Date of publication and mention of the grant of the patent: 09.03.2011 Bulletin 2011/10

Application number: 04028836.7

Date of filing: 06.12.2004

Airflow control in heating and air conditioning units
Luftströmungskontrolle in Heizungs- und Klimatisierungsgeräten
Régulation de l’écoulement de l’air dans des unités de chauffage et de climatisation

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR

Priority: 05.12.2003 US 729456

Date of publication of application: 08.06.2005 Bulletin 2005/23

Proprietor: Valeo Climate Control, Corp. Auburn Hills, MI 48326 (US)

Inventors:
• Newman, David
 Lake Orion
 Michigan 48362 (US)

• Marshall, Steven
 Oxford
 Michigan 48371 (US)

• Delplace, Richard
 Livonia
 Michigan 48152 (US)

Representative: Lemaire, Marc
Valeo Climatisation
Service Propriété Industrielle
8 rue Louis Lormand-BP 13
78321 La Verrière Cedex (FR)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] The present invention relates generally to airflow control in heating and air conditioning units, particularly for automotive purposes.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to the field of directing ventilating air and airflow control in a ventilating, heating or air conditioning system. More specifically, the present invention relates to a structure and method to provide airflow mixture via an air mixer structure located within a blend door.

DESCRIPTION OF THE PRIOR ART

[0003] In automotive ventilating systems and in ventilating systems in general, air needs to be directed to desired areas through respective air passageways. The air can be directed via outlet means such as dampers, doors and various mechanisms so the area that the ventilating system designer desires to have the air proceed to is achieved under any selected design conditions. For example, a design may provide for heated or cooled air to pass through an area or zone where it mixes to provide a certain temperature of air based on the area in the passenger compartment of a vehicle to which the air will be finally directed. Many HVAC architectures however, are flawed due to limitations in parts manufacture, tooling and assembly of said parts. Ventilating, heating and air conditioning systems in modern vehicles strive to provide a total interior climate control. Such systems maintain a desired temperature by delivering an appropriate mix of ambient, cooled and heated air to the vehicle interior. Such systems conventionally include an air duct, which is selectively connected to the external air or to the interior of the vehicle cabin, a fan for causing the air to flow, and an evaporator unit within the duct for cooling the air. The cold air output from the evaporator unit may be supplied directly to various outlets within the vehicle cabin or some of the cold air may be passed through a heating heat exchanger whose heated air output is mixed with the cold air to provide temperature control of the air output to the cabin. Division of the cold air through the heat exchanger in some prior art is controlled by a so-called “blend door”, which in one extreme position causes all of the cold air to flow through the heat exchanger and in the opposite extreme position causes none of the air to flow through the heat exchanger. In intermediate positions, different proportions of cold air and heated air can be provided. Blend doors (those that send air to the distribution areas prior to distribution and mode doors that take this air and direct it into the ducts for final distribution in automotive vehicles), can be of many shapes or types. One shape of door in HVAC units can be barrel type doors, i.e. doors that are shaped like a barrel and turn around a central axis to distribute air.

[0004] US Application Publication 2004/0016536A1, Auer et al., January 29, 2004 a simple blend door (34) without any air mixture structure of any kind in the unit, is described.

[0005] In the invention of US Patent 5,988,263, issued November 23, 1999, Schwarz, an air flow mixer structure for a vehicle air conditioning system having a first conduit for a first air flow, a second conduit for a second air flow, an opening between said first and second conduits for merging said first and second air flows in a merging region and a common air channel for said merged air flows wherein the mixer structure is disposed in the first conduit for controlling the first air flow, the mixer structure having an air inlet region and an air outlet region opening into said merging region, the mixer structure comprising plural air passages disposed between said inlet region and said outlet region for dividing an air flow at said inlet region into plural air flows at plural said openings into said merging region is described. In figure 2 of US Patent 5,988,263 the air flow mixer structure is clearly located apart from the blend door feature, provided in a second duct in the air conditioning system, and not as an integrated assembly.

[0006] A further desired goal of such systems is to provide selected desired air mixing at the output of the flow mixture structure. The prior art, therefore, shows that to design a compact HVAC unit architecture, the positioning of the components is critical. These components are typically heater core, evaporator, blend door (s), panel (vent) door and floor door. In addition, as to the HVAC unit, itself prior to distribution through ducts and panel, defrost, or floor doors, prior art designs have had separate air mixing devices and blend door, positioned in series or in line one with another to achieve their desired air flow effects. This positioning leads to increased packaging space needs to achieve their desired end results.

