Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field

[0001] The present teachings relate generally to a sample chamber array configured for samples of biological material, and methods of processing a biological sample using a sample chamber array. The present teachings further relate, in various aspects, to a sample chamber array that has a movable portion of a sample chamber that causes the sample chamber to be filled with a biological sample.

Background

[0002] Biological testing has become an important tool in detecting and monitoring diseases. In the biological testing field, thermal cycling is used to amplify nucleic acids by, for example, performing polymerase chain reactions (PCR) and other reactions. PCR, for example, has become a valuable research tool with applications such as cloning, analysis of genetic expression, DNA sequencing, and drug discovery. Methods such as PCR may be used to detect a reaction of a test sample to an analyte-specific reagent. Typically, an analyte-specific reagent is placed in each sample chamber in advance of performing the biological testing. The test sample is then later inserted into the sample chambers, and the sample tray or microcard is then thermally cycled.

[0003] Recent developments in the field have led to an increased demand for biological testing devices. Biological testing devices are now being used in an increasing number of ways. It is desirable to provide a more efficient and compact method and structure for filling and thermally cycling substrates such as sample trays and microcards.

[0004] In typical systems, the sample tray or microcard is loaded with reagent, then loaded with the test sample, and then transported and inserted into a separate device for thermal cycling. It is desirable to reduce the amount of time and number of steps taken to fill and thermally cycle a sample tray or microcard.

SUMMARY

[0005] In accordance with the present invention, a sample chamber array is provided as claimed in claim 1. The sample chamber array comprises at least one reservoir in fluid communication with at least one sample chamber, and a movable portion defining the sample chamber. The reservoir is fillable with a liquid biological sample. The movable portion is movable with respect to the remainder of the sample chamber from a first position to a second position. In the first position the movable portion is concave and the sample chamber is without biological sample. In the second position the movable portion is convex and the sample chamber comprises biological sample. The movement of the movable portion to the second position causes a pressure drop to transport the biological sample into the sample chamber from the at least one reservoir.

[0006] In a further aspect, a method for processing a biological sample is provided as claimed in claim 18. The method comprises providing a sample chamber array comprising at least one reservoir in fluid communication with at least one sample chamber, filling the reservoir with the biological sample, and moving the sample chamber from a concave position to a convex position. The moving of the sample chamber generates a pressure drop to transport the biological sample from the reservoir to the sample chamber.

[0007] In a yet further aspect of the present teachings, a method of making a sample chamber array is provided as claimed in claim 22. The method comprises providing a first member comprising at least one chamber base, providing a second member comprising at least one movable portion, positioning the first member and the second member to align the chamber base and the movable portion, and affixing the first member to the second member. The affixing the first member to the second member forms at least one reservoir between the first member and the second member. The chamber base and the movable portion are concave.

[0008] It is to be understood that both the foregoing general description and the following description of various embodiments are exemplary and explanatory only and are not restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several exemplary embodiments. In the drawings,

[0010] Fig. 1 is partial plan view of a section of a sample chamber array according to an exemplary embodiment;

[0011] Figs. 2a-2e are a series of cross-sectional views along section line II-II of the sample chamber array of Fig. 1 showing a sequential operation of loading, filling, sealing, and trimming the sample chamber array;

[0012] Fig. 3 is a partial plan view of the sample chamber array of Fig. 2e;

[0013] Fig. 4 is a perspective view of a roll of PCR tape having the sample chamber configuration shown in Fig. 1;

[0014] Fig. 5 is a partial plan view of a section of a sample chamber array according to another exemplary embodiment;

[0015] Figs. 6a-6e are a series of cross-sectional views of the sample chamber array along section line VI-VI of Fig. 5 showing a sequential operation of loading, filling, sealing, and trimming the sample chamber array;

[0016] Fig. 7 is a partial plan view of the sample chamber array of Fig. 6e;

[0017] Fig. 8 is a partial plan view of a section of a PCR sample chamber array according to another exemplary
DESCRIPTION OF VARIOUS EMBODIMENTS

[0022] Reference will now be made to various exemplary embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.

[0023] In accordance with various embodiments, a sample chamber array is provided having a plurality of sample chambers. In one aspect, the sample array comprises a plurality of sample chambers, each in fluid communication with a reservoir via a fill channel.

[0024] In various embodiments, such as the embodiment shown in Fig. 1, a sample chamber array 10 with a plurality of sample chambers is disclosed. In various embodiments, the sample chamber array 10 is in the form of a tape. In other various embodiments, the sample chamber array may be a rigid or flexible sample tray or microcard. It should be understood that the sample chamber array may be placed on any other type of suitable medium.

