NOVEL PHARMACEUTICAL FORMULATIONS OF MODAFINIL

PHARMAZEUTISCHE ZUBEREITUNGEN ENTHALTEND MODAFINIL

NOUVELLES FORMULATIONS PHARMACEUTIQUES DU MODAFINIL

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR
Designated Extension States:
AL LT LV MK

Priority: 13.09.2002 US 243557

Date of publication of application:
27.07.2005 Bulletin 2005/30

Proprietor: CEPHALON, INC.
Frazer, PA 19355 (US)

Inventors:
• CORVARI, Vincent
Carmel, IN 46033 (US)
• GRANDOLFI, George
North Attleboro, Massachusetts 02760 (US)
• PARIKH, Alpa
Avondale, Pennsylvania 19311 (US)

Representative: Mercer, Christopher Paul et al
Carpmaels & Ransford
43, Bloomsbury Square
London WC1A 2RA (GB)

References cited:
WO-A-02/30414
WO-A-02/096401
WO-A-02/20717lbl.pdf [retrieved on 2003-10-29]
WO-A-94/21371
WO-A-20/04024134

• CEPHALON: "Provigil-TM (modafinil) Tablets"
PROVIGIL-TM - FDA APPROVED LABELING
199 8/20717lbl.pdf> [retrieved on 2003-10-29]
• GENNARO A R: "Remigton: The Science and
Practice of Pharmacy" 1995, MACK PUBLISHING
COMPANY, EASTON, PENNSYLVANIA 18042
XP002266457 page 1615-1620

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] The present invention is related to compositions of modafinil and processes for the preparation thereof. The present invention relates to compositions that include modafinil and one or more diluents, disintegrants, binders and lubricants. The present invention further relates to processes for the preparing a solid dosage form of modafinil by wet mixing modafinil and excipients with water.

BACKGROUND OF THE INVENTION

[0002] Modafinil, C₁₅H₁₄N₂O₂S₂, also known as 2-(benzhydrylsulfinyl) acetamide, or 2-[(diphenylmethyl)sulfinyl] acetamide, is a synthetic acetamide derivative with wake-promoting activity, the structure of which has been described in French Patent No. 78 05 510 and in U.S. Patent No. 4,177,290 ('290), and which has been approved by the United States Food and Drug Administration for use in the treatment of excessive daytime sleepiness associated with narcolepsy. Modafinil has been tested for treatment of several behavioral conditions in combination with various agents including apomorphine, amphetamine, reserpine, oxotremorine, hypnolics, yohimbine, 5-hydroxytryptophan, and monoamine oxidase inhibitors, as described in the cited patents. A method of preparation of a racemic mixture is described in the '290 patent and a method of preparation of a levorotatory isomer is described in U.S. Patent No. 4,927,855. The levorotatory isomer is reported to be useful for treatment of hypersomnia, depression, Alzheimer’s disease and to have activity towards the symptoms of dementia and loss of memory, especially in the elderly.

[0003] The primary pharmacologcal activity of modafinil is to promote wakefulness. Modafinil promotes wakefulness in rats (Touret et al., 1995; Edgar and Seidel, 1997), cats (Lin et al., 1992), canines (Shelton et al., 1995) and non-human primates (Hernant et al, 1991) as well as in models mimicking clinical situations, such as sleep apnea English bulldog sleep disordered breathing model (Panceri et al, 1996) and narcolepsy (narcoleptic canine) (Shelton et al, 1995).

[0004] Modafinil has also been described as an agent with activity in the central nervous system, and as a useful agent in the treatment of Parkinson’s disease (U.S. Patent No. 5,180,745); in the protection of cerebral tissue from ischemia (U.S. Patent No. 5,391,576); in the treatment of urinary and fecal incontinence (U.S. Patent No. 5,401,776); and in the treatment of sleep aperes and disorders of central origin (U.S. Patent No. 5,612,379). U.S. Patent No. 5,618,845 describes modafinil preparations of a defined particle size less than about 200 microns. In addition, modafinil may be used in the treatment of eating disorders, or to promote weight gain or stimulate appetite in humans or animals (US Patent Application No. 09/640,824), or in the treatment of attention deficit hyperactivity disorder (ADHD), or fatigue, especially fatigue associated with multiple sclerosis (US Patent No. 6,346,548).

[0005] The FDA approved labeling for "Provigil®" discloses tablets containing 100 or 200 mg of modafinil lactose, corn starch, magnesium silicate, croscarmellose sodium, povidone, magnesium stearate, and t alc.

[0006] WO 94/21371 A discloses a method for preparing particles each of which consists of a carrier forming a matrix, and at least one active ingredient uniformly distributed throughout said matrix.

