EUROPEAN PATENT SPECIFICATION

MULTI-PROTOCOL MEMORY CARD
SPEICHERKARTE MIT MEHREREN PROTOKOLLEN
CARTE MEMOIRE MULTIPROTOCOLE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Priority: 25.02.2003 US 372304

Date of publication and mention of the grant of the patent:

Date of filing: 25.02.2004

Application number: 04714417.5

Date of publication of application:
23.11.2005 Bulletin 2005/47

Proprietor: Qimonda AG
81739 München (DE)

Inventors:
• KRYGIER, Marcelo
 55602 Kyriot Ono (IL)

• MEYASSED, Moshe
 60920 Kadima (IL)

• AMIR, Elad
 69126 Tel Aviv (IL)

Representative: Rocke, Carsten
Müller-Boré & Partner
Grafinger Strasse 2
81671 München (DE)

References cited:
WO-A-02/13021
WO-A-02/31762
WO-A-2004/095365
WO-A2-99/49415
US-B1- 6 669 487

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates generally to non-volatile memory cards and methods for operation thereof and, more particularly, to mum-mode operation of non-volatile memory cards.

BACKGROUND OF THE INVENTION

The operation of mass media non-volatile memory ("NVM") cards is well known. Various NVM mass storage devices able to handle large data files such as smart media cards, MultiMediaCards, memory sticks, and other like NVM mass storage devices and cards have been gaining market acceptance over the past several years. Hereinbelow, the term MultiMediaCard ("MMC"), or the like, refers to any NVM mass storage device able to handle large data files regardless of the protocol used. To date, the above NVM cards have been used for consumer applications such as digital cameras and portable music devices. Due to the absence of an agreed upon security standard for the above mentioned NVM card standards, none have been approved by any industry (e.g. banking, telecom, etc.) for the storage of private data such as bank details or telephone account information.

A category of NVM cards known as "smart-cards," having generally smaller capacity than the above mentioned mass storage devices, which work with secured application such as "smart card applications," have been known and adopted for commercial use by several industries including banking and telecommunications. Hereinbelow, the term "smart-card applications" refers to all secured applications known which relate or conform to the interoperability standard defined by the International Standards Organization (ISO) as the ISO 7816 standard for integrated circuit cards with contacts, or with any other secure standard. The specifications of the ISO 7816 standard, and any other standards which may relate thereto, focus on interoperability of secured applications over the physical, electrical, and data-link protocol levels.

There is a broad base of smart-card applications already on the market, and the need for secured applications in general is growing. Banks and credit institutions, for example, have defined an industry-specific smart card specification. This specification adopted the ISO 7816 standards and defined some additional data types and encoding rules for use by the financial services industry. This industry standard is called the EMV (Europay-MasterCard-Visa) standard. The ISO 7816 standard has also been adopted by the telecommunication industry, for use with the global system for mobile communications (GSM), to enable identification and authentication of mobile telephone users.

Due to the ISO 7816 standards, as well as the specifications that have adopted it, smart card applications and other ISO 7816 compliant applications currently operate only on an ISO 7816 communication protocol, for the most part using I/O, clock (CLK), and reset (RST) lines to store and retrieve data from a smart-card chip which us usually integrated within a smart-card controller of a protocol unit.

Document WO02/31762 A discloses a multi-mode IC card for operating in a first mode, such as an ISO mode, and a second mode, a non-ISO mode. The IC card further includes a mode configuration circuit for detecting a mode condition on one pad of the IC card and configuring the IC card in the ISO mode or the non-ISO mode, depending on the result of the detection.

Document WO 02/13021 A2 discloses a small memory card for electronic systems to be removably inserted into a card slot of the system. The memory card is adapted to store digital data in a non-volatile manner.

Document US 2002/0111771 A1 discloses a controller having a plurality of readers for reading an associated plurality of expansion cards having a read-only memory on which an access by the controller can be locked or unlocked.

Document WO 99/49415 discloses a smart card that is compatible with multiple different protocols and having a standard set of contacts that comply with the protocols of published standard and another set of contacts which are not designated by the standard and which are used to indicate whether the card is to operate in a non-standard mode. The selection of the protocol mode is based on a signal received by another contact.

SUMMARY OF THE INVENTION

A multi-protocol non-volatile memory ("NVM") card may include a NYM allay, at least two protocol units, and a controller adapted to provide an external application access to the NVM array with the use of one of the protocol units. The controller or control logic may select which protocol unit to use based on a signal or other indicator of the protocol used by the external application.

