EUROPEAN PATENT SPECIFICATION

THERAPEUTIC AGENT FOR SOFT TISSUE SARCOMA

AGENT THERAPEUTIQUE CONTRE LE SARCOME DES TISSUS MOUS

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

Priority: 27.06.2003 JP 2003183643

Date of publication of application: 29.03.2006 Bulletin 2006/13

Proprietor: Astellas Pharma Inc. Tokyo 103-8411 (JP)

Inventors:
• ITO, Tatsuo
 La Jolla, California 92037 (US)
• OZAKI, Toshifumi
 Okayama-shi, Okayama 700-8558 (JP)
• OUCHIDA, Mamoru
 Okayama-shi, Okayama 700-8558 (JP)

Representative: Gille Hrabal Struck Neidlein Prop Roos
Patentanwälte Brucknerstrasse 20
40593 Düsseldorf (DE)

References cited:
EP-A-0 196 415
WO-A-98/39965
WO-A-02/08583
WO-A-03/089054
WO-A-2005/00213
EP-A-0 352 646
WO-A-95/31977
WO-A-02/085400
WO-A-03/015810
WO-A-2004/075859
WO-A-2002 192 727

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

• DATABASE WPI Section Ch, Week 198538 Derwent Publications Ltd., London, GB; Class B05, AN 1985-232458 XP002307872 & JP 60 149520 A (AJINOMOTO KK) 7 August 1985 (1985-08-07)

• KELLY W K ET AL: "Histone deacetylase inhibitors: From target to clinical trials" EXPERT OPINION ON INVESTIGATIONAL DRUGS 01 DEC 2002 UNITED KINGDOM, vol. 11, no. 12, 1 December 2002 (2002-12-01), pages 1695-1713, XP001202636 ISSN: 1354-3784
Description

Technical Field

[0001] The present invention relates to use of a histone deacetylase inhibitor in the manufacture of a medicament for the treatment of synovial sarcoma.

Background Art

[0002] In general, when there is a report on a substance or a compound having an antitumor activity and the report is based solely on in vitro results, it has been pointed out that such reported results do not directly suggest in vivo results. In other words, a substance showing an antitumor activity in vitro does not necessarily show an antitumor activity in vivo, and application of a substance showing an antitumor activity in vitro directly as an antitumor agent is difficult.

[0003] For example, it has been reported that a compound represented by the formula (I)

\[
\text{(I)}
\]

(hereinafter to be also referred to as compound A; SEQ ID No 1), particularly a stereoisomer of the formula (II)

\[
\text{(II)}
\]

(hereinafter to be also referred to as compound B or FK228), selectively inhibits histone deacetylase to derive a potent antitumor activity, and that this substance causes high acetylation of histone in the treated cells, thereby inducing transcription-regulatory activity of various genes, cell cycle inhibitory activity and apoptosis (e.g., JP-B-7-64872 (corresponding to US Patent No. 4977138), "Experimental Cell Research", US (1998), vol. 241, pp. 126-133). As the situation now stands, however, there are many problems yet to be solved, such as whether or not in vitro results are directly applicable in vivo, whether or not a useful in vivo effect can be afforded in any tumor, and the like. No report
has ever verified *in vitro* and *in vivo* antitumor activities against soft tissue sarcoma (particularly synovial sarcoma) of the present invention.

[0004] Histone deacetylase is a metallo-deacetylating enzyme coordinating Zn at an active center (M.S. Finnin et al., Nature, 401, 188-193 (1999)). This enzyme is considered to change affinity of various acetylated histones for DNA. The direct biological phenomenon brought thereby is a change in the chromatin structure. The minimum unit of the chromatin structure is a nucleosome wherein 146 bp DNA is wound 1.8 times anticlockwise around a histone octamer (H2A, H2B, H3 and H4, each 2 molecules, core histone). The core histone stabilizes the nucleosome structure by interaction of the positive charge of the N-terminal of each histone protein with DNA. Acetylation of histone is controlled by the equilibrium between an acetylation reaction involving histone acetyltransferase and a deacetylation reaction involving histone deacetylase. It is considered that the histone acetylation occurs at a lysin residue where the histone protein N-terminus is evolutionally preserved well, due to which a core histone protein loses charges at the N-terminus, interaction with DNA is attenuated, and the structure of nucleosome becomes unstable. Accordingly, the histone deacetylation is considered to be the reverse thereof, namely, a shift toward stabilization of the nucleosome structure. However, to what degree the acetylation changes the chromatin structure and how it relates to the transcriptional regulation etc. secondarily induced thereby are unclear in many aspects.