[0008] WO 02/096401 A relates to compositions of modafinil comprising one or more diluents disintegrants, binders and lubricants, and processes for preparation of these compositions.

[0009] Modafinil was known in the art in the form of a therapeutic package, marketed under the name Provigil®. Provigil® is a pharmaceutical product manufactured by Cephalon, Inc. of West Chester, PA and is also marketed by Cephalon, Inc. Provigil® is supplied as tablets containing 100 mg or 200 mg modafinil, with several excipients, including magnesium silicate and t alc. In commercial use, modafinil-containing therapeutic packages in the prior art were labeled and otherwise indicated for use in narcolepsy patient.

[0010] It is desirable to optimize the formulation of a solid dose form of modafinil and the methods of their preparation on a commercial scale. In particular, new formulations of modafinil have been discovered which exhibit comparable stability, dissolution rate, hardness, inability, thickness, disintegration, size and shape, and weight variation characteristics to that of Provigil®. Further, it has been discovered that solid dose forms of modafinil can be prepared, with properties similar to that of Provigil®, without inclusion of magnesium silicate or talc.

[0011] In addition, the newly discovered formulations preferably use a minimal number of excipients, and use pharmaceutical grade excipients that are inexpensive; readily available and that facilitate cost-effective manufacture on a commercial scale.

[0012] Furthermore, there is a need to improve upon the manufacturing process of the tablet form of modafinil. Improvement in the commercial preparation include minimizing the number of excipients, eliminating the use of organic solvents, reducing the number of steps, and reducing the time and expense of manufacture. The present invention is
The present invention relates to novel compositions of modafinil. In particular, modafinil is admixed with various excipients to formulate a solid dose of modafinil. In certain embodiments, the solid dose is in tablet form, in other embodiments, it is in capsule form.

The compositions comprise about 90% by weight of modafinil; about 3-10% by weight of the composition of a lactose monohydrate diluent, about 2-5% by weight of a cross-linked sodium carboxymethyl cellulose disintegrant; about 2-5% by weight of a polyvinyl pyrrolidone binder; and about 0.2-2.0% by weight of magnesium stearate lubricant.

Other aspects of the present invention include use of these compositions for the treatment of a disease or disorder in a subject in need thereof.

The excipients are selected to ensure the delivery of a consistent amount of modafinil in a convenient unit dosage form and to optimize the cost, ease and reliability of the manufacturing process. An excipients must be inert, organoleptically acceptable, and compatible with modafinil. The excipients used in a solid oral formulation, commonly include fillers or diluents, binders, disintegrants, lubricants, antiadherents, glidants, wetting and surface active agents, colors and pigments, flavoring agents, sweeteners, adsorbents, and taste-maskers.

Diluents are typically added to a small amount of the active drug to increase the size of the tablet. The most common diluent is lactose, which exists in two isomeric forms, alpha-lactose or beta-lactose, and can be either crystalline or amorphous. Various types of lactose include spray dried lactose monohydrate (such as Super-Tab™), alpha-lactose monohydrate (such as Fast Flo®), anhydrous alpha-lactose, anhydrous beta-lactose, and agglomerated lactose. Other diluents include sugars, such as compressible sugar NF, dextrose excipient NF, and dextrates NF. A preferred diluent is lactose monohydrate (such as Fast Flow®). Other preferred diluents include microcrystalline cellulose (such as Avicel® PH, and Ceolus™), and microfine cellulose (such as Elicema®).

Diluents may include starch and starch derivatives. Starches include native starches obtained from wheat, corn, rice and potatoes. Other starches include pregelatinized starch NF, and sodium starch glycolate NF. Starches and starch derivatives also function as disintegrants. Other diluents include inorganic salts, such as dibasic calcium phosphate USP (such as Di-Tab® and Emcompress®), tribasic calcium phosphate NF (such as Tri-Tab® and Tri-Cafos®), and calcium sulfate NF (such as Compactrol®). Such polyols as mannitol USP, sorbitol NF, and xylitol NF may also serve...
as diluents. Many diluents also function as disintegrants and binders, and these additional properties must be taken into account when developing a formulation.

Disintegrants are included in tablet formulations to break the tablets into particles of the active pharmaceutical ingredient and excipients which will facilitate dissolution of the active ingredient and enhance bioavailability of the active ingredient. Starch and starch derivatives, including cross-linked sodium salt of a carboxymethyl ether of starch (such as sodium starch glycolate NF, Explotab®, and Primogel®) are useful disintegrants. A preferred disintegrant is pregelatinized starch, such as Starch 1500®. Another preferred disintegrant is cross-linked sodium carboxymethyl cellulose (such as Croscarmellose Sodium NF, Ac-Di-Sol®). Other disintegrants include cross-linked polyvinylpyrrolidone (such as Crospovidone NF), microcrystalline cellulose (such as Avicel® PH).