[0025] Sample chamber array 10 may be configured for thermally cycling samples of biological material in a thermal cycling device. The thermal cycling device may be configured to perform nucleic acid amplification on samples of biological material. One common method of performing nucleic acid amplification of biological samples is polymerase chain reaction (PCR). Various PCR methods are known in the art, as described in, for example, U.S. Patent Nos. 5,928,907 and 6,015,674 to Woudenberg et al. Other methods of nucleic acid amplification include, for example, ligase chain reaction, oligonucleotide ligation assay, and hybridization assay. These and other methods are described in greater detail in U.S. Patent Nos. 5,928,907 and 6,015,674.

[0026] In various embodiments, the sample chamber array may be used in a thermal cycling device that performs real-time detection of the nucleic acid amplification of the samples in the sample chamber array during thermal cycling. Real-time detection systems are known in the art, as also described in greater detail in, for example, U.S. Patent Nos. 5,928,907 and 6,015,674 to Woudenberg et al. During real-time detection, various characteristics of the samples are detected during the thermal cycling in a manner known in the art. Real-time detection permits more accurate and efficient detection and monitoring of the samples during the nucleic acid amplification process. Alternatively, the sample chamber array may be used in a thermal cycling device that performs endpoint detection of the nucleic acid amplification of the samples. Several types of detection apparatus are shown in WO 02/00347A2 to Bedingham et al.

[0027] The sample chamber array may be configured to contact a sample block for thermally cycling the biological materials in the sample chambers of the sample chamber tape section. The sample block may be operatively connected to a temperature control unit programmed to raise and lower the temperature of the sample block according to a user-defined profile. For example, in various embodiments, a user may supply data defining time and temperature parameters of the desired PCR protocol to a control computer that causes a central processing unit (CPU) of the temperature control unit to control thermal cycling of the sample block. Several non-limiting examples of suitable temperature control units for raising and lowering the temperature of a sample block for a microcard or other sample-holding member are described in U.S. Patent No. 5,656,493 to Mullis et al. and U.S. Patent No. 5,475,610 to Atwood et al.

[0028] In one embodiment, the sample chamber array comprises at least one fill chamber or reservoir on the sample chamber array, a plurality of sample chambers, and a plurality of fill conduits or channels. One embodiment of a sample chamber array according to the present teachings is shown in Figs. 1-4. As embodied herein and shown in Figs. 1-4, the sample chamber array may be in the form of a tape, a microcard, or a sample tray generally designated by reference number 10. The basic structure and operation of the sample chamber array 10 is identical for each of the formats: tape, microcard, or sample tray. As shown in Figs. 1-4, sample chamber array 10 has a plurality of sample chambers 12, each connected to a reservoir 14 via a fill channel 16.

[0029] In various embodiments, each of reservoirs 14 include an opening 14a configured to allow a user to introduce a sample to be tested into reservoir 14, for example by pipetting. Reservoir 14 is configured to contain a volume of fluid sufficient to allow for filling of its corresponding sample chamber 12. Sample chamber 12, when in the expanded position, may be of any suitable volume. In one example, the volume is between 0.1 µL and 1,000 µL, in another example, between 1 µL and 100 µL, and in another example, approximately 5 µL. It should be understood that the sample chambers according to the present teachings can be any size suitable for biological testing. In some embodiments, it may not be possible for all of the fluid contained in reservoir 14 to be transferred into chamber 12, therefore reservoir 14 may have a volume greater than the volume of chamber 12 to ensure a suitable fill.

[0030] In various embodiments, sample chamber ar-
element. For sake of simplification, the description below will focus on a single row (the top row of Fig. 2a-2e). As depicted in Figs. 1-4, first member 10a is flat in the region opposite the first concave portion 12a of the first member to define a volume of space therewith. In this second position, the concave portion 12b of the second member is in a first position where the lower edge of the second concave portions are in direct contact, therefore there is no space between the portions for liquid sample. As will be discussed further, fill channel may be selectively blocked in order to prevent fluid communication between the reservoir 14 and sample chamber 12.

As depicted in Figs. 1-4, second member 10b may include a raised portion 14b that, along with first member 10a, defines reservoir 14. Reservoir 14 is typically suitably shaped and sized to contain a predetermined volume of biological sample to be tested. Raised portion 14b is shown in Figs. 1-4 as being generally cylindrical to define a cylindrical reservoir 14, however it should be understood that raised portion 14b and reservoir 14 can be any other suitable shape such as, for example, square or rectangular. In the embodiment shown, the first member 10a is flat in the region opposite the raised portion 14b of the second member to define the base of reservoir 14. It should be understood that in various embodiments the first member 10a could also include a raised portion, or that in other embodiments, both the first member and the second member could include raised portions so as to define the reservoir for the biological sample to be tested. In order to gain access to reservoir 14 and provide a passage for entry of biological sample into the reservoir, an opening or fill port 14a may be included in the raised portion 14b of second member 10b, as shown in Figs. 1-2. Alternatively, the opening or fill port could be provided in the base of the reservoir (in first member 10a).

