EUROPEAN PATENT SPECIFICATION

SPRAYING DEVICE AND METHOD FOR FLUIDISED BED GRANULATION
SPRITZVORRICHTUNG UND VERFAHREN ZUR WIRBELSCHICHTGRANULATION
PROCEDE ET DISPOSITIF DE PULVERISATION POUR EFFECTUER LA GRANULATION D'UN LIT FLUIDISE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR
Designated Extension States: LT

Date of publication of application:
20.09.2006 Bulletin 2006/38

Proprietor: YARA International ASA
0202 Oslo (NO)

Inventors:
• STEVENS, Rob
NL-6451 LH Schinveld (NL)

• VANMARCKE, Luc
B-9971 Kaprijeke-Lembeke (BE)
• ELDERSON, Roeland
NL-4571 EG Axel (NL)

Representative: Wallace, Sheila Jane et al
Marks & Clerk LLP
90 Long Acre
London
WC2E 9RA (GB)

References cited:
FR-A- 2 522 991
US-A- 3 927 974
US-A- 3 979 069
US-A- 4 555 059
US-A- 4 619 843
US-A- 4 701 353
US-A- 5 653 781

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The invention concerns a spraying device for use in high capacity fluid bed granulation and a method for preparation of solid granules from a liquid material in a fluid bed.

More specifically, this invention relates to spray nozzles usable for supplying granule-growth liquid, by atomising the liquid in a fluidised bed of solid particles where upon the microscopic liquid drops are sprayed.

The fluidised bed granulation process originally designed by Nederlandse Stikstof Maatschappij, later known as the NSM and now the HFT (Hydro Fertilizer Technology) granulator, has proved to have great advantages over other processes for granulating fertiliser substances like urea and ammonium nitrate, see for example US patent No. 5 653 781. The HFT granulation process combines very high capacity with excellent product properties and low energy consumption. In achieving this, the way of spraying the liquid to be granulated into the fluidised bed is of the highest importance. The design of the nozzles where the liquid is atomised influence the liquid flow capacity - and thus the capacity of the granulator - as well as the pressure and volume flow of atomisation gas required to maintain spouts with continuous and uniform sprays without agglomeration and unwanted disturbance of the fluidised bed. Finally the nozzle design also influences the energy consumption of the granulator through its flow and pressure characteristics.

State-of-the-art spraying devices (nozzles) are generally of the binary type atomising nozzles, where a gas, e.g. air, is used to atomise the liquid to be granulated. In principle the gas and liquid may be introduced through the nozzle in the same single tube, or gas and liquid may be introduced separately through for example concentric tubes so that the mixing takes place only in and after the nozzle aperture. The principle aims are effective gas-liquid mixing; uniform and small size of liquid particles and a suitable geometry of the resulting spray or spout, so that the atomised liquid (microscopic droplets) are continuously and homogeneously accreted on the granules formed in the fluidised bed.

Most nozzle designs available are not designed for use in high capacity granulation. Nozzles for granulation must be able to handle concentrated solutions (up to 99%) or melts without clogging or other problems ruining the production process. At the same time, there are notable differences between different designs with regard to energy consumption of the process, capacity (product throughput) and quality of the formed granules. Existing and previous nozzle types need relatively high levels of atomisation gas, at elevated pressures, which again means high energy consumption.

Nozzles for use in a granulation process is for example described in generic US patent No. 4 701 353. These have a central channel through which the liquid material is supplied, and a channel concentric therewith carrying a powerful gas stream. The liquid is passed through a rotation chamber before it is mixed with the gas stream. The nozzle may also have a concentric outer channel for providing a less energy-rich gas stream. However, this nozzle design has limitations in liquid flow capacity and in the energy required for both nebulising or atomising the liquid into suitable droplets and at the same time fluidising the droplets into a properly shaped spout where the particle growth will occur. The rotation chamber described by US 4701353 will only serve to give the liquid a helical movement, while the mixing chamber of the novel device described below will allow a thorough mixing of atomising gas and liquid before the spray leaves the exit aperture of the nozzle. Thereby the kinetic energy from the gas and liquid is utilised optimally. The novel device and method described herein demonstrate high granulation capacity and low energy consumption; several times better than the values quoted in US patent No. 4 701 353. In cases where a second concentric gas tube is fitted on the nozzle, like described in Claim 5 of US4701353, such design complicates the device unnecessarily compared to the device described below, since the novel device and method makes use of a portion of the fluidisation gas supply for the extra spout gas channelled up around the nozzle.

