Method and apparatus for connecting a headlamp

A lighting method capable of lighting individual light emitting devices in a lighting head connected to a power supply each at a rated current irrespective of the specification of the lighting head by using a power supply of an identical specification, and a lighting apparatus used for the lighting method, the lighting apparatus comprises lighting heads (H₁, H₂, H₃) each having one or more light emitting devices (2) arranged in any optional pattern and comprising a lighting circuit (6) that supplies a current to light emitting devices when an application voltage is at or higher than the lower limit voltage V_Lmin for lighting determined by the arrangement of the light emitting devices, and an identification circuit (7) that outputs a current identification signal in accordance with an appropriate current for the lighting circuit when the application voltage is lower than the lower limit value for lighting, and the power supply comprises a driving power supply (11) that applies a lighting voltage at or higher than the lower limit voltage for lighting, an identification power supply (12) that applies an identification voltage at or lower than the lower limit voltage for lighting, a current setter (13) that sets an appropriate current to be supplied to the lighting circuit (6) based on the current identification signal outputted from the identification circuit, and a lighting current control circuit (14) that keeps the current flowing in the light circuit (6) to an appropriate current in a lighting-up state of the light emitting devices 2 during accordance with the current setting signal.
Description

Background of the Invention

Field of the Invention

[0001] The present invention concerns a lighting method of connecting a lighting head having one or more light emitting devices arranged in an optional pattern to a power supply and lighting up them, a lighting apparatus used for the method and components therefor.

[0002] In a case of connecting a lighting head having a number of light emitting devices, for example, light emitting diodes (hereinafter sometimes referred to as LEDs) to a power supply, the electric power for the power supply is set so as to supply an appropriate current for flowing in a rated current for lighting to individual LEDs from the power supply to the lighting head.

[0003] Recently, a power supply capable of controlling the current in accordance with the number of LEDs so that a rated current can be supplied to respective LEDs even in a case of connecting a lighting head capable of lighting individual LEDs respectively has been proposed (for example, refer to Patent Document 1: JP-A No. 2000-6466).

[0004] However, the power supply described above is adapted to control the current in accordance with the number of LEDs to be lit in a case of connecting a specified lighting head.

In a case of using lighting heads of different specifications, the power supply can not control the current in accordance with specifications.

[0005] That is, lighting heads using lighting devices such as LEDs include versatile types and specifications such as connection methods of LEDs to the power supply circuit (for example, parallel or serial connection), quantity of LEDs used, and ratings of individual LEDs are different on every lighting heads, so that power supplies or current controllers have to be designed and manufactured in accordance with the lighting heads.

[0006] For example, as shown in Fig. 7, in a case where the rated current of individual LEDs 72 attached to a lighting head 71 is specified as 20 mA, it is necessary to supply a current to a power supply circuit 73 at a level of 20 mA, when six LEDs 72, 72 --- are connected in series as shown in Fig. 7(a), at a level of 40 mA when such six LEDs 72, 72 --- are connected in series are further connected in parallel by two rows as in Fig. 7(b), and at a level of 60 mA when such serially connected six LEDs 72, 72 --- are further connected in parallel by three rows as in Fig. 7(c).

In this case, since the resistance characteristic of LEDs 72, 72 --- is not linear, each of the LEDs can not be lit at a rated current even when the driving voltage is controlled, so that current control is conducted in the power supply.

[0007] Accordingly, the power supply has been designed so far such that rated current can be supplied in accordance with the specification of each lighting head 71 and, while current control can be conducted according to the number of LEDs to be lit within a predetermined specification, no appropriate current control can be done for lighting heads of other different specifications.

Accordingly, in a case where a power supply of an identical rating can be used irrespective of different specifications of lighting heads 71, this can greatly save the trouble of designing and manufacturing power supplies and conducting stock control on every individual lighting heads 71 and greatly decrease the manufacturing cost and save the troubles of stock control.

SUMMARY OF THE INVENTION

[0008] In view of the above, the present invention intends to solve the technical subject of lighting individual light emitting devices of a lighting head connected with a power supply each at a rated current by using a power supplying of one identical rating irrespective of different specifications of respective lighting heads.