First and second members also define a passage or fill channel 16 between reservoir 14 and sample chamber 12 that allows fluid communication therebetween. As shown in Fig. 1, fill channel 16 is a conduit or passageway positioned between the reservoir 14 and sample chamber 12. The fill channel can have any suitable cross-sectional shape, such as, for example, circular, square, or rectangular. The fill channel is preferably sized to allow the biological sample to flow from the reservoir 14 into the sample chamber 12 when such flow is desired. As will be discussed further, fill channel may be selectively blocked in order to prevent fluid communication between the reservoir 14 and sample chamber 12.

In various embodiments, first and second members 10a and 10b further include concave portions 12a and 12b, respectively. In a first position (shown in Figs. 2a and 2b), concave portion 12b of the second member mates with and is in direct contact with concave portion 12a of the first member. In this first position, the first and second concave portions are in direct contact, therefore there is no space between the portions for liquid sample. The concave portion 12b of the second member is configured to be movable with respect to concave portion 12a of the first member to define a volume of space therebetween that will comprise sample chamber 12, when the concave portion of the second member is in a second position. In this second position, the concave portion 12a of the first member defines the sample chamber base. This will be described in more detail below.

As depicted in Figs. 1-4, second member 10b may include a raised portion 14b that, along with first member 10a, defines reservoir 14. Reservoir 14 is typically suitably shaped and sized to contain a predetermined volume of biological sample to be tested. Raised portion 14b is shown in Figs. 1-4 as being generally cylindrical to define a cylindrical reservoir 14, however it should be understood that raised portion 14b and reservoir 14 can be any other suitable shape such as, for example, square or rectangular. In the embodiment shown, the first member 10a is flat in the region opposite the raised portion 14b of the second member to define the base of reservoir 14. It should be understood that in various embodiments the first member 10a could also include a raised portion, or that in other embodiments, both the first member and the second member could include raised portions so as to define the reservoir for the biological sample to be tested. In order to gain access to reservoir 14 and provide a passage for entry of biological sample into the reservoir, an opening or fill port 14a may be included in the raised portion 14b of second member 10b, as shown in Figs. 1-2. Alternatively, the opening or fill port could be provided in the base of the reservoir (in first member 10a).

First and second members also define a passage or fill channel 16 between reservoir 14 and sample chamber 12 that allows fluid communication therebetween. As shown in Fig. 1, fill channel 16 is a conduit or passageway positioned between the reservoir 14 and sample chamber 12. The fill channel can have any suitable cross-sectional shape, such as, for example, circular, square, or rectangular. The fill channel is preferably sized to allow the biological sample to flow from the reservoir 14 into the sample chamber 12 when such flow is desired. As will be discussed further, fill channel may be selectively blocked in order to prevent fluid communication between the reservoir 14 and sample chamber 12.

First and second members also define a passage or fill channel 16 between reservoir 14 and sample chamber 12 that allows fluid communication therebetween. As shown in Fig. 1, fill channel 16 is a conduit or passageway positioned between the reservoir 14 and sample chamber 12. The fill channel can have any suitable cross-sectional shape, such as, for example, circular, square, or rectangular. The fill channel is preferably sized to allow the biological sample to flow from the reservoir 14 into the sample chamber 12 when such flow is desired. As will be discussed further, fill channel may be selectively blocked in order to prevent fluid communication between the reservoir 14 and sample chamber 12.

In various embodiments, first and second members 10a and 10b further include concave portions 12a and 12b, respectively. In a first position (shown in Figs. 2a and 2b), concave portion 12b of the second member mates with and is in direct contact with concave portion 12a of the first member. In this first position, the first and second concave portions are in direct contact, therefore there is no space between the portions for liquid sample. The concave portion 12b of the second member is configured to be movable with respect to concave portion 12a of the first member to define a volume of space therebetween that will comprise sample chamber 12, when the concave portion of the second member is in a second position. In this second position, the concave portion 12a of the first member defines the sample chamber base. This will be described in more detail below.

