Antenna unit and watch having the antenna unit

In one antenna unit (10), a non-electrically conductive resin layer (36a) is provided on a core portion (36) of electrically conductive material and a winding portion (37) is configured by a coil wound on the layer. The antenna unit is housed in a band attaching portion of a watch case of a watch, and a watch module is housed in the watch case. In another antenna unit, a core portion and a winding portion wound on the core portion are arranged in a cover case (31). Openings (45a) are formed in side walls of the cover case oppositely positioned to each other, and parts (37a) of the outer circumferential surface of the winding portion are arranged in the openings. The winding portion together with the core portion is supported to the inner surface of the cover case by adhesive portions (32) interposed between the cover case and the winding portion.
Description

[0001] The present invention relates to an antenna unit and a watch having the antenna unit.

[0002] An antenna unit for transmitting and receiving a radio wave is provided in an electronic apparatus such as a radio apparatus and a radio controlled watch. One type of conventional antenna unit as described in Japanese Patent Application KOKAI Publication No. 6-350324 includes an antenna main body, which is formed by metal plate having electrical conductivity, such as brass or copper plate, and which is plated with nickel. And, another type of conventional antenna unit includes a core portion, and a winding portion, which is formed by a coil wound on the insulating tape on the core portion.

[0003] When the core portion is formed by material, for example ferrite, having high magnetic permeability and high electrical conductivity, in the latter type of conventional antenna unit, there is a case that an electric current generated in the winding portion when the conventional antenna unit receives radio wave flows in the core portion thereby decreasing radio receiving efficiency of the conventional antenna.

[0004] In order to prevent such a drawback as described above from generating in the latter type of conventional antenna unit, an electrically insulating tape is wound on the core portion and the winding portion is formed by the coil wound on the insulating tape on the core portion. And, the insulating tape electrically insulates the winding portion from the core portion.

[0005] However, since the insulating tape wound on the core portion has a thickness of about 200 µm and makes its diameter being relatively large, the coil wound thereon needs a relatively large length and decreases its direct-current resistance characteristic, etc. In a case that the core portion has flanges for positioning the coil wound on the core portion at both ends, the large diametrical insulating tape and the large diametrical coil needs to make the sizes of each flange increase so that the strength of each flange decreases.

[0006] This invention is derived from the above described circumstances, and an object of this invention is to provide an antenna unit and a watch having the antenna unit, which makes the size thereof being smaller than the conventional ones without deteriorating their performance.

[0007] According to one aspect of the present invention, an antenna unit comprises a core portion formed by material having electrical conductivity, a non-electrically conductive member provided on the core portion, and a winding portion configured by a coil wound on the non-electrically conductive member, and the antenna unit is characterized in that: the non-electrically conductive member is a layer of non-electrically conductive resin provided on the core portion, and the coil of the winding portion is wound on the layer of non-electrically conductive resin on the core portion.

[0008] According to another aspect of the present invention, an antenna unit comprises a core portion and a winding portion wound on the core portion, and the antenna unit is characterized by further comprising: an antenna cover case, which includes side walls opposite-positioned to each other and openings formed in the side walls, and in which the core portion and the winding portion are arranged such that parts of the outer circumferential surface of the winding portion are arranged in the openings of the side walls of the antenna cover case; and a plurality of adhesive portions interposed between the inner surface of the antenna cover case and the outer circumferential surface of the winding portion and supporting the winding portion together with the core portion to the inner surface of the antenna cover case.

[0009] According to further aspect of the present invention, a watch comprises a watch case including a band attaching portion for attaching a band, a watch module housed in the watch case, and an antenna unit housed in the band attaching portion, the antenna unit including a core portion formed by material having electrical conductivity, a non-electrically conductive member provided on the core portion, and a winding portion configured by a coil wound on the non-electrically conductive member, and the watch is characterized in that: the non-electrically conductive member of the antenna unit is a layer of non-electrically conductive resin provided on the core portion; and the coil of the winding portion of the antenna unit is wound on the layer of non-electrically conductive resin on the core portion.

[0010] This summary of the invention does not necessarily describe all necessary features so that the invention may also be a sub-combination of these described features.