Binders are used as a wet granulation excipient to agglomerate the active pharmaceutical ingredient and the other excipients. A binder is selected to improve powder flow and to improve compatibility. Binders include cellulose derivatives such as microcrystalline cellulose NF, methylcellulose USP, carboxymethylcellulose sodium USP, hydroxypropyl methylcellulose USP, hydroxyethyl cellulose NF, and hydroxypropyl cellulose NF. Other binders include polyvinylpyrrolidone, gelatin NF, natural gums (such as acacia, tragacanth, guar, and pectin), starch paste, pregelatinized starch NF, sucrose NF, corn syrup, polyethylene glycols, and sodium alginate, ammonium calcium alginate, magnesium aluminum silicate, polyethylene glycols. A preferred binder is polyvinyl pyrrolidone, in particular; Povidone USP, and preferably, povidone K-90/32.

Lubricants are used in tablet formulation to prevent sticking of the tablet to the punch faces and to reduce friction during the compression stages. Lubricants typically include vegetable oils (such as corn oil), mineral oils, polyethylene glycols (such as PEG-4000 and PEG-6000), salts of stearic acid (such as calcium stearate, magnesium stearate, and sodium stearyl fumarate), mineral salts (such as talc), inorganic salts (such as sodium chloride), organic salts (such as sodium benzoate, sodium acetate, and sodium oleate) and polyvinyl alcohols. A preferred lubricant is magnesium stearate.

Glidants are used in solid dose formulations to improve flow, generally by reducing interparticle friction. Commonly used glidants include microcrystalline cellulose (such as Avicel® PH, and Celuflus®), alkali stearates (such as magnesium stearate or calcium stearate), silicate salts (such as magnesium silicate, magnesium trisilicate, magnesium silicate anhydrous, calcium silicate), starches, mineral salts (such as talc), and colloidal silicon dioxide (such as Cab-O-Sil®, Syloid®, Aerosil®). Glidants can also function as diluents, lubricants, and hardening agents.

Modafinil comprises from about 90% of the composition by weight. The composition comprises a diluent, a lactose monohydrate, from about 3-10% of the composition by weight; a disintegrant, a cross-linked sodium carboxymethyl cellulose, from about 2-5% of the composition by weight; a binder, a polyvinyl pyrrolidone, from about 2-5% of the composition by weight; and a lubricant, magnesium stearate, from about 0.2-2.0% of the composition by weight. In certain more preferred embodiments, the diluent is Lactose Monohydrate, NF, and it can comprise about 3.5% of the composition by weight, and the lubricant is Magnesium Stearate, NF, and it can comprise about 1% of the composition by weight.

In another embodiment, the compositions comprise one or more of a starch, such as corn starch; a lactose monohydrate; a microcrystalline cellulose; a pregelatinized starch; a cross-linked sodium carboxymethyl cellulose; a cross-linked sodium salt of a carboxymethyl ether of starch; a polyvinyl pyrrolidone, a hydroxypropyl methyl cellulose; a silicate salt, such as magnesium silicate; a salt of stearic acid, such as magnesium stearate; and a mineral salt, such as talc.

In an additional embodiment, the compositions comprise a lactose monohydrate, a corn starch, a lactose monohydrate; a microcrystalline cellulose, a pregelatinized starch, a cross-linked sodium carboxymethyl cellulose, a polyvinyl pyrrolidone, and magnesium stearate.

In a further embodiment, the compositions comprise a lactose monohydrate, a microcrystalline cellulose, a pregelatinized starch, a cross-linked sodium carboxymethyl cellulose, a polyvinyl pyrrolidone, and magnesium stearate.

In another embodiment, the compositions comprise a lactose monohydrate, a cross-linked sodium carboxymethyl cellulose, a polyvinyl pyrrolidone, and magnesium stearate.

In certain preferred embodiments, the lactose monohydrate is Lactose Monohydrate, NF, or Fast Flo® #316; the microcrystalline cellulose is Microcrystalline cellulose. NF, or Avicel® PH 102; the pregelatinized starch is pregelatinized Starch, NF, or Starch 1500®; the cross-linked sodium carboxymethyl cellulose is Croscarmellose Sodium, NF, or Ac-Di-Sol®; the polyvinyl pyrrolidone is Povidone K-29/32 or Povidone K90 D, USP and the magnesium stearate is Magnesium Stearate, NF.

