FLOW CONTROL METHOD OF MAN TRANSMISSION DEVICE

A flow control method of MAN transmission equipment is put forward. When congestion occurs in a data transmission port of a data transmission equipment at a receiving end, an Ethernet flow control frame is fed back to a transmission equipment at a sending end, to perform flow control of the data transmission port. When congestion occurs in a board of the data transmission port, a board-level flow control frame is fed back to a packet forwarding module of the data transmission port, to perform flow control of the board. When congestion occurs in a logical sub-channel of the board, a channel-level flow control frame is fed back to the packet forwarding module of the data transmission port, to perform flow control of the logical sub-channel. The present invention extendedly implements flow control strategy of MAN transmission equipment, making MAN flow control strategy more preferable, satisfying flow control service requirement of a complicated Ethernet MAN transmission equipment.
Description

Field of the Technology

The present invention relates generally to data transmission field, especially to a flow control method of MAN (Metropolitan Area Network) transmission equipment.

Background of the Invention

In MAN devices based on a SDH (Synchronous Digital Hierarchy), data from users need to be mapped to the SDH for transmission. If data quantity transmitted from a sending end exceeds processing capability of a receiving end, congestion will occur, thus flow control is required.

At present, for MAN transmission equipments, flow control is mostly implemented by adopting an Ethernet flow control mechanism based on a data transmission port, which is defined in IEEE standards. When data quantity in a buffer of data transmission port of a receiving end exceeds a specified maximum threshold, the data transmission port sends to the sending end a standard 802.3x flow control frame, and the sending end determines whether to end flow control state or not according to a flow control time in the flow control frame. When the flow control time is up, data transmission is continued.

The flow control of 802.3x standard complies with a standard IEEE protocol, which is mature and of easy implementation. However, in terms of flow control of this standard, it is determined whether to end flow control state according to the flow control time carried by the flow control frame, thus poor real-time quality occurs. On the other hand, the flow control of 802.3x standard is the one based on Ethernet data transmission port, so flow control for a transmission board and a mapping channel in an Ethernet Metropolitan Area transmission equipment cannot be implemented. With the number of boards and logical sub-channels in MAN transmission equipments increasing, congestion probability of board or logical sub-channel also increases. When congestion occurs in boards or logical sub-channels of receiving ends, the data transmission ports of sending ends will not pause data transmission to boards and logical sub-channels, thus leading to breakdown of boards or logical sub-channels, unable to satisfy flow control service requirement of the complicated Ethernet Metropolitan Area transmission equipment.

Summary of the Invention

A flow control method of a MAN transmission equipment is provided in the present invention, in order to further implement flow control on board level and logical sub-channel level on the foundation of traditional Ethernet data transmission port flow control, and make flow control of Ethernet Metropolitan Area transmission equipments more preferable.

The present invention is implemented through the following specific scheme.

A flow control method of MAN transmission equipment, comprises,

detecting whether congestion occurs in a data transmission port of a transmission equipment at a receiving end, if yes, a packet forwarding module feeding back an Ethernet flow control frame to a transmission equipment at a sending end, the transmission equipment at the sending end pausing sending data packets after receiving the Ethernet flow control frame; detecting whether congestion in the data transmission port is over, if yes, the transmission equipment at the sending end continuing to transmit data packets, otherwise the packet forwarding module at the receiving end continuing to feeding back the Ethernet flow control frame to the transmission equipment at the sending end, thereby to establish flow control of the data transmission port;

detecting whether congestion occurs in a board of the data transmission port, if yes, a board mapping module feeding back a board-level flow control frame to the packet forwarding module, the packet forwarding module pausing sending data packets to the board after receiving this board-level flow control frame; detecting whether congestion in the board of the data transmission port is over, if yes, the packet forwarding module continuing to send data packets to the board, otherwise the board mapping module continuing to feed back the board-level flow control frame to the packet forwarding module, thereby to establish flow control of the board;

detecting whether congestion occurs in a logical sub-channels of the board, if yes, the logical sub-channel mapping module feeding back to the packet forwarding module a channel-level flow control frame which is forwarded by the board mapping module, the packet forwarding module pausing sending data packets to the logical sub-channel after receiving this channel-level flow control frame; detecting whether congestion in the logical sub-channel of the board is over, if yes, the packet forwarding module continuing to send data packets to the logical sub-channel, otherwise the logical sub-channel mapping module continuing to feed back the channel-level flow control frame to the packet forwarding module, thereby to establish flow control of the logical sub-channel.

