EUROPEAN PATENT SPECIFICATION

TOPICAL STABILIZED PROSTAGLANDIN E COMPOUND DOSAGE FORMS

TOPISCHE STABILISIERTE DOSIERUNGSFORMEN FÜR PROSTAGLANDIN E-VERBINDUNGEN

FORMES POSOLOGIQUES DE COMPOSE TOPIQUE STABILISE DE PROSTAGLANDINE E

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Priority: 03.01.2003 US 336481

Date of publication of application:

Divisional application:
09013811.6

Proprietor: Nexmed Holdings, Inc.
San Diego, CA 92121 (US)

Inventors:
• MO, Y., Joseph
Princeton, NJ 08540 (US)

• FRANK, Daniel, W.
Broomall, PA 19008 (US)

Representative: Schnappauf, Georg et al
Dr. Volker Vossius
Patent- und Rechtsanwaltskanzlei
Geibelstrasse 6
81679 München (DE)

References cited:
WO-A-01/97777
US-A- 4 594 240
US-A- 5 942 545

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This application relates to room temperature stable, non-aqueous prostaglandin E compound dosage forms suitable for the treatment of sexual dysfunction in male as well as female patients.

Background of the Invention

Prostaglandins may exhibit vasodilation or vasoconstriction, smooth muscle stimulation or depression. Prostaglandins of the E group, such as Prostaglandin E₁ (PGE₁) has been reported as having utility for the treatment of sexual erectile dysfunction when injected intracavemously as an aqueous solution in physiological saline, Mahmond et al., J. Urology 147:623-626 (1992), or applied topically. However, the prostaglandins, such as PGE₁, are relatively insoluble in water, and are also relatively unstable. As a result, prostaglandin solutions for injection are prepared shortly prior to use, a relatively inconvenient expedient.

Attempts to stabilize PGE₁ in aqueous systems by the use of α-cyclodextrin or β-cyclodextrin complexes have been reported. Wiese et al., J. Pharm. Sciences 80:153-156 (1991); Szejtli, J., "Industrial Applications of Cyclodextrins," Inclusion Compounds III, Academic Press, London, England (1984), pp. 355-368. However, even the aqueous PGE₁ preparations so-stabilized have a relatively short shelf life that limits their practical utilization.

US 5,942,545 describes a composition for topical transdermal administration based on prostaglandin E₁ and comprising 1,3-dioxane, 1,3-dioxolane or acetal as skin permeation enhancer. The composition may be provided with the enhancer compound maintained separate from the PGE-1 component. US 6,046,244 describes a topical composition comprising PGE-1 and a penetration enhancer which is an alkyl-2-(N,N-disubstituted amino)-alkanoate ester, an (N,N-disubstituted amino)-alkanol alkanoate, or a mixture thereof.

It has now been found that the stability of prostaglandins of the E group can be substantially enhanced without sacrificing bioavailability by the use of specific non-aqueous pharmaceutically acceptable compositions that can be stored in a separate compartment from a topical delivery vehicle and combined with the delivery vehicle just prior to use.

Summary of the Invention

The present invention relates to a packaged, multi-component dosage form which comprises a sealed actives compartment containing a non-aqueous pharmaceutically acceptable composition containing a compound of prostaglandin E group selected from the group consisting of prostaglandin E₁, prostaglandin E₂, prostaglandin E₃, and pharmaceutically acceptable salts thereof, a bulking agent therefor and a skin permeation enhancer, and a sealed inerts compartment containing a physiologically compatible, viscous topical delivery vehicle containing water and having a viscosity of at least 50 cps, wherein the skin permeation enhancer is a member of the group consisting of an alkyl-2-(N,N-disubstituted amino)-alkanoate ester, an (N,N-disubstituted amino)-alkanol alkanoate, a pharmaceutically acceptable salt thereof, and a mixture thereof.

In one embodiment, the prostaglandin E group compound is dispersed substantially uniformly in a carrier sheet.

In one embodiment, the prostaglandin E group compound is dispersed substantially uniformly in a water-soluble carrier sheet or in a carrier sheet that is soluble in a physiologically compatible non-aqueous solvent.

In one embodiment, the viscous topical delivery vehicle is a cream, a gel or an ointment.

The skin permeation enhancer may be selected from dodecyl-2-(N,N-dimethylamino)-propionate, and dodecyl-2-(N,N-dimethylamino)-propionate hydrochloride, and may be crystalline dodecyl-2-(N,N-dimethylamino)-propionate hydrochloride.

In one embodiment, said inerts compartment also contains a skin permeation enhancer.

Compounds of prostaglandin E group are stabilized as non-aqueous compositions that include the compound together with a bulking agent that can be a non-aqueous liquid, or a solid in sheet, film, or powder form. Optionally, a skin penetration enhancer can be present.