[0007] A prior art HVAC system is shown in Fig. 1. The HVAC system’s core module 12 and air distribution module 30. Ambient outside air or recirculated interior air is directed to air inlet 14 and is subsequently directed through air-conditioning evaporator 16 by the HVAC blower (not shown). After the air exits from evaporator 16 to pass between point 19 and wall 20, part of the air is directed through cool inlet area 22- and part of the air is directed to air inlet 14 and is subsequently directed through air-conditioning evaporator 16 by the HVAC blower. Air mix door 18 is hinged at 17 to pivot there around and the position of air mix door 18 is directly related to the desired air temperature of air to be output to the interior of the vehicle. Thus, to obtain the maximum amount of cool air, air mix door 18 is rotated to maximize the amount of cool air inlet 22. If heated air is desired, air mix door 18 is rotated to create a warm air passage 24 thereby diverting a portion of the air flow exiting from evaporator 16 to flow through heater core 26 and duct
the heated air through heated air inlet 28. An intermediate position of air mix door 18 facilitates a mixture of cool and hot air simultaneously entering air chamber 32 of air distribution module 30 to provide air at a desired temperature.

Air distribution module 30 typically has three designated outlets for delivering the conditioned air to different portions of the vehicle. These outlets are generally referred to as a defrost outlet 36 for delivering air to the interior surface of the windshield, vent outlet 40 for delivering air to the upper portion of the vehicle interior and a heater outlet 44 for delivering air to the foot wells of the vehicle interior. Valves 34, 38 and 42 are selectively positionable in closed, opened or intermediate positions to place the desired HVAC in the desired function. The HVAC system 10 is typically located in the center of the vehicle as are outlets 36, 40 and 44.

In the past, many HVAC systems have been devised wherein multiple chambers exist to provide heated and/or cooled air to different areas of the passenger compartment of the vehicle. A large housing space was thus needed in such systems. Typically, a control means has been used to regulate the positions of the outlet means, such as doors, to let air into mixing chambers where the desired air temperature for the different passenger compartment areas (for example, the front and rear passenger compartments) is achieved.

Doors are often used to allow air entry into multiple chambers, each chamber providing a certain temperature level of air for transport to its associated passenger compartment. This has meant that a front door and a separate ‘rear’ door, with appropriate air channeling mechanism, such as divided walls and the like, was needed to direct the desired temperature air to both the rear and front areas of the passenger compartment. The air flow mixer concept meant that air could reach the hot and cold flow already partially mixed or turbulated. This mixing means that when cold air stream confronts warm air stream, the air intermingles more readily than in traditional systems. However, in the prior art systems, the mixing required a certain amount of space to confront the ‘mixed’ and ‘non-mixed’ air.

As described above, customers demand designs with less and less space required, so modern vehicles packaging requires more and more integration of the architecture. However, designs, including designs with baffles or, in particularly cross flow baffles such as those described in US Application 2003/0201046, October 20, 2003, Perry et al describe, for example, a cross flow distribution door (see fig. 7) separate from any blend door. In current designs, the general design is to have the simple and separate blend door due to the heretofore inability to provide designs with air mixing devices that provided the desired temperature and air mixes necessary in limited spaces before reaching, for example, air distribution areas and eventual distribution through ducts and panel, defrost or floor doors.

The present invention, therefore, solves the space problem while providing excellent volume and temperature of air conditioner in the system, by mounting an air mixer structure or ‘baffle’, and, in particular, a cross flow air mixer structure, allowing direction of or deflection of air flows prior to reaching the distribution area or, cross flow baffle inside a door as opposed to separate from the door as in the prior art, for automotive HVAC units. More specifically by locating the baffle inside the door (baffle/barrel door assembly) it reduces packaging space requirements, allows for the attachment of the baffle while allowing the door to function throughout its range of motion, and provides an easily manufacturable attachment means to locate or incorporate a baffle in a door, while providing for efficient mixing of air in the confined space of the HVAC unit.

Another problem with prior art barrel doors, however, is when they reach critical lengths (for example, when they have a length from point of attachment to point of attachment that that allows a significant amount of air to be directed into the distribution area at one time), they have problems due to increased flexibility. The prior art solution to this problem has been to place a shaft or other sort of similar bridging device to stop the wedges, i.e. the ‘pizza’ like shape of the barrel door, from flexing during assembly and to provide additional stiffness. The problem with such as shaft has often been that it resulted in unacceptable levels of turbulence off the shaft leading to undesirable noises and air flow degradation. Such shaft, additionally, are often not simple to mold, and thus, increase the complexity to manufacture of the door.