Therein step of detecting whether congestion occurs in a data transmission port of the transmission equipment at the receiving end, comprises, detecting whether data packet quantity in the data transmission port buffer exceeds a predefined maximum threshold;

step of detecting whether congestion in the data transmission port is over, comprises, the packet forwarding module detecting whether data packet quantity in the data transmission port buffer is less than a predefined minimum threshold, or the transmission equipment at the sending end detecting whether a flow control
time in the Ethernet flow control frame is over;

the Ethernet flow control frame is established after the packet forwarding module receives a back pressure signal generated by the data transmission port buffer.

[0009] Next, step of detecting whether congestion occurs in the board of the data transmission port, comprises, detecting whether data packet quantity in the board buffer exceeds a predefined maximum threshold;

step of detecting whether congestion in the board of the data transmission port is over, comprises, detecting whether data packet quantity in the board buffer is less than the predefined minimum threshold;

the board-level frame is established after the board mapping module receives a back pressure signal generated by the board buffer.

[0010] In addition, step of detecting whether congestion occurs in the logical sub-channels of the board, comprises, detecting whether data packet quantity in logical sub-channel buffer exceeds a predefined maximum threshold;

step of detecting whether congestion in the logical sub-channel of the board is over, comprises, detecting whether data packet quantity in the logical sub-channel buffer is less than a predefined minimum threshold.

[0011] Step of the logical sub-channel mapping module feeding back to the packet forwarding module through the board mapping module, comprises,

the logical sub-channel buffer generating a back pressure signal, the logical sub-channel mapping module receiving this back pressure signal to generate the channel-level flow control frame and transparently transmitting to the packet forwarding module through the board mapping module.

[0012] Step of the logical sub-channel mapping module feeding back to the packet forwarding module through the board mapping module, comprises,

the logical sub-channel buffer generating a back pressure signal, the logical sub-channel mapping module receiving this back pressure signal, generating the channel-level flow control frame, the board mapping module combining the channel-level flow control frame with the board-level flow control frame as one board-level flow control frame, then feeding back this combined board-level flow control to the packet forwarding module.

[0013] Preferably, the board-level flow control frame or the channel-level flow control frame is a normal data packet carrying flow control information, or a null frame carrying flow control information.

[0014] Preferably, the board-level flow control frame or the channel-level flow control frame carries flow control information of all boards.

[0015] Preferably, the board-level frame at least sequentially comprises an SOF (Start of Frame), a board number, a logical sub-channel number, flow control information, a payload and an EOF (End of Frame); wherein the flow control information at least comprises 15-bit board congestion information indicator and 1-bit frame type indicator; the board number is 4-bit, the logical sub-channel number is 8-bit.

[0016] Preferably, the channel-level flow control frame at least sequentially comprises an SOF (Start of Frame), a board number, a logical sub-channel number, flow control information, a payload and an EOF (End of Frame); wherein the flow control information at least comprises 14-bit board congestion information indicator and 1-bit current channel congestion information indicator, and 1-bit frame type indicator; board number is 4-bit; the logical sub-channel number is 8-bit.

[0017] In the present invention, by making use of hardware counter pressure mechanism and combing with self-defined flow control frames, through adopting a mode of letting normal data packets carry flow control information or generating null frames carrying flow control information, flow control strategy of MAN transmission equipment is extendedly implemented, so that the flow control strategy of MAN is more preferable, satisfying flow control service requirement of complicated Ethernet Metropolitan Area transmission equipment, with the advantages of simple hardware circuitry, flexible flow control, easy to be updated, etc. Comparing with sheer hardware implementation, the cost is greatly reduced, maintenance of device is enhanced, and real-time quality of congestion control is much better.

Brief Description of the Drawings

[0018] Figure 1 is the general technology scheme of the present invention;

Figure 2 is the format of a 802.3x flow control frame;

Figure 3 is the transmitting state sketch map of flow control operation;

Figure 4 is the sketch map of board-level flow control;

Figure 5a is the message format received by a data transmission port. Figure 5b is the message format when a packet forwarding module performs look-up forwarding. Figure 5c is the format of board-level flow control frame;

Figure 6 is the flow control sketch map of logical sub-channel;

Figure 7 is the format of channel-level flow control frame.

Embodiments of the Invention

[0019] Now, the present invention will be described in detail with reference to the accompanying drawings.