A packaged, paired compartment dosage form comprises a sealed actives compartment and a sealed inerts compartment. Compound of prostaglandin E group is contained within the actives compartment together with a bulking agent, and the skin penetration enhancer. A physiologically compatible viscous topical delivery vehicle is contained within the inerts compartment and is combined with the contents of the actives compartment prior to use, preferably just prior to use. A skin penetration enhancer can be included in the inerts compartment in addition to a skin penetration enhancer in the actives compartment.

The present, dosage forms containing stabilized compound of the prostaglandin E group are useful for amelioration of sexual dysfunction in human patients, e.g., male impotence, premature ejaculation, female sexual arousal disorder, and the like.
Description of Preferred Embodiments

[0015] Prostaglandin E is a known compound that can be represented by the formula

\[
\text{prostaglandin E}_1 \quad \text{represented by the formula}
\]

[0016] Compounds derived from the foregoing structure and having the 9-oxo, 11α-hydroxy substituents as well as unsaturation in the side chains are known as compounds of the prostaglandin E group, hereinafter collectively referred to as PGE compounds. The compounds of this group include prostaglandin E\(_1\) (PGE\(_1\)) represented by the formula

\[
\text{prostaglandin E}_2 \quad \text{represented by the formula}
\]

\[
\text{prostaglandin E}_3 \quad \text{represented by the formula}
\]

as well as the pharmaceutically acceptable salts thereof.
PGE compounds have useful therapeutic activity as vasodilators and have been utilized to treat male and female sexual disorders, to control lipid metabolism, to treat ulcers, to treat inflammatory skin lesions, and the like therapeutic applications.

PGE compounds can be incorporated as substantially uniformly distributed solids in a sheet-form material, i.e., sheet or film, of a physiologically compatible polymeric material; e.g., a cellulose ether such as hydroxypropyl cellulose, hydroxypropyl methyl cellulose, and the like, a polysaccharide such as starch, polyvinylpyrrolidone, and the like: Sheet-form materials having a thickness of no more than about 10 mils are commonly referred to as films, and those having a thickness of more than about 10 mils are commonly referred to as sheets. The term "sheet-form" as used herein and in the appended claims refers to sheets as well as films. The sheet-form material containing a PGE compound dispersed therein can be converted into discs, tablets, pellets, and the like, if desired.

If desired, the PGE compound-bearing sheet form materials can also include physiologically compatible plasticizers, solubility enhancers (e.g., hydroxypropyl-beta-cyclodextrin), and the like.

These PGE-bearing sheet-form materials can be prepared by first forming a solution of the desired PGE compound in a non-aqueous solvent such as a C2 to C4 aliphatic alcohol, e.g., methanol, ethanol, propanol, isopropanol, n-butanol and the like, together with the polymeric material, with or without a skin penetration enhancer, then casting the solution continuously on a roll or batchwise in a shallow dish or pan, and thereafter evaporating the solvent therefrom. The resulting sheet or film has the PGE compound substantially uniformly distributed throughout in an non-aqueous medium that can be readily subdivided and apportioned into desired unit doses each having a predetermined PGE content. The cast sheet or film can also be retained on a solid surface for storage and dissolved immediately prior to use.

The foregoing unit doses can be utilized to provide packaged, paired compartment dosage forms in which an actives compartment contains the PGE compound unit dose and an inerts compartment contains the delivery vehicle for a topical application. In the packaged, paired-compartment dosage forms embodying the present invention, the actives compartment can also contain the PGE compound together with a bulking agent in a non-aqueous liquid, particulate or granular form. Suitable liquid bulking agents are silicone oils such as the polydimethylsiloxanes, e.g., cyclomethicone USP, dimethicone USP; and the like. Suitable solid bulking agents for this particular purpose are the cyclodextrins such as hydroxypropyl-beta-cyclodextrin, beta cyclodextrin, gamma cyclodextrin, and the like, the polysaccharides such as starches, gums, and the like polyvinylpyrrolidone, polyvinyl alcohol, the methyl celluloses, sugars, and the like.

A particularly preferred dosage form comprises at least one PGE compound, preferably PGE1, and an alkyl (N-substituted amino) ester, both substantially uniformly distributed in the carrier sheet or admixed with one another in an actives compartment of a packaged paired-compartment dosage form. PGE1 and PGE2 are particularly preferred vasoactive agents for the present purposes.

PGE1 and PGE2 are well known to those skilled in the art. Reference may be had to various literature references for its pharmacological activities, side effects and normal dosage ranges. See for example, Physician’s Desk Reference, 51st Ed. (1997), The Merck Index, 12th Ed., Merck & Co., N.J. (1996), and Martindale The Extra Pharmacopoeia, 28th Ed., London, The Pharmaceutical Press (1982). Prostaglandin E1 as well as other PGE compounds referenced herein are intended to compass also the pharmaceutically acceptable derivatives thereof, including physiologically compatible salts and ester derivatives.

The quantity of PGE compound, such as PGE1, present in the dosage form is a therapeutically effective amount and necessarily varies according to the desired dose for a particular treatment regimen. The present dosage forms can contain about 0.05 to about 25 weight percent of PGE compound, based on the total weight of the composition, preferably about 0.1 to about 15 weight percent of the PGE compound.