In other embodiments, the compositions comprise at least one unit dose of modafinil. In a further embodiment, the compositions comprise one unit dose of modafinil. Preferably the unit dose is in a solid dose form, such as a tablet or capsule, and more preferably is a tablet.

The tablet can include 100 mg of modafinil in a 112 mg tablet, 200 mg of modafinil in a 224 mg tablet, 300 mg of modafinil in a 336 mg tablet, and 400 mg in a 448 mg tablet.

A capsule may also contain 100 mg of modafinil in a 112 mg capsule or 200 mg of modafinil in a 225 mg capsule.
Also described is a process of preparing a solid dosage form of modafinil by wet mixing modafinil and excipients with water, drying and milling the granulated mixture. In certain examples, the final mixture is compressed into a tablet. In other examples, the final mixture is encapsulated. In particular, the process comprises the steps of:

(a) dry blending of modafinil and one or more excipients to form a dry mixture;
(b) wetting the dry mixture with water, preferably with purified water, to form a wet granulation mixture;
(c) drying the wet granulation mixture to form a dried granulation mixture;
(d) milling the dried granulation mixture to form a milled granulation mixture;
(e) mixing a lubricant in the milled granulation mixture to give a final blended mixture;
(f) preparing the final blended mixture in a solid dosage form suitable for oral administration.

In certain preferred examples, the final blended mixture is compressed into tablets. In other preferred examples, the final blended mixture is enclosed in a capsule.

Specifically, in step (a), modafinil is blended with all excipients in the final formulation, other than the lubricant. In particular, modafinil is thoroughly dry blended with the diluent(s), disintegrant(s) and binder to form a uniform dry mixture. Blenders appropriate for large scale dry blending include twin shell blenders, double cone blenders, and ribbon blenders. Ribbon blenders have the advantage of being used in continuous-production procedures. High-speed, high shear mixers may also be used and offer the advantage of shorter mixing times. The dry mixture may also be granulated, milled into a fine powder, passed through a mesh screen, or micronized if necessary. Preferably, the dry blending was performed in high shear granulators.

The resulting dry mixture is then wetted with a wetting agent to form a wet granulation mixture in step (b). The wetting agent is typically added over time, usually from about 1 to about 15 minute, with continuous mixing. Typically, the wetting agent is added to the blender used in the dry blending step. Preferably the wet granulation is carried out in a high shear simulator. In certain examples, the wetting agent is an aqueous-based solution. Preferably, the wetting agent is water without any additional solvents, and in particular, without organic solvents. More preferably, the water is purified water. The type and amount of wetting agent, rate of addition of wetting agent, and the mixing time influences the structure of the granules. The different types of granules, such as pendular, funicular, capillary, etc., can be manipulated to achieve the desired density, porosity, texture and dissolution pattern of the granules, which in turn, determines the compressibility, hardness, disintegration and consolidation characteristics of the dried mixture.

The wet granulation mixture is then dried in step (c) to form a dried granulation mixture with an appropriate moisture content. In certain embodiments, the drying means include a fluid bed or tray dryers. Fluid bed drying yield shorter drying times, in the range from 1 to 3 hours, while tray drying averages 10 to 13 hours. Preferably, the wet granulation mixture is dried in a fluid bed, preferably about 1-3 hours. Fluid bed drying has the added advantages of better temperature control and decreased costs. The method of drying, drying time, and moisture content are critical to avoid decomposition, chemical migration, and other adverse physical characteristics of dried mixture which can affect the dosage form performance.

The dried granulation mixture is subsequently milled in step (d) to form a milled granulation mixture. The particle size of the dried granulation mixture is reduced to achieve an appropriate particle size distribution for the subsequent processes. In certain examples, milling is achieved using a high shear impact mill (such as Fitzpatrick) or a low shear screening mill (such as Comil). The dried granulation mixture may also be screened to select the desired granule size.

In the next step (e), the lubricant was blended with the dried granulation mixture to give a final blended mixture. In certain examples, a V blender or bin blenders are used. A preferred blender is a V-shell PK blender. A gentle blending is preferred, such that each granule covered with the lubricant, while minimizing the breaking up of the granules. Increased breaking of the granules results in fine powder, or “fines”. A high fine content results in variations of weight and density during compression into a tablet, as well as increases the need for cleaning of the compression machinery.