There may be a method of operating a multi-protocol NVM card. According to some embodiments of the present invention, a method of operating a multi-protocol memory card may include switching between a first and a second protocol mode of the card based on a signal from an application attempting to access to the NVM car.

There may be an interface and a method of operating the interface, where the interface is between an external application substantially compliant with the ISO 7816 standard and a multi-protocol memory card. The interface may include a first connector to the external applications and a second connector to the multi-protocol memory card. An interface according to some embodiments of the present invention may also include a signaling structure to indicate to the multi-protocol memory card to operate in a mode substantially compliant with the ISO 7816 standard.
A multi-protocol non-volatile memory ("NVM") card may include a NVM array, at least two protocol units, and a controller or control logic adapted to provide an external application access to the NVM array using one of the protocol units. The controller or control logic may select which protocol unit to use based on an indicator of the protocol used by the external application.

There may be a method of operating a multi-protocol NVM card. A method of operating a multi-protocol NVM card may include switching between a first and a second protocol mode of the card based on a signal from an application attempting to access to the NVM card.

There may be an interface and a method of operating the interface, where the interface is between an external application substantially compliant with the ISO 7816 standard and a multi-protocol memory card. The interface may include a first connector to the external application and a second connector to the multi-protocol memory card. An interface may also include a signaling structure to indicate to the multi-protocol memory card to operate in a mode substantially compliant with the ISO 7816 standard.

There may be an implementation on a single memory card having a first protocol unit, for example a MultiMediaCard ("MMC") protocol unit, and a second protocol unit, for example an ISO 7816 memory card protocol unit. A single NVM card may enable different applications, where each application uses different protocols, to operate on and access an NVM on the same NVM card.

Reference is now made to Fig. 1, which is a block diagram illustration of a multi-protocol memory card 10. Memory card 10 may include at least two protocol units, a first protocol unit 20 and a second protocol unit 30, as well as a controller 40 or control logic unit 40, and an NVM array 50 or NVM unit 50.

Either or both of the protocol units 20 and 30, may conform to a standardized protocol known in the art; for example, (1) MMC protocol, (2) ISO 7816 - smart card protocol, (3) memory stick protocol, etc. Any one of the protocols associated with one or more protocol units may include a security or encryption feature. One or more of the protocol units 20 and 30, may include an integrated NVM array 32. For example, according to the ISO 7816 smart card standard, an ISO 7816 compliant smartcard may have an integrated controller unit, i.e. protocol unit and integrated NVM array.

A multi-protocol NVM card may include an internal communication bus, which communication bus may allow the control logic 40 to communicate with either of the protocol units 20 or 30, and which may allow either of the protocol units to access the NVM unit 50, either directly or through the controller 40. Connector pins 60 may connect the controller 40 and internal bus to an external application. One or more of the connector pins, e.g. 65, may be used to indicate to the control logic 40 which protocol unit may communicate with an external application attempting to access the card.

Controller or control logic 40 may include a protocol selection module 42 and a mode initialization module 44. Protocol selection module 42 may determine, based on signals from an external application, in which protocol mode the card should be operating and may signal internal switching circuits to activate the appropriate protocol unit. Herein, signals may be software/firmware and/or hardware generated. Mode initialization module 44 may initialize or condition the logic state of the NVM card 10 in order to produce an internal logic
state corresponding to an NVM card of the desired protocol.

[0027] The various portions of a multi-mode NVM card may be implemented on separate substrates (e.g., semiconductor chips or cards), may be fabricated on the same substrates, or may be implemented in any combination. For example, the first protocol unit 20 and the logic unit 40 may be implemented on the same substrate. In another example, the second protocol unit 30 and logic unit 40 may be implemented on the same substrate. In yet a further example, memory unit 50 and the second protocol unit 30 may be implemented on the same substrate.

[0028] The first protocol unit 20 may be implemented in any manner known in the art. For example, it may be implemented as an MMC protocol unit which protocol unit may be part of an MMC controller commercial available today. Memory unit 50 may also be implemented in any manner known in the art. It may be implemented, as an NROM memory array or unit, for example.