[0020] According to characteristics of the MAN transmission equipment, a flow control method based on "flow control on data transmission port level + board-level flow control + channel-level flow control" is put forward in the present invention.

[0021] With reference to Figure 1, namely the general
technology scheme sketch map of the present invention, thick continuous line denotes data flow transmission and thin continuous line denotes flow control frame transmission. Generally speaking, more than one board is connected with one data transmission port, and one board has more than one logical sub-channels.

When data packets are forwarded to logical sub-channel mapping module 44, if the current data packet quantity in logical sub-channel buffer 45 exceeds a predefined threshold, logical sub-channel mapping module 44 generates a channel-level flow control frame while receiving this back pressure signal, and then this channel-level flow control frame is fed back to packet forwarding module 40, packet forwarding module 40 then transmits this frame to packet forwarding module 40, packet forwarding module 40 stops transmitting data packets while receiving this flow control frame control frame; if the data packets in logical sub-channel buffer 45 are less than a predefined threshold, logical sub-channel buffer 45 generates a hardware back pressure signal XON/OFF, and this signal is transmitted to board mapping module 42 in order to stop executing flow control, and avoiding congestion, establishing flow control based on data transmission ports.

With reference to Figure 2, format of the mentioned 802.3x flow control frame comprises Destination MAC, Source MAC, Type field, Opcode, Slot Time that namely is the flow control time, and packet length, wherein Destination MAC is constant as 0180c2000001, Source MAC is ignored during receiving course and is set as 000000000000 during transmitting course, Type Field is constant as 0x0001, and Slot Time can be set as users like.

With reference to Figure 3, Figure 3 is the transmitting state sketch map of flow control operation. When the sending end receives the 802.3x flow control frame, the sending end changes from a non flow control state to a flow control state. According to the Slot Time in the 802.3x flow control frame, the sending end detects whether to end flow control state; if Slot Time is over, data packets are transmitted; otherwise, a control frame is transmitted. The operation of receiving flow control frame doesn't affect the transmission of current data packets, so that it is guaranteed that there is no data packet loss during flow control course.
transmits the combined board-level flow control frame to packet forwarding module 40, establishing board-level flow control, accordingly implementing the flow control based on "flow control on data transmission port level + board-level flow control + channel-level flow control".

[0028] Further associating the board-level flow control frame and the channel-level flow control frame, the implementing methods of board-level flow control and channel-level flow control are particularly described as follows.

[0029] With reference to both Figure 1 and Figure 4, the thick continuous line in Figure 4 denotes transmission of data stream, and thin continuous line denotes transmission of flow control frame. Packet forwarding module 40 receives data packets from the FE/GE data transmission port, based on the requirement of current transmission service, data packets are forwarded according to data transmission port, users, VLAN (Virtual Local Area Network) or themselves.

[0030] Therein, the data transmission port packet format is shown in Figure 5a, which comprises SOF (Start of Frame), PAYLOAD, and EOF (End of Frame). To guarantee that data packets are trouble-free forwarded to corresponding logical sub-channels, the board numbers and the channel numbers acquired by looking up table are inserted into data packets, thereby to establish a forwarded packet after looking up a table. The forwarded packet after looking up the table is transmitted to the next hierarchy.

[0031] The forwarded packet after looking up the table is shown in Figure 5b, this packet is on the basis of data transmission port packet, further comprising 4-bit board number, 8-bit channel number and 16-bit Rev (reserved word) between SOF and PAYLOAD. When the data packet quantity in board buffer 43 exceeds the predefined threshold, congestion occurs and the hardware back pressure signal XON/OFF is generated, then the logical sub-channel mapping module generates the channel-level flow control frame and transmits this frame to packet forwarding module 40. Since there are many logical sub-channels, it's impossible to denote the congestion states of all channels in flow control information, therefore a flag indicating the congestion situation of current channel is added to the flow control information, companying with the congestion situation of transmission board.

