, supporting a model in which reduced NMDA receptor activity results in schizophrenia-like behavior (Mohn AR et al., 1999, Cell, 98: 427-236).

Glutamate neurotransmission, in particular NMDA receptor activity, plays a critical role in synaptic plasticity, learning and memory, such as the NMDA receptors appears to serve as a graded switch for gating the threshold of

Thus, increasing activation of NMDA receptors via GlyT-1 inhibition may lead to agents that treat psychosis, schizophrenia, dementia and other diseases in which cognitive processes are impaired, such as attention deficit disorders or Alzheimer's disease.

US 6,645,973 discloses spiro(2H-1-benzopyran-2,4-piperidine) derivatives and their use for the treatment of CNS disorders based on their glycine inhibitory activity, however, these compounds are different in structure.

Objects of the present invention are the compounds of formula I per se, the use of compounds of formula I and their pharmaceutically acceptable salts for the manufacture of medicaments for the treatment of diseases related to activation of NMDA receptors via Glyt-1 inhibition, their manufacture, medicaments based on a compound in accordance with the invention and their production as well as the use of compounds of formula I in the control or prevention of illnesses such as psychoses, disfunction in memory and learning, schizophrenia, dementia and other diseases in which cognitive processes are impaired, such as attention deficit disorders or Alzheimer's disease.

The preferred indications using the compounds of the present invention are schizophrenia, cognitive impairment and Alzheimer's disease.
The term "halogen" denotes chlorine, iodine, fluorine and bromine.

The term "aryl" denotes a monovalent cyclic aromatic hydrocarbon radical consisting of one or more fused rings in which at least one ring is aromatic in nature, for example phenyl or naphthyl.

The term "heteroaryl" denotes a cyclic aromatic hydrocarbon radical, containing one, two or three heteroatoms, selected from the group consisting of oxygen, sulphur or nitrogen, for example pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, thiadiazolyl, thiényl, furyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isothiazolyl or isoxazolyl.

The term "pharmaceutically acceptable acid addition salts" embraces salts with inorganic and organic acids, such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, citric acid, formic acid, fumaric acid, maleic acid, acetic acid, succinic acid, tartaric acid, methane-sulfonic acid, p-toluenesulfonic acid and the like.

Especially preferred are those compounds of formula I,

wherein

A-B is \(-\text{CH}_2-\text{CH}_2-, -\text{CH}_2-\text{O}-, -\text{O-CH}_2-, -\text{S-CH}_2-\) or \(-\text{N(R}^4)\text{-CH}_2-\);

\(R^1\) is lower alkyl, lower alkenyl, cycloalkyl, or is phenyl, optionally substituted by one or two substituents, selected from the group consisting of halogen, cyano, lower alkyl, \(\text{CF}_3\), \(\text{OCF}_3\) or lower alkoxy, or is heteroaryl, optionally substituted by lower alkyl;

\(R^2\) is lower alkyl, or is phenyl, optionally substituted by one substituent, selected from the group consisting of halogen, lower alkyl, \(\text{CF}_3\), lower alkoxy, or is heteroaryl;

\(R^3\) is hydrogen;

\(R^4\) is benzyl; and

\(n\) is 1 or 2;

and pharmaceutically available salts thereof.

Further preferred are compounds, wherein \(A-B\) is \(-\text{CH}_2-\text{CH}_2-\) and \(n\) is 1.

Especially preferred from this group are compounds, wherein \(R^1\) and \(R^2\) are phenyl, optionally substituted by halogen or lower alkyl, for example the following compounds rac-4-phenyl-8-(1-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one, rac-4-(4-fluoro-phenyl)-8-[1-(4-fluoro-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one or rac 8-[1-(4-fluoro-phenyl)-cyclohexyl]-4-p-toly-2,8-diaza-spiro[4.5]decan-1-one, or wherein \(R^1\) is thiophenyl and \(R^2\) is phenyl, substituted by halogen, for example the following compounds rac-4-(4-fluoro-phenyl)-8-(1-thiophen-2-y-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one or rac-4-(4-fluoro-phenyl)-8-(1-thiophen-3-y-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one, or wherein \(R^1\) is phenyl, optionally substituted by halogen and \(R^2\) is lower alkyl, for example the following compounds rac 8-[1-phenyl-cyclohexyl]-4-propyl-2,8-diaza-spiro[4.5]decan-1-one or rac 8-[1-(4-fluoro-phenyl)-cyclohexyl]-4-propyl-2,8-diaza-spiro[4.5]decan-1-one.

Further preferred are compounds, wherein \(A-B\) is \(-\text{O-CH}_2-, -\text{CH}_2\text{O-}, -\text{S-CH}_2-\) or \(-\text{N(benzyl)-CH}_2-\) and \(n\) is 1.

A further object of the present invention are compounds of formula I, wherein \(n\) is 2. An example from this group is the compound rac-4-(4-fluoro-phenyl)-8-[1-(4-fluoro-phenyl)-cycloheptyl]-2,8-diaza-spiro[4.5]decan-1-one.

The present compounds of formula I and their pharmaceutically acceptable salts can be prepared by methods...
known in the art, for example, by processes described below, which process comprises

a) reacting a compound of formula

![Chemical Structure](image)

with a compound of formula

![Chemical Structure](image)

in the presence of AcOH and TMS CN and then with a corresponding Grignard reagent of formula

\[R^1Mghal \]

9

to a compound of formula

![Chemical Structure](image)

wherein the substituents are as described above and hal is Cl, Br or I, and

b) if desired, separating the obtained racemic forms into corresponding enantiomers, and if desired, converting the compounds obtained into pharmaceutically acceptable acid addition salts.

[0029] The acid addition salts of the basic compounds of formula I may be converted to the corresponding free bases by treatment with at least a stoichiometric equivalent of a suitable base such as sodium or potassium hydroxide, potassium carbonate, sodium bicarbonate, ammonia, and the like.

[0030] The compounds of formula I may be prepared in accordance with process variants a) and b) and with the following schemes 1 and 2.

[0031] The starting material is commercially available or may be prepared in accordance with known methods.

[0032] The following abbreviations have been used:

- LDA = lithiumdiisopropylamide
- TMS CN = trimethylthiocyanat
- DCM = dichloromethane
- TFA = trifluoroacetic acid
- THF = tetrahydrofuran

[0033] Starting from an appropriately 1-protected-piperidine-4-ethylcarboxylate 1, treatment with an appropriate base, usually LDA, followed by treatment with an appropriately substituted nitro alkene 2 results in formation of the nitro alkane
Reduction to the amino group facilitated by Raney-Ni and hydrogen, usually at 60 bar pressure and at 55 °C in EtOH as solvent results in the formation of 4. Subsequent cyclisation by heating in toluene under reflux affords the amide 5. Removal of the protecting group under standard conditions (TFA treatment in DCM for R = Boc; or hydrogenolysis with Pd/C in DCM, MeOH for R = Bn) affords the diazaspiropiperidines 6 (Scheme 1).

wherein R is a N-protecting group, such as BOC or benzyl, and the other substituents are as described above.

Compounds of formula 6 are treated, under Strecker reaction conditions, with a compound of formula 7 in the presence of AcOH and a cyanide source (preferably TMSCN) to give a compound of formula 8, which are then treated, under Bruylant reaction conditions, with a corresponding Grignard reagent 9 to give compounds of formula 1 (Scheme 2). Strecker synthesis can also be carried out using suitable cyanating reagents (KCN, acetone cyanohydrin) according to known procedures at temperature ranges from 0 to 100 °C with reaction times between 30 min and 7 days. Bruylant reactions can be carried out using Grignard reagents prepared from Mg(0) or from i-PrMgCl or other known reagents in a suitable solvent such as tetrahydrofuran (THF). Suitable Grignard reagents are represented by formula R1-MgZ 9.
All compounds of formulas I, 3, 4, 5, 6 and 8 can be prepared in racemic form following the procedures described below and separated into chiral non-racemic enantiomers by preparative HPLC using either a Chiralpak OD or AD column (5 x 50 cm) at room temperature using an ethanol: heptane mobile phase with UV detection at 220 nM.

The compounds of formula I and their pharmaceutically usable addition salts possess valuable pharmacological properties. Specifically, it has been found that the compounds of the present invention are good inhibitors of the glycine transporter I (GlyT-1).

The compounds were investigated in accordance with the test given hereinafter.

Solutions and materials

DMEM complete medium: Nutrient mixture F-12 (Gibco Life-technologies), fetal bovine serum (FBS) 5 %, (Gibco life technologies), Penicillin/Streptomycin 1 % (Gibco life technologies), Hygromycin 0.6 mg/ml (Gibco life technologies), Glutamine 1 mM Gibco life technologies)

Uptake buffer (UB): 150 mM NaCl, 10 mM Hepes-Tris, pH 7.4, 1 mM CaCl₂, 2.5 mM KCl, 2.5 mM MgSO₄, 10 mM (+) D-glucose.

Flip-in™-CHO (Invitrogen Cat n˚ R758-07)cells stably transfected with mGlyT1b cDNA.

Glycine uptake inhibition assay (mGlyT-1b)

On day 1 mammalian cells, (Flip-in™-CHO), transfected with mGlyT-lb cDNA, were plated at the density of 40,000 cells/well in complete F-12 medium, without hygromycin in 96-well culture plates. On day 2, the medium was aspirated and the cells were washed twice with uptake buffer (UB). The cells were then incubated for 20 min at 22°C with either (i) no potential competitor, (ii) 10 mM non-radioactive glycine, (iii) a concentration of a potential inhibitor. A range of concentrations of the potential inhibitor was used to generate data for calculating the concentration of inhibitor resulting in 50 % of the effect (e.g. IC₅₀, the concentration of the competitor inhibiting glycine uptake of 50 %). A solution was then immediately added containing [³H]-glycine 60 nM (11-16 Ci/mmol) and 25 μM non-radioactive glycine. The plates were incubated with gentle shaking and the reaction was stopped by aspiration of the mixture and washing (three times) with ice-cold UB. The cells were lysed with scintillation liquid, shaken 3 hours and the radioactivity in the cells was counted using a scintillation counter.

