Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention refers to a bead breaker device in accordance with the preamble of claim 1.

[0002] More specifically, the present invention refers to a bead breaker device for detaching the bead of a tire from the corresponding rim of a wheel (rim and tire mounted) for automobiles, capable of operating in a wide range of sizes of the diameter of the rim of the wheel through simple operations.

[0003] As known, the assembly and disassembly of tires onto and from the respective rims is carried out through tire-dismounting machines that we shall avoid describing in greater detail hereafter since they are already known to men skilled in the art.

[0004] It is also known that so as to be able to carry out the dismounting of the tire, the bead, i.e. the reinforced edge of the tire, must first be detached from the bead-locking edge of the rim.

[0005] Said detachment operation is carried out through devices, known as bead breakers, which are generally arranged on the tire-dismounting machines.

[0006] The bead breaking of a tire is carried out by a bead breaking tool, also known as a disc, which in a first step must apply a pressure force against the sides of the tire, in order to detach the corresponding bead portion, and in a second step it must penetrate into the rim positioning itself between the edge of the rim and the bead, in order to allow the complete bead breaking of the tire put into rotation.

[0007] Basically, the disc carries out the aforementioned two steps substantially taking up two configurations, for thrusting and penetration, respectively.

[0008] Known bead breakers are often equipped with systems for moving the disc that are extremely complex and expensive from the constructive point of view, like for example cylinder-piston groups and complex articulation systems that, when actuated, allow the disc to pass from the thrusting configuration to the penetration configuration and vice-versa.

[0009] Of course, the bead breaking operation must be carried out on the two opposite sides of each tire, and therefore the simplest known solution is that which foresees the wheel being tilted at the end of the bead breaking operation carried out on one side.

[0010] Unfortunately, this solution has numerous drawbacks, above all with wheels having a large diameter and/or large weight.

[0011] According to a solution of the prior art it is possible to foresee the use of two bead breaker devices operating on the respective sides of the tire.

[0012] Unfortunately, this solution also implies some drawbacks and disadvantages, since the constructive complexity is substantially duplicated with a substantial increase in costs.

[0013] Furthermore US 5,226,465 describes a device for breaking the beads of tires according to the preamble of claim 1. Said device has two arms which can be advanced laterally toward each other by means of a motor drive and are guided on a column by means of sliding bushings. The arms support bead release discs that can be inserted below the flange of the wheel rim. The arms can, be pivoted around an axis of rotation to impress suitable movements to the bead release discs in order to remove the tyre. In particular, for every pivotable arm, a bead release disc is held at an extremity of an arm provided with a portion having cogs and pivotable around a pin. The cogged portion of the arm is slidable and connected to an internal spring. Over the cogged arm there is a cylinder-piston unit that can be actuated to push a coggd element over the cogs of the underlying arm. Due to this movement, both the arm and the cylinder-piston unit pivot, pressing against a tyre bead, while a second spring is compressed counteracting the motion of the bead release disc.

[0014] While the device of US 5,226,465 provides for an adaptable device that can be adjusted to different tire sizes and different types of wheel rims, it appears complicated and having a large number of component parts.

[0015] EP 1 334 846 shows a device for bead releasing of a tire onto and from a wheel-rim that is supported mounted for rotation about an axis, the device having at least a carriage displaceably mounted on guides extending parallel to the axis of rotation of the wheel-rim.

[0016] The device is provided with arms extending in a transverse direction with respect to the axis of rotation of the wheel and each having one end thereof supported by the slide or carriage and its other end provided with a bead releasing tool. The arms are provided each with a cylinder-piston group that acts on the bead releasing tool in order to make it translate along the longitudinal axis of the arm.