International patent application WO 02083320 also describes a nozzle for use in fluid bed granulators. It has a central supply for liquid where the liquid thereafter is led through a swirling device and into an internal mixing chamber. Gas is supplied to the mixing chamber through a plurality of openings in the wall in the lower part of the mixing chamber. However, the description reveals no examples and no figures relating to the practical applicability of the described design, whereas the novel device and method described below has proved itself through high production capacity, good product quality properties and low energy consumption, in comparison with any other previously described designs.

The object of the invention is to obtain a granulation process with reduced energy consumption and enhanced granulation capacity; both factors reducing the variable costs of the granulation step. Another object is to obtain granules of better quality.

These objects of the invention are obtained with the device and method as described below, and the invention is further defined and characterized by the accompanying patent claims.

The invention thus concerns a spraying device for melt granulation in fluidised bed comprising a nozzle with a feed channel for a liquid to be atomised, where the liquid is led through emulsifying means and into an internal mixing chamber for gas and liquid, before it is fed to the fluidised bed. The nozzle has a separate channel for the atomising gas fitted concentrically around the central liquid supply channel for the liquid to be atomised or nebulised. The mixing chamber surrounds the outlet zone of the liquid spray from the emulsifying means and the gas, allowing efficient mixing of high speed atomisation gas and liquid, and having an external gas cap where fluidisation gas is channelled into a...
spout above the spraying device. The gas cap is conical and fitted to a perforated bottom plate, concentrically around
the nozzle. The mixing chamber could be cylindrical with an upper conical part or conical. The length/diameter ratio UD
of the mixing chamber should be within the range 0.5 to 5 and the I/d ratios in the range 0.1 to 2. Preferably the ratio
L/D of the mixing chamber is in the range 1 to 4 and the I/d ratios in the range 0.25 to 1.

[0011] The gas cap should have a height of 10 to 200 mm above the bottom plate (3), preferably 20 to 100 mm. The
upper aperture diameter of the gas cap is 20 to 150 mm and the bottom aperture diameter of 30 to 300 mm, preferably
35 to 100 mm and 40 to 200 mm, respectively.

[0012] The invention also concerns a method for preparation of solid granules in a fluidised bed, where a liquid material
is atomised by supply of an atomising gas and sprayed into the fluidised bed through spray nozzles mounted vertically
and where the fluidised bed is maintained by fluidisation gas blown upwards through a perforated plate underneath the
bed. A portion of the fluidisation gas should be channelled through a gas cap surrounding the nozzle for creation of a
gas spout above the spraying device.

[0013] The invention also concerns a method for preparation of solid granules from a liquid material in a fluidised bed
by using a nozzle with a feed channel for a liquid to be atomised. The liquid is led through emulsifying means and into
an internal mixing chamber for gas and liquid, before spraying the atomised liquid upwardly into the fluid bed layer. The
atomising gas is led through a channel concentrically to the liquid supply and into the mixing chamber surrounding the
outlet openings for both liquid and gas, allowing efficient mixing of high speed atomisation gas and liquid. A portion of
the fluidisation gas is channelled through a gas cap surrounding the nozzle for creating a gas spout above the spraying
device.

[0014] The invention also concerns a method for production of granules of urea, and other fertiliser products, such as
calcium ammonium nitrate, ammonium nitrate, ammonium sulphate and mixtures thereof.

[0015] The invention will be further explained with reference to the accompanying drawings, Figures 1-4, wherein
Figure 1 shows the principle difference between prior art design and the novel nozzle design.
Figure 2 shows design of gas cap and position of gas cap concentrically outside the nozzle.
Figure 3 shows nozzle design with cylindrical mixing chamber.
Figure 4 shows nozzle design with conical mixing chamber.