[0032] The board-level flow control frame is as shown in Figure 5c, this frame structure is based on the forwarded packet after looking up the table. The 16-bit reserved word in the forwarded packet after looking up the table is set as 16-bit flow control information comprising 15-bit board congestion indicator A0~A14 and 1-bit frame type indicator B, wherein every bit of A0~A14 denotes the congestion situation of each board, mapping to 15 boards; Value 0 denotes Non-congestion and value 1 denotes Congestion. Type indicator B denotes whether the current frame is a null frame only carrying flow control information, with value 0 denoting normal data packet and value 1 denoting a null frame only carrying flow control information. Since there is the frame type indicator in flow control information, there are two ways for denoting congestion information, one is B=1, generating a null frame carrying flow control information;

another is B=0, flow control information being carried in normal data packets. In order to effectively utilize a bandwidth, the two ways above are both adopted. When congestion occurs and at the same time data packets of transmission board are being transmitted to the FE/GE data transmission port, the way of normal data packet carrying flow control information is adopted; when congestion occurs and at the same time no data packet is being transmitted to FE/GE data transmission port, the way of generating a null frame carrying flow control information is adopted. What's more, in order to better the real-time quality of board flow control, every data packet carries the flow control information of all boards.

[0033] With reference to Figure 6, similar to board flow control, when the data packet quantity in the logical sub-channel-level buffer exceeds the predefined threshold, congestion occurs and the hardware back pressure signal XON/OFF is generated, then the logical sub-channel mapping module generates the channel-level flow control frame and transmits this frame to packet forwarding module 40. Since there are many logical sub-channels, it's impossible to denote the congestion states of all channels in flow control information, therefore a flag indicating the congestion situation of current channel is added to the flow control information, companying with the congestion situation of transmission board.

[0034] Frame structure is shown in Figure 7, the channel-level flow control frame comprises SOF, 4-bit board number information, 8-bit channel number information, 16-bit flow control information, PAYLOAD and EOF. Wherein, flow control information comprises 14-bit board congestion information flag A0~A13, 1-bit congestion information flag C of current channel and 1-bit frame type flag B. This is similar to flow control information in board-level flow control frame, where every bit of A0~A13 denotes congestion information of each board, mapping to 14 boards, B denotes whether the current frame is a null frame only carrying flow control information, and C denotes whether there is congestion in a channel determined by the board number and the channel number.

[0035] Both the board-level flow control and channel-level flow control above are based on hardware counter pressure, adding flow control information to data packets or generating a null frame carrying flow control information, performing flow control to the congested transmission board or logical sub-channel. Then through flow control based on data transmission port level, the standard 802.3x flow control frame is fed back to the upper device, implementing board-level or channel-level flow control.

Claims

1. A flow control method of MAN (Metropolitan Area Network) transmission equipment, comprising, detecting whether congestion occurs in a data
transmission port of a transmission equipment at a receiving end, if yes, a packet forwarding module feeding back an Ethernet flow control frame to a transmission equipment at a sending end, the transmission equipment at the sending end pausing sending data packets after receiving the Ethernet flow control frame; detecting whether congestion in the data transmission port is over, if yes, the transmission equipment at the sending end continuing to transmit data packets, otherwise the packet forwarding module at the receiving end continuing to feeding back the Ethernet flow control frame to the transmission equipment at the sending end, thereby to establish flow control of the data transmission port;

detecting whether congestion occurs on a board of the data transmission port, if yes, a board mapping module feeding back a board-level flow control frame to the packet forwarding module, the packet forwarding module pausing sending data packets to the board after receiving the board-level flow control frame; detecting whether congestion in the board of the data transmission port is over, if yes, the packet forwarding module continuing to send data packets to the board, otherwise the board mapping module continuing to feed back the board-level flow control frame to the packet forwarding module, thereby to establish flow control of the board;

detecting whether congestion occurs in a logical sub-channel of the board, if yes, the logical sub-channel mapping module feeding back to the packet forwarding module a channel-level flow control frame which is forwarded through the board mapping module, the packet forwarding module pausing sending data packets to the logical sub-channel after receiving the channel-level flow control frame; detecting whether congestion in the logical sub-channel of the board is over, if yes, the packet forwarding module continuing to send data packets to the logical sub-channel, otherwise the logical sub-channel mapping module continuing to feed back the channel-level flow control frame to the packet forwarding module, thereby to establish flow control of the logical sub-channel.

2. A flow control method according to Claim 1, wherein,

step of detecting whether congestion occurs in the data transmission port of the transmission equipment at the receiving end, comprises, detecting whether data packet quantity in the data transmission port buffer exceeds a predefined maximum threshold;

step of detecting whether congestion in the data transmission port is over, comprises, the packet forwarding module detecting whether data packet quantity in the data transmission port buffer is less than a predefined minimum threshold, or the transmission equipment at the sending end detecting whether a flow control time in the Ethernet flow control frame is over;

the Ethernet flow control frame is established after the packet forwarding module receives a back pressure signal generated by the data transmission port buffer.