[0017] The device comprises also first driving means, designed to cause the arms to rotate about a longitudinal axis (x-x) for positioning the bead releasing disk and the tool with respect to the sides of the tire, and second driving means, designed to effect the rotation of the said arm about at least one axis (y-y) extending transversely with respect to said longitudinal axis. EP 1 177 920 describes a device for mounting and removing a tyre onto and from the relative wheel rim, the device having a operating head rigid with the free end of a hollow shaft which can translate axially with respect to a frame to which is connected, in order to bring said operating head into proximity with the flange of the wheel rim.

[0018] The operating head has a demounting tool which can rotate about an axis perpendicular to the main axis of the head to be positioned between a first position for seeking and gripping the bead of the tyre, in which the tool is orientated towards the centre of the wheel rim, and a second position for extracting said bead of the tyre from the wheel rim, in which the tool is perpendicular to the axis or is orientated in the opposite direction.

[0019] Therefore, there is a strong requirement to have a bead breaker device that is simple to make and effective in use and that, through simple operations, can move the
disc from the thrusting configuration to the penetration configuration and vice-versa.

[0020] The purpose of the present invention is that of providing a bead breaker device having structural and functional characteristics such as to satisfy the aforementioned requirements and at the same time to avoid the aforementioned drawbacks with reference to the prior art. A further purpose is that of allowing the bead breaker device to break the bead on both sides of a wheel without needing to tilt it through operations that are easy to carry out without requiring excessive costs to carry out it.

[0021] Such purposes are accomplished through a bead breaker device in accordance with claim 1. The dependent claims outline preferred and particularly advantageous embodiments of the bead breaker device according to the invention. Further characteristics and advantages of the invention shall become clear from reading the following description provided as an example and not for limiting purposes, with the help of the figures illustrated in the attached tables, in which:

- figure 1 shows an axonometric view of a bead breaker device in accordance with the present invention;
- figure 2 shows a side view of the device of figure 1;
- figures 3 and 4 show a detail of the device of figure 1, respectively in a first thrusting configuration and a second penetration configuration;
- figure 5 shows an axonometric view of the device of figure 1 in the tilted position;
- figure 6 shows a detail of the fastening/unfastening system.

[0022] With reference to the aforementioned figures, a bead breaker device in accordance with the present invention is globally indicated with 1.

[0023] Said bead breaker device 1 comprises an arm 2 able to slide horizontally along a sliding axis X-X, in a pipe 3 supported so that it can slide vertically on a pole 4 projecting cantilevered from a base (not illustrated).

[0024] In the illustrated example, the arm 2 has a hexagonal prismatic cross section to avoid it rotating about the sliding axis X-X and is equipped at one end with a sleeve 5 on which the thrust is exerted to obtain the desired sliding.

[0025] A locking/unlocking device 6 is associated with the pipe, suitable for allowing or preventing the sliding of the arm 2.

[0026] The vertical sliding along the post 4 of the pipe-arm group 3, 2 is ensured by a jack 7 having the cylinder 7a and the stem 2b extending parallel to the post 4. The jack 7 is associated onto a support cross-member 8 fixed to the post 4.

[0027] The pipe 3 is associated with the upper end of the stem 7b of the jack 7 through the interposition of a sled 9 provided with idle pins 32 that ensure the sliding along the post 4.

[0028] At the upper end, the sled 9 is provided with a bracket 9a associated with the end of the stem 7b of the jack 7 through a trunnion 20 (fig. 5).

[0029] An orientable bead breaker device 10, suitable for breaking the bead of a tire of a wheel removably fixed onto rotary support and locking means of the rim (not illustrated), is associated with the end close to the sleeve 5 of the arm 2.

[0030] The tool 10 is orientable between a first thrusting configuration, illustrated in figure 3, and a second penetration configuration, illustrated in figure 4 through suitable actuation means, which shall be discussed hereafter.

[0031] In accordance with the present invention, the tool 10 comprises an oblong support body 11 rotatably associated with the end of the arm 2 and a disc 12 fixed to an end of the support body 11, suitable for cooperating with the bead of the tire.

[0032] The support body 11 of the disc 12 tilts about an articulation pin 13 arranged horizontally and perpendicular to the sliding axis X-X, as can clearly be seen in the figures.