[0016] In a granulation process the liquid is sprayed into a fluidised bed through spray nozzles mounted vertically and
spraying the atomised liquid upwardly into the fluid bed layer. The fluidised layer is maintained by fluidisation gas blown
upwards through a perforated plate underneath the bed. The nozzles are placed in openings in this plate with their
apertures a given distance, e.g. 5 - 100 mm, above the plate.

[0017] The design of the nozzles where the liquid is atomised influences the liquid flow capacity and thus the capacity
of the granulator. It also influences the pressure and volume rate of atomisation gas required to maintain spouts with
continuous and uniform sprays, without unwanted agglomeration and disturbance of the fluidised bed. Finally the nozzle
design also influences the energy consumption of the granulator through its gas flow characteristics. This has a direct
impact on the variable costs of the operation. The nozzle should atomise the liquid into droplets at desired size, approx-
imately 50-100 micron for a single phase melt. At the same time the nozzle should evaporate some of the water, without
creating premature solidification. It should also distribute and deliver droplets into the bed at the same time as it should
contribute to movement around the nozzle and mass exchange in the bed.

[0018] The main novelty of the invention is the use of low energy fluidisation gas to replace a large portion of the high-
pressure atomisation gas required. This is achieved by channelling the fluidisation gas through a specially designed gas
cap surrounding the nozzle, thus creating a gas spout. A novel mixing chamber upstream from the nozzle aperture
improves the internal mixing of gas and liquid in the atomisation process in the nozzle.

[0019] Splitting the gas in two tailored functions gives freedom to split the four key functions in atomisation and
movement.

Atomisation

[0020] 1) The atomisation is done with minimum energy consumption, sufficient to create droplets and deliver them into
the bed.
2) The desired evaporation rate can be tailored, according to the properties of the melt, being water content, heat
of crystallisation, sub-cooling properties and crystallisation curve.
3) The droplet transport and spout shape is tailored to the geometrical dimensions of the bed, where bed depth is a key. 4) The impact is also tailored to give mass transport of seed particles into the spout area.

The present invention has effected that the granule quality characteristics and granulation capacity may be maintained or even improved, while energy consumption is considerably reduced, compared to those nozzles hitherto used in granulation. The reduced energy consumption is obtained because the atomisation gas can be operated at lower pressure, without increasing the total amount of fluidisation gas. This design still allows a high melt throughput and excellent physical characteristics of the granules.

In Figure 1 the principle difference between prior art design and the novel design of this invention is shown. In prior art design (case I) mixing of liquid (L) and atomisation gas (G1) takes place in the fluid bed by the external impact of gas (G1) on the liquid (L). In the new nozzle design (case II) an internal mixing of gas (G2) and liquid (L) takes place in a mixing chamber. At the same time a part of the atomisation gas is replaced by fluidisation gas (G3) led into a spout in the fluid bed by the novel gas cap mounted concentrically outside the nozzle. Part of the atomisation gas is thus replaced by fluidisation gas (G3) supplied via the gas cap. The required amount of atomisation gas has been reduced drastically compared with the known nozzle designs, as will be illustrated by the examples (from 80-250 kg/h to 32 kg/h).

In Figure 2A the design of the gas cap and position of gas cap concentrically outside the nozzle is shown. Figure 2B shows a horizontal section along A-A. The conically shaped gas cap 1 is mounted concentrically around the nozzle 2 on a perforated sieve plate 3 and exposed to fluidisation gas. The top diameter of the gas cap device is smaller than the bottom diameter, and there is clearance for gas passage between the outer nozzle wall and the gas cap. The amount of gas through the gas cap shall be sufficient to create a viable spout into the granulator bed. The velocity of gas through the gas cap is determined by the horizontal area between nozzle and gas cap, the upper diameter of the gas cap aperture and the diameter of the bottom inlet of the gas cap. The mass flow of fluidisation gas per square meter horizontal bed area remains almost unchanged from the known designs.