The following activity can be shown in mouse and human:
The compounds of formula I and the pharmaceutically acceptable salts of the compounds of formula I can be used as medicaments, e.g., in the form of pharmaceutical preparations. The pharmaceutical preparations can be administered orally, e.g., in the form of tablets, coated tablets, dragées, hard and soft gelatine capsules, solutions, emulsions or suspensions. The administration can, however, also be effected rectally, e.g., in the form of suppositories, parenterally, e.g., in the form of injection solutions.

The compounds of formula I can be processed with pharmaceutically inert, inorganic or organic carriers for the production of pharmaceutical preparations. Lactose, corn starch or derivatives thereof, talc, stearic acids or its salts and the like can be used, for example, as such carriers for tablets, coated tablets, dragées and hard gelatine capsules. Suitable carriers for soft gelatine capsules are, for example, vegetable oils, waxes, fats, semi-solid and liquid polyols and the like. Depending on the nature of the active substance no carriers are however usually required in the case of soft gelatine capsules. Suitable carriers for the production of solutions and syrups are, for example, water, polyols, glycerol, vegetable oil and the like. Suitable carriers for suppositories are, for example, natural or hardened oils, waxes, fats, semi-liquid or liquid polyols and the like.

The pharmaceutical preparations can, moreover, contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.

Medicaments containing a compound of formula I or a pharmaceutically acceptable salt thereof and a therapeutically inert carrier are also an object of the present invention, as is a process for their production, which comprises bringing one or more compounds of formula I and/or pharmaceutically acceptable acid addition salts and, if desired, one or more other therapeutically valuable substances into a galenical administration form together with one or more therapeutically inert carriers.

The most preferred indications in accordance with the present invention are those, which include disorders of the central nervous system, for example the treatment or prevention of schizophrenia, cognitive impairment and Alzheimer’s disease.

The dosage can vary within wide limits and will, of course, have to be adjusted to the individual requirements in each particular case. In the case of oral administration the dosage for adults can vary from about 0.01 mg to about 1000 mg per day of a compound of general formula I or of the corresponding amount of a pharmaceutically acceptable salt thereof. The daily dosage may be administered as single dose or in divided doses and, in addition, the upper limit can also be exceeded when this is found to be indicated.

The following examples illustrate the present invention without limiting it. All temperatures are given in degree Celsius.

Preparation of Building blocks 6

rac-4-Phenyl-2,8-diaza-spiro[4.5]decan-1-one

rac-1-Benzyl-4-(2-nitro-1-phenyl-ethyl)-piperidine-4-carboxylic acid ethyl ester

a) An LDA (14 mmol) solution was prepared by treating diisopropylamine (1.37 g, 14 mmol) with BuLi (1.6 M, 8.5 mL, 14 mmol) at -78 °C in dry THF (10 mL) under Argon and allowing to warm up to -20 °C. This solution was then
cooled to -60 °C added to a solution of 1-benzyl-piperidine-4-ethyl carboxylate (3.05 g, 12 mmol) at -60 °C and allowed to warm up to -40 °C over 1 h whereupon a solution of trans-beta-nitrostyrene (1.93 g, 13 mmol) was added dropwise. The reaction mixture was allowed to warm up to room temperature over 1 h and then quenched with ammonium chloride (saturated, 40 mL) and the product extracted with ethyl acetate (2 x 40 mL). The combined organic extracts were then washed with brine, dried over sodium sulfate, filtered and evaporated. Purification by chromatography on silica gel eluting with DCM : MeOH (9 : 1) afforded the title compound (4.1 g, 84 %) as a light yellow gum. MS : m/e = 397.4 (M+H).

rac-4-(2-Amino-1-phenyl-ethyl)-1-benzyl-piperidine-4-carboxylic acid ethyl ester

b) A solution of rac-1-benzyl-4-(2-nitro-1-phenyl-ethyl)-piperidine-4-carboxylic acid ethyl ester (3.18 g, 8 mmol) in dry EtOH (240 mL) was hydrogenated in the presence of Ra-Ni (3 g) at 60 bar at 55 °C for 3 h. After cooling and decompression of the reaction vessel, the mixture was filtered over celite and the filtrate evaporated to leave the title compound (2.9 g, 99 %) as a clear oil. MS : m/e = 367.4 (M+H).

rac-8-Benzyl-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

c) A solution of rac-4-(2-amino-1-phenyl-ethyl)-1-benzyl-piperidine-4-carboxylic acid ethyl ester (2.9 g, 8 mmol) in toluene (30 mL) was heated under reflux for 4 h. After cooling to room temperature and evaporation the mixture was purified by chromatography on silica gel eluting with DCM : MeOH : NH₄OH (95 : 4.5 : 0.5) to afford the title compound (1.47 g, 58 %) as a white solid. MS : m/e = 321.4 (M+H).

rac-4-Phenyl-2,8-diaza-spiro[4.5]decan-1-one

d) A suspension of rac-8-benzyl-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one (28.8 g, 90 mmol) in MeOH : DCM (4:1, 500 mL) was hydrogenated in the presence of Pd (10% on C, 14 g, 132 mmol) at 2 bar for 48 h at room temperature. After filtration over celite, the reaction mixture was evaporated and the residue dissolved in NaOH (2 N, 200 mL). The product was extracted with DCM (3 x 150 mL) and the combined organic extracts dried over sodium sulfate. Filtration and evaporation afforded the title compound (13.1 g, 63 %) as a white solid after trituration from diethylether. MS : m/e = 231.4 (M+H).

Scheme 1, Step 1: F-derivative from Boc protecting group

rac-4-(4-Fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

Piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester

a) To a solution of ethyl isonipecotate (20 g, 127 mmol) in dioxane: water (1 : 1, 120 mL) was added triethylamine (12.87 g, 127 mmol) at 0 °C followed by di-tert-butylcarbonate (35.2 g, 161 mmol) and the resulting mixture maintained at this temperature for 2 h. The product was then extracted with ethyl acetate (3 x 100 mL) and the combined organic extracts washed with HCl (1 N, 100 mL), brine (100 mL), dried over sodium sulfate, filtered and evaporated. Purification by Kugelrohr distillation afforded the title compound (29.0 g, 89 %) as a colourless liquid, bp 140 °C at 0.13 mbar. MS : m/e = 275.2 (M+NH₄).
to -60 °C added to a solution of piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (15.44 g, 60 mmol) in dry THF (45 mL) at -60 °C and allowed to warm up to -40 °C over 1 h whereupon a solution of 4-fluoro-trans-beta-nitrostyrene (10.02 g, 60 mmol) in dry THF (40 mL) was added dropwise. The reaction mixture was allowed to warm up to room temperature over 1 h and then quenched with ammonium chloride (saturated, 250 mL) and the product extracted with diethyl ether (3 x 100 mL). The combined organic extracts were then washed with brine, dried over sodium sulfate, filtered and evaporated to afford the title compound (26.7 g, 99 %) as a light yellow gum. MS : m/e = 442.4 (M+NH₄).

rac-4-(2-Amino-1-phenyl-ethyl)-1-tert-butyl-piperidine-1,4-dicarboxylic acid ethyl ester

[0055] c) A solution of rac-4-[1-(4-fluoro-phenyl)-2-nitro-ethyl]-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (26.6 g, 60 mmol) in dry EtOH (600 mL) was hydrogenated in the presence of Ra-Ni (25 g) at 50 bar at 50 °C for 20 h. After cooling and decompression of the reaction vessel, the mixture was filtered over celite and the filtrate evaporated to leave the title compound (23.4 g, 99 %) as a clear oil which was used directly in the next step.

rac-4-(4-Fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]decane-8-carboxylic acid tert-butyl ester

[0056] d) A solution of rac-4-(2-amino-1-phenyl-ethyl)-1-tert-butyl-piperidine-1,4-dicarboxylic acid ethyl ester (23.4 g, 60 mmol) in toluene (200 mL) was heated under reflux for 18 h. After cooling to room temperature, evaporation afforded the title compound (17.17 g, 83 %) as a white solid after trituration from hot pentane. MS : m/e = 349.3 (M+H).

rac-4-(4-Fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0057] e) A solution of rac-4-(4-fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]decane-8-carboxylic acid tert-butyl ester (46.0 g, 132 mmol) in DCM (260 mL) containing TFA (150 mL, 1.32 mol) was stirred vigorously at 0 °C for 15 min. The reaction mixture was then poured into NaOH (3 N, 200 mL) and the product extracted with DCM (3 x 100 mL). The combined organic extracts were then washed with water (100 mL) and brine (100 mL) and then dried over sodium sulfate. Filtration and evaporation afforded the title compound (22.14 g, 68 %) as a white solid after trituration from ethyl acetate. MS : m/e = 249.2 (M+H).

(R)-4-(4-Fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one and (S)-4-(4-Fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0058] The enantiomers of rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one were separated using a 5 x 50 cm Chiralpak AD column at room temperature using a 15 % ethanol: 85 % heptane mobile phase with UV detection at 220 nm. Less polar component (Peak 1) corresponds to the (R)-enantiomer (see below).

[0059] Elucidation of absolute stereochemistry: To a solution of 4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (Peak A, 50 mg, 0.2 mmol) in methanol (10 mL) was added 1R-(-)-camphorsulfonic acid (46.8 mg, 0.2 mmol) and the solution stirred for 10 min at room temperature. The resulting mixture was evaporated and the residue crystallized from ethyl acetate. A single crystal X-ray structural analysis determined the absolute configuration was (R)- as 1R-(-)-camphorsulfonic acid salt.