[0005] As genetic characteristics of synovial sarcoma, it has been reported that, in about 97% of the entire synovial sarcomas, SYT gene present in the 18th chromosome and SSX gene present on the X chromosome are fused due to chromosomal translocation t (18,X) to express a chimera protein called SYT-SSX, and SYT protein constituting the N-terminal region of this protein is bound with a chromatin remodeling-associated protein such as p300 and BRM to form a complex (Josiane E. Eid et al., Cell, 102, 839-848 (2000)). Synovial sarcoma is one kind of soft tissue sarcoma developed in the four limbs and trunk of the body of males and females, and its primary therapy includes removal of tumor by operation and chemotherapy before and after the operation. However, chemotherapy is associated with poor prognosis and a five-year survival rate is about 60-70%. Thus, an effective cure has not been established as yet.

[0006] H. Ueda et al., the Journal of Antibiotics, 1994, 315 - 323, discloses the in vitro and in vivo antitumor activity of FK228 against soft tissue sarcoma. According to the document FK228 inhibits the growth of reticulum cell sarcoma and fibrosarcoma implanted in mice. Its antitumor activity is especially potent against fibrosarcoma.

[0007] WO2005/000213 discloses the use of SAHA and of the HSP90 inhibitor for treating breast cancer.

[0008] WO2005/000213 discloses the use of FK228 for prostatic cancer and malignant lymphoma.

[0009] EP0352646 is the basic patent disclosing FK228 and the preparation thereof. Antitumor activity and antimicrobial activity of said compounds are disclosed. The antitumor activity comprises activity against lung cancer, breast cancer and colon cancer.

[0010] EP1302476 discloses reduced FK228 wherein the -S-S-bond is cleaved, the histone deacetylase inhibitory activity of this compound and the treatment and prophylaxis of tumors, acute promyelocytic leukemia and gene therapy.

[0014] EP0196415 describes trichostatins A and C as antitumor drugs.

Disclosure of the Invention

[0016] In an attempt to solve the above-mentioned problems, the present inventors have considered that, in synovial sarcoma, formation of the aforementioned complex of SYT-SSX protein, a chromatin remodeling-associated protein and histone deacetylase (HDAC)-associated protein enhances histone deacetylase activity, which in turn has an effect on the canceration, development and/or proliferation, of synovial sarcoma, and have conducted intensive studies of the effect of histone deacetylase inhibition on various synovial sarcoma cell strains (HS-SY-2, YaFuSS, SYO-1) that express SYT-SSX protein. As a result, they have found that compound B and tricostatin A, which are histone deacetylase inhibitors, exhibit a potent antitumor activity *in vitro* and *in vivo* against SYT-SSX protein expressing cells. Furthermore, they have found that they also exhibit a potent antitumor activity against a synovial sarcoma cell strain (HT893) not expressing SYT-SSX protein. Accordingly, the present invention provides the use of a histone deacetylase compound as defined in claim 1. Preferred embodiments of said use are defined in claims 1 to 4.
Brief Description of the Drawings

[0017] Fig. 1 is a graph showing an in vitro antitumor action of FK228 against HS-SY-2 synovial sarcoma cell strain, which is one of the SYT-SSX protein expressing synovial sarcoma cell strains. Fig. 2 is a graph showing an in vitro antitumor action of FK228 against YaFuSS synovial sarcoma cell strain, which is one of the SYT-SSX protein expressing synovial sarcoma cell strains. Fig. 3 is a graph showing an in vitro antitumor action of FK228 against SYO-1 synovial sarcoma cell strain, which is one of the SYT-SSX protein expressing synovial sarcoma cell strains. Fig. 4 is a graph showing an in vivo antitumor action of FK228 against SYO-1 synovial sarcoma cell strain, which is one of the SYT-SSX protein expressing synovial sarcoma cell strains. Fig. 5 is a graph showing an in vitro antitumor effect of FK228 on HTB93 synovial sarcoma cell strain, which is one of the synovial sarcoma cell strains that do not express SYT-SSX protein.