Figure 3 shows the new nozzle design with cylindrical mixing chamber. The ratio length: diameter (UD) of the mixing chamber could be varied as indicated in the drawing. Omitted from the figure are feed lines, the perforated bottom plate of the granulator and the conical cap mounted concentrically to the nozzle on the bottom plate. The nozzle 2 is composed of a central channel 4 which at one end A connects with a liquid line omitted from the drawing and at the other end leads B into a mixing chamber 5. In a position between openings A and B a swirling device 6 is mounted inside to bring the feed via A in helical motion at point B. Further, the spraying device is provided with a channel 7 which has been fitted concentrically around the central liquid supplying channel 4. Channel 7 being at one end connected to a gas line omitted from the drawing and at the other end provided with 5-15 round holes 8, which leads into the mixing chamber 5. The two continuous flows are fed inside the mixing chamber at the same time: a granule’s growth liquid through opening B and a gas flow via 8. In this mixing chamber a gas in liquid emulsion can be generated. Expansion through the orifice opening 9 converts the emulsion to droplets of 50 - 100 μm diameter, which are suitable for granule growth in the fluidised bed.

Figure 4 shows a nozzle with a conical mixing chamber 5. The other parts of the nozzle are the same as in Figure 3.

From literature (Lefebvre A.H.: Atomization and sprays, Taylor & Francis, 1989, p-214-215 an p-232, (ISBN: 0-89116-603-3), it seems that the I/d (length/diameter) of the orifice and the ratio of the UD (length/diameter) of a mixing chamber are important factors for the formation of the liquid droplets. Based on these assumptions and our own findings the UD ratio should be in the range 0.5 to 5, and the I/d ratio in the range 0.1 to 2 in order to efficiently obtain droplets with average diameter less then 100 μm. Preferably UD should range from 1 to 4 and I/d from 0.25 to 1.

Energy efficiency has also been calculated for the new design nozzles. Standard and common equations are used, see Perry’s Chemical Engineers’ Handbook (chapter thermodynamics).

\[W = \Phi_M \cdot \text{C}_p \cdot \Delta T \quad [\text{kJ/s}] \]

\[\Delta T = T_2 \cdot T_1 \quad \text{and} \quad T_2 = T_1 \cdot (\frac{\rho_2}{\rho_1})^{(k-1)/k} \quad [\text{K}] \]

\(\Phi_M \) = mass flow of melt
\(\text{C}_p \) = specific heat of gas [kJ/K kg]
\[T_1 = \text{ambient temperature} \]
\[T_2 = \text{temperature after fan} \]
\[p_1 = \text{gas pressure before fan} \]
\[p_2 = \text{gas pressure after fan} \]
\[k = \text{gas constant} \]

[0029] For the calculations the following assumptions were made:

Adiabatic conditions
Ambient air temperature : 25 °C
Pressure loss : 5000 Pa
Fan efficiency: 0.80

[0030] According to the calculations it is possible to reduce the energy consumption of the fluidisation and atomisation air supply by about 50 %. The energy reduction that actually is achieved using the novel spraying device is shown in Example 1 below.

[0031] The parameters moisture content, density and crushing strength of urea granules produced with the novel nozzle design have comparable or better values compared to granules produced with existing designs. This is illustrated in examples below.

[0032] It has experimentally been found that when using an internal gas/liquid mixing chamber nozzle instead of an external gas/liquid-mixing nozzle, it is possible to make granules with better chemical and physical properties, with less energy consumption.

[0033] In granulation units, especially for urea and ammonium nitrate, it has also been an important aim to reach high production capacities, avoiding the need to have more than one single granulation unit per synthesis unit, while minimising variable costs.

[0034] The invention will be further illustrated by the following examples describing granulation of urea. The examples will demonstrate values obtained for product quality parameters as well as energy consumptions for a range of nozzles based on the novel design.

[0035] The examples were carried out under the conditions given below:

[0036] A granulator was fit with the experimental nozzle in the centre. The conical gas cap had a lower diameter of 105 mm and an upper diameter of 50 mm. It was mounted on a 4.5% opening perforated sieve plate containing holes of 2 mm in diameter. The amount of air through this gas cap was 248 Nm\(^3\)/h under a feed pressure equal to the fluidisation gas (air) pressure of about 800 mmwc and with a temperature of 40 °C. The granulations were carried out under normal standard urea granulation conditions with a melt of 96% urea containing 0.55 wt. % formaldehyde, with a temperature of about 132 °C. The set-up was supplied with fluidisation gas necessary to keep the bed in movement and also for creating a spout via the gas cap ‘spout opening’. The atomisation gas with a flow rate of 32 kg/h and a temperature of 142 °C was supplied together with the melt into the nozzle’s mixing chamber.