OBJECTS OF THE INVENTION

In view of the drawbacks and disadvantages identified in the prior art, it is an object of the present invention to provide a simpler and more reliable mechanism for both mixing and controlling air in HVAC unit. The present invention, particularly in its preferred embodiments, solves the problem of the need for both a separate door and separate air mixer structure or ‘baffle’ within the limited packaging space of modern HVAC units. By providing for a a blend barrel door, incorporating or including an air mixer structure or baffle, the blend barrel door/ baffle arrangement thereby occupying, essentially, the same space in the HVAC unit as the blend barrel alone. The present invention decreases the number of separate elements necessary to provide appropriate mixing of air, as well as simplifying, reducing the space requirements of, and reducing the overall cost of the system.

It is a further object of the present invention to improve the compression and torsion stiffness of a preferable barrel door without the use of a shaft or cross member (whether it be molded in or not).

It is also a further object of the present invention to have an improved assembly process for the blend doors and air mixing devices of HVAC units by aiding in the sealing function. By closability or sealing it is meant prevention of flow past a normally open space. If there is inappro-
priate sealing, unwanted airflow passes, as might occur
where there are areas of undesired torsion or twist.

SUMMARY OF THE INVENTION

[0010] The present invention meets the above needs
by providing an air distribution module for a vehicle heat-
ing, ventilation and air conditioning system wherein said
module mixes hot and cold air streams in a small HVAC
unit space, as well as directs the air in the HVAC unit for
automotive use. The air of the airflow is mixed in the
single chamber prior to distribution to the front and rear
passenger areas of a vehicle interior. The air distribution
module preferably further comprises an evaporator
means and heater means, more preferably an evaporator
or heat core or the like. Preferably, an air distribution
module for a vehicle heating, ventilation and air condi-
tioning system in accordance with the present invention
comprises a housing; a heating means; a cooling or
‘evaporator’ means; a door; a baffle; a first conduit for a
first air flow; a second conduit for a second air flow; an
opening between said first and second conduits for merg-
ing said first and second airflows in a mixing region. The
baffle is located within the door, forming a baffle/blend
doors assembly.

[0011] As stated above, preferably, the air mixer struc-
ture is located within the blend barrel door, when used
in automotive HVAC units. In a preferred mode of operation, the blend barrel door,
would be located downstream of the heater core and
evaporator and would move between air passages for
hot air from the heater core and cold air from the evac-
uator. The axis of the door would be downstream of the
passages that are blocked by the door. Located or incor-
porated within the blend door is an air mixer structure
‘baffle’. The baffle would fit into or occupy space in the
interior of the door, and, preferably, fit into the door in the
space between the triangular sides of the barrel. The
baffle is attached to the housing by means of sliding into
housing surfaces located downstream of the passages
that are blocked by the door. Also preferred is an air dis-
tribution module for a vehicle heating, ventilation and air
conditioning system in accordance with the present in-
vention wherein the barrel door is essentially in the shape
of a ‘slice’ of a hollow cylinder closed on both ends. The
shape has open space between the triangular sides and
fits into the open space that, in the past, was essentially
not used for packaging other components. This invention
presents a solution to this problem by mounting a cross
flow baffle, in the essentially unused space inside a barrel
door. The functions of mixing the hot and cold air paths,
performed by the baffle, and the directing of the mixed
air, performed by the barrel door, are accomplished in
much less packaging volume than if the two components
were not located together or integrated.

In general, because the door must move through an arc
to function and the sides of the door sweep through the
area that would be required to mount an object inside the
doors, the present invention, with its baffle located within
the barrel door, presents the advantage of not requiring
as much packaging volume as is typically allowed in com-
mon HVAC architectures.

Overall, the present invention provides advantages over
the prior art such as easier assembly; good sealing less
torsion over-twist (i.e. poor sealing due to twist door twist
or distorsion due to torque forms within the door in ability
to mold geometric form); ease in manufacture; reduction
of noise overall in the HVAC unit; use of a common ‘door’
(combining the air mixing plus air distribution means) by
a common baffle/barrel door assembly; baffle in-door
technology leading to further competitive advantage due
to compactness in the HVAC design; and allowance of
removal of additional material, such as ‘shafts’ and the
like in typical barrel doors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The features and inventive aspects of the
present invention will become more apparent upon read-
ing the following detailed description, claims, and draw-
ings, of which the following is a brief description:

FIG. 1 is an elevational cross sectional view of an
exemplary prior art HVAC;
FIG. 2 is an elevational cross sectional view of an-
other exemplary prior art HVAC;
FIG. 3 is an elevational cross sectional view of an
exemplary HVAC in accordance with an aspect of the
present invention;
FIG. 4 is a cross sectional view of another exemplary
HVAC in accordance with an aspect of the present
invention, and
FIG. 5 is a cross sectional view of an exemplar
HVAC in accordance with an aspect of the present
invention.