[0033] The actuation means comprise a thrusting body 14 and elastic means, such as a spring 17, cooperating with the tool.

[0034] The thrusting body 14 is actuated in contrast to the action of the spring 17.

[0035] In the example, the end of the support body 11 opposite the one where the disc is associated cooperates with the thrusting body 14 actuated by a cylinder-piston group 15 between a first extension position (fig. 3) in which the tool 10 is forced into the first thrusting configuration against the action of the return spring 17 and a second release position (fig. 4) in which the tool 10 goes into the second penetration configuration under the action of the spring 17.

[0036] In the example, the cylinder-piston group 15 actuating the thrusting body 14 is in the form of a pneumatic jack arranged parallel to the axis X-X and fixed to a plate 16 cantilevered from the sliding arm 2 near to the tool 10. Basically, the end opposite the disc 12 of the support body 11 is constantly in abutment against the thrusting body 14 that is actuated parallel to the axis X-X by the jack 15, in contrast to the spring 17, in order to ensure the thrusting position of the tool 10.

[0037] The spring 17, which takes the tool 10 back into the penetration position once the action of the jack 15 on the thrusting body 14 has stopped, is inserted with a tight fit into a blind recess formed at the end of the arm 2.

[0038] Said spring 17 is arranged vertically and perpendicular to the sliding axis X-X of the arm 2, i.e. perpendicular to the axis of the articulation pin 13.

[0039] In order to ensure an effective action of the spring 17 on the support body 11 of the disc 12, said support body 11 is provided with a nose 11a, extending along the sliding axis X-X, arranged in abutment against the spring 17.

[0040] In addition, the support body 11 of the disc 12 can have a central projection 11b (figs 3, 4) that goes...
into abutment against the end of the arm 2 acting as a limit switch, when the tool 10 is in the penetration position. Said tilting means allow the rotation of the arm 2 about a rotation axis Y-Y parallel to and distal from the sliding axis X-X.

[0041] In the example, the tilting means comprise a tilting frame 18 hinged at a forked end thereof 18a to the sled 9 through an articulation pin 19 extending along the rotation axis Y-Y and at the other end associated with the pipe 3 through a button 29 arranged on a handle 30 fixed to the pipe 3, engagement means and disengagement means respectively suitable for locking the frame 18 in a work position and for unlocking the same frame to allow it to tilt.

[0042] The engagement means comprise an upper fastening pin 21 and a lower fastening pin 22 having the respective axes extending parallel and symmetrically to said rotation axis Y-Y, at least one return spring 23 placed between the two fastening pins 21, 22 and at least one fastening body 24 associated with the tilting frame 18.

[0043] The fastening pins 21, 22 are each slidably inserted in a respective pair of opposite slots 25, 26 formed laterally on the sled 9 and extending vertically for a limited portion.

[0044] In the example, the at least one return spring 23 are two helical torsion springs 23 arranged vertically and inside the sled 9 and having the ends attached to the fastening pins 21, 22.

[0045] Basically, the springs 23 apply a force drawing the fastening pins 21, 22 towards each other, up to the limit switch allowed by the slots 25, 26.

[0046] The fastening bodies 24, two in number, are integrally associated on opposite sides with the tilting frame 18 and each of them is provided with a pair of U-shaped grooves 24a suitable for alternately engaging with the ends of the fastening pins 21, 22 that come out from the slots 25, 26 of the sled 9.

[0047] Basically, when the pair of fastening bodies 24 is attached to the upper pin 21, the lower pin 22 remains free and vice-versa.

[0048] In order to allow the detachment of the fastening bodies 24 from the fastening pin to which they are attached and the subsequent tilting of the frame 18, the disengagement means are actuated, which preferably comprise a pair of opposite jacks 27 fixed on the inside to the sled 9, respectively cooperating with the upper fastening pin 21 and lower fastening pin 22 and able to be actuated in contrast to the return springs 23 (fig. 6).