[0029] Turning now to Fig. 2, there is shown a block diagram illustration of the multi-protocol memory card of Fig. 1, where the card is adapted to operate in either an ISO 7816 protocol mode or in an MMC protocol mode. Multi-protocol memory card 10 may include a first protocol unit 20 and a second protocol unit 30, which second protocol unit may be ISO 7816 compliant. The first protocol unit 20 may be a MultiMediaCard protocol unit, a SecureDigital protocol unit, a CompactFlash protocol unit, a Memory Stick protocol unit, and a non-volatile mass memory card protocol unit. Hence, the first protocol unit 20 may be any MMC controller available on the market today. The second protocol unit 30 may be a smart card controller, for example, an Infineon™ SLE66 smartcard controller (available from Infineon Technologies Flash Ltd., Netanya, Israel) with an integrated NVM may 32. The control logic 40 may either be an ASIC (“application specific integrated circuit”) or a modified portion of either an ISO 7816 or an MMC compliant controller.

[0030] Fig. 2 shows an ISO 7816 compliant host application 100 (e.g., banking application) communicating with the multi-protocol NVM using a data line, a clock line, and a reset line. The control logic 40, having identified that the application is an ISO 7816 application, may connect, either directly or through an external switch (not shown), the signals or lines from the ISO 7816 host application to the second protocol unit 30. Had the control unit 40 or control logic 40 identified the application attempting access to be an MMC application, the control logic 40 may have connected the relevant lines or signals from the application to the MMC protocol unit 20, either directly or through an external switch or multiplexer (“MUX”). For example, the reserved pin of the ISO 7816 standard may be used.

[0031] Turning now to Fig. 3, there is shown a more detailed block diagram of the card of Fig. 2, including some details retarding possible logic circuit arrangements. One set of pins 60A may be used to communicate with an ISO 7816 application, while a second set of pins 60B may be used to communicate with an MMC application. A select pun may receive a signal indicating whether an application attempting to access the card 10 is either an ISO 7816 or MMC application. Pins 60A and 60B may be two partially overlapping sets of pins.

[0032] An ISO controller 40 may be adapted to accept a protocol indicator signal from pin 65 and to either connect pin set 60A to the second protocol unit 30 (Le. SmartCard Controller) or to connected pin set 60B to the first protocol unit 20 (MMC). One or more switches/multiplexers 70 may be used to switch internal signal paths in a multi-protocol card 10 according to some embodiments of the present invention.

[0033] Turning now to Fig. 4, there is shown a block diagram of the multi-protocol card of Fig. 1, wherein the NVM may of the card has been partitioned for use by each of three external applications. The control logic 40 according to some embodiments of the present invention may produce a file allocation or application allocation table 50A of the NVM array 50. The allocation table 50A may allow several applications to share space on the NVM array. When a particular application attempts to access the card, the control logic 40 may use the allocation table 50A to determine to which physical portions of the NVM array to grant access.

[0034] According to the example of Fig. 4, an ISO 7816 compliant application 100A may either access an integrated NVM array 32 on a second protocol unit 30, or may access a portion of the NVM array 50B set aside for ISO 7816 compliant use, also using the second protocol unit 30. Each of two MMC applications 100B and 100C may access NVM array portions 50C and 50D through the control logic 40 and first (Le. MMC) protocol unit 20.

[0035] The partitioning of a fixed amount of memory into separate files or memory segments associated with different applications is well known.

[0036] Turning now to Fig. 5, there is shown a block diagram of a card according to any of Figs. 1 through 4, or any other multi-protocol card, communicating with an ISO 7816 external application 100 through an interface 200. An interface may have a first set of connecting pins 240 to connect to an external application such as an ISO 7816 compliant application, and a second set of pins 220 to connect a multi-protocol card. The first set of pins may be physically configured to engage with a host application such as an ISO 7816 compliant banking or telecommunications application. Since a multi-protocol card 10 may have any one of several physical configurations and dimensions, including those of an MMC card, a smart media card, a memory stick, etc., the second set of pins may be configured to engage with the specific embodiment of the card. The example of an interface shown in Fig. 5 is that of an interface between an ISO 7816 compliant application and a multi-protocol card having a configuration and size of an MMC card.

[0037] The interface 200 may include wiring to connect signals from the first set of connecting pins 240 to the second set of connecting pins 220. The wiring may be
adapted to map the signals sent by the application 100 to the appropriate corresponding pins on the card 10. A signaling structure 260 may produce a signal, which may indicate to the multi-protocol card 10 to switch to a mode or protocol corresponding to the protocol associated with the host application 100. The signaling structure is a signal source, while in other examples, the signaling structure may be little more than a conductor or jumper which may connect two or more pins on the card 10.