[0011] The invention can be more fully understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a vertical sectional view of a wristwatch having an antenna unit according to one embodiment of the present invention;

FIG. 2A is a top view of the antenna unit shown in FIG. 1;

FIG. 2B is a side view of the antenna unit shown in FIG. 2A when the antenna unit is viewed from the right side thereof in FIG. 2A;

FIG. 2C is a front view of the antenna unit shown in FIG. 2A;

FIG. 3 is a bottom view of the antenna unit shown in FIG. 2A;

FIG. 4 is a cross sectional view of the antenna unit taken along a sectional line IV-IV in FIG. 2A;

FIG. 5A is a bottom view of an antenna main body used in the antenna unit shown in FIG. 2A;

FIG. 5B is a side view of the antenna main body shown in FIG. 5A when the antenna main body is viewed from the right side thereof in FIG. 5A;

FIG. 5C is a front view of the antenna main body.
showed in FIG. 5A;
FIG. 6A is a bottom view of a core portion of the antenna main body shown in FIG. 5A;
FIG. 6B is a front view of the core portion shown in FIG. 6A;
FIG. 6C is a side view of the core portion shown in FIG. 6A when the antenna main body is viewed from the right side thereof in FIG. 6A;
FIG. 7A is a top view of a top cover of a cover case used in the antenna unit shown in FIG. 2A;
FIG. 7B is a side view of the top cover shown in FIG. 7A when the top cover is viewed from the right side thereof in FIG. 7A;
FIG. 7C is a front view of the top cover shown in FIG. 7A;
FIG. 7D is a bottom view of the top cover shown in FIG. 7A;
FIG. 8A is a bottom view of a bottom cover of a cover case used in the antenna unit shown in FIG. 2A;
FIG. 8B is a side view of the bottom cover shown in FIG. 8A when the bottom cover is viewed from the right side thereof in FIG. 8A;
FIG. 8C is a rear view of the bottom cover shown in FIG. 8A;
FIG. 8D is a top view of the bottom cover shown in FIG. 8A;
FIG. 9 is a block diagram of a watch module of the wristwatch shown in FIG. 1;
FIG. 10 is a format of a time code including radio wave received by the antenna unit of the wristwatch shown in FIG. 1; and
FIG. 11 is a cross sectional view of an antenna unit according to a modification of the embodiment of the present invention.

[0012] Hereinafter, embodiments of an antenna unit and a watch having the antenna unit, both according to the present invention, will be described in detail.

[0013] In the embodiments, a wristwatch will be explained as an example of the watch.

[a structure of the wristwatch]

[0014] FIG. 1 is a vertical sectional view of the wristwatch 100. As shown in FIG. 1, the wristwatch 100 has a watch case 1. The watch case 1 comprises a case body 2 having a watch module accommodating space 8 in the center portion thereof, a bezel 3 attached on the top surface of the case body 2 to encircle a top opening of the watch module accommodating space 8 in the case body 2, a watch glass 4 fit to the bezel 3 to cover the top opening of the watch module accommodating space 8 in the case body 2, and fastening screws 6 fastening the back cover 5 to the bezel 3 with the case body 2 being sandwiched therebetween. The fastening screws 6 are inserted into holes formed in the peripheral area of the back cover 5, are passed through holes formed in the case body 2 to extend from the back surface to the top surface thereof, and are screwed in blind screw holes formed in the back surface of the bezel 3.

[0015] The case body 2 is made of synthetic resin such as ABS resin, and has an extending portion 9 as a band attaching portion extended outward from the bezel 3. The extending portion 9 has an antenna accommodating space 11 opened to a top surface of the extending portion 9, and an antenna unit 10 is housed in the antenna accommodating space 11. The extending portion 9 further has a pair of holes 9a, into which both ends of a pin for attaching a band to the extending portion 9 are inserted.

[0016] The antenna unit 10 is wrapped by a shock absorbing member 12 such as rubber in the antenna accommodating space 11. The top opening of the antenna accommodating space 11 is covered by an antenna cover panel 13 made of synthetic resin, and the antenna cover panel 13 is attached to the top surface of the extending portion 9.

