EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
09.08.2017 Bulletin 2017/32

Application number: 03762224.8

Date of filing: 30.06.2003

THERAPEUTIC AGENT DELIVERY DEVICE AND METHOD

VORRICHTUNG UND VERFAHREN ZUR ABGABE EINES THERAPEUTISCHEN MITTELS
DISPOSITIF ET PROCEDE POUR ADMINISTRER UN AGENT THERAPEUTIQUE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Priority: 28.06.2002 US 392314 P

Date of publication of application:
03.08.2005 Bulletin 2005/31

Proprietor: The Research Foundation of the State University of New York
Amherst, NY 14228-2567 (US)

Inventors:
• FUHRMAN, Bradley, P.
Buffalo, NY 14222 (US)

• DOWHY, Mark, S.
Buffalo, NY 14222 (US)

Representative: Hamer, Christopher K.
Mathys & Squire LLP
The Shard
32 London Bridge Street
London SE1 9SG (GB)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

[0001] The present invention relates to methods and devices for delivering therapeutic agents to a patient's lungs.

Background of the Invention

[0002] A particulate therapeutic agent may be carried by a carrier gas to a patient's lungs to treat the patient. For example, the carrier gas may be oxygen, and the therapeutic agent may be a liquid particulate or solid particulate. Such a mixture may be an aerosol. Such a mixture may be formed by nebulizing a liquid into the carrier gas. This method of administration may be advantageous when the therapeutic agent targets a specific site of action that is readily accessed by inspiration, or when pulmonary uptake of a therapeutic agent from the systemic circulation is suboptimal, or when systemic blood levels of a therapeutic agent are to be minimized. Examples of therapeutic agents that may be administered in this manner include bronchodilators, steroids, antibiotics, mucolytics, DNA-lytic enzymes, and genetic vectors for the treatment of lung disease. For example, antifungal and antiviral agents have been administered as aerosols. Further, chemotherapeutic agents for pulmonary malignancy and a host of pulmonary therapies having potential systemic toxicity or undesirable systemic side effects have been nebulized. Additional therapies may include surfactant administration, perfluorocarbon delivery and liposomal drug administration.

[0003] The respiratory cycle of a human being is comprised of inspiration and expiration. Inspiration accounts for roughly ¼ of the respiratory cycle and expiration accounts for roughly ¾ of the respiratory cycle. If a therapeutic agent is continuously moved past a patient's mouth, roughly ¾ of the therapeutic agent may not be inspired, and therefore may be wasted. Furthermore, the therapeutic agent that is inspired may be only partially taken up by the lung. For certain therapeutic agents, such as surfactant, more than 90% of inspired therapeutic agent may be subsequently expired (rather than retained in the lung) and thus lost in the expired air. This effect may be greatest when the therapeutic mixture has particulates that are especially small, as may be the case when the therapeutic agent has low surface tension (like surfactant and perfluorocarbon) or is a high density liquid (like perfluorocarbons).

[0004] One solution to these inefficiencies of dosing is to rebreathe expired gas, thus renewing the opportunity to take up the therapeutic agent rather than lose it to the environment after expiration. If a "single puff" of the therapeutic agent could be repeatedly rebreathed, ultimate uptake could approach 100%. The same would be true for a "puff" followed by prolonged breath-holding. Repeated rebreathing of the same "puff", or prolonged breath holding may give rise to hypoxia, hypercarbia, discomfort, or may prolong the time required to deliver a requisite dose of the therapeutic agent. Further, a high level of patient cooperation may be required. These problems complicate, if not prevent, use of these approaches to administer a therapeutic agent.

[0005] One solution to these problems involves intermittent dosing, in which the therapeutic agent is provided only during inspiration. This solution offers a significant gain in efficiency over continuous dosing, but is still limited in its usefulness by loss of unabsorbed therapeutic agent to the environment during expiration. This solution may be combined with breath-holding to further reduce expiratory losses, but the breath-holding approach may limit the rate of administration of the therapeutic agent and may require a high level of patient cooperation.

[0006] DE 3742880 discloses a xenon inhalation apparatus using bellows capable of varying its volume for the gas to be stored therein to thereby manage the gas on the basis of both gas volume and gas concentration, avoid wasteful consumption of expensive xenon in preparing a mixed gas and adding xenon and recover the xenon and also using a blower to thereby administer a mixed gas of high precision to a patient without using one-way valves under the same circumstances as those obtained by the use of one-way valves.