[0049] The actuation of the jacks 27 can be carried out through a button 29 arranged on a handle 30 fixed to the pipe 3. To avoid the frame 18 with annexed pipe 3 and arm 2 tilting down violently under its own weight after the fastening bodies 24 have been detached from the corresponding upper fastening pin 21, it is possible to foresee the use of damping means of the rotation speed about the rotation axis Y-Y, for example providing a pneumatic damping jack 31 associated at one end with the sled 9 at the articulation pin 13 and at the other end with the pipe 3 (fig. 2).

[0050] Operatively, once the wheel having the tire with the bead to be broken has been fixed onto the rotary support and locking means of the rim of the conventional type, the bead breaker tool 10 is positioned, acting on the handle 5 after having unlocked the locking/unlocking device 6 present on the pipe 3, at a distance from the post 4 such as to allow the disc 12 to reach the bead of the tire.

[0051] Having reached the optimal position for bead breaking, the sliding of the arm 2 in the pipe 3 is locked by acting on the device 6.

[0052] The tool 10 is moved closer to the bead of the tire through the actuation of the jack 7 that drags the sled 9 vertically along the post 4 and with it the pipe 3, the arm 2 and thus the tool 10.

[0053] The bead breaking occurs substantially in two steps: the first a thrusting step, in which the bead is detached from the edge of the rim to which it is attached through a thrust applied parallel to the axis of the wheel, the second a penetration step, in which the disc penetrates inside the tire positioning itself between the bead and the edge of the rim.

[0054] In the two steps, the tool 10 takes up the first thrusting configuration and the second penetration configuration, respectively.

[0055] The first thrusting configuration is ensured by the thrusting body 14 that is actuated in its extension position in contrast to the spring 17.

[0056] The second penetration configuration is ensured by the action of the spring 17 that, when the action of the thrusting body 14 has stopped, applies a thrust onto the nose 11a of the support body 11 to which the disc 12 is fixed, making it rotate about the pin 13 by a few degrees. of course, the thrust stops its effects when the projection 11b goes into abutment against the end of the arm 2.

[0057] The degrees of oscillation of the tool 10, just like the spatial position of the disc 12 associated with it, are those of the prior art and therefore have not been described in detail.

[0058] At the end of the bead breaking of an entire side, for example the top, of the tire, the tilting means are actuated by pressing on the button 29 on the handle 30 fixed to the pipe 3.

[0059] The button 29 actuates the pair of jacks 27 that thrust apart the pins 21 and 22, which are free to slide in the pairs of slots 25 and 26, until they are detached from the pair of U-shaped grooves 24a of the fastening bodies 24.

[0060] After having detached the fastening bodies 24, the tilting frame 18, integral with the fastening bodies 24, is free to rotate about the pin 19 tilting down (or vice-versa, if one starts at the bottom side of the tire), where it shall attach to the lower pin 22 once the action of the jacks 27 has stopped, in virtue of the action applied by the return springs 23.

[0061] This makes it possible to operate immediately on the bead of the lower side of the tire without the need
2. Bead breaker device (1) according to claim 1, wherein the end opposite the disc (12) of said rotatable support body (11) is constantly in abutment against the thrusting body (14).

3. Bead breaker device (1) according to claim 1 or 2, wherein said thrusting body (14) is actuated by a cylinder-piston group (15) fixed to a plate (16) cantilevered from said sliding arm (2).

4. Bead breaker device (1) according to claim 3, wherein said cylinder-piston group (15) is a pneumatic jack.

5. Bead breaker device (1) according to claim 4, wherein said support body (11) has a projection (11b) that goes into abutment against the end of said arm (2), when said tool (10) is in said penetration position.

6. Bead breaker device (1) according to claim 1, wherein said support body (11) is provided with a nose (11a) cooperating with said elastic means (17).