Fig. 2a shows an unloaded sample chamber array 10 according to an embodiment of the present teachings. In Fig. 2a, no liquid sample has been introduced into the reservoir 14. In Fig. 2a, the concave portion 12b of the second member is in a first position where-in the inner surface 20 of the concave portion 12b presses against and mates with an inner surface 22 of the con-
cave portion 12a of the first member.

[0038] Fig. 2b shows the sample chamber array with a liquid sample 30 to be tested contained in the reservoir 14 and fill channel 16. The liquid sample 30 may be introduced into the reservoir by any known method. In one embodiment, a user may introduce a sample 30 into reservoir 14 via fill opening 14a by, for example, pipetting the sample through the fill port 14a. In another embodiment, the sample 30 may be introduced into reservoir 14 via active or passive transport known in the art of microfluidics. Sample 30 may comprise both a sample and a reagent that are already pre-mixed or sample chamber 12 may be spotted with a dried reagent for reaction with sample 30 once sample 30 flows into chamber 12. As shown in Fig. 2b, the sample 30 fills the reservoir 14 and fill channel 16. The sample 30, however, is obstructed from flowing between the concave portions 12a and 12b because the inner surfaces of the concave portions are pressed firmly against each other. The concave portions are pressed firmly against each other because of the particular shape of the concave portions. In the position shown in Figs. 2a and 2b, the concave portions are preferably biased to engage each other with sufficient force to prevent the passage of liquid between the concave portions.

[0039] When it is desired to form sample chambers for the liquid sample, the user may move concave portion 12b of the second member away from the concave portion 12a of the first member, thereby creating sample chamber 12 as shown in Fig. 2c. In certain embodiments, such as shown in Fig. 2c, the concave portion 12b of the second member may be moved away from concave portion 12a of the first member by inverting the concavity of concave portion 12b, thereby forming sample chamber 12. In the second position, shown in Fig. 2c, portion 12b is convex in shape.

[0040] The inversion of portion 12b creates an internal suction, or pressure drop, between the newly formed sample chamber 12 and reservoir 14, thereby causing the liquid sample 30 to flow from reservoir 14 into sample chamber 12 via fill channel 16. The movement of concave portion 12b of the second member away from concave portion 12a of the first member may be accomplished by any of a variety of methods. In one embodiment, the sample chamber array is placed on a vacuum chuck, or other suitable device, capable of applying external suction or other force to the outer surface 24 of concave portion 12b of sample chamber array 10 sufficient to cause the concave portion 12b of the second member to snap or move away from the concave portion 12a of the first member, into the position depicted in Fig. 2c. In one embodiment, the vacuum chuck may be a substantially flat plate with a plurality of holes corresponding to the sample chambers of the sample chamber array. The holes may be configured so that they align with the sample chambers of the sample chamber array. The holes may be any suitable size. In one embodiment, the holes have a diameter approximately the same as the diameter of the sample chambers. The vacuum chuck can be any suitable material, for example, metal. The vacuum chuck may be configured to draw a vacuum in the holes upon contacting the sample chamber array, in order to create an adequate suction force to cause the concave portion 12b of the first member to snap or move away from the concave portion 12a of the second member. Appropriate sealing structure may also be provided.

[0041] In the embodiment shown, the concave portion 12b automatically snaps from a first discrete position (shown in Fig. 2b) to a second discrete position (shown in Fig. 2c) when a sufficient force is placed on the outer surface 24 of the concave portion 12b. In another embodiment, portion 12b is made of material that is sensitive to heat and/or electrical current, where application of such to portion 12b causes inversion. For example, portion 12b can be made of nitinol, other alloys, or polymers known in the art of shape-memory materials.

[0042] When the concave portion 12b of the second member snaps into the position shown in Fig. 2c, the sample chamber 12 is formed in the space between the concave portion 12a and the concave portion 12b. In the position shown in Fig. 2c, the concave portion 12a of the first member 10a may be referred to as the sample chamber base. The sample chamber 12 shown in Fig. 2c has a bulbous shape. It should be understood that any other suitable shape is also acceptable for the sample chamber. The sample chamber may be designed to handle any suitable volume of biological sample.

[0043] Although depicted as having the movable portion 12b on the same side of the card as fill opening 14a (e.g., on the second member), the concavity of portions 12a and 12b may face in the opposite direction as that depicted in Fig. 2a so that the vacuum, or other force, applied to portion 12b can be applied on portion 12a instead.