Preparation of Building blocks 8

rac-1-(1-Oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cycloheacanecarbonitrile

[0060] To a mixture of rac-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one (8.0 g, 34.7 mmol) in AcOH (80 mL) was added cyclohexanone (3-4 g, 34.7 mmol) followed by the dropwise addition of TMSCN (10.4 g, 104.2 mmol) and the resulting mixture stirred at room temperature for 5 days. The resulting mixture was poured onto ice - sodium hydroxide (25 %, 200 mL) and the resulting white solid filtered off. The solid was dissolved in DCM (50 mL) and washed with water (40 mL) and dried over sodium sulfate. Filtration and evaporation afforded the title compound (7.25 g, 62 %) as a white solid after purification by silica gel chromatography eluting with DCM : MeOH (9:1). MS : m/e = 338.3 (M+H).
rac-1-[4-(4-Fluoro-phenyl)-1-oxo-2,8-diaza-spizo[4.5]dec-8-yl]-cyclohexanecarbonitrile

[0061] As described above, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (10.0 g, 40.3 mmol) was converted to the title compound (8.0 g, 56 %) which was obtained as a white solid. MS : m/e = 356.5 (M+H).

(R)-1-[4-(4-Fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-cyclohexanecarbonitrile

[0062] As described above, (R)-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (Peak A, 150 mg, 0.4 mmol) was converted to the title compound (116 mg, 54 %) which was obtained as a white solid. MS : m/e = 356.5 (M+H).

(S)-1-[4-(4-Fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-cyclohexanecarbonitrile

[0063] As described above, (S)-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (Peak B, 150 mg, 0.4 mmol) was converted to the title compound (116 mg, 54 %) which was obtained as a white solid. MS: m/e = 356.5 (M+H).

Example 1

rac-4-Phenyl-8-(1-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0064] To a solution of rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (400 mg, 1.2 mmol) in dry THF (12 mL) under argon at 0 °C was added phenylmagnesium bromide (1 M in THF, 3.5 mL, 3.6 mmol) and the resulting mixture allowed to warm up to room temperature overnight. The reaction was quenched by the addition of ammonium chloride solution (sat., 20 mL) and the product extracted with ethyl acetate (2 x 50 mL). The combined organic extracts were then washed with brine (50 mL), dried over sodium sulfate, filtered and evaporated. The residue was purified by chromatography on silica gel eluting with DCM : MeOH : NH₄OH (95 : 4.5: 0.5) to afford the title compound (430 mg, 94 %) as a white solid. MS : m/e = 389.3 (M+H).

Example 2

rac-4-Phenyl-8-(1-p-tolyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0065] As described for example 1, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (186 mg, 78 %) (using p-tolylmagnesium bromide instead of phenylmagnesium bromide) which was obtained as a white solid. MS : m/e = 403.6 (M+H).

Example 3

rac-4-Phenyl-8-(1-m-tolyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0066] To a solution of 3-iodotoluene (388 mg, 1.8 mmol) in dry THF (6 mL) under argon at - 60 °C was added isopropylmagnesium chloride (2 M solution in THF, 977 uL, 2.0 mmol) and the resulting solution allowed to warm up to 0 °C over 1 h and then to room temperature over 10 min. The resulting solution was then added dropwise to a solution of rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) in dry THF (3 mL) and the solution stirred overnight at room temperature. The reaction was quenched by the addition of ammonium chloride solution (sat., 10 mL) and the product extracted with ethyl acetate (2 x 20 mL). The combined organic extracts were then washed with brine (20 mL), dried over sodium sulfate, filtered and evaporated. The residue was purified by chromatography on silica gel eluting with DCM : MeOH : NH₂OH (95 : 4.5: 0.5) to afford the title compound (170 mg, 71 %) as a white solid. MS : m/e = 403.6 (M+H).

Example 4

rac-4-Phenyl-8-(1-o-tolyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0067] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (11 mg, 5 %) (using 2-iodotoluene instead of 3-iodotoluene) which was obtained as a white solid. MS : m/e = 403.6 (M+H).
Example 5

rac-8-[1-(3-Fluoro-phenyl)-cyclohexyl]-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0068] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (146 mg, 61 %) (using 1-fluoro-3-iodobenzene instead of 3-iodotoluene) which was obtained as a white solid. MS : m/e = 407.5 (M+H).

Example 6

rac-8-[1-(3,4-Difluoro-phenyl)-cyclohexyl]-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0069] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (96 mg, 38 %) (using 1,2-difluoro-4-iodobenzene instead of 3-iodotoluene) which was obtained as a white solid. MS : m/e = 425.6 (M+H).

Example 7

rac-8-[1-(4-Chloro-phenyl)-cyclohexyl]-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0070] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (96 mg, 38 %) (using 1-chloro-4-iodobenzene instead of 3-iodotoluene) which was obtained as a white solid. MS : m/e = 423.4 (M).

Example 8

rac-4-Phenyl-8-[1-(4-Trifluoromethyl-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0071] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (169 mg, 63 %) (using 4-iodobenzotrifluoride instead of 3-iodotoluene) which was obtained as a white solid. MS : m/e = 457.6 (M+H).

Example 9

rac-4-[1-(1-Oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexyl]-benzonitrile

[0072] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (81 mg, 33 %) (using 4-iodobenzonitrile instead of 3-iodotoluene) which was obtained as a white solid. MS : m/e = 414.5 (M+H).

Example 10

rac-3-[1-(1-Oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexyl]-benzonitrile

[0073] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (77 mg, 31 %) (using 3-iodobenzonitrile instead of 3-iodotoluene) which was obtained as a white solid. MS : m/e = 414.5 (M+H).

Example 11

rac-8-[1-(4-Methoxy-phenyl)-cyclohexyl]-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0074] As described for example 1, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (68 mg, 27 %) (using 4-methoxyphenylmagnesium bromide instead of phenylmagnesium bromide) which was obtained as a white solid. MS : m/e = 437.5 (M+H).
Example 12

rac-8-[1-(3-Methoxy-phenyl)-cyclohexyl]-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0075] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (150 mg, 61%) (using 3-iodoanisole instead of 3-iodotoluene) which was obtained as a white solid. MS: m/e = 419.5 (M+H).

Example 13

rac-8-[1-(2-Methoxy-phenyl)-cyclohexyl]-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0076] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (37 mg, 15%) (using 2-iodoanisole instead of 3-iodotoluene) which was obtained as a white solid. MS: m/e = 419.5 (M+H).

Example 14

rac-4-Phenyl-8-[1-(4-trifluoromethoxy-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0077] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (19 mg, 7%) (using 1-bromo-4-(trifluoromethoxy)benzene instead of 3-iodotoluene) which was obtained as a white solid. MS: m/e = 473.5 (M+H).

Example 15

rac-4-Phenyl-8-[1-(3-trifluoromethoxy-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0078] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (115 mg, 41%) (using 3-(trifluoromethoxy)iodobenzene instead of 3-iodotoluene) which was obtained as a white solid. MS: m/e = 473.5 (M+H).

Example 16

rac-4-Phenyl-8-(1-thiophen-3-yl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0079] As described for example 3, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.9 mmol) was converted to the title compound (77 mg, 22%) (using 3-bromothiophene instead of 3-iodotoluene) which was obtained as a brown oil. MS: m/e = 395.4 (M+H).

Example 17

rac-8-Bicyclohexyl-1-yl-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0080] As described for example 1, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (160 mg, 0.5 mmol) was converted to the title compound (26 mg, 14%) (using cyclohexylmagnesium chloride instead of phenylmagnesium bromide) which was obtained as a white solid. MS: m/e = 395.4 (M+H).

Example 18

rac-8-(1-Cyclopentyl-cyclohexyl)-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0081] As described for example 1, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (160 mg, 0.5 mmol) was converted to the title compound (46 mg, 26%) (using cyclopentylmagnesium chloride instead of phenylmagnesium bromide) which was obtained as a white solid. MS: m/e = 381.5 (M+H).
Example 19

rac-8-(1-Cyclopropyl-cyclohexyl)-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0082] As described for example 1, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (150 mg, 0.44 mmol) was converted to the title compound (21 mg, 12 %) (using cyclopropylmagnesium bromide instead of phenylmagnesium bromide) which was obtained as a white solid. MS : m/e = 353.4 (M+H).

Example 20

rac-8-(1-Isopropyl-cyclohexyl)-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0083] As described for example 14, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.6 mmol) was converted to the title compound (12 mg, 6 %) which was obtained as a white solid. MS : m/e = 355.5 (M+H).

Example 21

rac-8-(1-(2-Methyl-propenyl)-cyclohexyl)-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one

[0084] As described for example 1, rac-1-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (160 mg, 0.47 mmol) was converted to the title compound (55 mg, 32 %) (using 2-methyl-1-propenylmagnesium bromide instead of phenylmagnesium bromide) which was obtained as a white solid. MS : m/e = 367.3 (M+H).

Example 22

rac-4-(4-Fluoro-phenyl)-8-(1-p-tolyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0085] As described for example 2, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (173 mg, 73 %) which was obtained as a white solid. MS : m/e = 421.4 (M+H).

Example 23

rac-4-(4-Fluoro-phenyl)-8-(1-m-tolyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0086] As described for example 3, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (100 mg, 42 %) which was obtained as a white solid. MS : m/e = 421.5 (M+H).

Example 24

rac-4-(4-Fluoro-phenyl)-8-(1-o-tolyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0087] As described for example 4, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (36 mg, 15 %) which was obtained as a white solid. MS : m/e = 421.5 (M+H).

Example 25

rac-4-(4-Fluoro-phenyl)-8-[1-(4-fluoro-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0088] As described for example 1, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (1.0 g, 2.8 mmol) was converted to the title compound (891 mg, 75 %) (using 4-fluorophenylmagnesium bromide instead of phenylmagnesium bromide) which was obtained as a white solid. MS: m/e = 425.5 (M+H).

(R)-4-(4-Fluoro-phenyl)-8-[1-(4-fluoro-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0089] As described for example 24-rac, (R)-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (103 mg, 0.3 mmol) was converted to the title compound (29 mg, 24 %) which was obtained as a white solid. MS : m/e = 425.5 (M+H).
EP 1 716 147 B1

(S)-4-(4-Fluoro-phenyl)-8-[1-(4-fluoro-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0090] As described for example 24-rac, (S)-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (97 mg, 0.3 mmol) was converted to the title compound (35 mg, 30 %) which was obtained as a white solid. MS : m/e = 425.5 (M+H).

Example 26

rac-4-(4-Fluoro-phenyl)-8-[1-(3-fluoro-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0091] As described for example 5, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (180 mg, 75 %) which was obtained as a white solid. MS : m/e = 425.4 (M+H).

