EUROPEAN PATENT SPECIFICATION

Method for inputting destination data through a mobile terminal

Verfahren zur Eingabe von Zielortinformationen über ein mobiles Endgerät

Procédé de saisie de données de destination par un terminal mobile

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Date of publication and mention of the grant of the patent:

Application number: 04290524.0

Date of filing: 26.02.2004

Date of publication of application:
31.08.2005 Bulletin 2005/35

Proprietor: ALCATEL
75008 Paris (FR)

Inventors:
• Banet, Franz-Josef
 71665 Vaihingen (DE)
• Lopez Aladros, Rodolfo
 70329 Stuttgart (DE)

Representative: Rausch, Gabriele
Alcatel
Intellectual Property Department Stuttgart
70430 Stuttgart (DE)

References cited:

PATENT ABSTRACTS OF JAPAN vol. 018, no. 085
(P-1691), 10 February 1994 (1994-02-10) & JP 05
289997 A (SUMITOMO WIRING SYST LTD), 5
November 1993 (1993-11-05)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a method of inputting destination data into a navigation system as well as a mobile terminal and a navigation system used for executing this method.

[0002] A structure of a known navigation system for a car is, for example, described in US 3,353,023.

[0003] A navigation system is composed of a processor in the form of a CPU having a plurality of inputs supplied with output signals from an azimuth direction sensor operating on the basis of terrestrial magnetism, a distance sensor for detecting a distance covered by the car by measuring the rotation numbers of a wheel and an absolute position setting sensor in the form of a radio receiver, for example a GPS receiver (GPS = Global Positioning System). Further, such navigation system has a CD-ROM storing road network data.

[0004] In operation of the navigation system, the travelling direction is detected by the azimuth direction sensor while the distance covered is detected by the distance sensor. The absolute position setting sensor receives signals from GPS satellites for determining an absolute reference position. The CPU determines the current location of the car on the basis of the output signals from the azimuth direction sensor, the distance sensor and the absolute position setting sensor while referring to the road network data stored in the CD-ROM.

[0005] Further, navigation systems are known that download via a cellular communication network data such as map data, route data and traffic data from an information service center and use such data for providing navigation services to the driver of the car.

[0006] Further, navigation systems typically are equipped with input devices like a keypad for inputting route data or data about the destination of a route guided by the navigation system. But, every input made by the user holds the risk of a typing error and, due to the restricted input means of the car navigation system and the specific environmental conditions within a car, the typing in the car needs some time and makes the operation of the navigation system uncomfortable.

[0007] US 6 622 083 B1 describes a method to transmit data from a mobile terminal to a navigation system in a vehicle via a wireless communication link whereby the data comprise destination-related information such as a city name or a telephone number. An operator selects a data set on the mobile terminal which is then transmitted to the navigation system where the data are used to compute a route.

[0008] WO 02/37446 A1 discloses a navigation method using an on-board navigation system integrated into a vehicle and a mobile personal navigator. The on-board navigation system is fed by the mobile personal navigator with address related data via a wireless communication link. The on-board navigation system uses the received data to calculate a route. The mobile personal navigator receives calculated route information for a part of the route which is not accessible with the vehicle. An operator uses the mobile personal navigator to follow that part of the route without the vehicle.

[0009] US 6 124 826 A describes a navigation system comprising a portable hardware unit and a computer disposed in a stationary manner outside of the portable unit. A user inputs destination data into the portable unit. From there the data are transmitted via a wireless connection to the computer where the data are used to calculate a route. The route information is transmitted from the computer to the portable unit where the route information is output to the user.

[0010] WO 02/082405 A1 discloses a vehicle navigation system comprising a base and a handheld device which is portable relative to the base and dockable to the base. The handheld device includes a GPS receiver, display and user input devices and provides limited navigation capability when detached from the base. The base includes additional databases and navigation sensors which provide a full function navigation system when the handheld device is docked to the base station. Destination address data can be transmitted from the handheld device to the base.

[0011] JP 05 289997 A describes a method to reduce the operational complications of inputting a destination in a navigation system. An adaptor with a communication circuit is disclosed for executing data exchange from an electronic pocket book to a navigation system.

[0012] It is an object of the present invention to improve the data input into a navigation system.

[0013] The object of the present invention is achieved by a method according to claim 1 and a system according to claim 6.