7. Bead breaker device (1) according to claim 1, wherein said elastic means comprise a spring (17) inserted with a tight fit in a recess formed at the end of said arm (2) and arranged transversally to said sliding axis (X-X) of the arm (2).

8. Bead breaker device (1) according to claim 1 further comprising tilting means suitable for tilting said sliding arm (2) to take it to the opposite side of said wheel removably fixed onto the rotary support and locking means of the rim, said tilting means allowing the rotation of said arm (2) about a rotation axis (Y-Y) parallel to and distant from the sliding axis (X-X).

9. Bead breaker device (1) according to claim 8, wherein said tilting means comprise a tilting frame (18) hinged at one end to a sled (9), associated so that it can slide vertically with said post (4), through an articulation pin (19) extending along said rotation axis (Y-Y) and at the other end associated with said pipe (3), engagement means (21, 22, 23, 24) and disengagement means (27) respectively suitable for locking said frame (18) in a work position and for unlocking said frame to allow it to be tilted.

10. Bead breaker device (1) according to claim 9, wherein said engagement means (21, 22, 23, 24) comprise an upper fastening pin (21) and a lower fastening pin (22) having the respective axes extending parallel and symmetrically to said rotation axis (Y-Y), said fastening pins (21, 22) each being slidably inserted in a respective pair of opposite slots (25, 26) formed on said sled (9) and extending vertically for a limited portion, at least one return spring (23) placed between the two fastening pins (21, 22) suitable for applying a force drawing them together, at least one fastening body (24) associated with said tilting frame.
Bead breaker device (1) according to claim 10, wherein said fastening body (24) is provided with a pair of U-shaped grooves (24a) suitable for engaging with the ends of said fastening pins (21, 22).

Bead breaker device (1) according to claim 10, wherein said disengagement means comprises a pair of jacks (27) fixed to said sled (9) and respectively cooperating with said upper fastening pin (21) and lower fastening pin (22) and able to be actuated in contrast to said at least one return spring (23) to disengage said fastening pins (21, 22) from said fastening body (24) allowing it to be tilted.

Bead breaker device (1) according to claim 12, wherein said jacks (27) are actuated through a button (29) arranged on a handle (30) fixed to said pipe (3).

Bead breaker device (1) according to claim 8 comprising damping means (31) of the rotation speed of the arm (2) about the rotation axis (Y-Y).

Bead breaker device (1) according to claim 14, wherein said damping means comprise a pneumatic jack.

Patentansprüche

1. Wulstabdrückvorrichtung (1) einschließlich:

- eines Arms (2), der in einem Rohr (3) horizontal auf einer Gleitachse (X-X) bewegbar ist, das Rohr (3) so gelagert, dass es vertikal auf einer Säule (4) bewegbar ist, welche freistehend von einer Basis nach oben ragt; ein ausrichtbares Wulstabdrückwerkzeug (10), das mit einem Ende des Arms (2) verbunden und dazu geeignet ist, den Reifenwulst von einem Rad abzudrücken, welches entfernbar auf einer drehbaren Trägerfläche und den Schließelementen der Felge befestigt ist, das Werkzeug (10) beinhaltet ferner einen gelenkig drehbaren Trägerkörper (11), welcher drehbar mit dem Ende des Arms verbunden ist und an dessen Ende eine Wulstabdrück-Scheibe (12) befestigt ist;

- Betätigungselementen (14, 15, 17), die geeignet sind zum Ausrichten des Werkzeugs (10) in einer ersten Anordnung und einer zweiten Eindringungsanordnung, dadurch gekennzeichnet, dass die Betätigungselemente (14, 15, 17) einen Andrückkörper (14) und elastische Elemente (17) beinhalten, die mit dem Werkzeug (10) zusammenarbeiten, wobei der Andrückkörper (14) in Anlage an einen Teil des gelenkig drehbaren Trägerkörpers (11) betätigt werden kann und außerdem in einer ersten Verlängerungsstellung betätigt werden kann, die im Gegensatz zum Betrieb der elastischen Elemente (17) steht, und in einer zweiten Lösetellung, in der die von den elastischen Elementen (17) ausgeübte Kraft herrscht.