Example 27

rac-8-[1-(3,4-Difluoro-phenyl)-cyclohexyl]-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0092] As described for example 6, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (85 mg, 34 %) which was obtained as a white solid. MS : m/e = 443.5 (M+H).

Example 28

rac-8-[1-(4-Chloro-phenyl)-cyclohexyl]-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0093] As described for example 7, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (12 mg, 5 %) which was obtained as a white solid. MS : m/e = 441.5 (M).

Example 29

rac-4-(4-Fluoro-phenyl)-8-[1-(4-trifluoromethyl-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0094] As described for example 8, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (114 mg, 42 %) which was obtained as a white solid. MS : m/e = 475.6 (M+H).

Example 30

rac-4-{1-[4-(4-Fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-cyclohexyl}-benzonitrile

[0095] As described for example 9, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (88 mg, 36 %) which was obtained as a white solid. MS : m/e = 432.6 (M+H).

Example 31

rac-3-{1-[4-(4-Fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-cyclohexyl}-benzonitrile

[0096] As described for example 10, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (16 mg, 7 %) which was obtained as a white solid. MS : m/e = 432.3 (M+H).

Example 32

rac-4-(4-Fluoro-phenyl)-8-[1-(4-methoxy-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0097] As described for example 11, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (250 mg, 0.7 mmol) was converted to the title compound (95 mg, 31 %) which was obtained as a white solid. MS : m/e = 437.5 (M+H).
Example 33

rac-4-(4-Fluoro-phenyl)-8-1-(3-methoxy-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0098] As described for example 12, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (250 mg, 0.7 mmol) was converted to the title compound (95 mg, 39 %) which was obtained as a white solid. MS : m/e = 437.5 (M+H).

Example 34

rac-4-(4-Fluoro-phenyl)-8-[1-(4-trifluoromethoxy-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0099] As described for example 14, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (10 mg, 4 %) which was obtained as a white solid. MS : m/e = 491.5 (M+H).

Example 35

rac-4-(4-Fluoro-phenyl)-8-[1-(3-trifluoromethoxy-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0100] As described for example 15, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (88 mg, 32 %) which was obtained as a white solid. MS : m/e = 491.5 (M+H).

Example 36

rac-4-(4-Fluoro-phenyl)-8-(1-thiophen-2-yl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0101] As described for example 3, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (150 mg, 0.4 mmol) was converted to the title compound (93 mg, 53 %) (using 2-iodothiophene instead of 3-iodotoluene)) which was obtained as a white solid.
MS: m/e = 413.4 (M+H).

Example 37

rac-4-(4-Fluoro-phenyl)-8-[1-(5-methyl-thiophen-2-yl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one

[0102] As described for example 3, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (100 mg, 0.28 mmol) was converted to the title compound (50 mg, 42%) (using 2-bromo-5-methylthiophene instead of 3-iodotoluene)) which was obtained as a white solid.
MS: m/e = 427.6 (M+H).

Example 38

rac-4-(4-Fluoro-phenyl)-8-(1-thiophen-3-yl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0103] As described for example 16, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (150 mg, 0.4 mmol) was converted to the title compound (108 mg, 62 %) which was obtained as a white solid. MS: m/e = 413.4 (M+H).

Example 39

rac-4-(4-Fluoro-phenyl)-8-(1-thiazol-2-yl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0104] As described for example 3, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (100 mg, 0.28 mmol) was converted to the title compound (26 mg, 15 %) (using 2-bromothiazole instead of 3-iodotoluene) which was obtained as a white solid. MS: m/e = 414.4 (M+H).
Example 40

rac-8-(1-Cyclopropyl-cyclohexyl)-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0105] As described for example 19, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (125 mg, 0.35 mmol) was converted to the title compound (11 mg, 8 %) which was obtained as a light yellow solid. MS: m/e = 371.3 (M+H).

Example 41

rac-8-(1-Cyclopropyl-cyclohexyl)-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0106] As described for example 34, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (13 mg, 6 %) which was obtained as a white solid. MS: m/e = 373.6 (M+H).

Example 42

rac-8-(1-Ethyl-cyclohexyl)-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0107] As described for example 3, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (200 mg, 0.6 mmol) was converted to the title compound (29 mg, 14 %) (using 2-iodopyridine and ethylmagnesium bromide instead of 3-iodo-toluene and isopropylmagnesium chloride) which was obtained as a light brown solid. MS: m/e = 359.3 (M+H).

Example 43

rac-4-Phenyl-8-(4-phenyl-tetrahydro-pyran-4-yl)-2,8-diaza-spiro[4.5]decan-1-one

[0108] a) As described for building block 8, rac-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one (150 mg, 0.65 mmol) was converted to the title compound (70 mg, 32 %) (using tetrahydro-4H-pyran-4-one instead of cyclohexanone) which was obtained as a yellow foam. MS: m/e = 340.3 (M+H).

rac-4-Phenyl-8-(4-phenyl-tetrahydro-pyran-4-yl)-2,8-diaza-spiro[4.5]decan-1-one

[0109] b) As described for example 1, rac-4-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-tetrahydro-pyran-4-carbonitrile (70 mg, 0.2 mmol) was converted to the title compound (24 mg, 30 %) which was obtained as an orange solid. MS: m/e = 391.3 (M+H).

Example 44

4-Phenyl-8-(3-phenyl-tetrahydro-pyran-3-yl)-2,8-diaza-spiro[4.5]decan-1-one

[0110] a) As described for example 43a, rac-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one (150 mg, 0.65 mmol) was converted to the title compound (55 mg, 25 %) (using dihydro-pyran-3-one instead of tetrahydro-4H-pyran-4-one) which was obtained as a white solid. MS: m/e = 340.3 (M+H).

rac4-Phenyl-8-(3-phenyl-tetrahydro-pyran-3-yl)-2,8-diaza-spiro[4.5]decan-1-one

[0111]
b) As described for example 1, rac 3-(1-oxo-4-phenyl-2,8-diaza-spiro[4.5]dec-8-yl)-tetrahydro-pyran-3-carbonitrile (54 mg, 0.16 mmol) was converted to the title compound (20 mg, 30 %) which was obtained as an orange solid. MS : m/e = 391.3 (M+H).

Example 45

rac-4-(4-Fluoro-phenyl)-8-(4-phenyl-tetrahydro-thiopyran-4-yl)-2,8-diaza-spiro[4.5]decan-1-one

rac-4-[4-(4-Fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-tetrahydro-thiopyran-4-carbonitrile

[0112]

a) To a stirred mixture of rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one hydrochloride (500 mg, 2.0 mmol) and tetrahydro-4H-thiopyran-4-one (300 mg, 2.6 mmol) was added a solution of KCN (168 mg, 2.6 mmol) in water (30 mL). The resulting mixture was vigorously stirred at room temperature overnight and the resulting precipitate filtered off, washed with water and hexane and dried to afford the title compound (424 mg, 44 %). MS : m/e = 374.5 (M+H).

rac-4-(4-Fluoro-phenyl)-8-(4-phenyl-tetrahydro-thiopyran-4-yl)-2,8-diaza-spiro[4.5]decan-1-one

[0113]

b) As described for example 1, rac-4-[4-(4-fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-tetrahydro-thiopyran-4-carbonitrile (150 mg, 0.4 mmol) was converted to the title compound (50 mg, 29 %) which was obtained as a white solid. MS m/e = 425.5 (M+H).

Example 46

rac-4-(4-Fluoro-phenyl)-8-[4-(4-fluoro-phenyl)-tetrahydro-thiopyran-4-yl]-2,8-diaza-spiro[4.5]decan-1-one

[0114] As described for example 25, rac-4-[4-(4-fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-tetrahydro-thiopyran-4-carbonitrile (520 mg, 1.4 mmol) was converted to the title compound (94 mg, 15 %) which was obtained as a white solid. MS: m/e = 443.5 (M+H).

Example 47

rac-8-[1-Benzyl-4-(4-fluoro-phenyl)-piperidin-4-yl]-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

rac-1-Benzyl-4-[4-(4-fluoro-phenyl)-1-oxo-28-diaza-spiro[4.5]dec-8-yl]-piperidine-4-carbonitrile

[0115]

a) As described for example 43a, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (300 mg, 1.6 mmol) was converted to the title compound (650 mg, 92 %) (using 1-benzyl-4-piperidone instead of cyclohexanone) which was obtained as a white solid. MS : m/e = 447.6 (M+H).

rac-8-[1-Benzyl-4-(4-fluoro-phenyl)-piperidin-4-yl]-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0116]

b) As described for example 25, rac-1-benzyl-4-[4-(4-fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-piperidine-4-carbonitrile (500 mg, 1.1 mmol) was converted to the title compound (33 mg, 6 %) which was obtained as a white solid. MS : m/e = 516.5 (M+H).
Example 48

rac-4-Phenyl-8-(1-phenyl-cycloheptyl)-2,8-diaza-spiro[4.5]decan-1-one

[0117]

(a) As described for example 45a, rac-4-phenyl-2,8-diaza-spiro[4.5]decan-1-one (60 mg, 0.5 mmol) was converted to the title compound (120 mg, 64 %) (using cycloheptanone instead of cyclohexanone) which was obtained as a white solid. MS : m/e = 352.1 (M+H).

rac-4-Phenyl-8-(1-phenyl-cycloheptyl)-2,8-diaza-spiro[4.5]decan-1-one

[0118]

(b) As described for example 1, rac-1-[4-(phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-cycloheptanecarbonitrile (100 mg, 0.28 mmol) was converted to the title compound (41 mg, 36 %) which was obtained as a white solid. MS : m/e = 403.6 (M+H).