Detailed Description of the Invention

[0018] The "histone deacetylase inhibitor", also referred to as "HDAC inhibitor" or "HDACi", in the present invention is a compound that binds to an active site of histone deacetylase competitively with substrates, and/or a compound that reduces or inhibits the enzyme activity of histone deacetylase, and includes any compound (whether synthetic or natural) reported or will be reported in the future to have a histone deacetylase inhibitory activity. To be specific, the aforementioned compound A, a salt thereof and a derivative thereof (namely acetylated compound A, thiol form (reduced form) with reduced S-S bond as described in WO02/06307, an acetylated form, are used. In addition, Trichostatin A may be used according to the claimed use.

[0019] While compound A (and other HDACi’s) may have a stereoisomer (e.g., compound B) based on an asymmetric carbon atom or a double bond, such as an optically active form, a geometric isomer and the like, all these isomers and mixtures thereof are also encompassed in the scope of the histone deacetylase inhibitor to be used in the present invention.

[0020] In the present specification, unless particularly specified, a simple reference to compound A means a group of compounds regardless of stereoisomerism, which include a compound B represented by the formula (II).

[0021] Moreover, solvate compounds (e.g., inclusion compounds (e.g., hydrate)), anhydrous forms, other crystal polymorphs and pharmaceutically acceptable salts thereof of HDACi’s, such as compound A, compound B and salts thereof, are also encompassed in the scope of the present invention.

[0022] The compound A or a salt thereof are known and available substances. For example, compound B, which is one of the stereoisomers of compound A, can be obtained by culturing a strain belonging to the genus Chromobacterium, which is capable of producing compound B, under aerobic conditions, and harvesting the substance from its culture broth. As the strain belonging to the genus Chromobacterium, which is capable of producing compound B, for example, Chromobacterium violaceum WB968 (FERM BP-1968) can be mentioned. More specifically, compound B can be obtained from a compound B producing strain as described in JP-B-7-64872 (corresponding to US Patent No. 4977138). The compound B is preferably harvested from a strain belonging to the genus Chromobacterium, which is capable of producing compound B, because it can be obtained more easily. Synthetic or semi-synthetic compound B is also advantageous in that further purification step is not necessary or the number of steps can be reduced. Similarly, compounds A other than compound B can be also obtained by semi-synthesis or total synthesis by conventionally known methods. To be more specific, it can be produced according to the method reported by Khan W. Li, et al. (J. Am. Chem. Soc., Vol. 118, 7237-7238(1996)).

[0023] A pharmaceutically acceptable salt of compound A or compound B, includes salts with a base or an acid addition salt such as salts with inorganic base (e.g., alkali metal salts such as sodium salt, potassium salt, alkaline earth metal salts such as calcium salt, magnesium salt, ammonium salt), salts with an organic base (e.g., organic amine salts such as triethylamine salt, disopropylethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, diethyleneamine salt, N,N'-dibenzylethlenediamine salt), inorganic acid addition salts (e.g., hydrochloride, hydrobromide, sulfate, phosphate), organic carboxylic acid or sulfonic acid addition salts (e.g., formate, acetate, trifluoroacetate, maleate, tartrate, fumarate, methanesulfonate, benzenesulfonate, toluenesulfonate), salts with a basic or acidic amino acid (e.g., arginine, aspartic acid, glutamic acid).

[0024] In the present invention, in vivo and in vitro mean as they are generally used in this field. Namely, "in vivo" means a state where functions and reactions of the target living organism can be expressed in living organisms, and "in vitro" means that such functions and reactions can be expressed in vitro (tissue culture system, cell culture system, cell-free system).
In addition, gene diagnosis of SYT-SSX protein expressing synovial sarcoma enables selection of patients before treatment, for whom the histone deacetylase inhibitor of the present invention proves effective.