[0044] Once sample chambers 12 are filled with the desired sample 30, fill channel 16 may be staked or otherwise sealed along region 26, as shown in Fig. 2d, so that sample 30 does not leak out of sample chamber 12. As mentioned above, this sealing may be accomplished by applying pressure to one side of sample chamber array 10 along channel 16 so that a portion of one of the first or second members 10a, 10b in the area of region 26 adheres to adhesive member 18 located between members 10a, 10b as depicted in Fig. 1. Fig. 2d shows the fill channel 16 closed after a staking operation. Staking may also be accomplished by using a foil backing, or other suitable material, in one of members 10a and 10b at least in the area of channel 16 so that a stylus or other suitable device can deform a portion of the foil and create a seal along channel 16. In the position shown in Fig. 2d, sample chamber 12 is sealed, therefore no sample can leave or enter the sample chamber.

[0045] Although it is not necessary to dispose of the portion of array 10 containing reservoirs 14, as shown in Fig. 2e, it may be desirable to trim these sections from array 10, for example, so that the size of the actual array...
array 210 utilizes a different reservoir configuration, the filling of chamber 212 as depicted in Figs. 9a-9e is accomplished in a similar fashion as that of arrays 10 and 110.

[0050] Figs. 9a-9e shows the operation of loading, filling, sealing, and trimming the sample chamber array of Fig. 8. Fig. 9a shows the sample array 210 with no fluid sample introduced into reservoir 214. Fig. 9b shows the reservoir 214 filled with fluid sample. Fig. 9c shows the sample array after the concave portion 212b of second member 210b has had its concavity inverted so that it is spaced from concave portion 212a of the first member. The liquid sample fills the sample chamber 230 as shown in Fig. 9d. Fig. 9d shows the sample array 210 after sealing of the fill channel 216 via the method discussed for Fig. 2d. Figs. 9e and 10 shows the trimmed sample array 210-1. Trimmed array 210-1 shown in Figs. 9e and 10 may be identical to array 110-1 shown in Figs. 6e and 7.

[0051] According to another exemplary embodiment of the present teachings, a sample chamber array may include a plurality of main channels and branch channels. As shown in Fig. 11, a sample array 310 has a single reservoir 314 for a plurality of sample chambers 312. The reservoir 314 includes a single fill opening or fill port 314a, although multiple fill openings may be provided. Although sample reservoir 314 is depicted having fill port 314a positioned for horizontal filling of sample array 310, reservoir 314 could also have a reservoir similar to reservoir 214 of Figs. 8-10 that would be open along at least a portion of the upper edge of reservoir 314 and would allow for vertical filling of sample array 310. Sample array 310 includes six main fill channels 316a, each associated with a plurality of sample chambers 312. Main fill channels 316a communicate with sample chambers 312 via branch channels 316b.

[0052] As with previous embodiments, each of sample chambers 312 may include a movable portion that creates suction within sample chamber 312, thus drawing fluid into the sample chambers via channels 316a, 316b. After filling, sample chambers 312 may then be sealed off from reservoir 314, for example, by use of an adhesive strip similar to adhesive strip 18, or sample array 310 may include a deformable material that would allow staking as described above, among other sealing means or methods. In one embodiment, reservoir 314 feeds multiple sample chambers and has a volume at least as great as the number of sample chambers 312 it serves. In another embodiment, the fluid drawn toward each of sample chambers 312 remains in the channels 316a and 316b, and concave portions of sample chambers 312 expand to a volume larger than the actual volume desired for testing.

[0053] For example, if a user desired to fill each of sample chambers 312 with 5 μL and the total volume of one of channels 316a and its corresponding branch channels 316b comprised 3 μL, then it may be desirable for each of chamber 312 be capable of expanding to 6 μL or more. With this configuration, when the concave portions of
Sample arrays of various sizes and shapes could be used that include the snap-action detail for filling as disclosed herein. It will be apparent to those skilled in the art that various modifications and variations can be made to the structure and methods described above. Thus, it should be understood that the present teachings are not limited to the examples discussed in the specification.

Claims

1. A sample chamber array (10), comprising:
 - at least one reservoir (14) in fluid communication with at least one sample chamber (12), wherein said reservoir is fillable with a liquid biological sample; and
 - at least one movable portion (12a, 12b) defining a fill channel (16) for said fluid communication between said reservoir and said sample chamber.

2. The sample chamber array of claim 1, further comprising a fill channel (16) for said fluid communication between said reservoir and said sample chamber.

3. The sample chamber array of claim 1, wherein the movable portion is configured to move into the second position upon a predetermined force being applied to an outer surface of the sample chamber.

4. The sample chamber array of claim 3, wherein said predetermined force comprises an external suction.

5. The sample chamber array of claim 1, wherein the movable portion is configured to move into the second position upon application of heat.

6. The sample chamber array of claim 1, wherein the movable portion is configured to move into the second position upon application of electrical current.