Example 49

rac-4-(4-Fluoro-phenyl)-8-(1-phenyl-cycloheptyl)-2,8-diaza-spiro[4.5]decan-1-one

[0119]

(a) As described for example 48a, rac-4-(4-fluoro-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (300 mg, 2.7 mmol) was converted to the title compound (488 mg, 49 %) which was obtained as a white solid. MS : m/e = 370.4 (M+H).

rac-4-(4-Fluoro-phenyl)-8-(1-phenyl-cycloheptyl)-2,8-diaza-spiro[4.5]decan-1-one

[0120]

(b) As described for example 1, rac-1-[4-(4-fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-cycloheptanecarbonitrile (200 mg, 0.54 mmol) was converted to the title compound (110 mg, 48 %) which was obtained as a white solid. MS : m/e = 421.5 (M+H).

Example 50

rac-4-(4-Fluoro-phenyl)-8-[1-(4-fluoro-phenyl)-cycloheptyl]-2,8-diaza-spiro[4.5]decan-1-one

[0121]

As described for example 25, rac-1-[4-(4-fluoro-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-cycloheptanecarbonitrile (300 mg, 0.7 mmol) was converted to the title compound (182 mg, 77 %) which was obtained as a white solid. MS : m/e = 439.5 (M+H).

Example 51

rac 8-(1-Phenyl-cyclohexyl)-4-p-tolyl-2,8-diaza-spiro[4.5]decan-1-one

rac 4-(2-Nitro-1-p-tolyl-ethyl)-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester

[0122]

(a) As described for building block 7, piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (3.15 g, 12.3 mmol) was converted to the title compound (4.86 g, 94 %) (using trans-4-methyl-beta-nitrostyrene instead of 4-fluoro-trans-beta-nitrostyrene) which was obtained as a light brown foam. MS : m/e 419.4 (M-H).
b) As described for building block 7, rac 4-(2-nitro-1-p-tolyl-ethyl)-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (4.85 g, 11.5 mmol) was converted to the title compound (2.46 g, 62 %) after the two-step procedure of Ra-Ni hydrogenation and heating under reflux in toluene solution. The title compound was obtained as a white solid after trituration from pentane. MS : m/e 345.4 (M + H).

c) As described for building block 7, rac 1-oxo-4-p-tolyl-2,8-diaza-spiro[4.5]decane-8-carboxylic acid tert-butyl ester (2.45 g, 7.1 mmol) was converted to the title compound (1.1 g, 63 %), after treatment with TFA in DCM, which was obtained as a brown solid. MS : m/e 245.5 (M + H).

d) As described for building block 7, rac 4-p-tolyl-2,8-diaza-spiro[4.5]decan-1-one (3.50 mg, 0.1 mmol) was converted to the title compound (68 mg, 17 %) which was obtained as an off-white solid. MS : m/e 403.5 (M + H) after the two-step procedure involving the Strecker and Bruylant reactions.

Example 52

rac 8-[1-(4-Fluoro-phenyl)-cyclohexyl]-4-p-tolyl-2,8-diaza-spiro[4.5]decan-1-one 1: 1 hydrochloride

As described for example 51a, piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (1.71 g, 6.6 mmol) was converted to the title compound (2.05 g, 65 %) (using trans-4-trifluoromethyl-beta-nitrostyrene instead of 4-fluoro-trans-beta-nitrostyrene) which was obtained as a yellow oil.

b) As described for example 51b, rac 4-[2-nitro-1-(4-trifluoromethyl-phenyl)-ethyl]-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (2.04 g, 4.3 mmol) was converted to the title compound (1.22 g, 71 %) after the two-step procedure of Ra-Ni hydrogenation and heating under reflux in toluene solution containing triethylamine. The title compound was obtained as a white foam. MS : m/e 399.3 (M + H).
c) Rac 1-oxo-4-(4-trifluoromethyl-phenyl)-2,8-diaza-spiro[4.5]decane-8-carboxylic acid tert-butyl ester (1.22 g, 3.1 mmol) was converted to the title compound (1.03 g, 100%), after treatment with HCl in dioxane, which was obtained as a white solid.

MS : m/e 299.3 (M + H).

rac 1-[1-Oxo-4-(4-trifluoromethyl-phenyl)-2,8-diaza-spiro[4.5]dec-8-yl]-cyclohexanecarbonitrile

[0130]

d) As described for example 45a, 4-(4-trifluoromethyl-phenyl)-2,8-diaza-spiro[4.5]decan-1-one 1: 1 hydrochloride (974 mg, 2.9 mmol) was converted to the title compound (863 mg, 73%) which was obtained as a white solid. MS : m/e 406.3 (M + H).

rac 8-[1-(4-Fluoro-phenyl)-cyclohexyl]-4-(4-trifluoromethyl-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0131]

e) As described for example 25, 7, rac 1-[1-oxo-4-(4-trifluoromethyl-phenyl)-2,8-diaza-spiro[4.5]dec-8-yl]-cyclohexanecarbonitrile (250 mg, 0.62 mmol) was converted to the title compound (34 mg, 12%) which was obtained as a white solid.

MS : m/e 475.1 (M + H).

Example 54

rac 8-[1-(4-Fluoro-phenyl)-cyclohexyl]-4-(4-methoxy-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

rac 4-[1-(4-Methoxy-phenyl)-2-nitro-ethyl]-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester

[0132]

a) As described for example 51a, piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (2.87 g, 78 mmol) was converted to the title compound (3.8 g, 78%) (using 1-(4-methoxyphenyl)-2 nitroethene instead of 4-fluoro-trans-beta-nitrostyrene) which was obtained as a light brown foam. MS : m/e 437.6 (M + H).

rac 4-(4-Methoxy-phenyl)-1-oxo-2,8-diaza-spiro[4.5]decan-8-carboxylic acid tert-butyl ester

[0133]

b) As described for example 51b, 4-[1-(4-methoxy-phenyl)-2-nitro-ethyl]-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (3.8 g, 8.7 mmol) was converted to the title compound (750 mg, 21%) after the two-step procedure of Ra-Ni hydrogenation and heating under reflux in toluene solution containing triethylamine. The title compound was obtained as a white foam. MS : m/e 361.6 (M + H).

rac 4-(4-Methoxy-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0134]

c) As described for example 51c, rac 4-(4-methoxy-phenyl)-1-oxo-2,8-diaza-spiro[4.5]decan-8-carboxylic acid tert-butyl ester (0.74 g, 2.1 mmol) was converted to the title compound (328 mg, 61%), after treatment with TFA in DCM, which was obtained as a white solid. MS: m/e 261.3 (M + H).

rac 1-[4-(4-Methoxy-phenyl)-1-oxo-2,8-diaza-spiro[4.5]dec-8-yl]-cyclohexanecarbonitrile

[0135]

d) As described for example 45a, 4-(4-methoxy-phenyl)-2,8-diaza-spiro[4.5]decan-1-one (300 mg, 1.2 mmol) was converted to the title compound (270 mg, 64%) which was obtained as a white solid. MS : m/e 368.4 (M + H).
rac 8-[1-(4-Fluoro-phenyl)-cyclohexyl]-4-(4-methoxy-phenyl)-2,8-diaza-spiro[4.5]decan-1-one

[0136] e) As described for example 25, rac 1-[4-(4-methoxy-phenyl)-1-oxo-2,8-diaza-spiro[4.5][dec-8-yl]-cyclohexanecarbonitrile (250 mg, 0.68 mmol) was converted to the title compound (104 mg, 35%) which was obtained as a white solid. MS : m/e 437.4 (M + H).

Example 55

rac 8-(1-Phenyl-cyclohexyl)-4-thiophen-2-yl-2,8-diaza-spiro[4.5]decan-1-one

rac 4-(2-Nitro-1-thiophen-2-yl-ethyl)-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester

[0137] a) As described for example 51a, piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (1.66 g, 10.7 mmol) was converted to the title compound (1.62 g, 61%) (using 2-(2-nitrovinyl)thiophene instead of 4-fluoro-trans-beta-nitrostyrene) which was obtained as a dark brown solid. MS : m/e 413.4 (M + H).

rac 4-(2-Amino-1-thiophen-2-yl-ethyl)-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester

[0138] b) To a solution of 4-(2-nitro-1-thiophen-2-yl-ethyl)-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (1.5 g, 3.6 mmol) in acetic acid (15 mL) was added Zinc dust (2 g, 30.6 mmol) and the resulting mixture stirred at room temperature for 3 h. The mixture was then diluted with water and basufied with sodium carbonate. The product was extracted with ethyl acetate and the combined organic extracts were then washed with brine, dried over sodium sulfate, filtered and evaporated. Purification by chromatography on silica gel eluting with DCM : MeOH (98 : 2) afforded the title compound (403 mg, 29%) as a light brown foam. MS : m/e = 399.5 (M+NH₄).

c) A mixture of 4-(2-amino-1-thiophen-2-yl-ethyl)-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (400 mg, 0.97 mmol) in toluene (3 mL) containing triethylamine (0.2 mL) was heated under reflux for 5 h. After cooling to room temperature the mixture was evaporated to afford the cyclic amide [MS : m/e 337.3 (M + H)] which was then dissolved in dieroromethane (4 mL) and trifluoro acetic acid (0.8 mL, 1.1 mmol) was added and the resulting mixture stirred at room temperature for 30 min. The mixture was then basified with NaOH (2 N) and the product extracted with dieroromethane to afford the amine (76 mg, 30%) as a brown foam. This product was then treated in an analogous manner to example 45a to afford the Strecker product (75 mg, 69%) as a brown oil. MS : m/e = 344.3 (M+H). This product was then treated as described for example 1, to afford the title compound (42 mg, 52%) which was obtained as a light yellow oil. MS : m/e 395.3 (M + H).