[0017] A communication path 15 is formed in the case body 2 and the extending portion 9 to communicate the antenna accommodating space 11 in the extending portion 9 with the watch module accommodating space 8 in the case body 2. A flexible circuit board 33 is arranged in the communication path 15 and electrically connects the antenna unit 10 in the antenna accommodating space 11 to the watch module 7 in the watch module accommodating space 8.

[0018] The bezel 3 is made of a metal having high strength, such as stainless steel, to configure a thin ring shape, and a center opening 16 of the bezel 3 corresponds to the top opening of the watch module accommodating space 8 in the case body 2. The bezel 3 is positioned at its predetermined position on the top surface of the case body 2 by fitting the center opening 16 of the bezel 3 on a ring-shaped positioning projection 17 extending along the periphery of the top opening of the watch module accommodating space 8 on the top surface of the case body 2 and projecting outward from the top surface.

[0019] A tape receiving recess 20 is formed in the bottom surface of the bezel 3, and a double-sided adhesive tape 18 having a thickness slightly larger than the depth of the tape receiving recess 20 is received in the tape receiving recess 20. The bezel 3 is adhered to the predetermined position on the top surface of the case body 2 by the double-sided adhesive tape 18.

[0020] An inner flange 16a is formed on the inner circumferential surface of the center opening 16 of the bezel 3 to project over the peripheral area of the top opening of the watch module accommodating space 8, and a step 16b is formed in the peripheral area of the center opening of the bezel 3 on the top surface thereof. A ring-shaped solar panel 19 is placed on the top surface of the inner flange 16a, and the outer peripheral area of
the inner surface of the watch glass 4 is placed on the
top surface of the ring-shaped solar panel 19.

[0021] The outer peripheral area of the top surface of
the watch module 7 in the watch module accommodat-
ing space 8 of the case body 2 is in contact with the back
surface of the inner flange 16a.

[0022] The back cover 5 is made of a metal having high strength, such as stainless steel and titanium, to configure a thin flat plate. A waterproof ring 23 is ar-
ranged in a ring-shaped groove 24 formed in the back
surface of the case body 2 to encircle the back opening
of the watch module accommodating space 8. The back
cover 5 fixed to the bezel 3 by the fastening screws 6 with
the case body 2 being sandwiched therebetween presses the waterproof ring 23 to seal the gap between
the back cover 5 and the back surface of the case body
2.

[A structure of the antenna unit]

[0023] The antenna unit 10 comprises, as shown in
FIGS. 2A to 4, an antenna main body 30, an antenna
cover case 31 containing and protecting the antenna
main body 30 from an external force applied thereto, ad-
hesive portions 32 supporting the antenna main body 30
to the cover case 31, and the flexible circuit board 33
electrically connecting the antenna main body 30 of the
antenna unit 10 to a circuit board (not shown) of the
watch module 7.

[0024] The antenna main body 30 includes a core por-
tion 36 and a winding portion 37 configured by a coil
wound around the core portion 36, as shown in FIGS.
5A to 5C. In this embodiment, the coil is made of copper.

[0025] The core portion 36 has a square-rod-shaped
center portion 38, the cross section of which is substan-
tially rectangular as shown in FIGS. 6A to 6C, and end
pieces 39 provided at both ends of the center portion
38. The center portion 38 and the end pieces 39 are
formed by material having electrical conductivity and
high radio wave receiving sensitivity such as for exa-
ample a ferrite.

[0026] Each of the end pieces 39 has a shape formed
by slanting one side surface of a rectangular parallelep-
diped, and the end pieces 39 are symmetrically ar-
ranged with each other relative to the center portion 38
such that slanted side surfaces 39a thereof are faced
outwardly. The both ends of the center portion 38 are
connected to predetermined positions on the side sur-
fACES of the end pieces 39, the side surfaces facing each
other. And, each of the predetermined positions is posi-
tioned at a center along one of two edges extending be-
tween the slanted side surface 39a and the other side
surface facing oppositely to the slanted side surface 39a
on each of the facing side surfaces.

[0027] A layer 36a of non-electrically conductive resin
such as fluoroplastic is provided on the core portion 36
to the thickness ranging between about 20 µm and
about 30 µm. In this embodiment, the layer 36a is coated
on the core portion 36.