The therapeutic agent for synovial sarcoma manufactured according to the claimed use in the form of a pharmaceutical preparation such as a solid, semisolid or liquid preparation (tablet, pill, troche, capsule, suppository, cream, ointment, aerosol, powder, liquid, emulsion, suspension, syrup, injection) containing the histone deacetylase inhibitor as an active ingredient, which is suitable for transrectal, intranasal, pulmonary, vaginal, external (topical), oral or parenteral (including subcutaneous, implantation, intravenous and intramuscular) administration.

The therapeutic agent for synovial sarcoma can be also produced by conventional methods using various organic or inorganic carriers conventionally used for forming pharmaceutical preparations, such as excipients (e.g., sucrose, starch, mannitol, sorbitol, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate), condensation agents (e.g., cellulose, methyl cellulose, hydroxypropyl cellulose, polypropylene glycol, gelatin, gum arabic, polyethylene glycol, sucrose, starch), disintegrants (e.g., starch, carboxymethyl cellulose, carboxymethyl cellulose calcium, hydroxypropyl starch, sodium starch glycolate, sodium hydrogen carbonate, calcium phosphate, calcium citrate), lubricants (e.g., magnesium stearate, aerosil, talc, sodium lauryl sulfate), corrigents (e.g., citric acid, menthol, glycine, orange powder), preservatives (e.g., sodium benzoate, sodium hydrogen sulfate, methylparaben, propylparaben), stabilizers (citric acid, sodium citrate, acetic acid), suspensions (e.g., methyl cellulose, polyvinyl pyrrolidone, aluminum stearate), dispersants (e.g., hydroxypropylmethyl cellulose), diluents (e.g., water etc.), wax base materials (e.g., cacao butter, polyethylene glycol, white petrolatum).

While the administration of the therapeutic agent for synovial sarcoma of the present invention is not particularly limited, intravenous, intramuscular or oral administration is preferable. In addition, while a therapeutically effective amount of HDACi's, such as, compound A or compound B or a pharmaceutically acceptable salt thereof, when it is used for a human as an active ingredient varies depending on the age and condition of individual patient to be treated, in the case of an intravenous administration, the daily dose of compound A and compound B is generally 0.1-100 mg, preferably 1-50 mg, more preferably 5-30 mg, in the amount of compound A, per 1 m² of human body surface area, which is given for the treatment of synovial sarcoma by continuous infusion.

Furthermore, the HDACi's in the present invention can be administered alone or in combination with an additional antitumor treatment, such as surgery, radiation therapy and/or chemotherapy. Examples of chemotherapeutic agents include DNA cross-linkers, alkylating antitumor agents, antimetabolite antitumors, and taxanes. Preferred chemotherapeutic agents include cipslatin, 5-fluorouracil, paclitaxel (taxol), docetaxel.

Examples

The present invention is specifically explained in detail in the following by referring to Examples.

Example 1

An SYT-SSX protein expressing synovial sarcoma cell line HS-SY-2 (established and kindly provided by Dr. Hiroshi Sonobe, Department of Pathology, National Fukuyama Hospital), YaFuSS (established and kindly provided by Dr. Junya Toguchida, Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University) and SYO-1 (established and kindly provided by Dr. Akira Kawai, Department of Orthopedics, Faculty of Medicine, Okayama University (now Department of Orthopedics, National Cancer Center)) were cultured in DMEM (Dulbecco's modified Eagle's medium) containing 10%(v/v) fetal bovine serum (FBS), 100 U/ml penicillin and 100 P/ml streptomycin at 37°C and agitation in a 5% CO₂ environment. These cells were plated and cultured for 24 hr, detached with 0.25% (w/v) trypsin and Eagle's medium containing 10%(v/v) fetal bovine serum (FBS), 100 U/ml penicillin and 100 P/ml streptomycin at 37°C and agitation in a 5% CO₂ environment. Each cell strain was plated in a 96 well microtiter plate at 10³ cell/well, and recovered. For cell growth ability, an MTT analysis kit (Colorimetric (MTT) assay for cell survival and proliferation kit of CHEMICON International, Inc.) was used. Each cell strain was plated in a 96 well microtiter plate at 10³ cell/well, and after culture for 24 hr, exposed to a 0.1%(v/v) dilute ethanol solution of FK228 at a concentration distribution of 0.1 nM, 0.2 nM, 1 nM, 50 nM and 100 nM, and 0.1%(v/v) ethanol (Et-OH 0.1% in Fig. 1) as a control. After exposure for 24 hr, 48 hr and 96 hr, each culture was passed through a 570 nM filter and the absorbance was measured. All were performed with n=4.