Example 56

rac 8-(1-Phenyl-cyclohexyl)-4-propyl-2,8-diaza-spiro[4.5]decan-1-one

1-Nitro-pent-1-ene

[0140] a) To a solution of butyraldehyde (90.1 mL, 1 mol) in aquesous NaHSO₃ (38%, 207.5 mL, 1 mol) and water (293 mL) was added a solution of nitromethane (54.1 mL, 1 mol) dissolved in NaOH (2 N, 150 mL, 300 mmol) and water (50 mL) and the resulting mixture stirred at 43 °C for 3 h and then heated under reflux for 30 min. The mixture was then cooled to room temperature overnight and adjusted to pH~4 with HCl (6 N). The product was extracted with diethyl ether (3 x 500 mL) and the combined organic layers where then washed with H₂O and brine, dried over
sodium sulfate and evaporated to leave a brown liquid (37.6 g, 282 mmol). This product was then dissolved in chloroform (100 mL) and treated with acetyl chloride (23 mL, 325 mmol) and the resulting mixture stirred at room temperature for 3 h and then heated under reflux for 30 min. After cooling to room temperature the mixture was poured onto ice and neutralized with solid NaHCO₃. The product was extracted with chloroform (2 x 200 mL) and the combined organic layers where then washed with H₂O and brine, dried over sodium sulfate and evaporated to leave a brown liquid (46.1 g, 263 mmol). This product was then dissolved in ethyl acetate (1 L) and then sodium acetate (69.1 g, 842 mmol) added and the resulting mixture stirred at room temperature for 48 h. The mixture was then filtered and the solution evaporated. The residue was then partitioned between diethyl ether and water and the water layer extracted with diethyl ether. The combined organic layers where then washed with H₂O and brine, dried over sodium sulfate and evaporated to leave a brown liquid (46 g). The title compound (6.8 g, 23 %) was purified by steam distillation (bp 70 °C at 8 torr).

rac 4-(1-Nitromethyl-butyl)-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester

b) As described for building block 7, piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (15.3 g, 59 mmol) was converted to the title compound (21.2 g, 96 %) (using 1-nitro-pent-1-ene instead of 4-fluoro-trans-beta-nitrostyrene) which was obtained as a yellow oil. MS : m/e 371.2 (M - H).

rac 1-Oxo-4-propyl-2,8-diaza-spiro[4.5]decane-8-carboxylic acid tert-butyl ester

c) As described for for building block 7, rac 4-(1-nitromethyl-butyl)-piperidine-1,4-dicarboxylic acid 1-tert-butyl ester 4-ethyl ester (21.2 g, 57 mmol) was converted to the title compound (11.2 g, 66 %) after the two-step procedure of Ra-Ni hydrogenation and heating under reflux in toluene solution. The title compound was obtained as a white solid after trituration from hot pentane. MS : m/e 297.5 (M + H).

rac 4-Propyl-2,8-diaza-spiro[4.5]decan-1-one

d) As described for building block 7, 1-oxo-4-propyl-2,8-diaza-spiro[4.5]decane-8-carboxylic acid tert-butyl ester (11.2 g, 38 mmol) was converted to the title compound (6.3 g, 85 %) which was obtained as a light yellow liquid. MS : m/e 197.4 (M + H).

rac 1-(1-Oxo-4-propyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile

e) As described for building block 8, rac 4-propyl-2,8-diaza-spiro[4.5]decan-1-one (4.0 g, 20 mmol) was converted to the title compound (718 mg, 12 %) which was obtained as a white solid. MS : m/e 304.4 (M + H).

rac 8-(1-Phenyl-cyclohexyl)-4-propyl-2,8-diaza-spiro[4.5]decan-1-one

As described for example 1, 1-(1-oxo-4-propyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.66 mmol) was converted to the title compound (122 mg, 52 %) which was obtained as a white solid. MS : m/e 355.5 (M + H).

Example 57

rac 8-[1-(4-Fluoro-phenyl)-cyclohexyl]-4-propyl-2,8-diaza-spiro[4.5]decan-1-one

As described for example 25, rac 1-(1-oxo-4-propyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (200 mg, 0.66 mmol) was converted to the title compound (87 mg, 35 %) which was obtained as a white solid. MS : m/e 373.5 (M + H).
Example 58

rac 4-Propyl-8-(1-thiophen-2-yl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one

[0147] As described for example 36, rac 1-(1-oxo-4-propyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (75 mg, 0.3 mmol) was converted to the title compound (40 mg, 45 %) which was obtained as a white solid. MS : m/e 361.5 (M + H).

Example 59

rac 8-[1-(5-Methyl-thiophen-2-yl)-cyclohexyl]-4-propyl-2,8-diaza-spiro[4.5]decan-1-one

[0148] As described for example 37, rac 1-(1-oxo-4-propyl-2,8-diaza-spiro[4.5]dec-8-yl)-cyclohexanecarbonitrile (77 mg, 0.3 mmol) was converted to the title compound (29 mg, 31 %) which was obtained as a white solid. MS: m/e 375.4 (M + H).
<table>
<thead>
<tr>
<th>n</th>
<th>A-B</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>11</td>
</tr>
<tr>
<td>20</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>30</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>14</td>
</tr>
<tr>
<td>35</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>16</td>
</tr>
<tr>
<td>45</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>17</td>
</tr>
<tr>
<td>50</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>18</td>
</tr>
<tr>
<td>55</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>19</td>
</tr>
<tr>
<td>60</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>20</td>
</tr>
<tr>
<td>65</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>21</td>
</tr>
<tr>
<td>70</td>
<td>CH₂CH₂</td>
<td></td>
<td></td>
<td>H</td>
<td>22</td>
</tr>
<tr>
<td>n</td>
<td>A-B</td>
<td>R¹</td>
<td>R³</td>
<td>R²</td>
<td>Example</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>20</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>25</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>35</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>45</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>50</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>55</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>60</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>65</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>70</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>75</td>
<td>CH₂CH₂</td>
<td></td>
<td>H</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>n</td>
<td>A-B</td>
<td>R¹</td>
<td>R³</td>
<td>R²</td>
<td>Example</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>CH₂CH₂</td>
<td>N</td>
<td>H</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>CH₂CH₂</td>
<td>CH₂</td>
<td>H</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>CH₂CH₂</td>
<td>CH₂</td>
<td>H</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>1</td>
<td>OCH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>20</td>
<td>CH₃O</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>25</td>
<td>SCH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>30</td>
<td>SCH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>BnNCH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>35</td>
<td>CH₂CH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>40</td>
<td>CH₂CH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>45</td>
<td>CH₂CH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>CH₂CH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>50</td>
<td>CH₂CH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>1</td>
<td>CH₂CH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>55</td>
<td>CH₂CH₂</td>
<td>CH₃</td>
<td>H</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>
Tablet Formulation (Wet Granulation)

<table>
<thead>
<tr>
<th>Item</th>
<th>Ingredients</th>
<th>mg/tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Compound of formula I</td>
<td>5 mg</td>
</tr>
<tr>
<td>2.</td>
<td>Lactose Anhydrous DTG</td>
<td>125</td>
</tr>
<tr>
<td>3.</td>
<td>Sta-Rx 1500</td>
<td>6</td>
</tr>
<tr>
<td>4.</td>
<td>Microcrystalline Cellulose</td>
<td>30</td>
</tr>
<tr>
<td>5.</td>
<td>Magnesium Stearate</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>167</td>
</tr>
</tbody>
</table>

Manufacturing Procedure
1. Mix items 1, 2, 3 and 4 and granulate with purified water.
2. Dry the granules at 50°C.
3. Pass the granules through suitable milling equipment.
4. Add item 5 and mix for three minutes; compress on a suitable press.

Capsule Formulation

<table>
<thead>
<tr>
<th>Item</th>
<th>Ingredients</th>
<th>mg/capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Compound of formula I</td>
<td>5 mg</td>
</tr>
<tr>
<td>2.</td>
<td>Hydrous Lactose</td>
<td>159</td>
</tr>
<tr>
<td>3.</td>
<td>Corn Starch</td>
<td>25</td>
</tr>
<tr>
<td>4.</td>
<td>Talc</td>
<td>10</td>
</tr>
<tr>
<td>5.</td>
<td>Magnesium Stearate</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

Manufacturing Procedure
1. Mix items 1, 2 and 3 in a suitable mixer for 30 minutes.
2. Add items 4 and 5 and mix for 3 minutes.
3. Fill into a suitable capsule.
Claims

1. A compound of the general formula

![Chemical Structure]

wherein

- $A-B$ is $\text{CH}_2\text{-CH}_2\text{-, CH}_2\text{O-}, \text{O-CH}_2\text{-, S-CH}_2\text{-, CH}_2\text{-C(O)-, C(O)-CH}_2\text{-, } \text{N(R}_4\text{-CH}_2\text{- or CH}_2\text{N(R}_4\text{-);}}$
- R_1 is C_{1-7} alkyl, C_{2-7} alkenyl, cycloalkyl, or is phenyl or naphthyl, optionally substituted by one or two substituents, selected from the group consisting of halogen, cyano, C_{1-7} alkyl, CF_3, OCF_3 or C_{1-7} alkoxy, or is heteroaryl selected from the group consisting of pyridyl, pyrazinyl, pyrimidinyl, triazinyl, thiazolyl, thiophenyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isothiazolyl and isoxazolyl, optionally substituted by one or two substituents selected from the group consisting of halogen, C_{1-7} alkyl, CF_3 or C_{1-7} alkoxy;
- R_2 is C_{1-7} alkyl, cycloalkyl, or is phenyl or naphthyl, optionally substituted by one or two substituents, selected from the group consisting of halogen, C_{1-7} alkyl, CF_3, C_{1-7} alkoxy, or is heteroaryl selected from the group consisting of pyridyl, pyrazinyl, pyrimidinyl, triazinyl, thiazolyl, thiophenyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isothiazolyl and isoxazolyl, optionally substituted by one or two substituents, selected from the group consisting of halogen, C_{1-7} alkyl, CF_3 or C_{1-7} alkoxy;
- R_3 is hydrogen, C_{1-7} alkyl or benzyl;
- R_4 is hydrogen or benzyl;
- n is 0, 1 or 2;

or a pharmaceutically available salt thereof.