The final blended mixture is then prepared in a solid dosage form suitable for oral administration. Solid dosage forms include tablets, capsules, pills, troches, cachets, and the like. In one example, the final blended mixture is compressed into a tablet. The compression machinery typically contains two steel punches within a steel die cavity. The tablet is formed when pressure is exerted on the dried granulation mixture by the punches in the cavity, or cell. Tabletting machines include single-punch machines, rotary tablet machine, gravity feed, and powder assisted machines. Preferably, gravity feed or powder assisted machines are used. Rotary machines operating at high speeds suitable for large-scale production include double rotary machines and single rotary machines. Tablets can also include sugar-coated tablets, film-coated tablets, enteric-coated tablet, multiple-compressed tablets, controlled-release tablets, tablets for solution, effervescent tablets or buccal and sublingual tablets.

Compressed tablets may be characterized by a number of specifications, including diameter size, shape, thickness, weight, hardness, friability, disintegration time, and dissolution characteristics. The compositions of the current invention preferably have similar properties to that of Provigil®. The tablets preferably have weights, friability and dissolution rates in accordance with USP standards. The preferred hardness and thickness ranges of various sized tablets
In another example, the final blended mixture is enclosed in capsules, preferably hard gelatin capsules. The hard gelatin capsules are commercially available, and are generally made from gelatin, colorants, optionally an opacifying agent such as titanium dioxide, and typically contain 12-16% water. The hard capsules can be prepared by filling the longer end of the capsule with the final blended mixture and slipping a cap over the top using mG2, Zanasi, or Höfliger and Karg (H&K) machines.

Also described is a process of preparing a solid dose form of modafinil by dry mixing modafinil with the excipients. In certain examples, the mixture is compressed into a tablet. In other examples, the mixture is encapsulated. In particular, the process comprises the steps of:

(a) dry blending of modafinil and one or more excipients to form a dry mixture;
(b) mixing a lubricant in the dry mixture to give a final blended mixture;
(c) preparing the final blended mixture in a solid dosage form suitable for oral administration.

In certain preferred examples, the final blended mixture is compressed into tablets. In other preferred examples, the final blended mixture is enclosed in a capsule.

Specifically, in step (a), modafinil is blended with all excipients in the final formulation, other than the lubricant. Preferably, modafinil is thoroughly dry blended with the diluent(s), disintegrant(s) and a binder to form a uniform dry mixture. Blenders appropriate for large scale dry blending include twin shell blenders, double cone blenders, V blenders or bin blenders. A preferred blender is a V-shell PK blender. High-speed, high shear mixers may also be used. The dry mixture may also be granulated, milled into a fine powder, passed through a mesh screen, or micronized, if necessary.

In the next step (b), the lubricant was blended with the dry mixture to give a final blended mixture. In certain embodiments, a V blender or bin blenders are used. A preferred blender is a V-shell PK blender.

The final blended mixture is then prepared in a solid dosage form suitable for oral administration. Solid dosage forms include tablets, capsules, pills, troches, cachets, and the like. In one embodiment, the final blended mixture is compressed into a tablet. In another embodiment, the final blended mixture is enclosed in capsules, preferably hard gelatin capsules.

Other aspects of the invention also include use of these composition for the treatment of a disease or disorder in a subject in need thereof, and the use of these compositions for the manufacture of a medicament for treatment of a disease or disorder in a subject in need thereof. In particular, the present compositions are useful in the treatment of sleepiness, promotion of wakefulness, treatment of Parkinson’s disease, cerebral ischemia, stroke, sleep apneas, eating disorders, stimulation of appetite and weight gain, treatment of attention deficit hyperactivity disorder and fatigue, and improvement of cognitive dysfunction.

Examples

The materials, methods, and examples presented herein are intended to be illustrative, and not to be construed as limiting the scope or content of the invention. Unless otherwise defined, all technical and scientific terms are intended to have their art-recognized meanings.

Reference Example 1: Formation of a 100 mg Modafinil Tablet

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount per tablet (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modafinil</td>
<td>100.0</td>
</tr>
<tr>
<td>Lactose Monohydrate, NP (Fast Flo #316)</td>
<td>71.75</td>
</tr>
</tbody>
</table>
Reference Example 2: Formulation or a 200 mg Modafinil Tablet

[0057]

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount per tablet (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcrystalline Cellulose NF (Avicel PH 102)</td>
<td>26.0</td>
</tr>
<tr>
<td>Pregelatinized Starch, NF (Starch 1500)</td>
<td>27.25</td>
</tr>
<tr>
<td>Povidone K29/32, USP</td>
<td>13.0</td>
</tr>
<tr>
<td>Croscarmellose Sodium, NF (Ac-Di-Sol)</td>
<td>10.0</td>
</tr>
<tr>
<td>Magnesium Stearate, NF</td>
<td>2.0</td>
</tr>
<tr>
<td>Total Tablet Weight</td>
<td>250.0</td>
</tr>
</tbody>
</table>

Reference Example 3: Large Scale Preparation (250 kg) of Modafinil Formulation

Step (a): Dry Mixture

[0058] Pass Modafinil (100.00 kg), Lactose Monohydrate NP (71.75 kg), Pregelatinized Starch NF (27.25 kg), Microcrystalline Cellulose NF (26.00 kg), Croscarmellose Sodium NF (10.00 kg) and Povidone K29/32 USP (13.00 kg) through a #10 mesh screen. Add the screened material to a 600 liter Collette mixer. Mix for 6 minutes at low speed, without a chopper.