A component of the dosage-form is the skin penetration enhancer. The penetration enhancer can be an alkyl-2-(N-substituted amino)-alkanoate, an (N-substituted amino)-alkanol alkanoate, or a mixture of these. For convenient reference, alkyl-2-(N-substituted amino)-alkanoates and (N-substituted amino)-alkanol alkanoates can be grouped together under the term alkyl (N-substituted amino) esters.

Alkyl-2-(N-substituted amino)-alkanoates suitable for use in the present invention can be represented as follows:
wherein n is an integer having a value in the range of about 4 to about 18; R is a member of, the group consisting of hydrogen, C₁ to C₇ alkyl, benzyl and phenyl; R₁ and R₂ are members of the group consisting of hydrogen and C₁ to C₇ alkyl; and R₃ and R₄ are members of the group consisting of hydrogen, methyl and ethyl.

Preferred are alkyl (N,N-disubstitutedamino)-alkanoates such as C₄ to C₁₈ alkyl(N,N-disubstituted amino)-acetates and C₄ to C₁₈ alkyl (N,N-disubstituted amino)-propionates and pharmaceutically acceptable salts and derivatives thereof. Exemplary specific alkyl-2-(N,N-disubstituted amino)-alkanoates include dodecyl 2-(N,N-dimethylamino)-propionate;

![Diagram 1](image1.png)

and dodecyl 2-(N,N-dimethylamino)-acetate;

![Diagram 2](image2.png)

Alkyl-2-(N-substituted amino)-alkanoates are known. For example, dodecyl 2-(N,N-dimethylamino)-propionate is available from Steroids, Ltd., Chicago, IL. In addition, alkyl-2-(N,N-substituted amino)-alkanoates can be synthesized from readily available compounds as described in U.S. Patent No. 4,980,378 to Wong et al., which is incorporated herein by reference to the extent that it is not inconsistent. As described therein alkyl-2-(N,N-disubstituted amino)-alkanoates are readily prepared via a two-step synthesis. In the first step, long chain alkyl chloroacetates are prepared by reaction of the corresponding long chain alkanols with chloromethyl chloroformate or the like in the presence of an appropriate base such as triethylamine, typically in a suitable solvent such as chloroform. The reaction can be depicted as follows:

![Diagram 3](image3.png)

wherein R, R₃, R₄ and n are defined as above. The reaction temperature may be selected from about 10 degrees Celsius to about 200 degrees Celsius or reflux, with room temperature being preferred. The use of a solvent is optional. If a solvent is used, a wide variety of organic solvents may be selected. Choice of a base is likewise not critical. Preferred bases include tertiary amines such as triethylamine, pyridine and the like. Reaction time generally extends from about one hour to three days.

In the second step, the long chain alkyl chloroacetate is condensed with an appropriate amine according to the scheme:
wherein R, R1, R2, R3, and R4 are defined as before. Excess amine reactant is typically used as the base and the reaction is conveniently conducted in a suitable solvent such as ether. This second step is preferably run at room temperature, although temperature may vary. Reaction time usually ranges from about one hour to several days. Conventional purification techniques can be applied to ready the resulting ester for use in a pharmaceutical compound.

Suitable (N-substituted amino)-alkanol alkanoates can be represented by the formula:

wherein n is an integer having a value in the range of about 5 to about 18; y is an integer having a value in the range of 0 to about 5; and R1, R2, R3, R4, R5, R6, and R7, are members of the group consisting of hydrogen, C1 to C8 alkyl, and C1 to C8 aryl; and R8 is a member of the group consisting of hydrogen, hydroxyl, C1 to C8 alkyl, and C1 to C8 aryl.

Preferred are (N-substituted amino)-alkanol alkanoates such as C5 to C18 carboxylic acid esters and pharmaceutically acceptable salts thereof. Exemplary specific (N,N-disubstituted amino)-alkanol alkanoates include 1-(N,N-dimethylamino)-2-propanol dodecanoate;

1-(N,N-dimethylamino)-2-propanol myristate;

1-(N,N-dimethylamino)-2-propanol oleate;
The (N,N-disubstituted amino)-alkanol alkanoates are readily prepared by reacting the corresponding aminoaalkanol with lauroyl chloride in the presence of triethylamine. A solvent such as chloroform is optional but preferred. For example, 1-(N,N-dimethylamino)-2-propanol can be reacted with lauroyl chloride in chloroform and in the presence of triethylamine to form 1-(N,N-dimethylamino)-2-propanol dodecanoate.

Among the suitable penetration enhancers for use in the present solid dosage forms dodecyl 2-(N,N-dimethylamino)-propionate and crystalline salts thereof are generally preferred. The preparation of such crystalline salts is described in U.S. Patent No. 6,118,020 to Buyuktimkin et al.