7. The sample chamber array of claim 2, further comprising an adhesive element to allow for closure of the fill channel.

8. The sample chamber array of claim 2, wherein the
fill channel comprises a deformable material configured to be deformed to close fluid communication between said reservoir and said sample chamber.

9. The sample chamber array of claim 1, wherein the at least one reservoir is operatively in communication with a plurality of sample chambers.

10. The sample chamber array of claim 9, wherein the plurality of sample chambers extend radially from the at least one reservoir.

11. The sample chamber array of claim 2, further comprising a plurality of branch channels in fluid communication between the fill channel and a plurality of the sample chambers.

12. The sample chamber array of claim 1, wherein said reservoir further comprises a fill opening for filling the reservoir with said biological sample.

13. The sample chamber array of claim 12, wherein the fill opening comprises a hole located in a raised portion of the reservoir and configured to allow insertion of a pipette for filling the reservoir.

14. The sample chamber array of claim 12, wherein the fill opening comprises an open edge portion located substantially at a periphery of the reservoir.

15. The sample chamber array of claim 1, wherein said reservoir and said sample chamber each comprise a flexible material, wherein the array is configured in a rollable tape.

16. The sample chamber array of claim 1, wherein said sample chamber array comprises at least one of polypropylene and polyethylene.

17. The sample chamber array of claim 1, wherein said sample array is configured for PCR.

18. A method for processing a biological sample, comprising:

- providing a sample chamber array comprising at least one reservoir in fluid communication with at least one sample chamber;
- filling said reservoir with said biological sample; and
- moving said sample chamber from a concave position to a convex position,

wherein said moving generates a pressure drop to transport said biological sample from said reservoir to said sample chamber.

19. The method of claim 18, further comprising thermally cycling said sample chamber array.

20. The method of claim 18, further comprising closing a fill channel to close fluid communication between said sample chamber and said reservoir.

21. The method of claim 20, further comprising removing said reservoir from said sample chamber by cutting a portion of the sample chamber array.

22. A method of making a sample chamber array, comprising:

- providing a first member comprising at least one chamber base;
- providing a second member comprising at least one movable portion;
- positioning said first member and said second member to align said chamber base and said movable portion; and
- affixing said first member to said second member, wherein said affixing forms at least one reservoir between said first member and said second member and wherein said chamber base and said movable portion are concave.

23. The method of claim 22, wherein affixing comprises at least one of applying adhesive, sonic welding, and heat welding.

Patentansprüche

1. Probenkammerarray (10), umfassend:

- wenigstens eine Vorratskammer (14) in flüssiger Verbindung mit wenigstens einer Probenkammer (12), wobei besagte Vorratskammer mit einer flüssigen biologischen Probe befüllbar ist; und wenigstens ein bewegliches Teil (12a, 12b), das die Probenkammer definiert, wobei das bewegliche Teil gegenüber dem Rest der Probenkammer von einer ersten in eine zweite Stellung bewegbar ist,

wobei in der ersten Stellung das bewegliche Teil konkav ist und die Probenkammer ohne biologische Probe ist, und wobei in der zweiten Stellung das bewegliche Teil konvex ist und die Probenkammer die biologische Probe umfasst, wobei die Bewegung des beweglichen Teils in die zweite Stellung einen Druckabfall verursacht, um diese biologische Probe aus besagter Vorratskammer in besagte Probenkammer zu transportieren.

2. Probenkammerarray gemäß Anspruch 1, ferner umfassend einen Füllungskanal (16) für besagte flüssige Verbindung zwischen besagter Vorratskammer
und besagter Probenkammer.

3. Probenkammerarray gemäß Anspruch 1, wobei das bewegliche Teil konfiguriert ist sich bei Anwendung einer vorbestimmten Kraft auf die äußere Oberfläche der Probenkammer in die zweite Stellung zu bewegen.

4. Probenkammerarray gemäß Anspruch 3, wobei besagte vorbestimmte Kraft externes Saugen umfasst.

5. Probenkammerarray gemäß Anspruch 1, wobei der bewegliche Teil konfiguriert ist sich bei Anwendung von Hitze in die zweite Stellung zu bewegen.

6. Probenkammerarray gemäß Anspruch 1, wobei der bewegliche Teil konfiguriert ist sich bei Anwendung von elektrischem Strom in die zweite Stellung zu bewegen.

7. Probenkammerarray gemäß Anspruch 2, ferner umfassend ein Haftelement, um die Schließung des Füllungskanals zu erlauben.

8. Probenkammerarray gemäß Anspruch 2, wobei der Füllungskanal ein deformierbares Material umfasst konfiguriert um deformiert zu werden, um die flüssige Verbindung zwischen besagter Vorratskammer und besagter Probenkammer zu schließen.