[0009] The foregoing subject can be attained in accordance with the present invention by a lighting method of connecting a lighting head having one or more light emitting elements arranged in an optional intended pattern to a power supply for lighting, which comprises outputting a current identification signal from the lighting head in accordance with an appropriate current determined by the arrangement of the light emitting devices during non lighting-up state of the light emitting devices and setting an appropriate current to be supplied to a lighting circuit based on an appropriate current identification signal and keeping the current flowing to the lighting circuit to an appropriate level by a lighting current control circuit during a lighting-up state of the light emitting devices.

[0010] The method of the present invention described above can be conducted by a lighting apparatus in accordance with the invention comprising;

- a lighting head having a lighting circuit that supplies a current to light emitting devices when an application voltage is at or higher than a lower limit voltage for lighting determined by the arrangement of the light emitting devices, and
- an identification circuit that outputs a current identification signal in accordance with an appropriate current for the lighting circuit in a case when the application voltage is lower than the lower limit voltage for lighting,

- a power supply having a driving power supply that applies a lighting voltage at or higher than the lower limit voltage for lighting to the lighting circuit during a lighting-up state of the light emitting devices,
- an identification power supply that applies an identification voltage lower than the lower limit voltage for lighting to the identification circuit during a non light-
Accordingly, this can provide an effect capable of maintaining the current supplied from the power supply to the lighting circuit to an appropriate current by the lighting current control circuit during the lighting state of the light emitting devices and capable of lighting-up individual lighting devices each at a rated current irrespective of the specification of the lighting head.

DESCRIPTION OF THE ACCOMPANYING DRAWINGS

[0014] Preferred embodiments of the present invention will be described in details based on the drawings, wherein

Fig. 1 is a circuit diagram showing an example of a lighting apparatus according to the present invention;
Fig. 2 is a table showing a relation between appropriate current and identification resistance;
Fig. 3 is a circuit diagram showing another embodiment of the invention;
Fig. 4 is a table showing a relation between appropriate current and identification resistance;
Fig. 5 is a circuit diagram showing a further embodiment of the invention;
Fig. 6 is a table showing a relation between appropriate current and identification code; and
Fig. 7(a) is an explanatory view showing an existent lighting head with LEDs connected in series, Fig. 7(b) is showing an existent lighting head with LEDs connected in parallel by two rows, Fig. 7(c) is showing an existent lighting head with LEDs connected in parallel by three rows.

DESCRIPTION OF PREFERRED EMBODIMENTS

[0015] The purpose of lighting-up individual light emitting devices connected to a lighting circuit each at a rated current irrespective of the specification of the lighting head has been attained by outputting a current identification signal in accordance with an appropriate current from the lighting head during non lighting-up state of light emitting devices.

[0016] Fig. 1 is a circuit diagram showing an example of a lighting apparatus according to the present invention, Fig. 2 is a table showing a relation between appropriate current and identification code, and Fig. 3 is a circuit diagram showing another embodiment of the invention.

[Example 1]

[0017] In a lighting apparatus 1 shown in Fig. 1, each of lighting heads H₁ to H₃ in which one or more LEDs (light emitting device) 2, 2 --- are arranged in an optional intended pattern is connected with a power supply B.

Each of the lighting heads H₁ to H₃ has a lighting
circuit 6 for connecting one or more LEDs (light emitting devices) 2, 2 --- to a power supply circuit 5 connected with power supply terminals 3, 4 of a power supply B, and an identification circuit 7 outputs a current identification signals in accordance with an appropriate current of the lighting circuit 6, the light circuit 6 and the identification circuit 7 being connected in parallel with each other.

[0018] The number and the way of connection of LEDs 2, 2 --- connected in the lighting circuit 6 are different on every lighting heads H1 to H3. That is, LED 2, 2 --- with a rated forward current of 20 mA are connected in series by the number of six in the lighting head H1, LED 2, 2 --- connected in series by the number of six are further connected in parallel by two rows in the lighting head H2, and LED 2, 2 --- connected in series by the number of six are further connected in parallel by three rows in the lighting head H3.