FIG. 6a is a representation of a flat ‘pizza’ door from
isometric and side views as found in the prior art.
FIG.6b is a representation of compound curvature
‘pizza’ door from isometric and side views in accord-
ance with an aspect of the present invention.
FIG.7a and 7b are a prior art barrel door without baf-
ble, used in the prior art, with high stress region shown.
FIG.8 is a blend barrel door, having compound cur-
vature, showing pizza end piece and fixed or variable
fillet and the curvature functions, in accordance with
an aspect of the present invention.
FIG. 9 and 10 are different elevational views of blend/
baffle assemblies, with cross flow baffle and blend
barrel door components illustrated.

DETAILED DESCRIPTION OF THE PREFERRED EM-
BODIMENT

[0013] Preferred embodiments of the air distribution
module for a vehicle heating, ventilation and air condi-

tional system, therefore, comprise a housing; a heating means such as a heater core or the like; an evaporator means such as an evaporator or the like; a door; a baffle; a first conduit for a first air flow; a second conduit for a second air flow; an opening between said first and second conduits for merging said first and second airflows in a mixing region. Preferably the door is a blend door. More preferably the door is functionally described as a blend door, and is in the shape of a barrel ('blend barrel door').

In the preferred embodiments of the present invention, the door has within its area formed by it inner surface (the surface where air passes by before being appropriately distributed to the distribution regions) an air mixture structure, (one type thereof herein defined as a baffle), yielding a baffle is located within the door. Even more preferably the door is a barrel door, and, even more preferably, a blend barrel door (blend door with a barrel shape) and the baffle located or incorporated in the door is a cross flow baffle.

[0014] In preferred embodiments of the present invention, it has been found that by combining or placing or otherwise locating a specific type of air mixing device (a baffle, or, more specifically, a cross flow baffle) within a blend door, and, preferably, a blend barrel door (blend door of barrel shape), this eliminates many of the problems of the prior art. Firstly, the present invention, by forming an assembly of both the door, and particularly, the blend barrel door, with the air mixing device (baffle, or, preferably, a cross flow baffle), the (baffle/blend door assembly) the need for two elements (the air mixing device, and downstream, the blend door) is eliminated. The blend barrel door containing the cross flow baffle, as a baffle/blend door assembly, means that less space is required than would be if they were placed separately in line with one another. Secondly, and surprisingly, the air that comes out of the blend door/baffle assembly, especially when a cross flow baffle is part of the assembly, yields air with the desired characteristics prior to distribution, though counterintuitively one might think that the fact that some of the air was being ‘mixed’ within the door would lead to difficulties in insuring that the air’s final temperature and volume requirements to the distribution area would be met, prior to the final distribution via mode doors and ducts to the interior of the vehicle. A cross flow baffle specifically provide a geometry while allows entry of air into an area or zone from more than one direction or stream and cross through or flow across each other in a controlled manner, and exit the area or zone with predetermined and/or predictable amount of mixing. Also preferred is wherein the baffle/blend door assembly is downstream of the heater means and the evaporator means.

[0015] In even more preferred embodiments of the present invention, the presence of a baffle, and, particularly, a cross flow baffle, within the blend door, and, particularly, in the blend barrel door, have allowed for blend barrel doors that no longer require a shaft or similar device to obtain the stiffness and sealing required. A shaft is no longer required, as in the prior art, to stop the ‘pizzas’ which are holding the ends of the door from flexing in during assembly, or to improve torsion stiffness.

[0016] By providing for a blend barrel door with integrated cross flow baffle, the final result is an increase in overall quietness of the unit, easier manufacturability, and increased overall quality. In the addition, the internal space required is reduced, as the air mixing device and blend door are combined into one assembly or ‘unit’ thus leading to overall savings. The space of importance in the HVAC, prior to the distribution area of the HVAC unit, that was taken up by an air mixing device prior to a door, is reduced, and, by using a barrel door, the space within the barrel door is occupied by the baffle, and, preferentially, the cross flow baffle, allowing the mixing (cross flow) baffle to be positioned in this space to create a very compact overall design.