[0007] US 4,127,121 discloses a closed system oxygen monitoring device for concurrently introducing, monitoring and controlling anesthesia gas concentration levels. The device comprises a closed, recirculating delivery circuit for administering a present volume of oxygen and anesthesia gas to a surgical patient. An oxygen sensor contained within the closed circuit monitors decreases in oxygen concentration within the recirculatory system and triggers restoration to the present value by means of feedback comparator circuitry. The desired amount of anesthesia gas is present and maintained by a potentiometric monitoring device operative in response to the peak expansion of a respirator bellows contained within the circuit.

[0009] EP 0761249 discloses an anesthetic apparatus with a dosing unit (16) for an anesthetic agent. The dosing unit (16) comprises a plurality of containers, each of which holds a liquid anesthetic agent.

Summary of the Invention

[0011] According to an aspect of the invention, there is provided a particulate therapeutic agent delivery device according to claim 1.

[0012] In a method according to the disclosure, a particulate therapeutic agent is provided to the respiratory system of a patient. A carbon dioxide scrubber may be
provided in pneumatic communication with the respiratory system, and expired gas from the respiratory system may be provided to the scrubber. The expired gas may be passed through the scrubber to provide treated gas, which may be provided to the respiratory system. By such a method, particulate therapeutic agent which was present in the expired gas may be re-breathed by the patient.

Brief Description of the Drawings

[0013] For a fuller understanding of the nature and objects of the invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawings, in which:

- Fig. 1 is a schematic diagram of a therapeutic agent delivery device according to an embodiment of the invention;
- Fig. 2 is a schematic diagram of a therapeutic agent delivery device according to an embodiment of the invention;
- Fig. 3 is a schematic diagram of a therapeutic agent delivery device according to an embodiment of the invention;
- Fig. 4 is a schematic diagram of a therapeutic agent delivery device according to an embodiment of the invention;
- Fig. 5 is a schematic diagram of a therapeutic agent delivery device according to an embodiment of the invention;
- Fig. 6 is a schematic diagram of a therapeutic agent delivery device according to an embodiment of the invention;
- Fig. 7 is a schematic diagram of a therapeutic agent delivery device according to an embodiment of the invention; and
- Fig. 8 is a block diagram of a method according to the invention.

Detailed Description of the Invention

[0014] Figure 1 is a schematic representation of an embodiment of a particulate therapeutic agent delivery device 10 according to the invention. The delivery device 10 has a respiratory-gas channel 13 having a patient end 16 to which a patient may be pneumatically connected. The respiratory-gas channel 13 may include an endotracheal tube that may be inserted into the trachea of a patient.

[0015] The delivery device 10 has a particulate-therapeutic-agent channel 19 in pneumatic communication with the respiratory-gas channel 13. An aerosol generator 28 may be provided in pneumatic communication with the particulate-therapeutic-agent channel 19. The aerosol generator 28 may be a nebulizer, for example, a jet nebulizer or an ultrasonic nebulizer. The respiratory-gas channel 13 may include a mixing chamber 29, which may provide a location for the therapeutic agent to disperse and mix with respiratory gas.

[0016] A scrubber housing 22 is in pneumatic communication with the respiratory-gas channel 13. The scrubber housing 22 includes an electrically conductive material so that an electric charge does not develop, and thereby cause therapeutic agent to collect on the scrubber housing 22. The scrubber housing 22 may have an expired-gas orifice 25, which may be used for receiving expired gas from the respiratory-gas-channel 13. A scrubber material 26 is disposed within the scrubber housing 22. A portion of the scrubber material 26 is illustrated in Figure 1. The scrubber material 26 may be situated within the scrubber housing so as to receive expired gas via the expired-gas orifice 25. The scrubber material 26 may be soda lime. The scrubber material 26 is situated so as to remove carbon dioxide from the expired gas to provide treated gas, and so as to provide the treated gas to the respiratory-gas channel 13.

[0017] Figure 1 shows that the particulate-therapeutic-agent channel 19 may be in pneumatic communication with an agent delivery location 31 on the respiratory-gas channel 13. The agent delivery location 31 may be located such that the general flow of gas from the expired-gas orifice 25 to the patient end 16 passes by the agent delivery location 31. A ventilator 85 may be provided in pneumatic communication with the respiratory gas channel 13. Herein, references to "ventilator" are intended to include devices that provide a force intended to move respiratory gas into a patient via the respiratory gas channel 13. This definition is intended to include devices commonly referred to as a "respirator," as well as devices commonly referred to as a "ventilator." A portion of the ventilator 85, such as a flexible diaphragm or accordion sleeve, may be moved so as to force therapeutic agent in the respiratory-gas-channel 13 into the respiratory system.