Accordingly, the appropriate current for the respective lighting circuits 6 is 20 mA for the lighting head H1, 40 mA for the lighting head H2, and 60 mA for the lighting head H3. Further, an identification resistor 8 set to a resistance value of 52.8 to 3.3 kΩ is interposed in the identification circuit 7 in accordance with the appropriate current, for example, from 20 to 200 mA as shown in Fig. 2.

[0019] Since the lighting voltage VL per one red LED 2 is about 1.8 V, in a case where the LED 2, 2 --- are connected in series by the number of six, the lower limit voltage VLmin for lighting is about 11 V, and the lighting circuit 6 is rendered conductive to light-up LEDs 2, 2 --- when the voltage applied from the power supply B to the power supply circuit 5 is 11 V or higher. Further, when LEDs 2, 2 --- are lit and the lighting circuit 6 is short-circuited, the identification circuit 7 is rendered non-conductive. When the voltage applied from the power supply B to the power supply circuit 5 decreases to 10 V or lower which is lower than the lower limit voltage VLmin for lighting to render the lighting circuit 6 non-conductive, since LEDs 2, 2 --- turn OFF, the identification circuit 7 is rendered conductive, and a current identification signal is outputted in accordance with the resistance value of the identification resistor 8.

As described above, since the light circuit 6 and the identification circuit 7 are connected being in parallel with each other and connected to the power supply circuit 5 and their operation voltages are different, the circuits 6 and 7 can be operated individually in accordance with the application voltage by merely connecting them by way of the two terminals 3, 4 to the power supply B.

[0020] In the power supply B, a driving power supply 11 that supplies a lighting voltage VL at or higher than the lower limit voltage VLmin for lighting (for example, 12 V) during a lighting-up state of LEDs 2, 2 --- and an identification power supply 12 that supplies an identification voltage VM (for example, 2.5 V) which is lower than the lower limit voltage VLmin for lighting-up the lighting circuit 6 during a not lighting-up state of LEDs 2, 2 --- are connected being in parallel with each other to the positive power terminal 3.

A current setter 13 that sets an appropriate current Iq to be supplied to the lighting circuit 6 based on the current identification signal outputted from the identification circuit 7 of the lighting head H1 - H3 and a lighting current control circuit 14 that maintains the appropriate current Iq supplied to the lighting circuit 6 during the lighting-up state of the LEDs 2, 2 --- in accordance with the current setting signal outputted from the current setter 13 are connected being in parallel with each other to the power terminal 4 on the ground side.

A switch S1 is interposed between the driving power supply 11 and the terminal 3. The switch S1 turns OFF in synchronization with a vertical synchronization signal of a video camera that is outputted, for example, on every 1/60 sec and remains ON in other state than described above, thereby lighting-up LEDs 2, 2 --- during picking-up of 1 frame images.

A diode 15 is interposed between the identification power supply 12 and the terminal 3 for inhibiting the supply of the identification voltage VM from the identification power supply 12 during the ON-period of the driving power supply 11.

[0022] In the current setter 13, an identification signal detection resistor 16, for example, of 2.2 kΩ is grounded to the earth. When the current flowing through the identification resistor 8 in each of the lighting heads H1 to H3 is supplied to the detection resistor 16, it causes voltage drop in the detection resistor 16. An appropriate current Iq to be supplied to the lighting circuit 6 is set in accordance with the current identification signal based on the detected amount of the voltage drop.

For example, in a case where the identification resistor 8 for each of the lighting heads H1 to H3 is selected for the identification voltage VM at 2.5 V supplied from the identification power supply 12, as shown in Fig. 2, the amount of the voltage drop Vc across the detection resistor 16 of 2.2 kΩ can be changed each by 0.1 V from 0.1 V to 1.0 V.

Accordingly, when the amount of the voltage drop is used for the current identification signal, ten levels of appropriate current can be distinguished.

[0023] A holding capacitor 17, a buffer amplifier 18, etc. are provided for outputting a current setting signal from 20 mA to 200 mA corresponding to the setting value of 20 to 200 mA of the appropriate current Iq for 1/60 sec in accordance with the image pick-up time for 1 frame based on the current identification signal at 0.1 to 1.0 V.