2. The compound of formula I according to claim 1

![Chemical Structure]

wherein

- $A-B$ is $\text{CH}_2\text{-CH}_2\text{-, CH}_2\text{O-}, \text{O-CH}_2\text{-, S-CH}_2\text{- or N(R}_4\text{-CH}_2\text{-;}}$
- R_1 is C_{1-7} alkyl, C_{2-7} alkenyl, cycloalkyl, or is phenyl, optionally substituted by one or two substituents, selected from the group consisting of halogen, cyano, C_{1-7} alkyl, CF_3, OCF_3 or C_{1-7} alkoxy, or is heteroaryl selected from the group consisting of pyridyl, pyrazinyl, pyrimidinyl, triazinyl, thiazolyl, thiophenyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isothiazolyl and isoxazolyl, optionally substituted by one or two substituents, selected from the group consisting of halogen, C_{1-7} alkyl, CF_3 or C_{1-7} alkoxy;
- R_2 is C_{1-7} alkyl, or is phenyl, optionally substituted by one substituent, selected from the group consisting of halogen, C_{1-7} alkyl, CF_3, C_{1-7} alkoxy, or is heteroaryl selected from the group consisting of pyridyl, pyrazinyl, pyrimidinyl, triazinyl, thiazolyl, thiophenyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isothiazolyl and isoxazolyl, optionally substituted by one or two substituents, selected from the group consisting of halogen, C_{1-7} alkyl, CF_3 or C_{1-7} alkoxy;
3. The compound of formula I according to claim 2, wherein n is 1.

4. The compound of formula I according to claim 3, wherein -A-B- is -CH₂-CH₂-.

5. The compound of formula I according to claim 4, wherein R¹ and R² are phenyl, optionally substituted by halogen or C₁₋₇ alkyl.

6. The compound of formula I according to claim 5, wherein the compound is rac-4-phenyl-8-(1-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one, rac-4-(4-fluoro-phenyl)-8-[1-(4-fluoro-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-one or rac 8-[1-(4-fluoro-phenyl)-cyclohexyl]-4-p-tolyl-2,8-diaza-spiro[4.5]decan-1-one.

7. The compound of formula I according to claim 4, wherein R¹ is thiophenyl and R² is phenyl, substituted by halogen.

8. The compound of formula I according to claim 7, wherein the compound is rac-4-(4-fluoro-phenyl)-8-(1-thiophen-2-yl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one or rac-4-(4-fluoro-phenyl)-8-(1-thiophen-3-yl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-one.

9. The compound of formula I according to claim 4, wherein R¹ is phenyl, optionally substituted by halogen and R² is C₁₋₇ alkyl.

10. The compound of formula I according to claim 9, wherein the compound is rac 8-(1-phenyl-cyclohexyl)-4-propyl-2,8-diaza-spiro[4.5]decan-1-one or rac 8-[1-(4-fluoro-phenyl)-cyclohexyl]-4-propyl-2,8-diaza-spiro[4.5]decan-1-one.

11. The compound of formula I according to claim 3, wherein -A-B- is -O-CH₂-.

12. The compound of formula I according to claim 3, wherein -A-B- is -CH₂-O-.

13. The compound of formula I according to claim 3, wherein -A-B- is -S-CH₂-.

14. The compound of formula I according to claim 3, wherein -A-B- is -N(benzyl)-CH₂-.

15. The compound of formula I according to claim 2, wherein n is 2.

16. The compound of formula I according to claim 15, wherein the compound is rac-4-(4-fluoro-phenyl)-8-[1-(4-fluoro-phenyl)-cycloheptyl]-2,8-diaza-spiro[4.5]decan-1-one.

17. A process for preparation of a compound according to any one of claims 1-16, which process comprises

 a) reacting a compound of formula

 ![Structure](image)

 with a compound of formula
in the presence of AcOH and TMSCN and then with a corresponding Grignard reagent of formula

\[R^1 \text{Mg} \text{hal} \]

to a compound of formula

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3
\end{array}
\]

wherein the substituents are as described above and hal is Cl, Br or I, and

b) if desired, separating the obtained racemic form into corresponding enantiomer, and

if desired, converting the compound obtained into a pharmaceutically acceptable acid addition salt.

18. A medicament containing one or more compounds according to any one of claims 1-16 and a pharmaceutically acceptable excipient.

19. The medicament according to claim 18 for the treatment of an illness based on the glycine uptake inhibitor.

20. The medicament according to claim 18 or 19, wherein the illness is psychoses, pain, disfunction in memory and learning, schizophrenia, dementia and other diseases in which cognitive processes are impaired, such as attention deficit disorders or Alzheimer’s disease.

21. The use of a compound according to any one of claims 1-16 for the manufacture of a medicament for the treatment of psychoses, pain, neurodegenerative disfunction in memory and learning, schizophrenia, dementia and other diseases in which cognitive processes are impaired, such as attention deficit disorders or Alzheimer’s disease.

Patentansprüche

1. Verbindung der allgemeinen Formel

worin
A-B CH₂-CH₂-,-CH₂-O-, -O-CH₂-, -CH₂-S-, -S-CH₂-, -CH₂-C(O)-, -C(O)-CH₂- oder -CH₂-N(R⁴)- ist;
R¹ C₁₋₇-Alkyl, C₂₋₇-Alkenyl, Cycloalkyl ist oder Phenyl oder Naphthyl, gegebenenfalls substituiert durch einen
oder zwei Substituenten, ausgewählt aus der Gruppe, bestehend aus Halogen, Cyano, C₁₋₇-Alkyl, CF₃, OCF₃
oder C₁₋₇-Alkoxy, ist oder Heteroaryl, ausgewählt aus der Gruppe, bestehend aus Pyridyl, Pyrazinyl, Pyrimidinyl,
Pyridazinyl, Triazinyl, Thiazolyl, Thiencyl, Furyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isothiazolyl und Isoxa-
zolyl, gegebenenfalls substituiert durch einen oder zwei Substituenten, ausgewählt aus der Gruppe, bestehend
aus Halogen, C₁₋₇-Alkyl, CF₃ oder C₁₋₇-Alkoxy, ist;
R² C₁₋₇-Alkyl, Cycloalkyl ist oder Phenyl oder Naphthyl, gegebenenfalls substituiert durch einen oder zwei
Substituenten, ausgewählt aus der Gruppe, bestehend aus Halogen, C₁₋₇-Alkyl, CF₃, C₁₋₇-Alkoxy, ist oder
Heteroaryl, ausgewählt aus der Gruppe, bestehend aus Pyridyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl, Triazinyl,
Thiazolyl, Thiencyl, Furyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isothiazolyl und Isoxazolyl, gegebenenfalls
substituiert durch einen oder zwei Substituenten, ausgewählt aus der Gruppe, bestehend aus Halogen, C₁₋₇-Al-
kyl, CF₃ oder C₁₋₇-Alkoxy, ist;
R³ Wasserstoff, C₁₋₇-Alkyl oder Benzyl ist;
R⁴ Wasserstoff oder Benzyl ist;
n 0, 1 oder 2 ist;
und pharmazeutisch verfügbare Salze davon.

2. Verbindung der Formel I nach Anspruch 1

![Chemical Structure](image)

worin

A-B CH₂-CH₂-,-CH₂-O-, -O-CH₂-, -S-CH₂- oder -N(R⁴)-CH₂- ist;
R¹ C₁₋₇-Alkyl, C₂₋₇-Alkenyl, Cycloalkyl ist oder Phenyl, gegebenenfalls substituiert durch einen oder zwei Sub-
stituenten, ausgewählt aus der Gruppe, bestehend aus Halogen, Cyano, C₁₋₇-Alkyl, CF₃, OCF₃ oder C₁₋₇-Alkoxy,
ist oder Heteroaryl, ausgewählt aus der Gruppe, bestehend aus Pyridyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl,
Triazinyl, Thiazolyl, Thiencyl, Furyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isothiazolyl und Isoxazolyl, gege-
benenfalls substituiert durch C₁₋₇-Alkyl, ist;
R² C₁₋₇-Alkyl ist oder Phenyl, gegebenenfalls substituiert durch einen Substituenten, ausgewählt aus der Gruppe,
bestehend aus Halogen, C₁₋₇-Alkyl, CF₃, C₁₋₇-Alkoxy, ist oder Heteroaryl, ausgewählt aus der Gruppe, bestehend aus Pyridyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl, Triazinyl, Thiazolyl, Thiencyl, Furyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isothiazolyl und Isoxazolyl, gege-
benenfalls substituiert durch C₁₋₇-Alkyl, ist;
R³ Wasserstoff ist;
R⁴ Benzyl ist und
n 1 oder 2 ist.

3. Verbindung der Formel I nach Anspruch 2, wobei n 1 ist.

5. Verbindung der Formel I nach Anspruch 4, wobei R¹ und R² Phenyl, gegebenenfalls substituiert durch Halogen
oder C₁₋₇-Alkyl, sind.

6. Verbindung der Formel I nach Anspruch 5, wobei die Verbindung rac-4-Phenyl-8-(1-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-on,
rac-4-(4-Fluor-phenyl)-8-[1-(4-fluor-phenyl)-cyclohexyl]-2,8-diaza-spiro[4.5]decan-1-on oder
rac-8-[1-(4-Fluor-phenyl)-cyclohexyl]-4-p-tolyl-2,8-diaza-spiro[4.5]decan-1-on ist.

7. Verbindung der Formel I nach Anspruch 4, wobei R¹ Thiophenyl und R² Phenyl, substituiert durch Halogen, ist.

8. Verbindung der Formel I nach Anspruch 7, wobei die Verbindung
rac-4-(4-Fluor-phenyl)-8-(1-thiopen-2-yl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-on oder
rac-4-(4-Fluor-phenyl)-8-(1-thiopen-3-yl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-on ist.

9. Verbindung der Formel I nach Anspruch 4, wobei R¹ Phenyl, gegebenenfalls substituiert durch Halogen, und R²
 C₁₋₇-Alkyl ist.

10. Verbindung der Formel I nach Anspruch 9, wobei die Verbindung rac-8-(1-Phenyl-cyclohexyl)-4-propyl-2,8-diaza-
 spiro[4.5]decan-1-on oder rac-8-[1-(4-Fluor-phenyl)-cyclohexyl]-4-propyl-2,8-diaza-spiro[4.5]decan-1-on ist.

15. Verbindung der Formel I nach Anspruch 2, wobei n 2 ist.

16. Verbindung der Formel I nach Anspruch 15, wobei die Verbindung rac-4-(4-Fluor-phenyl)-8-[1-(4-fluor-phenyl)-cy-
 cloheptyl]-2,8-diaza-spiro[4.5]decan-1-on ist.