Step (b): Wet Granulation Mixture

[0059] To a stainless steel tank, add Purified Water USP (100.00 kg). While mixing the dry mixture at low speed, pump the purified water into the Collette mixer at a rate of 14 kg/min. After the water has been added, continue to mix the wet granulation mixture at low speed and low chopper for 30 additional seconds. Additional mixing, and/or additional water may be required to achieve the desired consistency. Discharge the wet granulation mixture from the Collette bowl into a suitable transport vessel.

Step (c): Drying Wet Granulation Mixture

[0060] Spread the wet granulation evenly, and not to exceed 2 inches in depth, on 2 drying racks lined with 40 lb. Kraft paper. Place the racks in G&G Steam Heated Oven. Dry the wet granulation mixture at 60° C ± 2° C until a L.O.D. of 1.0 - 2.1% is reached.

Step (d): Milling the Dried Granulation Mixture

[0061] Pass the dried granulation mixture through an auger feed Fitz®mill (Model DAS06), with knives forward, at
medium speed, through a 2A screen.

Step (e): Mixing a Lubricant

Add the dried granulation mixture from the previous step to a 20-cubic foot V-shell PK blender (Model C266200). Pass Magnesium Stearate NF (2.00 kg) through a 10-mesh screen into a properly prepared container. Add approximately half of the Magnesium Stearate to each side of the PK blender and blend for 5 minutes.

Step (f): Compression into Tablets

Add the blended granulation mixture form the previous step to a Kikusui tablet press for compression into capsule-shaped tablets. The compression equipment can be outfitted to make tooling for a 100 mg tablet (0.496 x 0.218 inches), a 200 mg tablet (0.625 x 0.275 inches, bisected), 300 mg tablet (0.715 x 0.315 inches) and a 400 mg tablet (0.750 x 0.330 inches).

Alternative Step (f): Filling into capsules

Add the blended granulation mixture form the previous step to H & K 400 machine for filling the appropriate size capsules.

Reference Example 4: Formulation of Modafinil Capsules

Example 1 Formulations of High Dose Modafinil

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modafinil</td>
<td>12.5</td>
</tr>
<tr>
<td>Lactose Monohydrate, NF</td>
<td>99.38</td>
</tr>
<tr>
<td>Povidone K90 D, USP</td>
<td>6.25</td>
</tr>
<tr>
<td>Croscarmellose Sodium, NF (Ac-Di-Sol®)</td>
<td>6.25</td>
</tr>
<tr>
<td>Magnesium Stearate, NF</td>
<td>0.625</td>
</tr>
</tbody>
</table>

| Total Weight | 125.0 |

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount per capsule (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modafinil</td>
<td>12.5 25.0 50.0 100.0 200.0 99.78</td>
</tr>
<tr>
<td>Lactose Monohydrate, NF</td>
<td>99.38 86.88 61.88 11.88 23.75 12.47</td>
</tr>
<tr>
<td>Povidone K90 D, USP</td>
<td>6.25 6.25 6.25 6.25 12.5 6.24</td>
</tr>
<tr>
<td>Croscarmellose Sodium, NF (Ac-Di-Sol®)</td>
<td>6.25</td>
</tr>
<tr>
<td>Magnesium Stearate, NF</td>
<td>0.625 0.625 0.625 0.625 1.25 1.26</td>
</tr>
</tbody>
</table>

| Total Capsule Weight | 125.0 125.0 125.0 125.0 250.0 126.0 |

Example 1 Formulations of High Dose Modafinil

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modafinil</td>
<td>100.0 200.0</td>
</tr>
<tr>
<td>Lactose Monohydrate NF</td>
<td>4.2 8.4</td>
</tr>
<tr>
<td>Povidone K90 D, USP</td>
<td>3.46 6.92</td>
</tr>
<tr>
<td>Croscarmellose Sodium, NF (Ac-Di-Sol®)</td>
<td>3.46 6.92</td>
</tr>
<tr>
<td>Magnesium Stearate, NP</td>
<td>1.12 2.24</td>
</tr>
</tbody>
</table>

| Total Weight | 112.2 224.5 |

Although the present invention has been described in considerable detail, those skilled in the art will appreciate that numerous changes and modifications may be made to the embodiments and preferred embodiments of the invention.
Claims

1. A composition comprising:

 about 90% by weight of the composition of modafinil;
 about 3-10% by weight of the composition of a lactose monohydrate diluent;
 about 2-5% by weight of the composition of a cross-linked sodium carboxymethyl cellulose disintegrant;
 about 2-5% by weight of the composition of a polyvinyl pyrrolidone binder; and
 about 0.2-2.0% by weight of the composition of magnesium stearate lubricant;

 wherein "about" refers to a range of values +/- 10% of a specified value.