[0028] The winding portion 37 is formed by uniformly
winding the coil on the area of the layer 36a provided
on the square-rod-shaped center portion 38 between
the end pieces 39, and the layer 36a electrically insu-
lates the winding portion 37 from the core portion 36. In
consideration of the above described function of the lay-
er 36a, the layer 36a may be provided on at least the
square-rod-shaped center portion 38 and the facing side
surfaces of the end pieces 39 of the core portion 36.
Further, in the case that the winding portion 37 will not
in contact with the facing side surfaces of the end pieces
39, the layer 36a may be provided only on the square-
rod-shaped center portion 38 of the core portion 36.

[0029] The antenna cover case 31 surrounds both of
the core portion 36 and the winding portion 37 of the
antenna main body 30, and is made of synthetic resin
that allows a radio wave to transmit through it, such as
polybutylene terephthalate (PBT).

[0030] The antenna cover case 31 includes two cov-
ers 31a and 31b detachably coupled to each other. One
cover 31a covers the top side half of the outer peripheral
surface of the antenna main body 30 and is called as a
top cover in the followings. Another cover 31b covers
the back side half of the outer peripheral surface of
the antenna main body 30 and is called as a back cover in
the followings.

[0031] The top cover 31a is shown well in FIGS. 7A
to 7D, and has the inverted and angled U-shape in its
cross section to provide a containing recess 40a for con-
taining the top side half of the outer peripheral surface
of the antenna main body 30. More specifically, the top
cover 31a has a top side wall 43a having the substan-
tially same top projecting shape as that of the top side
half of the outer peripheral surface of the antenna main
body 30. An outside dropping wall 41a is dropped down
from the outside longitudinal edge of the inner surface
of the side wall 43a and an inside dropping wall 42a is
dropped down from the inside longitudinal edge of the
inner surface of the side wall 43a. Each of the longitudi-
inally positioned end areas 44a of the inner surface
of the side wall 43a is configured to have a thickness being
larger than that of the middle area of the inner surface
of the side wall 43a between the longitudinally posi-
tioned end areas 44a thereof.

[0032] A rectangular shaped opening 45a is formed
in the top side wall 43a such that both of the longitudinal
dges thereof extend along the longitudinal direction of
the antenna body 30, and the length of each longitudinal
dege of the rectangular shaped opening 45a is the same
as or longer than the longitudinal length of the winding
portion 37 of the antenna body 30.

[0033] Therefore, when the top cover 31a is placed
on the top side half of the outer peripheral surface of
the antenna main body 30 to contain the top side half of
the outer peripheral surface of the antenna main body 30 in
the containing recess 40a of the top cover 31a and the
longitudinally positioned end areas 44a of the inner sur-
face of the top side wall 43a of the top cover 31a are placed on the top surfaces of the end pieces 39 of the core body 36, the top end part 37a of the outer circumferential surface of the winding portion 37 is arranged in the opening 45a of the top cover 31a so that the top end part 37a of the outer circumferential surface of the winding portion 37 is located in the same plane as that of the outer surface of the top side wall 43a of the top cover 31a.

[0034] Such an opening 45a of the top cover 31a as described above makes the height of the top cover 31a, that is the height of each of the outside and inside dropping walls 41a and 42a, which needs to contain the top side half of the outer peripheral surface of the antenna main body 30 in the containing recess 40a of the top cover 31a, decrease by the size corresponding to the thickness L1 of the bottom side wall 43a of the top cover 31a. The opening 45a further promotes the dispersion of the heat generated by the winding portion 37 from the containing recess 40a of the top cover 31a to the outer space.

[0035] As apparent from FIG. 4, each of the angled parts 31c located in both sides of the opening 45a in the cross section of the top cover 31a has the thickness, which is larger than that of each of the outside and inside dropping walls 41a and 42a and the top side wall 43a, to increase the strength of the top cover 31a.

[0036] The bottom cover 31b is shown well in FIGS. 8A to 8D, and has the angled U-shape in its cross section to provide a containing recess 40b for containing the bottom side half of the outer peripheral surface of the antenna main body 30. More specifically, the bottom cover 31b has a bottom side wall 43b having the substantially same bottom projecting shape as that of the bottom side half of the outer peripheral surface of the antenna main body 30. An outside standing-up wall 41b is stood up from the outside longitudinal edge of the inner surface of the bottom side wall 43b and an inside standing-up wall 42b is stood up from the inside longitudinal edge of the inner surface of the bottom side wall 43b. Each of the longitudinally positioned end areas 44b of the inner surface of the bottom side wall 43b is configured to have the same thickness as that of the middle area of the inner surface of the bottom side wall 43b between the longitudinally positioned end areas 44b therefrom.