[0018] The ventilator 85 may be in pneumatic communication with an expiratory reservoir 52. The expiratory reservoir 52 may serve to provide an area where gas having therapeutic agent may be stored for future inspiration by the patient.

[0020] Figure 2 is a schematic of an embodiment of the delivery device 10 having a first channel 37 from the respiratory-gas channel 13 to the aerosol generator 28, and a second channel 40 from the aerosol generator 28 to the respiratory-gas channel 13. A pump 43 may be provided within this circuit in order to move gas from the respiratory-gas channel 13, through the aerosol generator 28, and back to the respiratory gas channel 13.

[0021] The embodiment of Figure 2 shows an outlet valve 55 at an end of the expiration reservoir 52. The outlet valve 55 may serve to reduce loss of therapeutic agent from the delivery device 10. The outlet valve 55 may be set to release gas during expiration. The outlet valve 55 may be set so as to keep a pressure inside the outlet valve 55 at an end of the expiration reservoir 52. The outlet valve 55 may serve to reduce loss of therapeutic agent into the expiratory reservoir 52. The expiratory reservoir 52 may be set so as to receive expired gas via the expired-gas orifice 25. The expiratory reservoir 52 may be set so as to receive expired gas via the expired-gas orifice 25. The expiratory reservoir 52 may be set so as to receive expired gas via the expired-gas orifice 25.

[0022] Figure 3 is a schematic of another embodiment of the invention.
of a delivery device 10 according to the invention. In this delivery device 10, a bias-gas channel 46 is provided in pneumatic communication with the respiratory-gas channel 13. A bias gas source 49 may supply bias gas via the bias-gas channel 46 to the respiratory-gas channel 13. The bias gas may be intended to maintain the partial pressure of oxygen desired for the patient.

[0023] Figure 4 shows the bias-gas source 49 and the bias-gas channel 46 located in a different location from that shown in Figure 3. The bias-gas channel 46 is shown in pneumatic communication with an expiratory reservoir 52, which may be similar to that described above.

[0024] Figure 5 is a schematic of a delivery device 10 in which the scrubber housing 22 has a treated-gas orifice 73 and the delivery device 10 includes a treated-gas channel 76 situated so as to provide pneumatic communication between the treated-gas orifice 73 and the respiratory-gas channel 13. The area 88 identifies a portion of the device 10 that is referred to as a "circle circuit", so called because there is a pathway along which gas might flow in a circular fashion. An inspiration check valve 79 may be provided in the circle circuit 88, for example near an end of the treated-gas channel 76. The inspiration check valve 79 may be oriented to open during inspiration and close during expiration. The inspiration check valve 79 may be positioned and oriented so as to prevent incompletely scrubbed gas from re-entering the respiratory-gas channel, which might otherwise occur during inspiration, to encourage particulate therapeutic agent in the respiratory-gas channel 13 to flow generally toward the patient end 16 during inspiration, encourage treated gas to flow generally away from the expired-gas orifice 25, prevent expired gas from bypassing the scrubber housing 22 during expiration, or any combination of these.

[0025] An expiration check valve 82 may be provided in the circle circuit 88. The expiration check valve 82 may be oriented to open during expiration and close during inspiration. The expiration check valve 82 may be positioned and oriented so as to prevent incompletely scrubbed gas from re-entering the respiratory-gas channel, which might otherwise occur during inspiration, to encourage particulate therapeutic agent in the respiratory-gas channel 13 to flow generally toward the patient end 16 during inspiration, encourage treated gas to flow generally away from the expired-gas orifice 25, prevent expired gas from bypassing the scrubber housing 22 during expiration, or any combination of these.

[0026] Figures 6 and 7 are schematics of other embodiments of a delivery device 10 according to the invention, which include features previously described herein. In Figures 6 and 7, the scrubber housing 22 is not within the circle circuit 88. In these embodiments, expired gas may enter the scrubber housing 22 via the expired-gas orifice 25 during expiration, and treated gas exits the scrubber housing 22 via the expired-gas orifice 25 during inspiration. Like the delivery device 10 depicted in Figure 5, the delivery devices 10 in Figures 6 and 7 may have the inspiration check valve 79 and the expiration check valve 82 positioned and oriented so as to prevent incompletely scrubbed gas from re-entering the respiratory-gas channel, which might otherwise occur during inspiration, to encourage particulate therapeutic agent in the respiratory-gas channel 13 to flow generally toward the patient end 16 during inspiration, encourage treated gas to flow generally away from the expired-gas orifice 25, or any combination of these.