[0014] Various advantages are achieved by the invention: In many cases, the user carries with him or her a mobile terminal, for example, a cellular phone or a PDA, which already comprises a data base containing various information about persons and organizations that are of interest for the respective user. Further, such data more and more comprises address data of such persons and organizations of interest. In many cases a destination address inputted by a user relates to such persons and organizations of interest already electronically stored in the mobile device carried by the respective user. Thanks to the invention, such already stored information may be reused which makes the input of data really simple and prevents the risk of typing errors. A small invest in software and/or hardware means result in a tremendous improvement of user-friendliness, time and reuse of data. The input of data into a navigation system becomes very simple and fast.

[0015] Further advantages are achieved by the embodiments of the invention indicated by the dependent claims.

[0016] According to a preferred embodiment of the invention, the mobile device transfers as data record a data record to the navigation system, which comprises the whole entry of a selected user stored in a directory data.
base of the mobile terminal. The mobile device has not to compute data stored in the directory data base of the mobile terminal and already existing mechanisms of the mobile terminal can be reduced for the implementation of the invention. For example, already existing features for exchanging data base entries between mobile phones via an infrared or bluetooth interface may be reused for the implementation of the invention. Small software changes may be sufficient to implement the invention in the mobile device. On the other hand, the navigation system has to extract the address data from the rest of the data contained in the data base entry which increases the efforts necessary for the implementation of the invention at the navigation system side. But, the overall implementation costs are noticeable reduced since the number of modified mobile terminals is considerable larger than the number of modified navigation systems.

Preferably, the mobile terminal transfers the data of the data records encoded in an ASCI format and does not apply a specific communication protocol. Thereby, further reductions of implementation costs are achievable.

But, it is also possible that the mobile terminal extracts address data included in the entry of a selected user stored in the directory data of the mobile terminal and transfers the extracted address data within the data record to the navigation system. Such approach simplifies the implementation of the navigation system side part of the invention. Further, it becomes easier for the navigation system to receive usable data from different types of mobile terminals, for example, from different types of mobile phones or PDAs (PDA= Personal Digital Assistant).

Further improvements are achieved by implementing following functionalities in the navigation system of the present invention.

First of all, it is possible that the navigation system checks the plausibility of the extracted destination data by means of an address data base. By means of this data base it may check whether the extracted address exist and may complete the extracted address. Further, it may use the address data base for deciding which of the received data has to be extracted and capable to be used as source for a destination.

Further, it is possible that the navigation system corrects the extracted destination data by means of this address data base.

Preferably, the navigation system sends a query to a remote address data base, for example an address data base administrated by a network server, when executing the aforementioned procedures. Thereby, the execution always relates to an up-to-date data base.

Further, it is possible to provide a back-channel between the mobile terminal and the navigation system. Preferably, a notification is sent back via this back-channel to the mobile terminal, if the address data are not correct and/or are corrected. This improves the user-friendliness of the system.

These as well as other features and advantages of the invention will be better appreciated by reading the following detailed description of presently preferred exemplary embodiments taken in conjunction with the accompanying drawing of which:

Fig. is a block diagram showing a system with a mobile device and a navigation system according to the invention.

The figure shows a mobile terminal 1, a navigation system 2 and a user 3.

The mobile terminal 1 is a mobile phone or cellular phone, preferably according to the GSM or UMTS standard (GSM = Global System for Mobile Communication; UMTS = Universal Mobile Telecommunication Systems). But, it is also possible that the mobile terminal 1 is a PDA (PDA= Personal Digital Assistant). It is possible that such PDA comprises in addition to the other known functions of a PDA a communication unit for communicating via a radio interface with a cellular radio network, for example the aforementioned GSM or UMTS networks.

The mobile terminal 1 comprises a microprocessor with a plurality of peripheral units, a radio communication unit for communicating with a cellular communication network, a housing and several input and output devices arranged at the housing. Further, the mobile terminal 1 comprises a software platform and a plurality of application programs executed by the aforementioned hardware platform. The functionalities of the mobile terminal 1 are provided by the execution of this software by the aforementioned hardware platform. From functional point of view, the mobile terminal 1 comprises two control units 14 and 12, a short range wireless interface unit 13 and a user interface unit 11.

The user interface unit 11 contains the input and output means of the mobile terminal 1, for example, a keypad a liquid crystal display, a camera, a microphone and a loudspeaker. Further, the user interface unit 11 comprises the software drivers used for controlling these devices.