17. Verfahren zur Herstellung einer Verbindung nach einem der Ansprüche 1 bis 16, wobei das Verfahren
 a) das Umsetzen einer Verbindung der Formel

 mit einer Verbindung der Formel

 in Gegenwart von AcOH und TMSCN und dann mit einem entsprechenden Grignardreagens der Formel

 R¹Mghal

zu einer Verbindung der Formel
worin die Substituenten wie oben beschrieben sind und hal Cl, Br oder I ist, und
b) nach Bedarf, das Trennen der erhaltenen racemischen Form zu dem entsprechenden Enantiomer, und

nach Bedarf, das Umwandeln der erhaltenen Verbindung in ein pharmazeutisch akzeptables Säureadditionssalz
umläuft.

18. Medikament, enthaltend eine oder mehrere Verbindungen nach einem der Ansprüche 1 bis 16 und einen pharma-
 zeutisch akzeptablen Trägerstoff.

19. Medikament nach Anspruch 18 zur Behandlung einer Krankheit, die auf dem Glycinaufnahmeinhibitor basiert.

20. Medikament nach Anspruch 18 oder 19, wobei die Krankheit Psychosen, Schmerz, Gedächtnis- und Lernfunktio-
 nstörung, Schizophrenie, Demenz und andere Krankheiten, bei denen die Wahrnehmungsprozesse beeinträchtigt
 werden, wie Aufmerksamkeitsdefizitstörungen oder die Alzheimer-Krankheit, ist.

21. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 16 zur Herstellung eines Medikaments zur Behand-
 lung von Psychosen, Schmerz, Gedächtnis- und Lernfunktionsstörung, Schizophrenie, Demenz und anderen Krank-
 heiten, bei denen die Wahrnehmungsprozesse beeinträchtigt werden, wie Aufmerksamkeitsdefizitstörungen oder
 die Alzheimer-Krankheit.

Revendications

1. Composé de formule générale

\[
\text{A-B est } \text{-CH}_2\text{-CH}_2-, \text{-CH}_2\text{-O-, -O-CH}_2-, \text{-CH}_2\text{-S-, -S-CH}_2-, \text{-CH}_2\text{-C(O)-, -C(O)-CH}_2-, -N(R^4)\text{-CH}_2- ou -CH}_2\text{-N}(R^4)-;}
\]

\[
R^1 \text{ est alkyle en C}_{1-7}, \text{ alcényle en C}_{2-7}, \text{ cycloalkyle, ou est phényle ou naphthyle, éventuellement substitué}
\]

par un ou deux substituants choisis dans le groupe constitué par halogène, cycano, alkyle en C_{1-7}, CF_3, OCF_3

\[
ou \text{alcoxy en C}_{1-7}, \text{ ou est hétéroaryle choisi dans le groupe constitué par pyridyle, pyrazinyle, pyrimidinyle,}
\]

pyridazinyle, triazinyle, thiazolyle, thiényle, furyle, pyrrolyle, imidazolyle, pyrazolyle, oxazolyle, isothiazolyle et

isoxazolyle, éventuellement substitué par un ou deux substituants choisis dans le groupe constitué par halogène,

alkyle en C_{1-7}, CF_3 ou alcoxy en C_{1-7};

\[
R^2 \text{ est alkyle en C}_{1-7}, \text{ cycloalkyle, ou est phényle ou naphthyle, éventuellement substitué par un ou deux}
\]

substituants choisis dans le groupe constitué par halogène, alkyle en C_{1-7}, CF_3, alcoxy en C_{1-7}, ou est

hétéroaryle choisi dans le groupe constitué par pyridyle, pyrazinyle, pyrimidinyle, pyridazinyle, triazinyle, thia-

zolyle, thiényle, furyle, pyrrolyle, imidazolyle, pyrazolyle, oxazolyle, isothiazolyle et isoxazolyle, éventuellement
substitué par un ou deux substituants choisis dans le groupe constitué par halogène, alkyle en C₁-C₇, CF₃ ou alcoxy en C₁-C₇;
R³ est hydrogène, alkyle en C₁-C₇ ou benzyle;
R⁴ est hydrogène ou benzyle; et
n est 0, 1 ou 2;
ou un de ses sels pharmaceutiquement disponibles.

2. Composé de formule I selon la revendication 1

\[
\begin{align*}
A-B &= -\text{CH}_2\text{-CH}_2-, -\text{CH}_2\text{-O-}, -\text{O-CH}_2-, -\text{S-CH}_2- \text{ ou } -\text{N}^{(R)}\text{-CH}_2-; \\
R^1 &= \text{alkyle en C1-C7, alcényle en C2-C7, cycloalkyle, ou est phényle éventuellement substitué par un ou deux substituants choisis dans le groupe constitué par halogène, cyano, alkyle en C1-C7, CF₃, OCF₃ ou alcoxy en C₁-C₇, ou est hétéroaryle choisi dans le groupe constitué par pyridyle, pyrazinyle, pyrimidinyle, pyridazinyle, triazinyle, thiazolyle, thiényle, furyle, pyrrole, imidazolyle, pyrazolyle, oxazolyle, isothiazolyle et isoxazolyle, éventuellement substitués par alkyle en C₁-C₇;} \\
R^2 &= \text{alkyle en C1-C7, ou est phényle éventuellement substitué par un substituant choisis dans le groupe constitué par halogène, alkyle en C1-C7, CF₃, alcoxy en C₁-C₇, ou est hétéroaryle choisi dans le groupe constitué par pyridyle, pyrazinyle, pyrimidinyle, pyridazinyle, triazinyle, thiazolyle, thiényle, furyle, pyrrole, imidazolyle, pyrazolyle, oxazolyle, isothiazolyle et isoxazolyle;} \\
R^3 &= \text{hydrogène;} \\
R^4 &= \text{benzyle; et} \\
n &= 1 \text{ ou } 2.
\end{align*}
\]

(dans laquelle)

3. Composé de formule I selon la revendication 2, dans lequel n est 1.

4. Composé de formule I selon la revendication 3, dans lequel A-B est -\text{CH}_2\text{-CH}_2-.

5. Composé de formule I selon la revendication 4, dans lequel R₁ et R₂ sont phényle éventuellement substitué par halogène ou alkyle en C₁-C₇.

6. Composé de formule I selon la revendication 5, le composé étant la rac-4-phényl-8-(1-phénylcyclohexyl)-2,8-diazaspiro[4.5]décan-1-one, la rac-4-(4-fluorophényl)-8-[[1-(4-fluorophénylcyclohexyl)]]-2,8-diazaspiro[4.5]-décan-1-one, ou la rac-8-[[1-(4-fluorophénylcyclohexyl)]]-4-p-tolyl-2,8-diazaspiro[4.5]-décan-1-one.

7. Composé de formule I selon la revendication 4, dans lequel R₁ est thiophényle et R₂ est phényle, substitué par halogène.

8. Composé de formule I selon la revendication 7, le composé étant la rac-4-(4-fluorophényl)-8-[[1-thiophén-2-ylcyclohexyl]]-2,8-diazaspiro[4.5]-décan-1-one, ou la rac-4-(4-fluorophényl)-8-[[1-thiophén-3-ylcyclohexyl]]-2,8-diazaspiro[4.5]-décan-1-one.

9. Composé de formule I selon la revendication 4, dans lequel R₁ est phényle éventuellement substitué par halogène et R₂ est alkyle en C₁-C₇.

11. Composé de formule I selon la revendication 3, dans lequel -A-B- est -O-CH₂-.

12. Composé de formule I selon la revendication 3, dans lequel -A-B- est -CH₂-O-.

13. Composé de formule I selon la revendication 3, dans lequel -A-B- est -S-CH₂-.

14. Composé de formule I selon la revendication 3, dans lequel -A-B- est -N(benzyl)-CH₂-.

15. Composé de formule I selon la revendication 2, dans lequel n est 2.

16. Composé de formule I selon la revendication 15, le composé étant la rac-4-(4-fluorophényl)-8-[1-(4-fluorophényl)cycloheptyl]-2,8-diazaspiro[4.5]-décan-1-one.

17. Procédé de préparation d’un composé selon l’une quelconque des revendications 1-16, ce procédé comprenant
 a) la réaction d’un composé de formule

 ![Diagramme 1]

 avec un composé de formule

 ![Diagramme 2]

 en présence de AcOH et de TMSCN, puis avec réactif de Grignard correspondant de formule

 \(R^1 \text{ Mghal} \)

 pour l’obtention d’un composé de formule

 ![Diagramme 3]

 où les substituants sont tels que décrits ci-dessus et hal est Cl, Br ou I, et
 b) si désiré, la séparation de la forme racémique obtenue en l’énonantomère correspondant, et
 si désiré, la conversion du composé obtenu en un sel d’addition d’acide pharmaceutiquement acceptable.

18. Médicament contenant un ou plusieurs composés selon l’une quelconque des revendications 1-16 et un excipient
pharmaceutiquement acceptable.

20. Médicament selon la revendication 18 ou 19, où la maladie est une psychose, une douleur, un dysfonctionnement de la mémoire et de l’apprentissage, une schizophrénie, une démence et d’autres maladies dans lesquelles les processus cognitifs sont altérés, comme les troubles de déficit de l’attention ou la maladie d’Alzheimer.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6645973 B [0012]

Non-patent literature cited in the description

• LEWIS DA; LIEBERMAN JA. Neuron, 2000, vol. 28, 325-33 [0004]
• VANDENBERG RJ; AUBREY KR. Exp. Opin. Ther. Targets, 2001, vol. 5 (4), 507-518 [0004]
• NAKAZATO A; OKUYAMA S et al. Exp. Opin. Ther. Patents, 2000, vol. 10 (1), 75-98 [0004]
• HEBB DO. The organization of behavior. Wiley, 1949 [0006]
• ARMER RE; MILLER DJ. Exp. Opin. Ther. Patents, 2001, vol. 11 (4), 563-572 [0012] [0012]