The penetration enhancer is present in an amount sufficient to enhance the penetration of the PGE compound into tissue. The specific amount varies necessarily according to the desired release rate and specific form of PGE compound used. Generally, this amount is in the range of about 0.01 percent to about 20 percent, based on the total weight of the composition to be administered to a patient.

The desired release rate, including controlled or sustained release of the active compound can also be modulated by selection of the topical delivery vehicle, e.g., a hydrophobic vehicle such as polydimethylsiloxanes and the like. Carboxy-terminated polydimethylsiloxanes can also enhance skin permeation by the active compound.

Natural and modified polysaccharide gums can also be present as part of the carrier sheet or the topical delivery vehicle. Suitable representative gums are the natural and modified galactomannan gums. A galactomannan gum is a carbohydrate polymer containing D-galactose and D-mannose units, or other derivatives of such a polymer. There is a relatively large number of galactomannans, which vary in composition depending on their origin. The galactomannan gum is characterized by a linear structure of β-D-mannopyranosyl units linked (1→4). Single membered α-D-mannopyranosyl units, linked (1→6) with the main chain, are present as side branches. Galactomannan gums include guar gum; which is the pulverized endosperm of the seed of either of two leguminous plants (Cyamopsis tetragonolobus and psoralioides) and locust bean gum, which is found in the endosperm of the seeds of the carobtree (ceratonia siliqua).

Suitable modified polysaccharide gums include ethers of natural or substituted polysaccharide gums, such as carboxymethyl ethers, ethylene glycol ethers and propylene glycol ethers.

Other suitable representative gums include agar gum, carrageenan gum, ghatti gum, karaya gum, rhamsan gum and xanthan gum. The composition of the present invention may contain a mixture of various gums, or mixture of gums and acidic polymers.

When present, the polysaccharide gums are present in the range of about 0.1 percent to about 5 percent, based on the total weight of the composition, with the preferred range being in the range of about 0.5 percent to 3 percent. In one preferred embodiment, about 2.5 percent by weight of a polysaccharide gum is present.

An optional alternative to the polysaccharide gum is a polyacrylic acid polymer. A common variety of polyacrylic acid polymer is known generally as "carbomer." Carbomer is polyacrylic acid polymers lightly cross-linked with polyalkenyl polymer. It is commercially available from the B.F. Goodrich Company (Akron, Ohio) under the designation "CARBOPOL™." A particularly preferred variety of carbomer is that designated as "CARBOPOL 940."

Other polyacrylic acid polymers suitable for use are those commercially available under the designation "Pemulen™" (B.F. Goodrich Company) and "POLYCARBOPHIL™" (A.H. Robbins, Richmond, VA). The Pemulen™ polymers are copolymers of C_{10} to C_{30} alky acrylates and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters crosslinked with an allyl ether of sucrose or an allyl ether of pentaerythritol. The POLYCARBOPHIL™ product is polyacrylic acid cross-linked with divinyl glycol.

The concentration of lipophilic compound required necessarily varies according to other factors such as the desired semi-solid consistency and the desired skin penetration promoting effects. Suitably the concentration of lipophilic compound is the range of about 0.5 percent to about 40 percent by weight based on the total weight of the composition. The preferred topical composition contains lipophilic compound in the range of about 7 percent to about 40 percent by weight based on the total weight of the composition.

Where a mixture of aliphatic alcohol and aliphatic ester are employed, the suitable amount of alcohol is in the range of about 0.5 percent to about 75 percent. In one preferred embodiment, the amount of alcohol is in the range of...
about 5 percent to about 15 percent, while that of aliphatic ester is in the range of about 2 percent to about 15 percent (again based on the total weight of the composition). In another preferred embodiment, the amount of alcohol is in the range of about 0.5 percent to about 10 percent, while that of aliphatic ester is in the range from zero percent to about 10 percent (again based on the total weight of the composition).

[0045] An optional, but preferred, component is an emulsifier. A suitable emulsifier generally will exhibit a hydrophilic-lipophilic balance number greater than 10. Sucrose esters, and specifically sucrose stearate, can serve as emulsifiers for the composition. Sucrose stearate is a well-known emulsifier available from various commercial sources. When an emulsifier is used, sucrose stearate, present in an amount up to about 2 percent, based on the total weight of the composition, is preferred. The preferred amount of sucrose stearate emulsifier can also be expressed as a weight ratio of emulsifier to polysaccharide gum.

[0046] Other suitable emulsifiers are the polyoxyethylene sorbitan esters, long chain alcohols, preferably cetostearyl alcohol, and fatty acid glycerides. Suitable polyoxyethylene sorbitan esters include the monolaureate (Twee 20, Span 20) the monopalmitate (Twee 40), the monostearate (Twee 60), and the monooleate (Twee 80) and mixtures thereof. Preferred fatty acid glycerides include glyceryl monooleate, triolean, trimyristin and tristearin.