The control unit 14 comprises a directory data base 15 and a number of application accessing this data base. Exemplary, Fig. shows an application 16 accessing the directory data base 15. Under control of the user interface unit 11, the application 16 displays entries of the directory data base 15 to the user 3, provides to the user 3 operations to amend, add and delete data base entries and establish telecommunication connections between the mobile terminal 1 and a subscriber specified within one of the entries of the directory data base 15.

The directory data base 15 contains a set of one or several data base entries. Each data base entry is assigned to a person and/or organization. For example, such entry contains the following set of information: Name of the person or organization, telephone numbers of the person or organization, fax-numbers of the person...
or organization, e-mail addresses of the person or organization, name of the company the person is working for, mailing address and premises of the person and the company, and further personal information added by the user 3. Different data base entry may comprise different kinds and different numbers of such information. Entries may be created and amended by help of the user interface 11, wherein the user 3 enters the data stored in the directory data base 15 via the input means of the user interface unit 11. But, it is also possible that such entries or a part of the data of such entries are downloaded in electronic form in the directory data base 15. For example, such data may be transferred via a parallel or serial interface of the mobile terminal 1 from a computer to the directory data base 15. For example, data stored in a mail system are transferred via a plug-in to the mobile terminal 1. Further, such data may be downloaded via the GSM or UMTS radio interface to the directory data base 15. Further, such data may be transferred from another mobile terminal to the mobile terminal 1, for example via a cable connection or via a short range wireless interface.

The short range wireless interface unit 13 supports a wireless, bi-directional communication with the navigation system 2. It is formed by a transceiver unit and corresponding software drivers that make it possible for the control unit 12 to exchange data via this interface. For example, the short range wireless interface is an infrared interface, a blue tooth interface or a W-LAN interface.

The control unit 12 selects under control of the user interface unit 11 at least one data record out of the directory data base 15 wherein this at least one data record includes data concerning an address. For example, it selects one or several entries of the directory data base 15 or selects a specific part of one or several entries of the data base 15.

According to a first embodiment of the invention, the control unit 12 provides operations to the user 3 enabling the user 3 to select one or several data base entries out of the set of data base entries stored in the directory data base 15 and initiating the transfer of these entries to the navigation system 2. When receiving such transfer command from the user interface unit 11, the control unit 12 copies the whole data records of the selected entries and sends these data records by means of the short range wireless interface unit 13 to the navigation system 2. In the following, the navigation system 2 has to scan and interpret the received data records and has to select, process and determine data of these records that relate to an address.

According to a further embodiment of the invention, the control unit 12 extracts address data included in an entry selected by the user 3. For example, it extracts data out of the entry which concerns the premises of the respective person or organization. But, it is also possible that the telephone number, the e-mail address or other kind of information stored in a data base entry are selected and in the following used to determine the address of the respective person or organization. For example, such data may be used to access a remote data base that assigns a corresponding address to such data. This data base may be accessed by the control unit 12 or may be accessed as well by the navigation system 2.

Further, it is possible that the control unit 12 applies a dynamic extracting of address data which takes into account the specific available information of the respective data base entry. For example, it first scans for premises data and, if such data are not available, scans for telephone numbers, e-mail addresses or further information which might be used to determine the corresponding address data.

The navigation system 2 is a system preferably installed in a vehicle which guides the driver of the vehicle along a route to a predefined destination. The navigation system 2 comprises one or several microprocessors or peripheral units, input and output means and several sensor means used to determine the location of the vehicle. Preferably, these sensor means at least comprising a GPS and/or Galileo receiver used to receive localization data from GPS and/or Galileo satellites. Further, the navigation system could have sensors for determining the travelling direction and the traveled distance, as for example described in US 5,353,023.

The functionalities of the navigation system 2 are provided by the execution of various software programs on the aforementioned hardware platform. From functional point of view, the navigation system 2 comprises two control units 24 and 22, a short range wireless interface unit 23 and a user interface unit 21.

The user interface unit 21 provides a simple user interface to the user 3. For example, it is composed of a LCD display for displaying road map data, direction data and a control and management menu, a keypad and a loudspeaker for outputting guidance instructions to the user 3.