10. Probenkammerarray gemäß Anspruch 9, wobei die Vielzahl der Probenkammern sich radiair von mindestens einer Vorratskammer erstreckt.

12. Probenkammerarray gemäß Anspruch 1, wobei besagte Vorratskammer ferner umfasst eine Füllungsöffnung zum Füllen der Vorratskammer mit besagter biologischer Probe.

13. Probenkammerarray gemäß Anspruch 12, wobei die Füllungsöffnung ein Loch umfasst, das in einem erhöhten Teil der Vorratskammer angeordnet ist, und das konfiguriert wurde, die Einführung einer Pipette zum Füllen der Vorratskammer zu erlauben.

14. Probenkammerarray gemäß Anspruch 12, wobei die Füllungsöffnung ein Teil mit einer offenen Kante umfasst, das im Wesentlichen an der Peripherie der Vorratskammer angeordnet ist.

15. Probenkammerarray gemäß Anspruch 1, wobei besagte Vorratskammer und besagte Probenkammer jeweils ein flexibles Material enthalten, wobei der Array in einem aufrollbaren Band konfiguriert ist.

17. Probenkammerarray gemäß Anspruch 1, wobei besagter Probenarray für PCR konfiguriert ist.

18. Verfahren zum Bearbeiten einer biologischen Probe, umfassend:

zur Verfügung stellen eines Probenkammerarray umfassend wenigstens eine Vorratskammer in flüssiger Verbindung mit wenigstens einer Probenkammer;
Füllen besagter Vorratskammer mit besagter biologischer Probe; und
Bewegen besagter Probenkammer aus einer konkaven in eine konvexe Stellung, wobei besagtes Bewegen einen Druckabfall verursacht, um diese biologische Probe aus besagter Vorratskammer in besagte Probenkammer zu transportieren.

19. Das Verfahren gemäß Anspruch 18, weiter umfassend thermisches Zyklieren besagten Probenkammerarrays.

20. Verfahren gemäß Anspruch 18, ferner umfassend Schließen eines Füllungskanals, um die flüssige Verbindung zwischen besagter Probenkammer und besagter Vorratskammer zu schließen.

22. Verfahren zur Herstellung eines Probenkammerarray, umfassend:

zur Verfügung Stellen eines ersten Elements umfassend wenigstens einen Kammerboden; zur Verfügung Stellen eines zweiten Elements umfassend wenigstens ein bewegbares Teil; Positionierung besagten ersten und besagten zweiten Elements, um besagten Kammerboden und besagtes bewegbares Teil auszurichten; und Befestigen besagten ersten Elements an besagtem zweiten Element, bei besagtes Befestigen wenigstens eine Vorratskammer zwischen besagten ersten Element und besagtem zwei-
ten Element bildet, und wobei besagter Kammerboden und besagtes bewegliches Teil kon-
kav sind.

23. Verfahren gemäß Anspruch 22, wobei das Befesti-
gen wenigstens eines der folgenden Mittel umfasst:
Anbringung von Klebmittel, Schallschweißen, und Hit-
zeschweißen.

Reavendications

1. Ensemble de chambres d’échantillon (10),
comprenant :

au moins un réservoir (14) en communication
de fluide avec au moins une chambre d’échan-
tillon (12), ledit réservoir pouvant être rempli par un échantillon biologique liquide ; et
au moins une partie mobile (12a, 12b) définis-
sant la chambre d’échantillon, la partie mobile
pouvant se déplacer par rapport au reste de la
chambre d’échantillon d’une première position
à une deuxième position,
dans lequel, dans la première position, la partie mo-
bile est concave et la chambre d’échantillon est sans
échantillon biologique, et dans lequel, dans la
deuxième position, la partie mobile est convexe et
la chambre d’échantillon comprend un échantillon
biologique, dans lequel le déplacement de la partie mobile vers
la deuxième position provoque une chute de pres-
sion de façon à transporter ledit échantillon bio-
logique dans ladite chambre d’échantillon à partir dudit
réservoir.

2. Ensemble de chambres d’échantillon selon la reven-
dication 1, comprenant de plus un canal de remplis-
sage (16) pour ladite communication de fluide entre
ledit réservoir et ladite chambre d’échantillon.

3. Ensemble de chambres d’échantillon selon la reven-
dication 1, dans lequel la partie mobile est configurée de façon à venir dans la deuxième position lors de
l’application d’une force prédéterminée à une surfa-
ce extérieure de la chambre d’échantillon.