[0027] In a method according to the disclosure, a particulate therapeutic agent may be delivered. Figure 8 is a block diagram of one such method. In that method, a patient having a respiratory system may be provided 100. A particulate therapeutic agent may be provided 103 to the respiratory system. The therapeutic agent may be provided 103 by nebulizing the therapeutic agent into a gas that is then provided 103 to the respiratory system. A carbon dioxide scrubber may be provided 106 in pneumatic communication with the respiratory system. Expired gas from the respiratory system may be provided 109 to the scrubber, and may be passed 112 through the scrubber to provide treated gas. The treated gas may be thought of as having a lower partial pressure of CO₂ than the expired gas. The treated gas may then be provided 115 to the respiratory system. A ventilator may be provided, and portions of the ventilator may be moved in order to force the therapeutic agent into the respiratory system. The ventilator may or may not be in pneumatic communication with the patient.

[0028] The method may provide a bias flow of elevated oxygen fraction to prevent hypoxia, while maintaining a low rate of bias flow in order to minimize expiratory waste. At a bias (fresh gas) flow of 10% of the normal minute ventilation, it is believed that only about 6% of expiratory flow escapes a circle circuit according to the invention; the remainder is rebreathed. If the particulate therapeutic agent is added during expiration, it is believed that most of the therapeutic agent administered during expiration is inspired during a subsequent breath, thereby eliminating waste of therapeutic agent during the expiration phase. Hypoxia and hypercarbia are averted. No special breathing maneuvers are required, and the patient remains comfortable.

[0029] In a method according to the disclosure, rebreathing therapeutic agent is used to increase the concentration of the therapeutic agent that is delivered to a patient during inspiration, thereby augmenting both delivery and uptake of the therapeutic agent. This should be contrasted with prior art methods in which rebreathing is used merely to conserve volatile agents and gases during anesthesia. In prior art anesthetic applications, the circle circuit anesthetic concentration is regulated to achieve an alveolar gas concentration desired for anesthesia. In such an anesthetic application, lowering the bias flow reduces the quantity of anesthetic agent required for anesthesia, and is not used to raise the concentration of therapeutic agent in order to enhance uptake by the lungs.
The invention should substantially increase the opportunity for pulmonary absorption of a given amount of therapeutic agent, unless the scrubber or rebreathing circuit removes a large amount of therapeutic agent. To assess the extent to which a rebreathing circuit might remove a therapeutic agent administered as a fine particulate aerosol, we measured the rate of loss of cigarette smoke, which is a fine particulate aerosol, from a soda lime circle circuit. We found that only 11% to 13% of particulate smoke was consumed by the circuit in 3 seconds, the approximate duration of one respiratory cycle. Since the rate of removal of a fine particulate aerosol by the rebreather circuit appears to be low, substantial efficiency should be gained by rebreathing particulate therapeutic agents through a carbon dioxide scrubber. In addition, we have found that by administering smoke into a rebreathing circuit, the concentration of smoke in the air delivered to a model lung was increased seven fold.

A method according to the disclosure may require little or no patient cooperation. In theory, a method according to the disclosure may be more efficient than prior art methods of delivering therapeutic agents, and therefore maybe more cost effective. Further, a method according to the disclosure may be used during prolonged dosing of both spontaneously breathing patients and mechanically ventilated patients.

Non-rebreathing aerosol administration is safe for the patient breathing room air. However, the rebreathing method described in this application might not be used safely without an elevated fraction of inspired oxygen. Therefore, the method may be limited to patients having access to oxygen or to oxygen enriched gas mixtures.

Claims

1. A particulate therapeutic agent delivery device comprising:
 - a respiratory-gas channel (13) having a patient end (16) to which a patient may be pneumatically connected;
 - a particulate-therapeutic-agent channel (19) having therein a solid particulate therapeutic agent in pneumatic communication with the respiratory-gas channel;
 - a scrubber housing (22) in pneumatic communication with the respiratory-gas channel, the scrubber housing having an expired-gas orifice (25) for receiving expired gas from the respiratory-gas channel; and
 - a scrubber material (26) situated within the housing so as to receive expired gas comprising the particulate therapeutic agent via the expired-gas orifice and remove carbon dioxide from the expired gas to provide treated gas comprising the particulate therapeutic agent, and situated so as to provide the treated gas to the respiratory-gas channel, and wherein the scrubber housing includes an electrically conductive material.