2. The composition of claim 1, wherein the lactose monohydrate is Lactose Monohydrate NF; the cross-linked sodium carboxymethyl cellulose is Ac-Di-Sol®; the polyvinyl pyrrolidone is Povidone; and the magnesium stearate is Magnesium Stearate, NF.

3. The composition of claim 1 further comprising one or more of a starch, a microcrystalline cellulose, a pregelatinized starch, a cross-linked sodium salt of a carboxymethyl ether of starch, a hydroxypropyl methyl cellulose, a silicate salt, and a mineral salt.

4. The composition of claim 3 comprising of a corn starch, magnesium silicate, and talc.

5. The composition of claim 3 comprising of a microcrystalline cellulose and a pregelatinized starch.

6. The composition of claim 5, wherein the lactose monohydrate is Lactose Monohydrate, NF, or Fast Flo® #316; the microcrystalline cellulose is Microcrystalline cellulose, NF, or Avicel® PH 102; the pregelatinized starch is Pregelatinized Starch, NF, or Starch 1500®; the cross-linked sodium carboxymethyl cellulose is Croscarmellose Sodium, NF, or Ac-Di-Sol®; the polyvinyl pyrrolidone is Povidone K-29/32 or Povidone K90 D, and the magnesium stearate is Magnesium Stearate, NF.

7. The composition of claim 1, wherein the composition is without magnesium silicate or talc, wherein the components are selected in accordance with the following table:

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modafinil</td>
<td>100.0</td>
</tr>
<tr>
<td>Lactose Monohydrate, NF</td>
<td>4.2</td>
</tr>
<tr>
<td>Povidone K90 D, USP</td>
<td>3.46</td>
</tr>
<tr>
<td>Croscarmellose Sodium, NF (Ac-Di-Sol®)</td>
<td>3.46</td>
</tr>
<tr>
<td>Magnesium Stearate, NF</td>
<td>1.12</td>
</tr>
</tbody>
</table>

8. The composition of claims 1 or 7 wherein modafinil is the levorotatory isomer.

9. The use of a composition of any preceding claim for the manufacture of a medicament for the treatment of sleepiness, Parkinson’s disease, cerebral ischemia, stroke, sleep apneas, eating disorders, attention deficit hyperactivity disorder or fatigue, for stimulation of appetite or weight gain, for promotion of wakefulness, or for improvement of cognitive dysfunction.

10. The use of claim 9 wherein modafinil is the levorotatory isomer.

Patentansprüche

1. Zusammensetzung, umfassend:

 etwa 90 Gew.-% von der Zusammensetzung Modafinil,
etwa 3 bis 10 Gew.-% von der Zusammensetzung ein Lactosemonohydrat- Verdünnungsmittel, etwa 2 bis 5 Gew.-% von der Zusammensetzung ein quervernetztes Natriumcarboxymethylzellulose-Sprengmittel, etwa 2 bis 5 Gew.-% von der Zusammensetzung ein Polyvinylpyrrolidon-Bindemittel, und etwa 0,2 bis 2,0 Gew.-% von der Zusammensetzung ein Magnesiumstearat-Gleitmittel, wobei "etwa" sich auf einen Bereich von Werten +/- 10% eines spezifizierten Wertes bezieht.

2. Zusammensetzung nach Anspruch 1, wobei das Lactosemonohydrat Lactosemonohydrat, NF ist, die quervernetzte Natriumcarboxymethylcellulose Ac-Di-Sol® ist, das Polyvinylpyrrolidon Povidon ist, und das Magnesiumstearat Magnesiumstearat, NF ist.

6. Zusammensetzung nach Anspruch 5, wobei das Lactosemonohydrat Lactosemonohydrat, NF oder Fast Flo® #316 ist, die mikrokristalline Zellulose mikrokristalline Zellulose, NF oder Avicel® PH 102 ist, die vorgelatinierte Stärke vorgelatinierte Stärke, NF oder Starch 1500® ist, die quervernetzte Natriumcarboxymethylcellulose Croscarmellose Natrium, NF oder Ac-Di-Sol® ist, das Polyvinylpyrrolidon Povidon K-29/32 oder Povidon K90 D ist, und das Magnesiumstearat Magnesiumstearat, NF ist.