[0037] Another rectangular shaped opening 45a is formed in the bottom side wall 43b such that both of the longitudinal edges thereof extend along the longitudinal direction of the antenna body 36, and the length of each longitudinal edge of the rectangular shaped opening 45a is the same as or longer than the longitudinal length of the winding portion 37 of the antenna main body 30a.

[0038] Therefore, when the bottom cover 31b is applied on the bottom side half of the outer peripheral surface of the antenna main body 30 to contain the bottom side half of the outer peripheral surface of the antenna main body 30 in the containing recess 40b of the bottom cover 31b and the longitudinally positioned end areas 44b of the inner surface of the bottom side wall 43b of the bottom cover 31b are fitted on the bottom surfaces of the end pieces 39 of the core body 36, the bottom end part 37a of the outer circumferential surface of the winding portion 37 is arranged in the opening 45b of the bottom cover 31b so that the bottom end part 37a of the outer circumferential surface of the winding portion 37 is located in the same plane as that of the outer surface of the side wall 43b of the bottom cover 31b.

[0039] Such an opening 45b of the bottom cover 31b as described above makes the height of the bottom cover 31b, that is the height of each of the outside and inside standing-up walls 41b and 42b, which needs to contain the bottom side half of the outer peripheral surface of the antenna main body 30 in the containing recess 40b of the bottom cover 31b, decrease by the size corresponding to the thickness L1 of the middle area of the bottom side wall 43b. The opening 45a further promotes the dispersion of the heat generated by the winding portion 37 from the containing recess 40b of the bottom cover 31b to the outside thereof.

[0040] As apparent from FIG. 4, each of the angled parts 31d located in the outside and inside of the opening 45a in the cross section of the bottom cover 31b has the thickness, which is larger than that of each of the inside and outside standing-up walls 41b and 42b and the bottom side wall 43b, to increase the strength of the bottom cover 31b.

[0041] As described above, the antenna cover case 31 of this embodiment includes the rectangular cross section having the four angled parts 31c, 31c, 31d, and 31d and the top and bottom side walls 43a and 43b, one of which is arranged between the two angled parts 31c and 31c, and another of which is arranged between the two angled parts 31d and 31d. The top and bottom side walls 43a and 43b are oppositely positioned to each other, and the openings 45a are formed in the top and bottom side walls 43a and 43b. The top end and bottom end parts 37a of the outer circumferential surface of the winding portion 37 are arranged in the openings 45a. Each of the two angled parts 31c and 31c located in both sides of the openings 45a of the top side wall 43a in the cross section of the antenna cover case 31 has the thickness, which is larger than that of the top side wall 43a. Also, each of the two angled parts 31d and 31d located in both sides of the opening 45a of the bottom side wall 43b in the cross section of the antenna cover case 31 has the thickness, which is larger than that of the bottom side wall 43b.

[0042] However, according to one aspect of the invention, the antenna cover case 31 may include a multi-angular cross section having angled parts and side walls arranged therebetween, openings formed in two side walls oppositely positioned to each other, parts of the outer circumferential surface of the winding portion 37 are arranged in the openings, and each of the angled parts located in both sides of each opening in the cross
section has a thickness, which is larger than that of each of the side walls.

[0043] Each of the adhesive portions 32 is epoxy adhesive. And, in this embodiment, four adhesive portions 32 are arranged at four points on the inside angular position 31c of the inner surface of the top cover 31a such that two of the four points are located at both longitudinal ends of the inner circumferential surface of the case body 31 and the remaining two points are equidistantly located to each other between the both longitudinal ends of the inner circumferential surface of the case body 31 as shown in FIG. 4. As shown in FIG. 2A, the flexible circuit board 33 has an outside end portion 33a attached to one of the both longitudinal ends of the top surface of the top cover 31a, and extends from the one longitudinal end of the top surface of the top cover 31a to the center of the opening 45a in the top cover 31a in the longitudinal direction thereof, and then is bent toward the inner side of the top cover 31a to extend away from the top cover 31a. Two lead lines 47 are formed on the top surface of the flexible circuit board 33 and extend from the outside end portion 33a to the inside end portion 33b.