2. Wulstabdrückvorrichtung (1) nach Patentanspruch 1, wobei das der Scheibe (12) entgegen gesetzte Ende des gelenkig drehbaren Trägerkörpers (11) fortwährend in Anlage an den Andrückkörper (14) steht.

3. Wulstabdrückvorrichtung (1) nach Patentanspruch 1 oder 2, wobei der Andrückkörper (14) von einer Zylinderkolbengruppe (15) betrieben wird, die auf einer von dem Gleitarm (2) freistehenden Platte (16) angeordnet ist.

4. Wulstabdrückvorrichtung (1) nach Patentanspruch 3, wobei die Zylinderkolbengruppe (15) ein pneumatischer Hebebock ist.

5. Wulstabdrückvorrichtung (1) nach Patentanspruch 4,1, wobei der Andrückkörper (11) eine Ausbuchtung (11b) aufweist, die sich in Anlage an das Ende des Arms (2) bewegt, wenn sich das Werkzeug (10) in der Eindringungsstellung befindet.

7. Wulstabdrückvorrichtung (1) nach Patentanspruch 1, wobei die elastischen Elemente eine Feder (17) beinhalten, die fest in einer am Ende des Arms (2) geformten Vertiefung eingefügt und quer zur Gleitachse (X-X) des Arms (2) angeordnet ist.

8. Wulstabdrückvorrichtung (1) nach Patentanspruch 1, einschließlich Kippelementen, die geeignet sind zum Kippen des Gleitarms (2), um diesen auf die gegenüberliegende Seite des entfernbar auf der drehbaren Trägerfläche und den Schließelementen der Felge befestigten Rades zu bringen, wobei die Kippelemente die Rotation des Arms (2) auf einer Rotationsachse (Y·Y) ermöglichen, welche parallel zur Gleitachse (X·X) liegt und von dieser entfernt ist.

9. Wulstabdrückvorrichtung (1) nach Patentanspruch 8, wobei die Kippelemente einen Kipphahn (18) beanspruchen, der an einem Ende zu einem Schlitten (9) kippbar ist, der so anordnet ist, dass er vertikal auf der Säule (4) durch einen Gelenkbolzen (19) gleiten kann, der sich entlang der Rotationsachse (Y·Y) erstreckt und der am anderen Ende mit dem
Wulstabrückvorrichtung (1) nach Patentanspruch 10, wobei die Dämpfungselemente ein Paar an dem Schlitzen (9) angebrachte Hebeböcke (27) beinhalten, welche jeweils mit dem oberen Befestigungsstift (21) und dem unteren Befestigungsstift (22) verbunden und die im Gegensatz zu wenigstens einer Rückholfeder (23) zwischen den beiden Befestigungsstiften (21, 22) verbunden sind, welche die Stifte (21, 22) zusammenziehen und we nigstens ein Befestigungskörper (24), der mit dem Kipprahmen (18) verbunden und dazu geeignet ist, sich abwechselnd an die Enden jedes Befestigungstiftes (21, 22) anzuschließen.

12. Wulstabrückvorrichtung (1) nach Patentanspruch 10, wobei die Befestigungskörper (24) mit einem Paar U-förmiger Aushöhlungen (24a) ausgestattet ist, die dazu geeignet sind, in die Enden der Befestigungsstifte (21, 22) einzurasten.

13. Wulstabrückvorrichtung (1) nach Patentanspruch 12, wobei die Hebeböcke (27) durch einen Knopf (29) betätigt werden, der auf einem am Rohr (3) be festigten Griff (30) angebracht ist.

14. Wulstabrückvorrichtung (1) nach Patentanspruch 8 einschließlich Dämpfungselementen (31) zur Dämpfung der Rotationsgeschwindigkeit des Arms (2) auf der Rotationsachse (Y-Y).