The control unit 24 provides the typical services of a navigation system. It calculates a route based on destination data received from the user interface unit 21 or the control unit 22 and guides the user by means of the user interface unit 21 and the data received from the sensor means along this route. For performing this job, the control unit 24 accesses road map data that are stored in a storage means of the navigation system 2 or stored in a remote data base access via a communication network, for example via a GSM or UMTS network. Further, it is also possible that the route calculation is executed by a remote server and the control unit 24 guides the user 3 by means of route data received from a remote server. Further, the control unit 24 has an address data base 25 which links addresses with localization coordinates. But, it is also possible that the address data base 25 arranged in a remote server accessed by the control unit 24.

The short range wireless interface unit 23 is equipped as the short range wireless interface unit 13.
A method of inputting destination data into a navigation system (2), the method comprising the steps of:

- bringing a mobile terminal (1) having a short range wireless interface via this interface into contact with the navigation system (2);
- selecting, at the mobile terminal (1), at least one data record including data concerning an address;
- transferring the at least one data record (4) via the short range interface from the mobile terminal (1) to the navigation system (2); and
- extracting, at the navigation system (2), from the received data record (4) destination data capable to be used as source for a destination processed by the navigation system (2), characterized in that the method comprises the further steps of:

 - checking, at the navigation system (2), the plausibility of the extracted destination data by means of an address data base (25) and, if the extracted destination data are not correct, correcting, at the navigation system (2), the extracted destination data by means of an address data base (25);
 - providing a back-channel between the mobile terminal (1) and the navigation system (2); and
 - sending a notification back via said back-channel to the mobile terminal (1), if the address data are not correct and/or are corrected.

The control unit 22 extracts from the data records received from the mobile terminal 1 destination data capable to be used as source for a destination processed by a navigation system. In case it receives from the mobile terminal 1 a data record 4 containing a whole entry of the directory data base 15 it processes the data record 4 and filters out premises data by comparing the characteristics of premises data with consecutive parts of the data record 4. Since different kinds of mobile terminals may be used for inputting destination data into the navigation system 2, the control unit 22 cannot relate to a fixed position of such data and has to scan the whole received data records for selecting a data string that could represent such premises data. This matching process is done by help of the address data base 25 which provides the data base for such matching process. If it is not possible for the control unit 22 to extract premises data out of the received data record, the control unit 22 tries to filter out second source destination data, for example, an e-mail address or telephone number that identifies a user and could be used in a query process to determine an address assigned to this user. Further, the control unit 22 checks the plausibility of the extracted destination data by means of the address data base 25. For example, it checks whether the extracted address data matches with address data stored in the address data base 25 and corrects or complements the address data by means of a correlation process between the extracted address data and the address data stored in the address data base 25.

If the control unit 22 comes to the result that the extracted address data are not correct or have to be corrected or complemented in a specific way, it sends back a notification via the short range wireless units 23 and 13 to the control unit 12. The control unit 12 displays this notification via the user interface unit 11 to the user 3 and requests the user 3 to add additional information or approve the correction or complementation. Upon a corresponding message transmitted from the control unit 12 to the control unit 22, the control unit 22 submits the corrected or complemented destination data to the control unit 24 which uses these destination data as source for a destination processed by the navigation system. For example, it determines by means of premises data and the address data base 25 the localization coordinates of the destination and executes in the following route calculations based on this destination data.

According to a further embodiment of the invention, the data record 4 does already contain preprocessed address data which might be extracted by the control unit 22 in a predefined way. In such case, the control unit 22 extracts, for example, a predefined data string of the data record 4 and transfers this data string as destination data to the control unit 24 which calculates the corresponding localization coordinates and the corresponding route as described above.

When entering a car equipped with the navigation system 2, the user 3 brings its mobile terminal, for example the mobile terminal 1 into contact with the navigation system. For example, it places the mobile terminal 1 in the neighborhood of the navigation system 2 and enters a command to the navigation system 2 and/or to the mobile terminal 1 to actuate a wireless connection between the short range wireless interface units 13 and 23. Then, it selects by means of the operations provided by the control unit 12 one or several persons or organizations out of the persons and organizations registered in the directory data base 15. Then, it enters a command in the mobile terminal 1 that initiates the transfer of one or several data records via the short range interface to the navigation system 2. The control unit 22 extracts from the received data records destination data capable to be used as source for a destination processed by the navigation system 2. For example, it extracts premises data or address data of the selected one or several persons or organizations. The control unit 22 submits this information to the control unit 24 which uses these data as source for determining destinations forming the basis of a route calculation.
2. The method of claim 1, characterized in that the method comprising the further steps of: transferring as data record a data record (4) comprising the whole entry of a selected user stored in a directory data base (15) of the mobile terminal (1); and scanning, at the navigation system (2), for address data included in the received data record (4) and extracting the detected address data.