Further, on the contrary to the switch S1, since switch S3 turns ON in synchronization with the vertical synchronization signal of the video camera and remains OFF in other state than described above, it stores a current identification signal in the interval from picking-up one frame images till picking-up next frame images.

[0024] The lighting current control circuit 14 controls the current flowing in the lighting circuit 6 in accordance
with the current setting signal outputted from the current setter 13, in which a current detection resistor 21, for example, of 1 Ω is connected to the power supply terminal 4 on the ground side by way of an FET 20.

Then, a control signal is applied from a comparative circuit 22 to the gate of the FET 20 by a switch S 2 which turns OFF in synchronization with the vertical synchronization signal of the video camera and turns ON in other state than described above, like the switch S 1, so that the detection signal detected by the current detection resistor 21 is identical with the current setting signal outputted from the current setter 13 in a state where the power is supplied to the lighting circuit 6 and LEDs 2, 2 --- are in the lighting-up state.

Accordingly, when an appropriate current at 20 mA, 40 mA or 60 mA is supplied to the lighting circuit 6 for each of the lighting heads H 1 to H 3, a detection signal at 20 mV, 40 mV or 60 mV is outputted by the voltage drop caused in the current detection resistor 21 which is inputted to the comparison circuit 22.

[0025] The operation of the constitution described above will be explained below.

In accordance with the appropriate current 20 mA, 40 mA, or 60 mA in the lighting circuit 6 for each of the lighting heads H 1 to H 3, the identification resistor 8 at a resistance value of 52.8 kΩ, 25.3 kΩ, or 16.1 kΩ is interposed in the identification circuit 7 according to the table shown in Fig. 2.

Then, when a desired lighting head H 1 (or H 2 or H 3) is connected with the power supply B and each of the switches S 1 to S 3 is turned on and off being synchronized with the vertical synchronization signal of the video camera, the switch S 1 turns OFF before picking-up of one frame images, and an identification voltage VM at 2.5 V is supplied from the identification power supply 12 to one light head H 1 (or H 2 or H 3).

[0026] In this case, since six LEDs 2, 2 --- connected in series are interposed between the power source terminals 3 and 4 in the lighting circuit 6 of each lighting head H 1 (or H 2 or H 3), the lower limit voltage VLmin for lighting for them is 11 V and the lighting circuit 6 is kept in a non-conductive state even when an identification voltage at 2.5 V is applied.

Further, in synchronization with the switch S 1, since the light current control circuit 14 is also rendered non-conductive by the switch S 2, the current flows through the identification circuit 7 of the lighting head H 1 (or H 2 or H 3) to the current setter 13 of the power supply B.

[0027] From the identification signal detection resistor 16 of the current setter 13, a current identification signal at 0.1 V (0.2 or 0.3 V) is outputted by the voltage drop caused in the identification resistor in the light head H 1 (or H 2 or H 3) mounted to the power supply B, and the current is charged in the holding capacitor 17, and the current setting signal at 20 (40 or 60) mV corresponded to the setting value 20 (40, 60) mA of the appropriate current I R is continuously outputted for 1/60 sec to the lighting current control circuit 14.

[0028] Then, at the same time with the starting of picking-up one frame images, switches S 1 and S 3 turn ON and when a lighting voltage VL = 12 V is supplied from the driving power supply 11, since the lighting voltage VL > lower limit voltage VLmin for lighting, the lighting circuit 6 turns ON and most of the currents flows in the lighting circuit 6 and the current to the identification circuit 7 is substantially negligible.

[0029] In this case, when the current flowing in the lighting circuit 6 is higher than the appropriate current of 20 mA, a detection signal at 20 mV + α is outputted from the current detection resistor 21 of 1 Ω, which is compared with the current setting signal at 20 mV outputted from the current setter 13 to output a control signal to the FET 20 such that the detection signal lowers to 20 mV, that is, the light current flowing in the light circuit 6 is 20 mA.