[0046] The inwardly extended portion of the flexible circuit board 33 extends in the communication path 15 shown in FIG. 1 from the antenna accommodating space 8 in the case body 2, and the inside end portion 33b of the flexible circuit board 33 is connected to a circuit board (not shown) of the watch module 7 so that the ends of the two lead lines 47 positioned at the inside end portion 33b are electrically connected to two terminals of circuit formed on the circuit board (not shown) of the watch module 7.

[0047] Two positioning holes 48 are formed in the outside end portion 33a of the flexible circuit board 33 as shown in FIG. 2A, and the ends of the two lead lines 47 positioned at the outside end portion 33a encircle the two positioning holes 48.

[0048] Two positioning pins 49 are formed on the one of the both longitudinal ends of the top surface of the top cover 31a as shown in FIGS. 2A, 2C, and 7A to 7D, and both ends of the coil of the winding portion 37 are exposed on the two positioning pins 49.

[0049] After the two positioning holes 48 in the outside end portion 33a of the flexible circuit board 33 are fitted on the two positioning pins 49 on the one of the both longitudinal ends of the top surface of the top cover 31a, the both ends of the coil of the winding portion 37 exposed on the two positioning pins 49 are electrically connected to the ends of the two lead lines 47 positioned at the outside end portion 33a and encircling the two positioning holes 48 by solder 47a as shown in FIG. 2C. At the same time, the solder 47a firmly fixes the two positioning holes 48 in the outside end portion 33a of the flexible circuit board 33 to the two positioning pins 49 on the one of the both longitudinal ends of the top surface of the top cover 31a.

[A structure of the watch module 7]

[0050] Now, the structure of the watch module 7 of the wristwatch 100 will be described with reference to FIG. 9. FIG. 22 shows a block diagram of the watch module 7 including a radio wave receiver 70 operating with the antenna unit 10.

[0051] The watch module 7 comprises a CPU 60, an input portion 61, a display portion 62, a ROM 63, a RAM 64, a receiving controller 65, a time code converter 66, a clock circuit 67, and an oscillation circuit 68. The above described components of the watch module 7 excluding the oscillation circuit 68 are connected to a bus 69. The oscillation circuit 68 is connected to the clock circuit 67.

[0052] The CPU 60 reads a predetermined program stored in the ROM 63 at a predetermined timing or according to the predetermined operation signal inputted through the input portion 61, develops the predetermined program in the RAM 64, and transfers instruction or data to each component of the watch module 7 on the basis of the predetermined program. For example, the CPU 60 controls the receiving controller 65 at every predetermined time to execute the receiving operation of the standard time radio wave, and corrects the current time data counted by the clock circuit 67 in accordance with the standard time code shown in FIG. 10 and inputted into the clock circuit 67 from the time code converter 66.

[0053] The input portion 61 has switches or the like for instructing the CPU 60 to execute various functions of the watch module 7. When these switches or the like are operated, the signal corresponding to the operation of these switches or the like is outputted from these switches or the like to the CPU 60.
configured by combining the top cover 31a and the bottom cover 31b with each other, the accommodating of the core portion 36 and winding portion 37 into the antenna cover case 31 is easy.

[0056] The ROM 63 stores system program and application program for operating the watch module 7.

[0057] The RAM 64 is used as a work area of the CPU 60, and temporarily stores the program read from the ROM 63 and the data processed by the CPU 60.

[0058] The radio wave receiver 70 of the watch module 7 of the wrist watch 100 is operated with the antenna unit 10. The radio wave receiver 70 cuts off the unnecessary frequency components of the standard time radio wave received by the antenna unit 10, takes out the necessary frequency components for the standard time, and outputs an electric signal converted from the necessary frequency components to the time code converter 66.

[0059] This embodiment, the layer 36a of non-electrically conductive resin such as fluoroplastic is provided on the surface of the core portion 36 so that the winding portion 37 wound on the core portion 37 is electrically insulated from the core portion 37 by the layer 36a.