7. Zusammensetzung nach Anspruch 1, wobei die Zusammensetzung ohne Magnesiumsilikat oder Talk ist, wobei die Bestandteile in Übereinstimmung mit der folgenden Tabelle ausgewählt sind:

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Menge (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modafinil</td>
<td>100,0</td>
</tr>
<tr>
<td>Lactosemonohydrat, NF</td>
<td>4,2</td>
</tr>
<tr>
<td>Povidon K90 D, USP</td>
<td>3,46</td>
</tr>
<tr>
<td>Croscarmellose Natrium, NF (Ac-Di-Sol®)</td>
<td>3,46</td>
</tr>
<tr>
<td>Magnesiumstearat, NF</td>
<td>1,12</td>
</tr>
</tbody>
</table>

8. Zusammensetzung nach Anspruch 1 oder 7, wobei Modafinil das linksdrehende Isomer ist.

10. Verwendung nach Anspruch 9, wobei Modafinil das linksdrehende Isomer ist.

Revendications

1. Composition comprenant:

- environ 90%, en poids de la composition, de modafinil;
- environ 3-10%, en poids de la composition, d’un diluant monohydrate de lactose;
- environ 2-5%, en poids de la composition, d’un déliant carboxymethylcellulose sodique réticulée;
environ 2-5%, en poids de la composition, d’un liant polyvinylpyrrolidone; et environ 0.2-2.0%, en poids de la composition, d’un lubrifiant stéarate de magnésium; où "environ" se réfère à un intervalle de valeurs de ±10% d’une valeur spéciﬁée.

2. Composition selon la revendication 1, dans laquelle le monohydrate de lactose est le Lactose Monohydrate NF; la carboxyméthylcellulose sodique réticulée est l’Ac-Di-Sol®; la polyvinylpyrrolidone est la Povidone; et le stéarate de magnésium est le Magnesium Stearate NF.

3. Composition selon la revendication 1, comprenant en outre un ou plusieurs composants parmi un amidon, une cellulose microcrystalline, un amidon prégélatinisé, un sel de sodium réticulé d’un éther carboxyméthylé d’amidon, une hydroxypropylméthylcellulose, un sel silicate et un sel minéral.

4. Composition selon la revendication 3, qui se compose d’un amidon de maïs, de silicate de magnésium et de talc.

5. Composition selon la revendication 3, qui se compose d’une cellulose microcrystalline et d’un amidon prégélatinisé.

6. Composition selon la revendication 5, dans laquelle le monohydrate de lactose est le Lactose Monohydrate NF, ou Fast Flo® no316; la cellulose microcrystalline est la Microcrystalline cellulose NF, ou Avicel® PH 102; l’amidon prégélatinisé est le Pregelatinized Starch NF, ou Starch 1500®; la carboxyméthylcellulose sodique réticulée est la Croscarmellose Sodium NF, ou Ac-Di-Sol®; la polyvinylpyrrolidone est la Povidone K-29/32 ou la Povidone K90 D; et le stéarate de magnésium est le Magnesium Stearate NF.

7. Composition selon la revendication 1, où la composition est dépourvue de silicate de magnésium ou de talc, où les composants sont choisis conformément au tableau suivant:

<table>
<thead>
<tr>
<th>Composants</th>
<th>Quantité (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modafinil</td>
<td>100,0</td>
</tr>
<tr>
<td>Lactose Monohydrate, NF</td>
<td>4,2</td>
</tr>
<tr>
<td>Povidone K90 D, USP</td>
<td>3,46</td>
</tr>
<tr>
<td>Croscarmellose Sodium, NF (Ac-Di-Sol®)</td>
<td>3,46</td>
</tr>
<tr>
<td>Magnesium Stearate, NF</td>
<td>1,12</td>
</tr>
</tbody>
</table>

8. Composition selon la revendication 1 ou la revendication 7, dans laquelle le modafinil est l’isomère lévogyre.

10. Utilisation selon la revendication 9, où le modafinil est l’isomère lévogyre.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- FR 7805510 [0002]
- US 4177290 A [0002]
- US 4927855 A [0002]
- US 5180745 A [0004]
- US 5391576 A [0004]
- US 5401776 A [0004]
- US 5612379 A [0004]
- US 5618845 A [0004]
- US 09640824 A [0004]
- US 6346548 B [0004]
- WO 9421371 A [0006]
- WO 0230414 A [0007]
- WO 02096401 A [0008]