In the same manner, if it is controlled to lower than the appropriate current of 20 mA, a detection signal at 20 mV - α is outputted from the current detection resistor 21 of 1 Ω, which is compared with the current setting signal at 20 mV outputted from the current setter 13, and a control signal is outputted to the FET 20 such that the detection signal is increased up to 20 mV, that is, the light current flowing in the lighting circuit 6 is controlled to 20 mA.

In a case where the lighting head H 2 or H 3 is connected, since the current setting signal at 40 or 60 mA is outputted from the current setter 13, a control signal is outputted to the FET 20 such that the light current flowing in the lighting circuit 6 is 40 or 60 mA in the same manner.

[Example 2]

[0030] When it is intended that the detection signal outputted from the identification signal detection resistor 16 is in proportion with the appropriate current, since the identification resistor 8 has to be decreased substantially in an inverse proportion therewith, this restricts the selection range for the identification resistor 8.

Then, as shown in Fig. 3, the current setter 13 may comprise an A/D converter 25 for converting a detection signal outputted from the identification signal detection resistor 16 into a digital signal, a micro-computer 27 for outputting a current setting signal according to an appropriate current with reference to a detection signal - appropriate current conversion table 26, and a D/A converter 28 for converting the current setting signal into an analog signal.

Then, the current flowing in the identification resistor 8 is supplied to the detection resistor 16 in the same manner as described above, to cause voltage drop in the detection resistor 16, and an appropriate current I R to be supplied to the lighting circuit 6 in accordance with the current identification signal is set by using the detected amount of voltage drop as the current iden-
In a case where the identification voltage VM is 2.5 V, and the resistors value of the detection resistor 16 is 2.2 kΩ, the amount of voltage drop Vc is determined in accordance with the identification resistor 8.

Accordingly, the detection signal - appropriate current conversion table 26 is determined corresponding to the identification resistor 8, for example, as shown in Fig. 4, and an identification resistor 8 of a resistance value in accordance with the appropriate current is attached to each of the lighting heads H1 to H3.

[Example 3]

[0031] Fig. 5 shows a further embodiment of a lighting apparatus according to the present invention in which those portions in common with Fig. 1 carry identical reference numerals for which detailed description will be omitted.

In this embodiment, a micro-computer 32 for encoding use that outputs a current identification signal formed by pulsating a current identification code different depending on the appropriate current of the light circuit 6 is connected in an identification circuit 31 of a light head H1 (or H2, or H3), and a current setter 33 comprises a micro-computer 35 for decoding use that reads a current identification code from the current identification signal and sets an appropriate current with reference to an identification code - appropriate current conversion table 34.

[0032] In the identification circuit 31, a Zener diode 37 with a Zener voltage at 3 V is disposed to a switching circuit 36. Since the switching circuit 36 is rendered conductive when a voltage of 3 V or higher is applied by way of the power supply terminal 3 and 4 to turn the transistor 38 to on, a reset signal is inputted to the micro-computer 32 for encoding use to turn the micro-computer 32 to an OFF state.

Further, when a voltage at 3 V or lower is applied, since the switching circuit 36 is rendered non-conductive, the current is supplied by way of the power supply circuit 39 to the micro-computer 32, and a transistor 40 turns ON and OFF by the pulse signal in accordance with a predetermined current identification code, and a pulsed current identification signal is outputted.

[0033] The current identification signal inputted to a current setter 33 is inputted to a micro-computer 35 for decoding use, which reads a current identification code from the pulse signal to output a current setting signal with reference to the identification code - appropriate current conversion table 34.

The identification code is not restricted only to the appropriate current so long as it corresponds to the appropriate current and, for example, it may be a model number for lighting heads (H1 to H3) such as H1234, H2468, and H3471.

In this case, when appropriate currents corresponding to the model numbers are previously registered in the identification code - appropriate current conversion table 34, appropriate current corresponding to the light head H1 to H3 can be read out.

[0034] As has been described above, according to the invention, a current identification signal is outputted in accordance with the appropriate current from the lighting head in a state while the light emitting devices in each of the lighting heads are not in the lighting-up state, and the current supply to the lighting circuit can be maintained at an appropriate current in accordance with the current identification signal. Accordingly, this can provide an excellent effect capable of lighting-up the individual light emitting devices connected in the lighting circuit at a rate current irrespective of the specification of the lighting heads.