4. Ensemble de chambres d’échantillon selon la reven-
dication 3, dans lequel ladite force prédéterminée
comprend une aspiration externe.

5. Ensemble de chambres d’échantillon selon la reven-
dication 1, dans lequel la partie mobile est configurée
pour venir dans la deuxième position lors de l’appli-
cation de chaleur.

6. Ensemble de chambres d’échantillon selon la reven-
dication 1, dans lequel la partie mobile est configurée de façon à venir dans la deuxième position lors de l’application d’un courant électrique.

7. Ensemble de chambres d’échantillon selon la reven-
dication 2, comprenant de plus un élément adhésif
pour permettre la fermeture du canal de remplissage.

8. Ensemble de chambres d’échantillon selon la reven-
dication 2, dans lequel le canal de remplissage com-
prend un matériau déformable configuré de façon à
être déformé pour fermer une communication de flui-
de entre ledit réservoir et ladite chambre d’échan-
tillon.

9. Ensemble de chambres d’échantillon selon la reven-
dication 1, dans lequel le réservoir au nombre d’au
moins un est de façon opérationnelle en communi-
cation avec une pluralité de chambres d’échantillon.

10. Ensemble de chambres d’échantillon selon la reven-
dication 9, dans lequel la pluralité de chambres
d’échantillon s’étendent radialement à partir du ré-
servoir au nombre d’au moins un.

11. Ensemble de chambres d’échantillon selon la reven-
dication 2, comprenant de plus une pluralité de ca-
naux de ramification en communication de fluide en-
tre le canal de remplissage et une pluralité des cham-
bres d’échantillon.

12. Ensemble de chambres d’échantillon selon la reven-
dication 1, dans lequel ledit réservoir comprend de
plus une ouverture de remplissage pour remplir le
réservoir avec ledit échantillon biologique.

13. Ensemble de chambres d’échantillon selon la reven-
dication 12, dans lequel l’ouverture de remplissage
comprend un trou situé dans une partie élévéée du
réservoir, et configuré pour permettre l’insertion
d’une pipette pour remplir le réservoir.

14. Ensemble de chambres d’échantillon selon la reven-
dication 12, dans lequel l’ouverture de remplissage
comprend une partie de bord ouverte située sensi-
blement au niveau d’une périphérie du réservoir.

15. Ensemble de chambres d’échantillon selon la reven-
dication 1, dans lequel ledit réservoir et ladite cham-
bre d’échantillon comprennent chacun un matériau
souple, le groupement étant configuré sous la forme
d’une bande pouvant être enroulée.

16. Ensemble de chambres d’échantillon selon la reven-
dication 1, dans lequel ledit groupement de cham-
bres d’échantillon comprend au moins l’un parmi le
polypropylène et le polyéthylène.
17. Ensemble de chambres d'échantillon selon la revendication 1, dans lequel ledit groupement d'échantillons est configuré pour des amplifications en chaîne par polymérase (polymerase chain reaction ou PCR).

18. Procédé pour traiter un échantillon biologique, comprenant les étapes consistant à :

réaliser un ensemble de chambres d'échantillon comprenant au moins un réservoir en communication de fluide avec au moins une chambre d'échantillon ;
remplir ledit réservoir avec ledit échantillon biologique ; et
déplacer ladite chambre d'échantillon d'une position concave à une position convexe, ledit déplacement générant une chute de pression de façon à transporter ledit échantillon biologique dudit réservoir à ladite chambre d'échantillon.

19. Procédé selon la revendication 18, comprenant de plus le fait de faire effectuer un cycle thermique audit ensemble de chambres d’échantillon.

20. Procédé selon la revendication 18, comprenant de plus la fermeture d’un canal de remplissage pour fermer la communication de fluide entre ladite chambre d’échantillon et ledit réservoir.

21. Procédé selon la revendication 20, comprenant de plus le retrait dudit réservoir de ladite chambre d’échantillon par découpe d’une partie de l’ensemble de chambres d’échantillon.

22. Procédé pour réaliser un ensemble de chambres d’échantillon, comprenant les étapes consistant à :

réaliser un premier élément comprenant au moins une base de chambres ;
réaliser un deuxième élément comprenant au moins une partie mobile ;
positionner ledit premier élément et ledit deuxième élément pour aligner ladite base de chambres et ladite partie mobile ; et
fixer ledit premier élément audit deuxième élément, ladite fixation formant au moins un réservoir entre ledit premier élément et ledit deuxième élément, et ladite base de chambres et ladite partie mobile étant concaves.

23. Procédé selon la revendication 22, dans lequel la fixation comprend au moins l’un parmi l’application d’un adhésif, le soudage sonique et le soudage thermique.