[0047] Another optional ingredient is an antifoam agent, a chemical that reduces the tendency of the finished preparation to generate foam on shaking or agitation. Siloxanes are the preferred antifoam agents; however, a wide variety of alcohols and lipids exhibit similar properties. With the exception of alcohols, the selected antifoam agent must be effective in relatively small concentrations, and are employed in trace amounts. Illustrative antifoam agents are dimethicone, cetyl dimethicone, dimethicone silylate, dimethiconol, a mixture of dimethicone and hydrated silica, isopropyl alcohol, hexyl alcohol, trimethylsiloxy silicate, triphe nyl trimethicone and the like. Particularly preferred antifoam agent is a mixture of dimethicone with an average chain length of 200 to 300 dimethylsiloxane units and hydrated silica, commercially available under the designation SIMBTHICONE USP from Dow Coming Corporation, Michigan.

[0048] The composition can include a buffer system, if desired. Buffer systems are chosen to maintain or buffer the pH of compositions within a desired range. The term "buffer system" or "buffer" as used herein refers to a solute agent or agents which, when in a water solution, stabilize such solution against a major change in pH (or hydrogen ion concentration or activity) when acids or bases are added thereto. Solute agent or agents which are thus responsible for a resistance or change in pH from a starting buffered pH value in the range indicated above are well known. While there are countless suitable buffers, potassium phosphate monohydrate has proven effective for compositions of the present invention and is preferred.

[0049] The final pH value of the pharmaceutical composition may vary within the physiological compatible range. Necessarily, the final pH value is one not irritating to human skin and preferably such that transdermal transport of the PGE compound is facilitated. Without violating this constraint, the pH may be selected to improve PGE compound stability and to adjust consistency when required. In one embodiment, the preferred pH value is about 3.0 to about 7.4, more preferably about 3.0 to about 6.5, most preferably from about 3.5 to about 6.0.

[0050] For topical delivery vehicles the remaining component of the composition is water, which is necessarily purified, e.g., deionized water. Such delivery vehicle compositions contain water in the range of more than about 50 to about 95 percent, based on the total weight of the composition. The specific amount of water present is not critical, however, being adjustable to obtain the desired viscosity (usually about 50 cps to about 10,000 cps) and/or concentration of the other components.

[0051] Other known transdermal skin penetration enhancers can also be used to facilitate delivery of the compound of prostaglandin E group. Illustrative are sulfonates such as dimethylsulfoxide (DMSO) and the like; cyclic amides such as 1-dodecylazacycloheptane-2-one. (Azone®, a registered trademark of Nelson Research, Inc.) and the like; amides such as N,N-dimethyl acetamide (DMA), N,N-diethyl toluamide, N,N-dimethyl formamide, N,N-dimethyl octamide, N,N-dimethyl decamide, and the like; pyrrolidone derivatives such as N-methyl-2-pyrrolidone, 2-pyrrolidone, 2-pyrrolidone-5-carboxylic acid, N-(2-hydroxyethyl)-2-pyrrolidone or fatty acid esters thereof, 1-lauryl-4-methoxy carbonyl-2-pyrrolidone, N-tallowalkylpyrrolidones, and the like; polyls such as propylene glycol, ethylene glycol, polyethylene glycol, dipropylene glycol, glycerol, hexanetriol; and the like; linear and branched fatty acids such as oleic, linoleic, lauric, valeric, heptanoic, caproic, myristic, isovaleric, neopentanoic, trimethyl hexanoic, isostearic, and the like; alcohols such as ethanol, propanol, butanol, octanol, oleyl, stearyl, linoleyl, and the like; anionic surfactants such as sodium laureate, sodium lauryl sulfate, and the like; cationic surfactants such as berzalkonium chloride, dodexycltrimethylammonium chloride, cetyltrimethylammonium bromide, and the like; non-ionic surfactants such as the propoxylated polyoxyethylene ethers, e.g., Poloxamer 231, Poloxamer 182, Poloxamer 184, and the like, the ethoxylated fatty acids, e.g., Tween 20, Myrij 45, and the like, the sorbitan derivatives, e.g., Tween 40, Tween 60, Tween 80, Span 60, and the like, the ethoxylated alcohols, e.g., polyoxyethylene (4) lauryl ether (Brij 30), polyoxyethylene (2) oleyl ether (Brij 93), and the like, lecithin and lecithin derivatives, and the like; the terpenes such as D-limonene, α-pinene, β-carene, α-terpineol, carvyl, carvone, menthone, limonene oxide, α-pinene oxide, eucalyptus oil, and the like.