3. The method of claim 2, characterized in that the method comprising the further step of transferring the data of the data record (4) encoded in an ASCII format.

4. The method of claim 1, characterized in that the method comprising the further step of extracting, at the mobile terminal (1), address data included in the entry of a selected user stored in a directory data base (15) of the mobile terminal (1) and transferring extracted address data within the data record to the navigation system (2).

5. The method of claim 1, characterized in that the method comprising the further step of sending a query to a remote address data base.

6. A navigation system (2) comprising:
 a short range wireless interface unit (23) adapted to contact a mobile terminal (1); and a control unit (22) for receiving at least one data record (4) via the short range interface unit (23) from the mobile terminal (1) and for extracting from the received data record (4) destination data capable to be used as source for a destination processed by the navigation system (2) for checking the plausibility of the extracted destination data by means of an address data base (25) and if the extracted destination data are not correct, for correcting extracted destination data by means of an address data base (25), and for sending a notification back via a back-channel provided between the mobile terminal (1) and the navigation system (2) to the mobile terminal (1), if the address data are not correct and/or are corrected.

Patentansprüche

1. Verfahren zum Eingeben von Zielortdaten in ein Navigationssystem (2), wobei das Verfahren die Schritte beinhaltet, ein mobiles Endgerät (1), das eine Kurzstrecken-Funkschnittstelle besitzt, über diese Schnittstelle mit dem Navigationssystem (2) in Kontakt zu bringen, am mobilen Endgerät (1) mindestens einen Datensatz auszuwählen, der Daten hinsichtlich einer Adresse beinhaltet, den mindestens einen Datensatz (4) über die Kurzstreckenschnittstelle vom mobilen Endgerät (1) zum Navigationssystem (2) zu übertragen und am Navigationssystem (2) aus dem empfangenen Datensatz (4) Zielortdaten zu extrahieren, die als Datenquelle für einen vom Navigationssystem (2) verarbeiteten Zielort verwendet werden können, dadurch gekennzeichnet, daß das Verfahren die weiteren Schritte beinhaltet, am Navigationssystem (2) die Plausibilität der extrahierten Zielortdaten mittels einer Adressendatenbank (25) zu prüfen und am Navigationssystem (2) immer dann, wenn die extrahierten Zielortdaten nicht korrekt sind, die extrahierten Zielortdaten mittels einer Adressendatenbank (25) zu korrigieren, einen Rückkanal zwischen dem mobilen Endgerät (1) und dem Navigationssystem (2) vorzusehen und über den besagten Rückkanal eine Benachrichtigung zurück an das mobile Endgerät (1) zu senden, wenn die Adressendaten nicht korrekt sind und/oder korrigiert sind.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Verfahren die weiteren Schritte beinhaltet, als Datensatz einen Datensatz (4) zu übertragen, der den gesamten in einer Verzeichnisdatenbank (15) des mobilen Endgeräts (1) gespeicherten Eintrag eines ausgewählten Benutzers beinhaltet, am Navigationssystem (2) nach Adressendaten zu suchen, die im empfangenen Datensatz (4) enthalten sind, und die detektierten Adressendaten zu extrahieren.

3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß das Verfahren den weiteren Schritt beinhaltet, die Daten des Datensatzes (4) in einem ASCII-Format kodiert zu übertragen.

4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Verfahren den weiteren Schritt beinhaltet, am mobilen Endgerät (1) Adressendaten zu extrahieren, die im Eintrag eines ausgewählten Benutzers, der in einer Verzeichnisdatenbank (15) des mobilen Endgeräts (1) gespeichert ist, enthalten sind, und extrahierte Adressendaten innerhalb des Datensatzes zum Navigationssystem (2) zu übertragen.

5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Verfahren den weiteren Schritt beinhaltet,
eine Abfrage an eine entfernte Adressendatenbank zu senden.