[0017] In preferred embodiments of the present invention, the cross flow baffle /blend barrel door assembly provides identical, if not better, characteristics, for air arriving at the air distribution area. The cross flow baffle blend/ barrel door assembly can be improved to provide increased stiffness by using two generally perpendicular curved surfaces (compounds, surfaces) blended with a variable fillet at the juncture of the wedges or ‘pizzas’ where the surfaces meet, which support the door ends and the door itself. The compounding of the surfaces and this ‘compound curvature’ gives tremendous geometrical advantage in the stiffness of the part. In these preferred embodiments of the present invention, this is achieved with no extra parts or any specific new or complex features. In preferred embodiments of the present invention, at least one junction exists on each side of the barrel door at the area of the ‘wedges’ of the barrel door. Preferred is that the at least two inner surfaces of the barrel door meet as a compound curvature and that the compound curvature is at a juncture with the wedge of the barrel door. Even more preferred is when the compound surfaces or surfaces with at least two distinct planes of curvature are blended together with a fillet. Even more preferred is when the fillet is a variable fillet.

[0018] The advantage of the stiffness improvement means easier assembly, quieter flow past the door. It allows the door to have a baffle inside it, where normally a large door width will dissuade the insertion of the baffle in the door. Hence the architecture is more compact.

[0019] The area of meeting of two subtly curved or bended surfaces (also referred to a compound curvature or compound surface) minimize stress concentration in the area and hence minimize local strain while stiffness stays high. The variable fillet allows the stresses to be spread throughout the whole region (area plus nearly regions of the door) rather than creation of the classical stress concentration at the edge of the pizzas and the door itself.

[0020] Curvature of the primary surface of the door structure needs to be pronounced (i.e. though subtle to the visual eye, apparent from a structural sense) to im-
The heater core and has an outlet side 32. Of the air conditioning system, on the downstream side flow mixer structure 30 is provided in the second conduit.

[0023] In preferred embodiment of the present invention, by utilizing the geometry available, even subtle changes in the curvature from previous or prior art planar type doors allows for a sturdier baffle/blend door assembly in the HVAC module.

[0022] Referring to FIG. 1, there are a number of air outlets into the vehicle cabin and these outlets are connected to the air duct by a corresponding number of output ducts (two such ducts are shown in FIG. 1). A first upper duct 41 is disposed on the side of the system which will tend to provide cold air and the second lower duct 42 is disposed on the side of the system which will tend to provide hot air. Referring first to FIG. 1, an evaporator unit 1 has an input side 2. Air is urged into the input side 2 of the evaporator 1 by the movement of a vehicle in which the air conditioning system is mounted, or by a fan (not shown). The evaporator 1 is disposed in an air duct 3 and the evaporator has an output side 4 from which emerges cooled air. The output duct 3 extends to a throat 3 and the evaporator has an output side 4 from which emerges cooled air. The output duct 3 extends to a throat portion 5 which co-operates with a blend door 10. The blend door as shown in FIG. 1, is in a central position so defining, with one wall of 11 of the duct 3 a first conduit for cold air flow and, defining with the opposite wall 12 of the duct 3 a second conduit for air which will be heated. The second conduit leads to a heat exchanger core 20 which is supplied with hot water, for example from the engine of the vehicle, and which has an output side from which emerges a flow 21 of heated air. The flow 21 of heated air and a cool air flow 22 from the first conduit come together in a mixing region 24 of the duct 3. Two distribution ducts, 41 and 42 are shown in FIG. 1 and these, as has previously been discussed supply air outlets in different parts of the vehicle cabin, e.g. passenger and driver’s sides.

It would be understood by one skilled in the art that although some mixing of the hot and cold air flows will take place in the mixing region 24, nonetheless the flow resistance caused by the heat exchanger core 20 will substantially reduce the velocity of the hot air and, as a result, on the extreme left of the duct 3, as seen in the direction of flow, the cold air will predominate and, on the extreme right of the duct 3 as seen in the direction of flow, hot air will dominate. Thus distribution duct 41 is more likely to contain cool air and distribution duct 42 is more likely to carry warm air.

[0023] In Figure 2 is illustrated an HVAC system an air flow mixer structure 30 is provided in the second conduit of the air conditioning system, on the downstream side of the heater core. The air flow mixer structure has an inlet side 31, which is supplied in use with hot air from the heater core and has an outlet side 32.