Reference is now made to Fig. 6, which is a flow chart illustration of a method that may be performed to switch a multi-protocol card from a first protocol mode, for example an MMC mode, to a second protocol mode, for example an ISO 7816 compliant mode. The method may be performed by a controller or control logic 40.

The description hereinbelow will use an exemplary non-limiting implementation with reference to the multi-protocol card 10 of Figs. 1 and 2. Memory card 10 may start in an MMC compliant mode (phase 1000). The card’s control logic or controller 40 may be using an MMC protocol unit to communicate with an MMC application, or may simply keep the MMC protocol unit online while in idle mode. Phase 1200 may be promoted upon receiving an indication or signal from an external application requiring the card 10 to be in ISO 7816 mode. According to Phase 1200, an internal switching command to switch to ISO 7816 mode may be sent. Before the switching occurs, a check may be done to determine whether the card’s current MMC mode details (e.g. configuration, files, etc.) should be saved (phase 1300). If so, at phase 1400 the current MMC compliant details may be saved to a NVM array within the card. Part of the NVM array may contain a memory segment for storing file allocation and card configuration data. If details do not need to be saved, phase 1400 may be skipped.

Following phases 1300 and 1400, as part of phase 1500, in setting up the second protocol mode, it may be determined whether an ISO 7816 compliant mode reset sequence is required. If a reset sequence is not required, an ISO 7816 compliant mode may be established (phase 1600), and at phase 1700 an ISO 7816 compliant mode may be initialized.

If a reset sequence is required, restoration of a previously saved ISO 7816 compliant mode may be performed as part of phase 1800. The mode may be restored based on data stored in NVM.

At phase 1900, which may follow either phase 1700 or phase 1800, an ISO 7816 mode may be operational.

Reference is now made to Fig. 7, which is a flow chart illustration of a method that may be performed to switch a multi-protocol NVM card from an ISO 7816 compliant protocol mode to an MMC protocol compliant mode. A memory card 10 according to any one of Figs. 1 through 5 may start in an ISO 7816 compliant mode (phase 2000). A check may be performed so as to determine whether a switch to an MMC protocol compliant mode may be executed (phase 2100). Mode switching from ISO 7816 mode to MMC protocol mode may be executed in many ways, including but not limited to by a command that may be executed from host 100 to memory card 10, by sending signals through ISO 7816 connector pin 65, or by other signal lines. Under some conditions, a switch from ISO 7816 mode to MMC mode may not be executed (phase 2200) and, therefore, memory card 10 may remain in ISO 7816 compliant mode. It may, however, be operted in MMC mode in other circumstances, including, but not limited to, after power up of memory card 10. A switching command to MMC mode may be sent (phase 2300). A check may then be made as to whether the current ISO 7816 compliant mode should be saved (phase 2400). If so, at phase 2500, the current ISO 7816 compliant mode may be saved.

A check, which may follow phase 2400 or phase 2500, is made as to whether in setting up the second protocol mode, an MMC mode initialization sequence is required (phase 2600). If an initialization sequence is required, an initialization of MMC mode may be executed (phase 2700). When an initialization sequence is not required, a previously saved MMC mode may be restored (phase 2800). A saved MMC node may be restored if, during a previous session, an MMC mode was saved, e.g. phase 1400, Fig. 6. At phase 2900, a card’s MMC mode may be operational.

Claims

1. A method of operating a multi protocol NVM card (10), the method comprising:

 switching between a first and a second protocol mode based on a signal from an application seeking access to the NVM card (10); wherein said switching from the first to the second protocol modes comprises:

 commanding the NVM memory card (10) to switch to the second protocol mode; any setting up the second protocol mode; characterized in that said setting up comprises restoring a card state previously saved in the NVM card (10).

2. The method according to claim 1, wherein said commanding comprises activating a physical switch.

3. The method according to claim 1, wherein said commanding comprises sending a firmware command.

4. The method according to claim 3, wherein said commanding comprises activating a second protocol unit.

5. The method according to claim 1, wherein said setting up comprises performing an initialization se-
6. The method according to claim 1 further comprising saving the current card state.

7. The method according to claim 1, wherein switching from the second protocol mode to the first protocol mode comprises:

 commanding the NVM memory card to switch to the first protocol mode; and
 setting up the first protocol mode.

8. The method according to claim 7, wherein said commanding comprises activating a physical switch.

9. The method according to claim 7, wherein said commanding comprises sending a firmware command.

10. The method according to claim 1, wherein said second protocol mode substantially conforms to the ISO 7816 standard and before the NVM card switches from the second protocol mode to the first protocol mode, a determination is made whether such a switch is possible.