The results are shown in Fig. 1, Fig. 2 and Fig. 3. FK228 showed an in vitro antitumor effect on SYT-SSX protein expressing synovial sarcoma, a soft tissue sarcoma.

Example 2

Inbred male (BALB/Cnu/nu) nude mice were supplied by Charles River Japan, Inc. The animals were all fed and handled according to the Animal Test Guideline, Animal Resources Division, Advanced Science Research Center, Okayama University. FK228 was administered after 10 days from subcutaneous implantation of 10⁵ cells each of the SYO-1 cell strain. The tumor volume was assumed by measuring two diameters perpendicular to each other using
calipers and from the following formula (tumor volume=1/6π [(d1xd2)³/2]) (wherein d1 and d2 are two perpendicular diameters). The dose was evaluated by intravenously administering a dilute FK228 solution (50 μl, 10% HCO₆₀, diluted with physiological saline) at 0 mg/kg, 1.6 mg/kg or 3.2 mg/kg to 20 animals, and as a control, a 3.2 mg/kg dilute FK228 solution was intravenously injected to 7 animals free of tumor implantation. The administration was performed 3 times every 4 days, the tumor volume was also measured every 4 days, as well as after completion of the administration. The results are shown in Fig. 4, wherein the measurement days are shown in terms of the number of days after the subcutaneous implantation. FK228 showed an in vivo antitumor effect on SYT-SSX protein expressing synovial sarcoma, a soft tissue sarcoma.

Example 3

An SYT-SSX protein non-expressing synovial sarcoma cell line HTB93 (purchased from ATCC: American Type Culture Collection) was cultured in DMEM (Dulbecco’s modified Eagle’s medium) containing 10%(v/v) fetal bovine serum (FBS), 100 U/ml penicillin and 100 μg/ml streptomycin at 37°C under 5% CO₂ environment. These cells were plated and cultured for 24 hr, detached with 0.25%(w/v) trypsin and recovered. For cell growth ability, an MTT analysis kit (Colorimetric (MTT) assay for cell survival and proliferation kit of CHEMICON International, Inc.) was used. Each cell strain was plated in a 96 well microtiter plate at 2x10³ cell/well, and after culture for 24 hr, exposed to a 0.1%(v/v) dilute ethanol solution of FK228 at a concentration distribution of 0.001 nM, 0.01 nM, 0.1 nM, 0.5 nM, 1 nM, 5 nM, 10 nM, 50 nM and 100 nM, 0.1%(v/v) ethanol as a control and the medium alone as a blank. After exposure for 24 hr, 48 hr, 72 hr and 96 hr, each culture was passed through a 570 nM filter and the absorbance was measured. All were performed with n=4.

For the results, average values of the FK228 addition sample, control and blank were taken, and using numerical values obtained by subtracting a blank value from the value of the FK228 addition sample or control, a percentage corresponding to the ratio of the numerical value of the FK228 addition sample relative to that of the control was taken as survival rate (%). The results are shown in Fig. 5. FK228 showed an in vitro antitumor effect also on SYT-SSX protein non-expressing synovial sarcoma, which is one kind of soft tissue sarcoma.

Sequence Listing Free Text

SEQ ID; No 1: Xaa is an amino acid represented by the formula NH₂C(CHCH₃)COOH.

In the formula COOHCH₂CH(CHCH₃COH), the carboxylic group is bonded with the amino group of the first amino acid Val, the hydroxyl group is bonded with the carboxylic group of the fourth amino acid Val, and the SH group is bonded with the SH group of the second amino acid Cys via a disulfide bond.