[0037] Product quality parameters such as moisture content, density, crushing strength of the granules with diameter 2.5-4.5 mm were analysed for each nozzle test. During the test different liquid flows have been used; 250, 350 and 450 l/h. Each granulation test was at least carried out in duplicate.

[0038] It is also possible to produce nitrate products with 33.5% N and 27% N with this kind of nozzle.

Example 1 -Nozzle with cylindrical mixing chamber L/D=2.75

[0039] In this example it has been used a spraying device of type H5 as shown in Figure 3, with UD ratio 2.75 of the mixing chamber. The results are compared with experiments carried out in nozzles of prior art design.

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>HFT design (prior art)</th>
<th>Novel design UD=2.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea feed flow</td>
<td>kg/h</td>
<td>540</td>
</tr>
<tr>
<td>Urea feed pressure</td>
<td>bar</td>
<td>1.4</td>
</tr>
<tr>
<td>Fluidisation gas (air) flow</td>
<td>kg/m(^2)/h</td>
<td>7952</td>
</tr>
<tr>
<td>Fluid. gas (air) pressure</td>
<td>mmwc</td>
<td>800</td>
</tr>
<tr>
<td>pressure</td>
<td>bar</td>
<td>0.08</td>
</tr>
</tbody>
</table>
The power consumption is calculated as described in the description. Air is used as fluidisation and atomisation gas, hence the $k = 1.40$ and $C_p = 1.04$ corrected for humidity of the air.

Example 2 - Nozzle with cylindrical mixing chamber L/D=1

The working principle and design is with exception of the mixing chamber length the same as described in example 1. In this design the length of the mixing chamber is 20 mm instead of 55 mm so that the UD ratio changed from 2.75 to 1. The results are compared with experiments carried out in nozzles of prior art design.

Table 2. Obtained product properties, urea

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>HFT design (prior art)</th>
<th>Novel design UD =2.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>%</td>
<td>0.26</td>
</tr>
<tr>
<td>Density</td>
<td>kg/l</td>
<td>1.216</td>
</tr>
<tr>
<td>Crushing strength</td>
<td>kg</td>
<td>4.40</td>
</tr>
<tr>
<td>Abrasion</td>
<td>mg/kg</td>
<td>800</td>
</tr>
</tbody>
</table>

Table 3. Power consumption

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>HFT design (prior art)</th>
<th>Novel design L/D =2.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption (W_T) (kWh per tonne product)</td>
<td>27</td>
<td>13</td>
</tr>
</tbody>
</table>

The power consumption is calculated as described in the description. Air is used as fluidisation and atomisation gas, hence the $k = 1.40$ and $C_p = 1.04$ corrected for humidity of the air.

Table 4. Operating parameters

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>HFT design (prior art)</th>
<th>Novel design L/D=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea feed flow</td>
<td>kg/h</td>
<td>540</td>
</tr>
<tr>
<td>Urea feed pressure</td>
<td>bar</td>
<td>1.4</td>
</tr>
<tr>
<td>Fluid. gas (air) flow</td>
<td>kg/m².h</td>
<td>7952</td>
</tr>
<tr>
<td>Fluid. gas (air) pressure</td>
<td>mmwc</td>
<td>800</td>
</tr>
<tr>
<td>Spout. gas (air) flow</td>
<td>kg/h</td>
<td>-</td>
</tr>
<tr>
<td>Atom. gas (air) flow</td>
<td>kg/h</td>
<td>252</td>
</tr>
<tr>
<td>Atom. gas (air) pressure</td>
<td>bar</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Example 3 - Nozzle with conical mixing chamber

[0042] In this example it has been used a spraying device with conical mixing chamber as shown in Figure 4. The L/D ratio of the nozzle was 2.75. The results are compared with experiments carried out with nozzles of prior art design. [0043] This mixing chamber nozzle with conical shape has also 12 inlet gas openings (D), which are placed, in an angle directed towards the rotational direction of the liquid swirl. It is constructed to give the atomisation gas a rotation in opposite direction to the liquid, in order to make a maximum impact of gas into the liquid flow.