Patentansprüche

1. Verfahren zum Betrieb einer Mehrprotokoll-NVM-Karte (10), wobei das Verfahren Folgendes umfasst:

 Wechseln zwischen einem ersten und einem zweiten Protokollmodus auf der Basis eines Signals von einer Anwendung, die auf die NVM-Karte (10) zugreifen möchte;
 wobei das Wechseln von dem ersten zu dem zweiten Protokollmodus Folgendes umfasst:

 Befehlen der NVM-Speicherkarte (10), zu dem zweiten Protokollmodus zu wechseln; und
 Einrichten des zweiten Protokollmodus;

 dadurch gekennzeichnet, dass

 das Einrichten das Wiederherstellen eines zuvor in der NVM-Karte (10) abgespeicherten Kartenzustands umfasst.

2. Verfahren nach Anspruch 1, wobei das Befehlen das Aktivieren eines physischen Schalters umfasst.

3. Verfahren nach Anspruch 1, wobei das Befehlen das Senden eines Firmware-Befehls umfasst.

4. Verfahren nach Anspruch 1, wobei das Befehlen das Aktivieren einer zweiten Protokolleinheit umfasst.

5. Verfahren nach Anspruch 1, wobei das Einrichten das Durchführen einer Initialisierungssequenz umfasst.

6. Verfahren nach Anspruch 1, ferner umfassend das Abspeichern des aktuellen Kartenzustands.

7. Verfahren nach Anspruch 1, wobei das Wechseln von dem zweiten Protokollmodus zu dem ersten Protokollmodus Folgendes umfasst:

 Befehlen der NVM-Speicherkarte, zu dem ersten Protokollmodus zu wechseln; und
 Einrichten des ersten Protokollmodus.

8. Verfahren nach Anspruch 7, wobei das Befehlen das Aktivieren eines physischen Schalters umfasst.

Revendications

1. Procédé permettant de faire fonctionner une carte NVM multprotocole (10), le procédé consistant à :

 basculer entre des premier et second modes de protocole sur la base d’un signal provenant d’une application cherchant à accéder à la carte NVM (10) ;
 dans lequel ledit basculement du premier au second mode de protocole consiste à :

 ordonner à la carte de mémoire NVM (10) de basculer sur le second mode de protocole ; et
 établir le second mode de protocole ;

 caractérisé en ce que ledit établissement consiste à rétablir un état de la carte préalablement sauvegardé dans la carte NVM (10).

2. Procédé selon la revendication 1, dans lequel ledit ordre consiste à activer un commutateur physique.

3. Procédé selon la revendication 1, dans lequel ledit ordre consiste à envoyer un ordre microcodé.

4. Procédé selon la revendication 1, dans lequel ledit ordre consiste à activer une seconde unité de protocole.
5. Procédé selon la revendication 1, dans lequel ladite configuration consiste à effectuer une séquence d'initialisation.

6. Procédé selon la revendication 1, consistant en outre à sauvegarder l'état courant de la carte.

7. Procédé selon la revendication 1, dans lequel le basculement du second mode de protocole au premier mode de protocole consiste à :

 ordonner à l'ordre de carte de mémoire NVM de basculer sur le premier mode de protocole ; et établir le premier mode de protocole.

8. Procédé selon la revendication 7, dans lequel ledit ordre consiste à activer un commutateur physique.

9. Procédé selon la revendication 7, dans lequel ledit ordre consiste à envoyer un ordre microcodé.

10. Procédé selon la revendication 1, dans lequel ledit second mode de protocole se conforme sensiblement à la norme ISO 7816 et dans lequel, avant que la carte NVM ne bascule du second mode de protocole au premier mode de protocole, il est déterminé si ce basculement est possible.
ISO 7816 MODE

2000

IS THERE A RETURN TO MMC MODE?

2100

SWITCH COMMAND TO MMC MODE

2200

YES

SWITCH COMMAND TO MMC MODE

2300

IS SAVING THE ISO 7816 MODE REQUIRED?

2400

YES

SAVE ISO 7816 MODE

2500

NO

IS MMC INITIALIZATION SEQUENCE REQUIRED?

2600

NO

A SAVED MMC MODE IS RESTORED

2800

YES

MMC MODE INITIALIZATION

2700

MMC MODE READY

2900

FIG. 7
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 0231762 A [0005]
- WO 0213021 A2 [0005]
- US 20020111771 A1 [0005]
- WO 9949415 A [0005]