[0052] Also suitable as skin penetration enhancers are organic acids and esters such as salicyclic acid, methyl salicylate; citric acid, succinic acid, and the like.
PGE compound stabilizers such as organic acids and alcohols, cyclodextrins, coloring agents, rheological agents, and preservatives can be added to the extent that they do not limit penetration of the PGE compound. The ingredients listed above may be combined in any order and manner that produces a stable composition for ultimately receiving the PGE compound, such as PGE₁ and the like, preferably substantially evenly dispersed throughout. One available approach to preparing such compositions involves evenly dispersing the polysaccharide gum (or polyacrylic acid) in a premixed water/buffer solution and then thoroughly homogenizing (i.e., mixing) the resulting mixture. When present, the emulsifier is added to the water/buffer solution before dispersing the polysaccharide gum. Any suitable method of adjusting pH value to the desired level may be used, for example, by adding concentrated phosphoric acid or sodium hydroxide. The PGE compound, with a penetration enhancer, is then combined therewith prior to use with mixing. The resulting composition is ready for topical, intrameatal, or vaginal administration. These compositions can be used for prolonged treatment of peripheral vascular disease, male impotency and other disorders treated or treatable by PGE compounds while avoiding low bioavailability and rapid chemical decomposition associated with other delivery methods. In one embodiment, a preparation ready for administration comprises about 0.01 percent to about 5 percent modified polysaccharide gum; about 0.001 percent to about 1 percent of a PGE compound, preferably PGE₁, or a pharmaceutically acceptable salt thereof, a lower alkyl ester thereof and mixtures thereof; about 0.5 percent to about 10 percent dodecyl 2-(N,N-dimethylamino)-propionate or a salt thereof; about 0.5 percent to about 10 percent of a lower alcohol selected from the group consisting of ethanol, propanol, isopropanol and mixtures thereof; about 0.5 percent to about 10 percent on an ester selected from the group consisting of ethyl laurate, isopropyl myristate, isopropyl laurate and mixture thereof; based on the weight of the preparation, together with an acid buffer. Preferably the preparation also comprises up to about 2 percent by weight sucrose stearate. Variations in the treating compositions which do not adversely affect the effectiveness of the PGE compound will be evident to one skilled in the art, and are within the scope of this invention. For example, additional ingredients such as coloring agents, anti-microbial preservatives, emulsifiers, lubricants, perfumes, PGE compound stabilizers, and the like, may be included as long as the resulting preparation retains desirable properties, as described above. When present, preservatives are usually added in amounts of about 0.05 to about 0.30%. Suitable preservatives include methylparabens (methyl PABA), propylparabens (propyl PABA) and butylhydroxy toluene (BHT). Suitable perfumes and fragrances are known in the art; a suitable fragrance is up to about 5 percent and fragrances are known in the art; a suitable fragrance is up to about 5 percent myrtenol, preferably about 2 percent myrtenol, based on the total weight of the composition. The compositions of the present invention can also include a small amount, about 0.01 to about 4 percent by weight, of a topical anesthetic, if desired. Typical topical anesthetics include lidocaine, benzocaine, dyclonine, dibucaine, pharmaceutically acceptable salts and mixtures thereof. In one preferred embodiment, the topical anesthetic is about 0.5 percent dyclonine, based on the weight of the composition. Illustrative two-compartment dosage forms are set forth below:

<table>
<thead>
<tr>
<th>Amount, parts by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actives Compartment</td>
</tr>
<tr>
<td>PGE₁</td>
</tr>
<tr>
<td>0.025-10</td>
</tr>
<tr>
<td>0.05-0.5</td>
</tr>
<tr>
<td>Dodecyl 2-(N,N-dimethylamino)-propionate-HCl</td>
</tr>
<tr>
<td>0.025-10</td>
</tr>
<tr>
<td>0.05-2.5</td>
</tr>
<tr>
<td>Lactose</td>
</tr>
<tr>
<td>1-50</td>
</tr>
<tr>
<td>2.5-10</td>
</tr>
<tr>
<td>Inerts Compartment</td>
</tr>
<tr>
<td>Hydroxypropyl methyl cellulose</td>
</tr>
<tr>
<td>0.05-2.5</td>
</tr>
<tr>
<td>1-6</td>
</tr>
<tr>
<td>Silicone antifoam agent</td>
</tr>
<tr>
<td>0.001-5</td>
</tr>
<tr>
<td>0.1-2</td>
</tr>
<tr>
<td>Hydroxypropyl-β-cyclodextrin</td>
</tr>
<tr>
<td>0.5-25</td>
</tr>
<tr>
<td>1-10</td>
</tr>
<tr>
<td>Water (deionized or U.S.P.)</td>
</tr>
<tr>
<td>5-75</td>
</tr>
<tr>
<td>20-60</td>
</tr>
<tr>
<td>Ethanol</td>
</tr>
<tr>
<td>5-75</td>
</tr>
<tr>
<td>20-60</td>
</tr>
</tbody>
</table>

If desired, preservatives such as methyl paraben, propyl paraben, benzalkonium chloride, benzethonium chloride, and the like, can be included as well. Yet another two-compartment dosage form is set forth below:
Illustrative two-part compositions for casting a PGE_{1} containing film are set forth below.