Claims

1. A spraying device for melt granulation in a fluidised bed comprising a nozzle (2) with a feed channel (4) for a liquid to be atomised, where the liquid is led through emulsifying means (6) and into an internal mixing chamber (8) for gas and liquid, before it is fed to the fluidised bed, wherein the nozzle (2) has a separate channel (7) for the atomising gas fitted concentrically around the central liquid supply channel (4) for the liquid to be atomised or nebulised, and where the mixing chamber (5) surrounds the outlet zone of the liquid spray from the emulsifying means and the gas, allowing efficient mixing of the high speed atomisation
gas and liquid, and has an external gas cap (1) where fluidisation gas is channelled into a spout above the spraying device, **characterized in that** the gas cap (1) is conical and fitted to a perforated bottom plate (3), concentrically around the nozzle (2).

2. A spraying device according to claim 1, **characterized in that** the mixing chamber (5) is cylindrical with an upper conical part.

3. A spraying device according to claim 1 or claim 2, **characterized in that** the ratio between the length (L) and the diameter (D) of the mixing chamber (5) is in the range 0.5 to 5, preferably 1 to 4, and the length (l) and diameter (d) of the orifice (9) is in the range 0.1 to 2, preferably 0.25 to 1.

4. A spraying device according to claim 1, **characterized in that** the mixing chamber (5) is conical.

5. A spraying device according to any one of the preceding claims, **characterized in that** the gas cap (1) has a height of 10 to 200 mm above the bottom plate (3), preferably 20 to 100 mm.

6. A spraying device according to any one of the preceding claims, **characterized in that** the gas cap (1) has an upper aperture diameter of 20 to 150 mm and a bottom aperture diameter of 30 to 300 mm, preferably 35 to 100 mm and 40 to 200 mm, respectively.

7. A method for preparation of solid granules in a fluidised bed, where a liquid material is atomised by supply of an atomising gas and sprayed into the fluidised bed through spray nozzles (2) mounted vertically and where the fluidised bed is maintained by fluidisation gas blown upwards through a perforated plate underneath the bed, **characterized in that** a portion of the fluidisation gas is channelled through a gas cap (1) surrounding the nozzle for creation of a gas spout above the spraying device.

8. A method for preparation of solid granules from a liquid material in a fluidised bed by using a nozzle (2) with a feed channel (4) for a liquid to be atomised, where the liquid is led through emulsifying means and into an internal mixing chamber (5) for gas and liquid, before spraying the atomised liquid upwardly into the fluid bed layer, **characterized in that** the atomising gas is led to the mixing chamber (5) in a channel (7) concentrically to the liquid and into the mixing chamber surrounding the outlet openings for both liquid and gas, allowing efficient mixing of high speed atomisation gas and liquid, and where a portion of the fluidisation gas is channelled through a gas cap (1) surrounding the nozzle (2), thus creating a gas spout above the spraying device.

9. Use of a spraying device according to any one of claims 1 to 6 in a process for preparation of granular urea, and other melts suitable for producing fertiliser products, such as calcium ammonium nitrate, ammonium nitrate, ammonium sulphate and mixtures thereof.