[0024] In Figures 3 and 4, there is illustrated a barrel door 101, essentially in the shape of a ‘slice’ of a hollow cylinder closed on both ends 102,103. The inside surface of each of the ‘triangular’ sides 104,105 has slots 106,107. The slots 106,107 end in semi-circular shape and accept a pin 108,109, and, in particular, a rounded or round pin, designed into the air mixer structure 110 or baffle. The slots locate the baffle with respect to the barrel door.

[0025] In Figures 4 and 5, there is illustrated a barrel door 101 and baffle assembly 110. The assembly is inserted into one side of the housing of the HVAC unit, preferably in a direction parallel to the axis of the barrel door. The housing engages or ‘traps’ the baffle into the slots in the barrel door by means of contacting surfaces 111,112 between the baffle and the housing. The contacting surfaces 111,112 are essentially in a plane parallel to the axis of the barrel door, but normal to the direction of the slot in the baffle. The envisioned structure is that the barrel door 101 would be located downstream of the heater core 113 and evaporator 114 and would move between air passages for hot air from the heater core 113 and cold air from the evaporator 114. The axis 115 of the door 101 would be downstream of the passages that are blocked by the door. The baffle 110 would fit into the door, in the space between the triangular sides of the barrel. The baffle 110 would attach to the housing 116 by means of sliding into housing surfaces 111,112 located downstream of the passages that are blocked by the door.

[0026] Preferably, the barrel door axis 115 is designed with a pin 117 that fits into a hole 119 in the housing. This locates the door, preventing movement in the plane of the slot on the door.

The opposite side of the housing is then placed over the barrel door/baffle to mate with the first side of the housing. This housing also has contacting surfaces to the baffle as described on the first housing. A second pin 118 on the axis of the barrel door fits into a hole 120 on the second housing 121, locating the barrel door along its axis.

In the preferred embodiments, the air mixer baffle is restricted or constrained, more preferably restricted or constrained in all directions and allows the blend barrel door to rotate about its axis.

The air mixer baffle is preferably designed so that it does not interfere with the motion of the barrel door.

[0027] The simplified HVAC unit provides a baffle/blend door assembly comprising an air mixer structure wherein the attachment means of baffle and barrel door is such that it provides for ease of assembly.

[0028] Fig.6a shows prior art flat pizza door in isometric (660a, 660c) and side (660b, 660d) views. Fig. 6b shows compound curved pizza door of the present invention in isometric (650a, 650c) and side (650b, 650d) views, showing curvature. Referring to Fig.7a, a flat barrel door 101(a) with ends or bearings 1012 is illustrated, the side view 1011 showing the pizza shape and torsion shaft with end support.
The preferred embodiment of the present invention has a barrel door assembly that provides for smaller packaging volume with the same functionality as larger HVAC units. The attachment means of baffle and barrel door wherein the assembly can be attached to the housing by means of sliding into housing surfaces (111, 112) located downstream of the conduits that are blocked by the blend barrel door (101).

In most preferred embodiments of the present invention, a baffle/blend door assembly for use in a vehicle heating, ventilation and/or air conditioning system comprises a blend barrel door (101) comprising triangular sides, a cross-flow baffle (110), a first conduit for a first air flow (21), a second conduit for a second air flow (22), an opening between said first and second conduits for merging said first (21) and second (22) airflows in a mixing region (24), characterized in that the cross-flow baffle (110) is fitted into the blend barrel door (101) in a space between the triangular sides (104, 105) of the blend barrel door (101), and in that the cross-flow baffle (110) is attached to the housing (116) by means of sliding into housing surfaces (111, 112) located downstream of the conduits that are blocked by the blend barrel door (101).

Referring to Fig. 7b, flat barrel door without shaft 1014b is shown, with ends of door 1012, and area of high stress A illustrated.

Fig. 8 illustrates fixed or variable area or fillet 1000 and inner surface of the barrel door 1015 showing slight curvature 1016 in the door 1014 and compound curvature in the 'pizza' shaped end 1016. Shared stress area B leads to additional strength and stability.

Fig. 9 and 10 show a blend barrel door 101 as part of baffle/barrel door assembly 119. In Figures 9 and 10, there is illustrated a baffle/barrel door assembly 119 with barrel door 101, essentially in the shape of a 'slice' of a hollow cylinder 102 closed on both ends. The inside surface of each of the 'trigonial' sides 104,105 has slots 106,107. The slots 106,107 end in semi-circular shape and accept a pin 108,109, and, in particular, a rounded or round pin, designed into the air mixer structure 110 or baffle. The slots locate the baffle with respect to the barrel door. Preferably, the barrel door axis is designed with a pin 117 that fits into a hole in the housing. This locates the door, preventing movement in the plane of the slot on the door. Therefore, the baffle/blend door assembly is able to be assembled into the housing by sliding the assembly therein.