3. A flow control method according to Claim 1, wherein,

step of detecting whether congestion occurs on the board of the data transmission port, comprises, detecting whether data packet quantity in the board buffer exceeds a predefined maximum threshold;

step of detecting whether congestion in the board of the data transmission port is over, comprises, detecting whether data packet quantity in the board buffer is less than the predefined minimum threshold;

the board-level frame is established after the board mapping module receives a back pressure signal generated by the board buffer.

4. A flow control method according to Claim 1, wherein,

step of detecting whether congestion occurs in the logical sub-channels of the board, comprises, detecting whether data packet quantity in logical sub-channel buffer exceeds a predefined maximum threshold;

step of detecting whether congestion in the logical sub-channel of the board is over, comprises, detecting whether data packet quantity in the logical sub-channel buffer is less than a predefined minimum threshold.

5. A flow control method according to Claims 1 or 4, wherein step of the logical sub-channel feeding back to the packet forwarding module, comprises, the logical sub-channel buffer generating a back pressure signal, the logical sub-channel mapping module receiving this back pressure signal, generating the channel-level flow control frame and transparently transmitting to the packet forwarding module through the board mapping module.

6. A flow control method according to Claims 1 or 4, wherein step of the logical sub-channel mapping module feeding back to the packet forwarding module, comprises,

the logical sub-channel buffer generating a back pressure signal, the logical sub-channel mapping module receiving this back pressure signal, generating the channel-level flow control frame, the board mapping module combining the received channel-level flow control frame with the board-lev-
el flow control frame as one board-level flow control frame, then transmitting the combined board-level flow control to the packet forwarding module.

7. A flow control method according to Claim 1, wherein the board-level flow control frame or the channel-level flow control frame is a normal data packet carrying flow control information, or a null frame carrying flow control information.

8. A flow control method according to Claim 1, wherein the board-level flow control frame or the channel-level flow control frame carries flow control information of all boards.

9. A flow control method according to Claim 1, the board-level frame at least sequentially comprises an SOF (Start of Frame), a board number, a logical sub-channel number, flow control information, a payload and an EOF (End of Frame);
 wherein the flow control information at least comprises 15-bit board congestion information indicator and 1-bit frame type indicator; the board number is 4-bit, the logical sub-channel number is 8-bit.

10. A flow control method according to claim 1, the channel-level flow control frame at least sequentially comprises an SOF (Start of Frame), a board number, a logical sub-channel number, flow control information, a payload and an EOF (End of Frame);
 wherein the flow control information at least comprises 14-bit board congestion information indicator and 1-bit current channel congestion information indicator, and 1-bit frame type indicator; the board number is 4-bit; the logical sub-channel number is 8-bit.
Fig. 1

<table>
<thead>
<tr>
<th>0</th>
<th>Destination MAC</th>
<th>Source MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Destination MAC</td>
<td>Source MAC</td>
</tr>
<tr>
<td>2</td>
<td>Source MAC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B h type</td>
<td>Opcode</td>
</tr>
<tr>
<td>4</td>
<td>S ot Time</td>
<td>Payload</td>
</tr>
<tr>
<td>5</td>
<td>Payload</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2
Fig. 3

Fig. 4
Fig. 6

Fig. 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC: H04L12/26
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: H04L12/24 12/26 12/28
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, EPDOC, PAJ, CNPAT, 中国期刊全文数据库

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN1353367 A ((SUAN-N) SUANTONG DIGITAL TECHNOLOGY RES CENT CO) 12 Jun 2002 (12.06.02) See whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>WO0176138 A2 ((IBM) IN BUSINESS MACHINES CORP (IBM) IBM UK LTD) 11. Oct. 2001 (11.10.01) See whole document</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 17 Feb 2004

Date of mailing of the international search report 04.03.2004

Name and mailing address of the ISA/CN
6 Xitucheng Rd., Jixen Bridge, Haidian District, 100088 Beijing, China
Facsimile No. 86-10-62019451

Form PCT/ISA/210 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1353367</td>
<td>12 Jun. 2002</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU4263801 A</td>
<td>15 Oct. 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW488135 B</td>
<td>21 May. 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1269694 A</td>
<td>02 Jan. 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR0109622 A</td>
<td>04 Feb. 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1406424 T</td>
<td>26 Mar. 2003</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (extra sheet) (July 1998)