Patentansprüche

1. Sprühvorrichtung zur Schmelzgranulation in einem Wirbelbett, umfassend eine Düse (2) mit einem Zuführungskanal (4) für eine zu zerstäubende Flüssigkeit, wo die Flüssigkeit durch eine Emulgiereinrichtung (6) und in eine innere Mischkammer (8) für Gas und Flüssigkeit geführt wird, bevor sie dem Wirbelbett zugeführt wird, wobei die Düse (2) einen separaten Kanal (7) für das Zerstäubergas aufweist, der konzentrisch um den zentralen Flüssigkeits-Zuführungskanal (4) für die zu zerstäubende oder zu vernebelnde Flüssigkeit gepasst ist, und wo die Mischkammer (5) die Auslasszone des Flüssigkeitsprühnebels aus der Emulgiereinrichtung und das Gas umgibt, wobei ein effizientes Mischen des Hochgeschwindigkeits-Zerstäubergases und der Flüssigkeit zugelassen wird, und eine äußere Gaskappe (1) aufweist, wo Fluidisierungsgas in einen Ausfluss über der Sprühvorrichtung kanalisiert wird, **durchgekennzeichnet, dass** die Gaskappe (1) konisch und an eine perforierte Bodenplatte (3) gepasst ist, konzentrisch um die Düse (2) herum.

2. Sprühvorrichtung nach Anspruch 1, **durchgekennzeichnet, dass** die Mischkammer (5) zylindrisch mit einem oberen konischen Teil ist.
3. Sprühvorrichtung nach Anspruch 1 oder Anspruch 2, \textit{dadurch gekennzeichnet, dass} das Verhältnis zwischen der Länge (L) und dem Durchmesser (D) der Mischkammer (5) in dem Bereich von 0,5 bis 5 liegt, vorzugsweise 1 bis 4, und die Länge (1) und der Durchmesser (d) der Öffnung (9) in dem Bereich von 0,1 bis 2 liegt, vorzugsweise 0,25 bis 1.

4. Sprühvorrichtung nach Anspruch 1, \textit{dadurch gekennzeichnet, dass} die Mischkammer (5) konisch ist.

5. Sprühvorrichtung nach einem der vorhergehenden Ansprüche, \textit{dadurch gekennzeichnet, dass} die Gaskappe (1) eine Höhe von 10 bis 200 mm über der Bodenplatte (3) aufweist, vorzugsweise 20 bis 100 mm.

6. Sprühvorrichtung nach einem der vorhergehenden Ansprüche, \textit{dadurch gekennzeichnet, dass} die Gaskappe (1) einen oberen Durchlassdurchmesser von 20 bis 150 mm aufweist und einen unteren Durchlassdurchmesser von 30 bis 300 mm, vorzugsweise 35 bis 100 mm beziehungsweise 40 bis 200 mm.

7. Verfahren zur Zubereitung von Festkörper-Granulat in einem Wirbelbett, wo ein flüssiges Material durch Zuführung eines Zerstäubergases zerstäubt und in das Wirbelbett durch Sprühdüsen (2) gesprüht wird, die vertikal montiert sind, und wo das Wirbelbett durch ein Fluidisierungsgas beibehalten wird, das nach oben durch eine perforierte Platte unterhalb des Bettes geblasen wird, \textit{dadurch gekennzeichnet, dass} ein Teil des Fluidisierungsgases durch eine Gaskappe (1) kanalisiert wird, die die Düse umgibt, zur Bildung eines Gasausflusses über der Sprühvorrichtung.

8. Verfahren zur Zubereitung von Festkörper-Granulat aus einem flüssigen Material in einem Wirbelbett durch Verwendung einer Düse (2) mit einem Zuführungskanal (4) für eine zu zerstäubende Flüssigkeit, wo die Flüssigkeit durch eine Emulgierereinrichtung und in eine innere Mischkammer (5) für Gas und Flüssigkeit geführt wird, bevor die zerstäubte Flüssigkeit nach oben in die Wirbelbettschicht gesprüht wird, \textit{dadurch gekennzeichnet, dass} das Zerstäubergas zu der Mischkammer (5) in einem Kanal (7), konzentrisch zu der Flüssigkeit, und in die Mischkammer geführt wird, die Ablasdurchtrittsoffnungen für beide, die Flüssigkeit und das Gas, umgibt, wobei ein effizientes Mischen des Hochgeschwindigkeits-Zerstäubergases und der Flüssigkeit zugelassen wird, und wo ein Teil des Fluidisierungsgases durch eine Gaskappe (1) kanalisiert wird, die die Düse (2) umgibt, womit ein Gasausfluss über der Sprühvorrichtung gebildet wird.