2. The delivery device of claim 1, wherein the particulate-therapeutic-agent channel is in pneumatic communication with an agent delivery location (31) on the respiratory-gas channel, the agent delivery location being located so that a general flow of gas from the expired-gas orifice to the patient end passes by the agent delivery location.

3. The delivery device of claim 1, further comprising an aerosol generator (28) in pneumatic communication with the particulate-therapeutic-agent channel.

4. The delivery device of claim 1, wherein the aerosol generator is a nebulizer.

5. The delivery device of claim 1, further comprising a first channel (37) from the respiratory-gas channel to the aerosol generator, and a second channel (40) from the aerosol generator to the respiratory-gas channel.

6. The delivery device of claim 1, wherein the scrubber material is soda-lime.

7. The delivery device of claim 1, wherein the scrubber housing has a treated-gas orifice (73), and the delivery device further comprises a treated-gas channel (76) situated so as to provide pneumatic communication between the treated-gas orifice and the respiratory-gas channel, so that gas that has passed through the scrubber housing is delivered to the respiratory-gas channel.

8. The delivery device of claim 1, further comprising a check valve (79,82) positioned and oriented in the delivery device to encourage particulate therapeutic agent in the respiratory-gas channel to flow generally toward the patient end during inspiration.

9. The delivery device of claim 1, further comprising a check valve (79,82) positioned and oriented in the delivery device to prevent expired gas from bypassing the scrubber housing during expiration.

10. The delivery device of claim 1, further comprising a ventilator (85) in pneumatic communication with the respiratory-gas channel.

11. The delivery device of claim 1, further comprising an expiration reservoir (52) in pneumatic communication with the scrubber housing (22) and an outlet valve (55) at an end of the expiration reservoir.
Patentansprüche

1. Vorrichtung zum Zuführen eines partikelförmigen therapeutischen Mittels, die Folgendes umfasst:
 einen Atemgaskanal (13) mit einem Patientenende (16), mit dem ein Patient pneumatisch verbunden werden kann;
 einen Kanal (19) für partikelförmiges therapeutisches Mittel, in dem sich ein festes, partikelförmiges therapeutisches Mittel in pneumatischer Verbindung mit dem Atemgaskanal befindet;
 ein Wäschergehäuse (22) in pneumatischer Verbindung mit dem Abgaskanal, wobei das Wäschergehäuse eine Ausatemgasöffnung (25) zum Aufnehmen von ausgeatmetem Gas von dem Atemgaskanal aufweist; und
 ein Wäschermaterial (26), das sich in dem Gehäuse befindet, um ausgeatmetes Gas, das das partikelförmige therapeutische Mittel umfasst, über die Ausatemgasöffnung aufzunehmen und Kohlendioxid aus dem ausgeatmeten Gas zu entfernen, um behandeltes Gas dem Atemgaskanal zuführen, und wobei das Wäschergehäuse ein elektrisch leitendes Material beinhaltet.

3. Zuführungsvorrichtung nach Anspruch 1, die ferner einen Aerosolgenerator (28) in pneumatischer Verbindung mit dem Kanal für partikelförmiges therapeutisches Mittel umfasst.

4. Zuführungsvorrichtung nach Anspruch 1, wobei der Aerosolgenerator ein Inhaliergerät ist.

5. Zuführungsvorrichtung nach Anspruch 1, die ferner einen ersten Kanal (37) vom Atemgaskanal zum Aerosolgenerator und einen zweiten Kanal (40) vom Aerosolgenerator zum Atemgaskanal umfasst.

6. Zuführungsvorrichtung nach Anspruch 1, wobei das Wäschermaterial Natronkalk ist.

7. Zuführungsvorrichtung nach Anspruch 1, wobei das Wäschergehäuse eine Öffnung (73) für behandeltes Gas hat und die Zuführungsvorrichtung ferner einen Kanal (76) für behandeltes Gas umfasst, so befindlich, dass er eine pneumatische Verbindung zwischen der Öffnung für behandeltes Gas und dem Atemgaskanal bildet, so dass durch das Wäschergehäuse passiertes Gas dem Atemgaskanal zugeführt wird.