[0060] In the antenna unit 10 of this embodiment, the layer 36a of non-electrically conductive resin such as fluoroplastic is provided on the surface of the core portion 36 so that the winding portion 37 wound on the core portion 37 is electrically insulated from the core portion 37 by the layer 36a.

[0061] Thus, the current generated in the winding portion 37 when the winding portion 37 receives a radio wave. The radio wave does not flow in the core portion 36, and the radio wave receiving efficiency of the antenna unit 10 is improved.

[0062] The antenna unit 10 can be also thin. Since the plurality of adhesive portions 32 are interposed between the inner surface of the antenna cover case 31 and the outer circumferential surface of the winding portion 37, the shock impact resistance of the antenna unit 10 can be improved furthermore.

[0067] Since the openings 45a and 45b, each of which has the longitudinal length being larger than that of the winding portion 37, are formed in the side walls opposed to each other in the antenna cover case 31, and further the core portion 36 and the winding portion 37 are accommodated in the antenna cover case 31 such that parts of the outer circumferential surface of the winding portion 37 are arranged in the openings 45a and 45b, the height of the antenna cover case 31 is easy.

[0068] Since the plurality of adhesive portions 32 are interposed between the inner surface of the antenna cover case 31 and the outer circumferential surface of the winding portion 37, and the winding portion 37 together with the core portion 36 to the inner surface of the antenna cover case 31, the difference between the antenna cover case 31 and the winding portion 37 together with the core portion 36 in their deformations such as expansions and contractions caused by the change in temperature and/or humidity is absorbed by the adhesive portions 32 so that the winding portion 37 together with the core portion 36 will not be bent by the difference and the radio wave receiving characteristic will not be deteriorated.

[0069] Since the winding portion 37 of the antenna unit 10 is electrically connected to the watch module 7 by the flexible circuit board 33, the work needed for electrically connecting the winding portion 37 of the antenna unit 10 to the watch module 7 can be easily done.

[0070] Further, since the antenna unit 10 can be thin as described above, the wrist watch 100 using the antenna unit 10 can be also thin.

[0071] The present invention is not limited to the above mentioned embodiment.

[0072] For example, epoxy powder may be applied on the outer surface of the core portion 36 instead of providing the fluoroplastic on the outer surface of the core portion 36. The shape of the antenna cover case 31 may be changed. The antenna cover case 31 may be divided into any number. The positions between the inner surface of the antenna cover case 31 and the outer circumferential surface of the winding portion 37 of the antenna main body 30, at which the adhesive portions 32 are interposed, may be changed. Further, the plurality of adhesive portions 32 may be interposed between the inner surface of the antenna cover case 31 and the outer pe-
An antenna unit (10) comprising a core portion (36) configured to a slender shape, and a winding portion (37) configured to a slender shape, the coil of the winding portion (37) is wound on the core portion (36) along the longitudinal direction of the antenna cover case (31) in the antenna cover case (31), and the size of each opening (45a) in the longitudinal direction is set to be equal to or larger than the size of the winding portion (37) in the longitudinal direction.

The antenna unit (10) according to claim 2, characterized in that the antenna cover case (31) includes a multi-angular cross section having angled parts (31c, 31d) and side walls arranged therebetween, two (43a, 43b) of the side walls oppositely positioned to each other are provided with openings (45a), parts (37a) of the outer circumferential surface of the winding portion (37) are arranged in the openings (45a), and each of the angled parts (31c, 31d) located in both sides of each opening (45a) in the cross section has a thickness, which is larger than that of each of the side walls (43a, 43b).

The antenna unit (10) according to claim 2, characterized by further comprising a plurality of adhesive portions (32) interposed between the inner surface of the antenna cover case (31) and the outer circumferential surface of the winding portion (37) of the antenna main body 30 at any number of predetermined positions as shown in FIG. 11.

Claims

1. An antenna unit (10) comprising a core portion (36) formed by material having electrical conductivity, a non-electrically conductive member provided on the core portion, and a winding portion (37) configured by a coil wound on the non-electrically conductive member, the antenna unit (10) being characterized in that:

 - the non-electrically conductive member is a layer (36a) of non-electrically conductive resin provided on the core portion (36), and
 - the coil of the winding portion (37) is wound on the layer (36a) of non-electrically conductive resin on the core portion (36).