Industrial Applicability

The therapeutic agent for synovial sarcoma manufactured according to present invention, which contains a histone deacetylase inhibitor (particularly FK228) as an active ingredient, has a superior antitumor action not only in vitro but also in vivo. Accordingly, it can be clinically used, particularly preferably for the treatment of synovial sarcoma.

SEQUENCE LISTING

<110> Fujisawa Pharmaceutical Co., Ltd.
<120> Therapeutic agent for soft tissue sarcoma
<130> 09652
<150> JP 2003-183643
<151> 2003-06-27
<160> 1
<210> 1
<211> PRT
Chromobacterium sp.

Xaa is an amino acid represented by the formula NH2C(CHCH3)COOH.

In the formula COOHCH2CH(CHCHC2H4SH)OH, the carboxylic group is bonded with the amino group of the first amino acid Val, the hydroxyl group is bonded with the carboxylic group of the fourth amino acid Val, and the SH group is bonded with the SH group of the second amino acid Cys via a disulfide bond.

Val Cys Xaa Val

Claims

1. A use of a histone deacetylase inhibitor selected from the group consisting of a compound of formula (I), a thiol form of the compound of formula (I) having a reduced S-S bond, a pharmaceutically acceptable salt of the compound of formula (I), a hydrate of the compound of formula (I), an anhydrous form of the compound of formula (I), an acetylated form of the compound of formula (I), a stereoisomer of the compound of formula (I), a mixture of said stereoisomers, and trichostatin A, in the manufacture of a medicament for the treatment of synovial sarcoma.

2. The use according to claim 1, wherein the synovial sarcoma is SYT-SSX protein expressing sarcoma.

3. The use according to claim 1, wherein the histone deacetylase inhibitor is a compound represented by the formula (II)
4. The use according to claim 3 wherein the synovial sarcoma is SYT-SSX protein expressing sarcoma.

Patentansprüche

1. Verwendung eines Histondeacetylase-Inhibitors, der ausgewählt wird aus der aus einer Verbindung der Formel (I)

 \[
 \text{(I)}
 \]

 einer Thiolform der Verbindung der Formel (I) mit einer reduzierten S-S-Bindung, einem pharmazeutisch verträglichen Salz der Verbindung der Formel (I), einem Hydrat der Verbindung der Formel (I), einer wasserfreien Form der Verbindung der Formel (I), einer acetylierten Form der Verbindung der Formel (I), einem Stereoisomer der Verbindung der Formel (I), einem Gemisch dieser Stereoisomere und Trichostatin A bestehenden Gruppe, zur Herstellung eines Medikaments zur Behandlung von Synovialsarkom,

2. Verwendung nach Anspruch 1, wobei das Synovialsarkom SYT-SSX-Protein-exprimierendes Sarkom ist,

3. Verwendung nach Anspruch 1, wobei der Histondeacetylase-Inhibitor eine Verbindung ist, die durch die Formel (II) dargestellt wird
oder ein pharmazeutisch verträgliches Salz davon,

4. Verwendung nach Anspruch 3, wobei das Synovialsarkom SYT-SSX-Protein-exprimierendes Sarkom ist,

Revendications

1. Utilisation d'un inhibiteur d'histone désacétylase choisi dans le groupe constitué par un composé de formule (I)

2. Utilisation selon la revendication 1, dans laquelle le sarcome synovial est un sarcome exprimant la protéine SYT-SSX.

3. Utilisation selon la revendication 1, dans laquelle l’inhibiteur d’histone désacétylase est un composé représenté par la formule (II)
ou un sel pharmaceutiquement acceptable de celui-ci.

4. Utilisation selon la revendication 3, dans laquelle le sarcome synovial est un sarcome exprimant la protéine SYT-SSX.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 7064872 B [0003] [0022]
• US 4977138 A [0003] [0022]
• WO 200500213 A [0008]
• WO 03015810 A [0009]
• EP 0352646 A [0010]
• EP 0196415 A [0015]
• WO 0206307 A [0018]
• JP 2003183643 A [0040]

Non-patent literature cited in the description

• Josiane E. Eid et al. Cell, 2000, vol. 102, 839-848 [0005]
• H. Ueda et al. Journal of Antibiotics, 1994, 315-323 [0006]