Revendications

1. Dispositif de pulvérisation pour la granulation en fusion dans un lit fluidisé comprenant une buse (2) avec un canal d’alimentation (4) pour un liquide à pulvériser, dans lequel le liquide passe par des moyens d’émulsification (6) et dans une chambre de mélange interne (8) pour le gaz et le liquide, avant qu’il ne soit alimenté au lit fluidisé, dans lequel :

 la buse (2) a un canal séparé (7) pour le gaz de pulvérisation monté de manière concentrique autour du canal d’alimentation de liquide central (4) pour le liquide à pulvériser ou à nébuliser, et dans lequel la chambre de mélange (5) entoure la zone de sortie de la pulvérisation de liquide provenant des moyens d’émulsification et du gaz, permettant le mélange efficace du gaz et du liquide de pulvérisation à grande vitesse, et a un bouchon de gaz externe (1) où le gaz de fluidisation est acheminé dans un bec verseur au-dessus du dispositif de pulvérisation, \textit{caractérisé en ce que} le bouchon de gaz (1) est conique et monté sur une plaque inférieure perforée (3) de manière concentrique autour de la buse (2).

2. Dispositif de pulvérisation selon la revendication 1, \textit{caractérisé en ce que} la chambre de mélange (5) est cylindrique avec une partie conique supérieure.

3. Dispositif de pulvérisation selon la revendication 1 ou la revendication 2, \textit{caractérisé en ce que} le rapport entre la longueur (L) et le diamètre (D) de la chambre de mélange (5) est de l’ordre de 0,5 à 5, de préférence de 1 à 4, et la longueur (1) et le diamètre (d) de l’orifice (9) est de l’ordre de 0,1 à 2, de préférence 0,25 à 1.

4. Dispositif de pulvérisation selon la revendication 1, \textit{caractérisé en ce que} la chambre de mélange (5) est conique.
5. Dispositif de pulvérisation selon l’une quelconque des revendications précédentes, **caractérisé en ce que** le bouchon de gaz (1) a une hauteur de l’ordre de 10 à 200 mm au-dessus de la plaque inférieure (3), de préférence de 20 à 100 mm.

6. Dispositif de pulvérisation selon l’une quelconque des revendications précédentes, **caractérisé en ce que** le bouchon de gaz (1) a un diamètre d’ouverture supérieur de 20 à 150 mm et un diamètre d’ouverture inférieur de 30 à 300 mm, de préférence de 35 à 100 mm et de 40 à 200 mm, respectivement.

7. Procédé pour préparer des granulés solides dans un lit fluidisé, dans lequel un matériau liquide est pulvérisé par l’alimentation d’un gaz de pulvérisation et pulvérisé dans le lit fluidisé par des buses de pulvérisation (2) montées verticalement et où le lit fluidisé est maintenu par un gaz de fluidisation soufflé vers le haut par une plaque perforée au-dessous du lit, **caractérisé en ce que** une partie du gaz de fluidisation est acheminée par un bouchon de gaz (1) entourant la buse afin de créer un bec verseur de gaz au-dessus du dispositif de pulvérisation.

8. Procédé pour préparer des granulés solides à partir d’un matériau liquide dans un lit fluidisé en utilisant une buse (2) avec un canal d’alimentation (4) pour un liquide à pulvériser, dans lequel le liquide passe par des moyens d’émulsification et dans une chambre de mélange interne (5) pour le gaz et le liquide, avant de pulvériser le liquide pulvérisé vers le haut dans la couche de lit fluide, **caractérisé en ce que** le gaz de pulvérisation est amené dans la chambre de mélange (5) dans un canal (7) de manière concentrique par rapport au liquide et dans la chambre de mélange entourant les ouvertures de sortie à la fois pour le liquide et le gaz, permettant un mélange efficace du gaz et du liquide de pulvérisation à grande vitesse et où une partie du gaz de fluidisation est acheminée par un bouchon de gaz (1) entourant la buse (2), créant ainsi un bec verseur de gaz au-dessus du dispositif de pulvérisation.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4701353 A [0006]
- WO 02083320 A [0007]

Non-patent literature cited in the description

- Perry’s Chemical Engineers’ Handbook [0028]