2. The antenna unit (10) according to claim 1, characterized by further comprising an antenna cover case (31) surrounding both of the core portion (36) and the winding portion (37).

3. The antenna unit (10) according to claim 2, characterized in that the antenna cover case (31) includes two covers (31a, 31b) detachably coupled to each other.

4. The antenna unit (10) according to claim 2, char-
of the winding portion (37) and supporting the winding portion (37) together with the core portion (36) to the inner surface of the antenna cover case (31).

9. The antenna unit (10) according to claim 8, characterized by further comprising a layer (36a) of non-electrically conductive resin provided on the core portion (36); and the coil configuring the winding portion (37) is wound on the layer (36a) of non-electrically conductive resin on the core portion (36).

10. A watch (100) comprising a watch case (1) including a band attaching portion (9) for attaching a band, a watch module (7) housed in the watch case (1), and an antenna unit (10) housed in the band attaching portion (9), the antenna unit (10) including a core portion (36) formed by material having electrical conductivity, a non-electrically conductive member provided on the core portion, and a winding portion (37) configured by a coil wound on the non-electrically conductive member, the watch (100) being characterized in that:

the non-electrically conductive member of the antenna unit (10) is a layer (36a) of non-electrically conductive resin provided on the core portion (36), and the coil of the winding portion (37) of the antenna unit (10) is wound on the layer (36a) of non-electrically conductive resin on the core portion (36).

11. The watch (100) according to claim 10, characterized in that the antenna unit (10) further comprises an antenna cover case (31) surrounding both of the core portion (36) and the winding portion (37).

12. The watch (100) according to claim 11, characterized in that the antenna cover case (31) includes two covers (31a, 31b) detachably coupled to each other.

13. The watch (100) according to claim 11, characterized in that the antenna cover case (31) includes a multi-angular cross section having angled parts (31c, 31d) and side walls arranged therebetween, two (43a, 43b) of the side walls oppositely positioned to each other are provided with openings (45a), parts (37a) of the outer circumferential surface of the winding portion (37) are arranged in the openings (45a), and each of the angled parts (31c, 31d) located in both sides of each opening (45a) in the cross section has a thickness, which is larger than that of each of the side walls (43a, 43b).

14. The watch (100) according to claim 11, characterized in that the antenna cover case (31) is configured to a slender shape, the coil of the winding portion (37) is wound on the core portion (36) along the longitudinal direction of the antenna cover case (31) in the antenna cover case (31), and the size of each opening (45a) in the longitudinal direction is set to be equal to or larger than the size of the winding portion (37) in the longitudinal direction.

15. The watch (100) according to claim 11, characterized by further comprising a plurality of adhesive portions (32) interposed between the inner surface of the antenna cover case (31) and the outer circumferential surface of the winding portion (37) and supporting the winding portion (37) together with the core portion (36) to the inner surface of the antenna cover case (31).

16. The watch (100) according to claim 11, characterized by further comprising a flexible circuit board (33) connected to the winding portion (37).
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (Int.Cl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 703 513 A (CITIZEN WATCH CO. LTD) 27 March 1996 (1996-03-27)</td>
<td>1-5,7,9-14,16</td>
<td>H01Q1/27</td>
</tr>
<tr>
<td></td>
<td>* figures 2,4-8 *</td>
<td>6,8,15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 3, paragraph 18 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 4, paragraph 26 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 5, paragraph 33-35 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 6, paragraphs 39,43 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 7, paragraphs 47-49,54 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 8, paragraph 56 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* abstract; figures 3,4 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 2, lines 23-26 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 2003, no. 04, 2 April 2003 (2003-04-02)</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* abstract *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

TECHNICAL FIELD

- SEARCHED (Int.Cl.)
- H01Q
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 04 02 8159

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 23-02-2005. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 69433263 T2</td>
<td>26-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9527928 A1</td>
<td>19-10-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3526874 B2</td>
<td>17-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5696518 A</td>
<td>09-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1347020 A</td>
<td>01-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 490601 B</td>
<td>11-06-2002</td>
</tr>
<tr>
<td>JP 2002372591 A</td>
<td>26-12-2002</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82