As described above, in preferred embodiments of the present invention, the baffle/blend door assembly preferably comprises a barrel door. Also, in preferred embodiments of the present invention, the baffle/blend door assembly comprises a cross-flow baffle. Most preferably, the baffle/blend door assembly is a cross-flow baffle/blend barrel door, i.e. it comprises a cross-flow baffle located inside of a blend barrel door. In the embodiments of the present invention, the baffle, in addition to being found in the door, and, preferably, the barrel door, is attached or functionally fitted into the housing. In more preferred embodiments, the baffle/blend door assembly comprises an attachment means of baffle and barrel door wherein the assembly can be attached to the housing by means of sliding.

In most preferred embodiments of the present invention, a baffle/blend barrel door assembly for use in a vehicle heating, ventilation and/or air conditioning system is found that comprises a blend barrel door with at least two curved inner surfaces, and a cross-flow baffle, wherein the cross-flow baffle is integrated into the blend barrel door and wherein at least two curved inner surfaces form a compound curvature.

The attachment means of baffle and barrel door is such that it provides for ease of assembly. The baffle/barrel door assembly provides for smaller packaging volume with the same functionality as larger HVAC units. The preferred embodiment of the present invention has been disclosed. A person of ordinary skill in the art would realize, however, that certain modifications would come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.
two curved inner surfaces (1015), and a cross flow baffle (110) characterized in that the cross flow baffle (110) is integrated into the blend barrel door (101) and wherein at least two curved inner surfaces (1015) form a compound curvature.

11. A baffle/blend barrel door assembly comprising a blend barrel door (101) and a cross flow baffle (110) characterized in that the cross flow baffle (110) is located inside the blend barrel door (101).

Patentansprüche

1. Luftverteilungsmodul für eine Heizungs-, Lüftungs- und Klimaanlage eines Fahrzeugs, umfassend ein Gehäuse (116), einen Wärmetauscher (113), eine Mischtrömmelblende (101), die dreieckige Seiten umfasst, eine Querstrom-Ablenkplatte (110), eine erste Leitung für einen ersten Luftstrom (21), eine zweite Leitung für einen zweiten Luftstrom (22), eine Öffnung zwischen den ersten und zweiten Leitungen, um die ersten (21) und zweiten (22) Luftströme in einem Mischbereich (24) zusammenzuführen, dadurch gekennzeichnet, dass die Querstrom-Ablenkplatte (110) in die Mischtrömmelblende (101) in einem Zwischenraum zwischen den dreieckigen Seiten (104, 105) der Mischtrömmelblende (101) eingepasst ist, und dass die Querstrom-Ablenkplatte (110) durch Schieben in Gehäuseflächen (111, 112), die sich unterhalb der Leitungen befinden, die durch die Mischtrömmelblende (101) blockiert werden, an dem Gehäuse (116) angebracht ist.

2. Luftverteilungsmodul nach Anspruch 1, wobei mindestens zwei innere Oberflächen (1015) der Mischtrömmelblende (101) als zusammengesetzte Krümmung aufeinander treffen.

3. Luftverteilungsmodul nach Anspruch 2, wobei die zusammengesetzte Krümmung an einer Verbindungsstelle des Kehls der Mischtrömmelblende (101) erfolgt.

4. Luftverteilungsmodul nach Anspruch 3, wobei die Oberflächen, welche die zusammengesetzte Krümmung bilden, mit einer Kehle (1000) ineinander übergehen.

5. Luftverteilungsmodul nach Anspruch 4, wobei die Kehle (1000) eine variable Kehle ist.

7. Luftverteilungsmodul nach Anspruch 6, wobei die Ablenkplatten-/Mischblenden-Anordnung sich unterhalb des Wärmetauschers (113) und eines Verdampfers (114) befindet.

8. Luftverteilungsmodul nach Anspruch 7, wobei die Querstrom-Ablenkplatte (110) in dem Gehäuse (116) angebracht oder funktionsmäßig darin eingepasst ist.

9. Luftverteilungsmodul nach Anspruch 8, wobei die Ablenkplatten-/Mischblenden-Anordnung ein Anbringungsmittel der Querstrom-Ablenkplatte (110) und eine Mischtrömmelblende (101) umfasst, wobei die Anordnung an dem Gehäuse durch Schieben angebracht werden kann.