<table>
<thead>
<tr>
<th>Actives Compartment</th>
<th>Amount, parts by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGE_{1}</td>
<td>0.2</td>
</tr>
<tr>
<td>Dodecyl 2-(N,N-dimethylamino)-propionate-HCl</td>
<td>2.5</td>
</tr>
<tr>
<td>Ethanol, anhydrous, USP</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inerts Compartment</th>
<th>Amount, parts by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guar gum</td>
<td>2.5</td>
</tr>
<tr>
<td>Ethyl laurate.</td>
<td>3</td>
</tr>
<tr>
<td>Water, USP, buffered to pH 5.5 with 0.1M KH_{2}PO_{4} NF q.s.</td>
<td>100</td>
</tr>
<tr>
<td>Sodium hydroxide, q.s. pH 5.5</td>
<td></td>
</tr>
</tbody>
</table>

Parts A and B are combined with agitation, the resulting mixture is cast as a layer on a surface, and the ethanol is permitted to evaporate to produce a sheet-form material, i.e., either a sheet or a film depending upon the thickness of the cast layer.

The present invention is further illustrated by the following examples.

EXAMPLE 1: TWO COMPARTMENT PACKAGED DOSAGE FORM

A viscous topical delivery vehicle was prepared by combining hydroxypropyl methyl cellulose (2 grams; Methocel® E4M; Dow Chemical Co.), polyethylene glycol 8000 powder (0.5 grams), deionized water (97.5 grams), and a trace amount of an anti-foam agent (Simethicone®; Dow Coming Corp., Midland, MI).

First an aliquot of deionized water (about 25 grams) was heated to about 80°C., and then the hydroxypropyl methyl cellulose (2 grams) was added thereto with stirring until dissolved. A trace amount of the anti-foam agent was added to the resulting hot solution.

Polyethylene glycol powder (0.5 grams; PEG 8000, was added to cold deionized water (50 grams) with stirring until dissolved to produce a cold polyethylene glycol solution.

The obtained cold and hot solutions were combined with stirring, more deionized water was added to the combined solution (q.s. 100 grams), and the produced solution was placed in an ice bath and chilled to below about 30°C. with continuous agitation. The pH value of the produced solution was measured as 6.25.

This solution is suitable as constituent for the inerts compartment of the two-compartment dosage form. Ethyl alcohol can be added to produce a solution suitable for casting a sheet-form unit dose such as a film or sheet.

The contents for the actives compartment was prepared by admixing dry prostaglandin E_{1} (0.018 grams) and dodecyl 2-(N,N-dimethylamino)-propionate (0.12grams).

The actives content prepared as described hereinabove was then combined with three grams of the inerts composition described above to which anhydrous ethyl alcohol (3 grams) was added.

A clear, viscous gel was obtained, suitable for topical or intrameatal administration. The pH value of the obtained
EXAMPLE 2: FILM WITH PGE₁ AND SKIN PERMEATION ENHANCER

[0073] A portion of the clear gel produced as described in Example 1 was spread on a glass panel with a 6-mil film spreader and dried for several hours until a film was produced. Upon the addition of a small amount of water (100 milligrams) a one-inch square of film reconstituted into a clear gel within about 15 seconds.

EXAMPLE 3: FILM WITH PGE₁

[0074] PGE₁ powder (0.024 grams) was combined with an aqueous solution having the following constituents:

- Hydroxypropyl methyl cellulose 0.06 grams
- PEG 8000 powder 0.015 grams
- Deionized water 2.925 grams
- Ethyl alcohol, anhydrous 3 grams

and prepared in the same manner as described in Example 1, above. The resulting combination of PGE₁ and the aqueous solution was shaken vigorously for 15 to 30 seconds until the PGE₁ went into solution.

[0075] The resulting solution was poured onto a glass panel and dried at ambient temperature for about 3.5 hours. A film containing PGE₁ substantially uniformly dispersed therein was obtained.

EXAMPLE 4: FILM WITH PGE₁ AND DODECYL 2-(N,N-DIMETHYLAMINO)-PROPIONATE

[0076] The procedure of Example 3, above, was used to dissolve PGE₁ (0.024 grams) and dodecyl 2-(N,N-dimethylamino)-propionate (0.03 grams) in an aqueous solution having the following constituents:

- Hydroxypropyl methyl cellulose 0.06 grams
- PEG 8000 powder 0.015 grams
- Deionized water 2.9 grams
- Ethyl alcohol, anhydrous 3 grams

[0077] The obtained solution was poured onto a glass panel, spread with a 6-mil. film spreader, and dried for about 3.5 hours. A dry film containing substantially uniformly dispersed PGE₁ and dodecyl 2-(N,N-dimethylamino)-propionate was obtained. The film was readily water miscible.

Claims

1. A packaged, multi-component dosage form which comprises a sealed actives compartment containing a non-aqueous pharmacologically acceptable composition containing a compound of prostaglandin E group selected from the group consisting of prostaglandin E₁, prostaglandin E₂, prostaglandin E₃, and pharmaceutically acceptable salts thereof, a bulking agent therefor and a skin permeation enhancer, and a sealed inerts compartment containing a physiologically compatible, viscous topical delivery vehicle containing water and having a viscosity of at least 50 cps, wherein the skin permeation enhancer is a member of the group consisting of an alkyl-2-(N-substituted amino)-alkanoate, an (N-substituted-amino)-alkanol alkanoate, a pharmaceutically acceptable salt thereof, and a mixture thereof.