8. Zuführungsvorrichtung nach Anspruch 1, die ferner ein Rückschlagventil (79, 82) umfasst, das so in der Zuführungsvorrichtung positioniert und orientiert ist, dass es einen Fluss von partikelförmigem therapeutischem Mittel im Atemgaskanal allgemein in Richtung Patientenende beim Einatmen fördert.

9. Zuführungsvorrichtung nach Anspruch 1, die ferner einen Ventilator (85) in pneumatischer Verbindung mit dem Atemgaskanal umfasst.

10. Zuführungsvorrichtung nach Anspruch 1, die ferner ein Ausatmungsreservoir (52) in pneumatischer Verbindung mit dem Wäschergehäuse (22) und ein Auslassventil (55) an einem Ende des Ausatmungsreservoirs umfasst.

Revendications

1. Dispositif d’administration d’agent thérapeutique particulier comprenant :
 un canal de gaz de respiration (13) ayant une extrémité patient (16) à laquelle un patient peut être connecté de manière pneumatique ;
 un canal d’agent thérapeutique particulier (19) renfermant un agent thérapeutique particulier solide en communication pneumatique avec le canal de gaz de respiration ;
 un bouteille d’épuration (22) en communication pneumatique avec le canal de gaz de respiration, le bouteille d’épuration ayant un orifice de gaz expiré (25) destiné à recevoir un gaz expiré depuis le canal de gaz de respiration ;
 un bouteille d’épuration (26) placé à l’intérieur du bouteille de manière à recevoir le gaz expiré comprenant l’agent thérapeutique particulier par l’intermédiaire de l’orifice de gaz expiré et à éliminer le dioxyde de carbone du gaz expiré pour fournir un gaz traité comprenant l’agent thérapeutique particulier, et placé de manière à fournir le gaz traité au canal de gaz de respiration, et dans lequel le bouteille d’épuration comporte un matériau électriquement conducteur.
2. Dispositif d’administration selon la revendication 1, dans lequel le canal d’agent thérapeutique particulier est en communication pneumatique avec un emplacement d’administration d’agent (31) sur le canal de gaz de respiration, l’emplacement d’administration d’agent étant situé de telle sorte qu’un flux général de gaz depuis l’orifice de gaz expiré vers l’extrémité patient passe par l’emplacement d’administration d’agent.

3. Dispositif d’administration selon la revendication 1, comprenant en outre un générateur d’aérosol (28) en communication pneumatique avec le canal d’agent thérapeutique particulier.

4. Dispositif d’administration selon la revendication 1, dans lequel le générateur d’aérosol est un nébuliseur.

5. Dispositif d’administration selon la revendication 1, comprenant en outre un premier canal (37) allant du canal de gaz de respiration au générateur d’aérosol, et un second canal (40) allant du générateur d’aérosol au canal de gaz de respiration.

6. Dispositif d’administration selon la revendication 1, dans lequel le matériau épurateur est de la chaux sodée.

7. Dispositif d’administration selon la revendication 1, dans lequel le boîtier d’épurateur comporte un orifice de gaz traité (73), et le dispositif d’administration comprend en outre un canal de gaz traité (76) situé de manière à permettre la communication pneumatique entre l’orifice de gaz traité et le canal de gaz de respiration, de telle sorte que le gaz qui est passé par le boîtier d’épurateur soit administré au canal de gaz de respiration.

8. Dispositif d’administration selon la revendication 1, comprenant en outre un clapet anti-retour (79,82) placé et orienté dans le dispositif d’administration pour encourager un agent thérapeutique particulier situé dans le canal de gaz de respiration à s’écouler généralement vers l’extrémité patient durant l’inspiration.

9. Dispositif d’administration selon la revendication 1, comprenant en outre un clapet anti-retour (79,82) placé et orienté dans le dispositif d’administration pour empêcher le gaz expiré de contourner le boîtier d’épurateur durant l’expiration.

10. Dispositif d’administration selon la revendication 1, comprenant en outre un ventilateur (85) en communication pneumatique avec le canal de gaz de respiration.

11. Dispositif d’administration selon la revendication 1, comprenant un réservoir d’expiration (52) en communication pneumatique avec le boîtier d’épurateur (22) et un clapet de sortie (55) à une extrémité du réservoir d’expiration.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• DE 3742880 [0006]
• US 4127121 A [0007]
• EP 0861672 A [0008]

• EP 0761249 A [0009]