15. Wulstabrückvorrichtung (1) nach Patentanspruch 14, wobei die Dämpfungselemente einen pneumatischen Hebebock beinhalten.

10. Wulstabrückvorrichtung (1) nach Patentanspruch 9, wobei die Arretierungselemente (21, 22, 23, 24) einen oberen Befestigungsstift (21) und einen unteren Befestigungsstift (22) beinhalten, deren Achsen parallel und symmetrisch zur Rotationsachse (Y-Y) verlaufen; die Befestigungsstifte (21, 22) sind jeweils bewegbar eingeführt in ein zugehöriges Paar gegenüberliegender Schlitzte (25, 26) auf dem Schlitten (9) und erstrecken sich vertikal auf einer begrenzten Strecke, wobei sich wenigstens eine Rückholfeder (23) zwischen den beiden Befestigungsstiften (21, 22) befindet, die zum Anwenden einer Kraft dient, welche die Stifte (21, 22) zusammenzieht und wenigstens ein Befestigungskörper (24), der mit dem Kipprahmen (18) verbunden und dazu geeignet ist, sich abwechselnd an die Enden jedes Befestigungstiftes (21, 22) anzuschließen.

11. Wulstabrückvorrichtung (1) nach Patentanspruch 10, wobei der Befestigungskörper (24) mit einem Paar U-förmiger Aushöhlungen (24a) ausgestattet ist, die dazu geeignet sind, in die Enden der Befestigungsstifte (21, 22) einzurasten.

12. Wulstabrückvorrichtung (1) nach Patentanspruch 10, wobei die Löseelemente ein Paar an dem Schlitten (9) angebrachte Hebeböcke (27) beinhalten, welche jeweils mit dem oberen Befestigungsstift (21) und dem unteren Befestigungsstift (22) zusammenarbeiten und die im Gegensatz zu wenigstens einer Rückholfeder (23) betätigt werden können, um das Loslösen der Befestigungsstifte (21, 22) von dem Befestigungskörper (24) zu bewirken, damit dieser gekippt werden kann.

13. Wulstabrückvorrichtung (1) nach Patentanspruch 12, wobei die Hebeböcke (27) durch einen Knopf (29) betätigt werden, der auf einem am Rohr (3) befestigten Griff (30) angebracht ist.

14. Wulstabrückvorrichtung (1) nach Patentanspruch 8 einschließlich Dämpfungselementen (31) zur Dämpfung der Rotationsgeschwindigkeit des Arms (2) auf der Rotationsachse (Y-Y).

15. Wulstabrückvorrichtung (1) nach Patentanspruch 14, wobei die Dämpfungselemente einen pneumatischen Hebebock beinhalten.

Revendications

1. Dispositif de détalonnage (1) comprenant:
 - un bras (2) capable de coulisser horizontale-ment le long d’un axe de coulissement (X-X),
 - dans un tube (3) soutenu afin qu’il puisse cou- lisser verticalement sur un poteau (4) projeté en porte-à-faux à partir d’une base, un outil de dé- talonnage (10) orientable associé avec une ex- trémité dudit bras (2) et approprié pour le déta- lonnage du pneu d’une roue fixée de manière amovible sur un support rotatif et des dispositifs de verrouillage de la jante, ledit outil (10) com- prenant un corps de soutien pivotant (11) asso- cié par rotation avec l’extrémité dudit bras et à un disque de libération du talon (12) fixé à une extrémité dudit corps de soutien (11):
 - des dispositifs d’actionnement (14, 15, 17) apprêts pour orienter le ledit outil (10) entre une première configuration de poussée et une deuxièmelle configuration de pénétration, carac- térises par le fait que lesdits dispositifs d’ac- tionnement (14, 15, 17) comprennent un corps de poussée (14) et des dispositifs élastiques (17) coopérant avec ledit outil (10), ledit corps de poussée (14) étant capable d’agir en butée contre une portion dudit corps de soutien pivo- tant (11) et étant capable d’être actionné entre une première position d’extension en opposition avec l’action desdits dispositifs élastiques (17) et une deuxième position de libération dans laquelle prévaut la force exercée par lesdits dispositifs élastiques (17).