2. The dosage form of claim 1 wherein the prostaglandin E group compound is dispersed substantially uniformly in a carrier sheet.

3. The dosage form of claim 1 wherein the prostaglandin E group compound is dispersed substantially uniformly in a water-soluble carrier sheet or in a carrier sheet that is soluble in a physiologically compatible non-aqueous solvent.

4. The dosage form of claim 1 wherein the viscous topical delivery vehicle is a cream, a gel or an ointment.
5. The dosage form of claim 1 wherein the skin permeation enhancer is dodecyl-2-(N,N-dimethylamino)-propionate.

6. The dosage form of claim 1 wherein the skin permeation enhancer is dodecyl-2-(N,N-dimethylamino)-propionate hydrochloride.

7. The dosage form of claim 1 wherein the skin permeation enhancer is crystalline dodecyl-2-(N,N-dimethylamino)-propionate hydrochloride.

8. The dosage form of claim 1 wherein said inerts compartment also contains a skin permeation enhancer.

Patentansprüche

2. Dosisform nach Anspruch 1, wobei die Verbindung der Prostaglandin E-Gruppe im Wesentlichen gleichmäßig in einer Trägerschicht dispergiert ist.

3. Dosisform nach Anspruch 1, wobei die Verbindung der Prostaglandin E-Gruppe im Wesentlichen gleichmäßig in einer wasserlöslichen Trägerschicht oder in einer Trägerschicht, die in einem physiologisch verträglichen, nicht wässrigen Lösungsmittel löslich ist, dispergiert ist.

4. Dosisform nach Anspruch 1, wobei der viskose topische Zufuhrträger eine Creme, ein Gel oder eine Salbe ist.

5. Dosisform nach Anspruch 1, wobei der Hautpermeationsverstärker Dodecyl-2-(N,N-dimethylamino)-propionate ist.

6. Dosisform nach Anspruch 1, wobei der Hautpermeationsverstärker Dodecyl-2-(N,N-dimethylamino)-propionathydrochlorid ist.

7. Dosisform nach Anspruch 1, wobei der Hautpermeationsverstärker kristallines Dodecyl-2-(N,N-dimethylamino)-propionathydrochlorid ist.

8. Dosisform nach Anspruch 1, wobei das Kompartiment mit inerten Substanzen auch einen Hautpermeationsverstärker enthält.

Revendications

1. Forme galénique multicomposant emballée, qui comprend un compartiment de constituants actifs contenant une composition non-aqueuse pharmacologiquement acceptable contenant un composé du groupe des prostaglandines E choisi dans le groupe consistant en prostaglandine E₁, prostaglandine E₂, prostaglandine E₃, et leurs sels pharmaceutiquement acceptables, un agent pour en augmenter le volume et un renforçateur de perméation cutanée, et un compartiment de substances inertes fermé, contenant un véhicule de délivrance topique visqueux, physiologiquement compatible, ayant une viscosité d’au moins 50 cps, tandis que le renforçateur de perméation cutanée est un membre du groupe consistant en un alkyl-2-(amino N-substitué)-alkanoate, un alcanoate d’(amino N-substitué)-alcanol, un sel pharmaceutiquement acceptable de ceux-ci, et un de leurs mélanges.

2. Forme galénique selon la revendication 1, dans laquelle le composé du groupe des prostaglandines E est dispersé de manière substantiellement uniforme dans une feuille support.
3. Forme galénique selon la revendication 1, dans laquelle le composé du groupe des prostaglandines E est dispersé de manière substantiellement uniforme dans une feuille support hydrosoluble ou dans une feuille support qui est soluble dans un solvant non-aqueux physiologiquement compatible.

4. Forme galénique selon la revendication 1, dans laquelle le véhicule de délivrance topique visqueux est une crème, un gel ou une pommade.

5. Forme galénique selon la revendication 1, dans laquelle le renforçateur de perméation cutanée est le dodécyl-2-(N, N-diméthylamino)-propionate.

6. Forme galénique selon la revendication 1, dans laquelle le renforçateur de perméation cutanée est le chlorhydrate de dodécyl-2-(N,N-diméthylamino)-propionate.

7. Forme galénique selon la revendication 1, dans laquelle le renforçateur de perméation cutanée est le chlorhydrate de dodécyl-2-(N,N-diméthylamino)-propionate cristallisé.

8. Forme galénique selon la revendication 1, dans laquelle ledit compartiment de substances inertes contient également un renforçateur de perméation cutanée.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5942545 A [0004]
- US 6046244 A [0004]
- US 4980378 A, Wong [0029]
- US 6118020 A, Buyuktimkin [0034]

Non-patent literature cited in the description

- Physician’s Desk Reference. 1997 [0024]
- The Merck Index. Merck & Co, 1996 [0024]
- Martindale The Extra Pharmacopoeia. The Pharmaceutical Press, 1982 [0024]