10. Ablenkplatten-/Mischblenden-Anordnung zur Verwendung in einer Heizungs-, Lüftungs- und/oder Klimaanlage eines Fahrzeugs, umfassend eine Mischtrömmelblende (101) mit mindestens zwei gekrümmten Innenflächen (1015) und eine Querstrom-Ablenkplatte (110), dadurch gekennzeichnet, dass die Querstrom-Ablenkplatte (110) in die Mischtrömmelblende (101) integriert ist, und wobei mindestens zwei gekrümmte Innenflächen (1015) eine zusammengesetzte Krümmung bilden.

11. Ablenkplatten-/Mischblenden-Anordnung, umfassend eine Mischtrömmelblende (101) und eine Querstrom-Ablenkplatte (110), dadurch gekennzeichnet, dass die Querstrom-Ablenkplatte (110) sich in der Mischtrömmelblende (101) befindet.

Revendications

1. Module de répartition d’air pour un système de chauffage, de ventilation et de climatisation de véhicule comprenant un boîtier (116), un faisceau de radiateur (113), une porte cylindrique de mélange (101) comprenant des côtés triangulaires, un déflecteur à débits transversaux (110), un premier conduit pour un premier débit d’air (21), un second conduit pour un second débit d’air (22), une ouverture entre lesdits premier et second conduits pour mélanger lesdits premier (21) et second (22) débits d’air dans une région de mélange (24), caractérisé en ce que le déflecteur à débits transversaux (110) est installé dans la porte cylindrique de mélange (101) dans un espace entre les côtés triangulaires (104, 105) de la porte cylindrique de mélange (101), et en ce que le déflecteur à débits transversaux (110) est fixé au boîtier (116) en coulissant dans des surfaces de boîtier (111, 112) situées en aval des conduits qui sont bloqués par la porte cylindrique de mélange (101).

2. Module de répartition d’air selon la revendication 1,
dans lequel au moins deux surfaces intérieures (1015) de la porte cylindrique de mélange (101) se rencontrent sous forme de courbure composée.

3. Module de répartition d’air selon la revendication 2, dans lequel la courbure composée se produit à une jonction de la partie cunéiforme de la porte cylindrique de mélange (101).

4. Module de répartition d’air selon la revendication 3, dans lequel les surfaces formant la courbure composée sont fusionnées avec un congé (1000).

5. Module de répartition d’air selon la revendication 4, dans lequel le congé (1000) est un congé variable.

6. Module de répartition d’air selon une quelconque des revendications précédentes, dans lequel un ensemble déflecteur/porte de mélange est constitué par le déflecteur à débits transversaux (110) et la porte cylindrique de mélange (101).

7. Module de répartition d’air selon la revendication 6, dans lequel l’ensemble déflecteur/porte de mélange est en aval du faisceau de radiateur (113) et d’un évaporateur (114).

8. Module de répartition d’air selon la revendication 7, dans lequel le déflecteur à débits transversaux (110) est fixé ou fonctionnellement installé dans le boîtier (116).

9. Module de répartition d’air selon la revendication 8, dans lequel l’ensemble déflecteur/porte de mélange comprend un moyen de fixation de déflecteur à débits transversaux (110) et de porte cylindrique de mélange (101), dans lequel l’ensemble peut être fixé au boîtier par coulissement.

10. Ensemble déflecteur/porte cylindrique de mélange destiné à être utilisé dans un système de chauffage, ventilation et/ou climatisation de véhicule comprenant une porte cylindrique de mélange (101) avec au moins deux surfaces intérieures incurvées (1015), et un déflecteur à débits transversaux (110), caractérisé en ce que le déflecteur à débits transversaux (110) est intégré dans la porte cylindrique de mélange (101), et dans lequel au moins deux surfaces intérieures incurvées (1015) forment une courbure composée.

11. Ensemble déflecteur/porte cylindrique de mélange comprenant une porte cylindrique de mélange (101) et un déflecteur à débits transversaux (110), caractérisé en ce que le déflecteur à débits transversaux (110) est situé à l’intérieur de la porte cylindrique de mélange (101).
FIG. 2
Prior art
FIG. 6a
PRIOR ART

FIG. 6b
FIG. 7a

PRIOR ART
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20040016536 A1 [0004]
- US 20030201046 A [0007]
- US 20030201046 A [0007]
- US 5988263 A [0005]