6. Navigationssystem (2), beinhaltend eine Kurzstrecken-Funkschnittstelle (23), die dafür ausgelegt ist, Kontakt zu einem mobilen Endgerät (1) aufzunehmen, sowie eine Steuerungseinheit (22), um mindestens einen Datensatz (4) über die Kurzstrecken-Schnittstellenverbindung (23) vom mobilen Endgerät (1) zu empfangen, um aus dem empfangenen Datensatz (4) Zielortdaten zu extrahieren, die als Datenquelle für einen vom Navigationssystem (2) verarbeiteten Zielort dienen können, um die Plausibilität der extrahierten Zielortdaten mittels einer Adressendatenbank (25) zu prüfen, um immer dann, wenn die extrahierten Zielortdaten nicht korrekt sind, extrahierte Zielortdaten mittels einer Adressendatenbank (25) zu korrigieren, und um über einen Rückkanal zwischen dem mobilen Endgerät (1) und dem Navigationssystem (2) eine Benachrichtigung zurück an das mobile Endgerät (1) zu senden, wenn die Adressendaten nicht korrekt sind und/oder korrigiert sind.

Revendications

1. Procédé d’entrée de données de destination dans un système de navigation (2), le procédé comprenant les étapes consistant à :

- amener un terminal mobile (1) comportant une interface sans fil à courte portée, via cette interface, en contact avec le système de navigation (2);
- sélectionner, au niveau du terminal mobile (1), au moins un enregistrement de données contenant une adresse ; transférer le ou les enregistrements de données (4) via l’interface à courte portée du terminal mobile (1) au système de navigation (2) ;
- extraire, au niveau du système de navigation (2), de l’enregistrement de données reçu (4), des données de destination pouvant être utilisées comme source pour une destination traitée par le système de navigation (2),

caractérisé en ce que
le procédé comprend les étapes supplémentaires consistant à :

- vérifier, au niveau du système de navigation (2), la plausibilité des données de destination extraites au moyen d’une base de données d’adresses (25) et si les données de destination extraites ne sont pas correctes, corriger, au niveau du système de navigation (2), les données de destination extraites au moyen d’une base de données d’adresses (25) ;
- fournir un canal de retour entre le terminal mobile (1) et le système de navigation (2) ; et envoyer en retour une notification via ledit canal de retour au terminal mobile (1) si les données d’adresse ne sont pas correctes et/ou sont corrigées.

2. Procédé selon la revendication 1,
caractérisé en ce que
le procédé comprend les étapes supplémentaires consistant à : transférer comme enregistrement de données un enregistrement de données (4) comprenant toutes les entrées d’un utilisateur sélectionné stocké dans une base de données de l’annuaire (15) du terminal mobile (1) ; et balayer le système de navigation (2) pour trouver les données d’adresse comprises dans l’enregistrement de données reçues (4) et extraire les données d’adresse détectées.

3. Procédé selon la revendication 2,
caractérisé en ce que
le procédé comprend l’étape supplémentaire consistant à transférer les données de l’enregistrement de données (4) codées en format ASCII.

4. Procédé selon la revendication 1,
caractérisé en ce que
le procédé comprend l’étape supplémentaire consistant à extraire, au niveau du terminal mobile (1) les données d’adresse comprises dans l’entrée d’un utilisateur sélectionné stocké dans une base de données de l’annuaire (15) du terminal mobile (1) et à transférer les données d’adresse extraites dans l’enregistrement de données au système de navigation (2).

5. Procédé selon la revendication 1,
caractérisé en ce que
le procédé comprend l’étape supplémentaire consistant à envoyer un requête à une base de données d’adresses à distance.

6. Système de navigation (2) comprenant :

- une unité d’interface sans fil à courte portée (23) adaptée pour entrer en contact avec un terminal mobile (1) ; et une unité de commande (22) destinée à recevoir au moins un enregistrement de données (4) via l’unité d’interface à courte portée (23) en provenance du terminal mobile (1) et à extraire de l’enregistrement de données reçus (4) des données de destination pouvant être utilisées comme source pour une destination traitée par le système de navigation (2),

caractérisé en ce que
le système de navigation (2) à vérifier la plausibilité des données de destination extraites au moyen d’une base de données d’adresses (25) et, si les données de destination extrai-
tes ne sont pas correctes, à corriger les données de destination extraites au moyen d’une base de données d’adresses (25) et à envoyer en retour une notification via un canal de retour prévu entre le terminal mobile (1) et le système de navigation (2) au terminal mobile (1) si les données d’adresses ne sont pas correctes et/ou sont corrigées.