2. Dispositif de détalonnage (1) selon la revendication 1, où l’extrémité opposée au disque (12) dudit corps de soutien pivotant (11) est en butée permanente contre le corps de poussée (14).

3. Dispositif de détalonnage (1) selon les revendica- tions 1 ou 2, où ledit corps de poussée (14) est ac- tionné par un groupe cylindre-piston (15) fixé à une plaque en porte-à-faux par rapport audit bras cou- lissant (2).

4. Dispositif de détalonnage (1) selon la revendication 3, où ledit groupe cylindre-piston (15) est un cric pneumatique.

5. Dispositif de détalonnage (1) selon la revendication [4] 1, où ledit corps de soutien (11) possède une projection (11b) qui va en butée contre l’extrémité dudit bras (2) lorsque ledit outil (10) se trouve dans ladite position de pénétration.

6. Dispositif de détalonnage (1) selon la revendication 1, où ledit corps de soutien (11) est doté d’un nez
Dispositif de détalonnage (1) selon la revendication 1, où lesdits dispositifs élastiques comprennent un ressort (17) introduit avec un accès étroit dans un creux formé à l’extrémité dudit bras (2) et disposé transversalement audit axe de coulissement (X-X) du bras (2).

Dispositif de détalonnage (1) selon la revendication 1 comprenant également des dispositifs de basculement appropriés pour basculer ledit bras coulissant (2) afin de le prendre du côté opposé de ladite roue fixée de manière amovible sur le support rotatif et avec les dispositifs de verrouillage de la jante, lesdits dispositifs de basculement permettant la rotation dudit bras (2) sur un axe de rotation (Y-Y) parallèle et distal à l’axe de coulissement (X-X).

Dispositif de détalonnage (1) selon la revendication 8, où lesdits dispositifs de basculement comprennent un châssis de basculement (18) fixé par charnière sur une extrémité à un traîneau (9), associé afin de pouvoir coulisser verticalement avec ledit poteau (4), grâce à une goupille d’articulation (19) qui s’entend le long dudit axe de rotation (Y-Y) et associé à l’autre extrémité avec ledit tube (3), des dispositifs d’enclenchement (21, 22, 23, 24) et des dispositifs de désenclenchement (27) respectivement appropriés pour verrouiller ledit châssis (18) dans une position de travail et pour déverrouiller ledit châssis pour lui permettre d’être basculé.

Dispositif de détalonnage (1) selon la revendication 10, où ledit corps de fixation (24) est doté de deux rainures en U (24a) appropriées pour s’engager avec les extrémités desdites goupilles de fixation (21, 22).

Dispositif de détalonnage (1) selon la revendication 10, où lesdits dispositifs de désenclenchement comprennent deux crics (27) fixés audit traîneau (9) et coopérant respectivement avec lesdites goupille de fixation supérieure (21) et goupille de fixation inférieure (22) et capables d’être actionnés en opposition avec ledit (au moins un) ressort de rappel (23) pour désenclencher lesdites goupilles de fixation (21, 22) dudit corps de fixation (24) lui permettant d’être basculé.

Dispositif de détalonnage (1) selon la revendication 12, où lesdits crics (27) sont actionnés grâce à un bouton (29) disposé sur une poignée (30) fixée audit tube (3).

Dispositif de détalonnage (1) selon la revendication 8 comprenant des dispositifs d’amortissement (31) de la vitesse de rotation du bras (2) sur l’axe de rotation (Y-Y).

Dispositif de détalonnage (1) selon la revendication 14, où lesdits dispositifs d’amortissement comprennent un cric pneumatique.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5226465 A [0013] [0014]
- EP 1334846 A [0015]
- EP 1177920 A [0017]