[0035] In accordance with the present invention, since the current supplied from the current supply can automatically be kept at an appropriate current and the light emitting devices can always be in a lighting-up state at the rated current irrespective of the specification of the lighting head, it is suitable to the application use in which lighting heads of different appropriate currents can optionally be attached selectively to the power supply and used.

The present disclosure relates to subject matter contained in priority Japanese Patent Application No. 2003-323,991 filed on September 17, 2003, the contents of which is herein expressly incorporated by reference in its entirety.

Claims

1. A lighting method of connecting lighting heads each having a lighting circuit in which one or more light emitting devices are connected in any optional arrangement to a power supply and lighting-up them, wherein the method comprises:

 - outputting a current identification signal in accordance with an appropriate current of a lighting circuit determined by the arrangement of the light emitting devices from a lighting head during a not lighting-up state of the light emitting devices, setting an appropriate current to be supplied to the lighting circuit based on the current identification signal, and maintaining the current flowing in the light circuit during a lighting-up state of the light emission devices to an appropriate current by a control circuit.

2. A lighting apparatus in which lighting heads each having one or more of light emitting devices arranged in any optional pattern is connected to a power supply in use, wherein

 - the lighting head comprises a lighting circuit for supplying a current to the light emitting devices when an application voltage is at or higher than a lower limit voltage for lighting which is determined based on the arrangement of the light emitting de-
devices and an identification circuit that outputs a current identification signal in accordance with an appropriate current for the lighting circuit when the application voltage is lower than the lower limit voltage for lighting, and

the power supply comprises a driving power supply that applies a lighting voltage at or higher than the lower limit voltage for lighting to the lighting circuit during a lighting-up state of the light emitting devices,

an identification power supply that applies an identification voltage lower than the lower limit voltage for lighting to the identification circuit during a not lighting-up state of the light emitting devices,

during a lighting-up state of the light emitting devices,

a current setter that sets an appropriate current to be supplied to the lighting circuit based on the current identification signal outputted from the identification circuit, and

a lighting current control circuit that maintains an appropriate current flowing to the lighting circuit during the lighting-up state of the light emitting devices in accordance with the current setting signal outputted from the current setter.

3. A lighting apparatus according to claim 2, wherein the lighting circuit and the identification circuit in the lighting head are connected in parallel with each other to be connected with the power supply terminals of the power supply.

4. A lighting apparatus according to claim 2 or 3, wherein an identification resistor having a resistance value different depending on the appropriate current for the lighting circuit is interposed in the identification circuit and the current setter outputs a current setting signal in accordance with the current flowing through the identification resistor.

5. A lighting apparatus according to any one of claims 2 to 4, wherein the current setter comprises a microcomputer that sets an appropriate current based on the identification data read from the current identification signal with reference to an identification data - appropriate current conversion table.

6. A lighting apparatus according to claim 2 or 3, wherein the identification circuit comprises a microcomputer for encoding use that outputs a current identification signal formed by pulsating a current identification code which is different depending on the appropriate current for the lighting circuit, and the current setter comprises a microcomputer for decoding use that reads a current identification code from the current identification signal and sets an appropriate current with reference to the identification code - appropriate current conversion table.

7. A lighting head having one or more of light emitting devices arranged therein and connected with a power supply in use, comprising;

- a lighting circuit which is rendered conductive when an application voltage is at or higher than the lower limit voltage for lighting determined by the arrangement of the light emitting devices and supplies a current to the light emitting devices, and

- an identification circuit which is rendered conductive when the application voltage lowers to a voltage lower than the lower limit voltage for lighting and outputs a current identification signal in accordance with the appropriate current for the lighting circuit.

8. A power supply used in connection with a lighting head having one or more of light emitting devices arranged therein comprising a lighting circuit that supplies a current to the light emitting devices when an application voltage is at or higher than the lower limit voltage for lighting determined by the arrangement of the light emitting devices and

an identification circuit that outputs a current identification signal in accordance with the appropriate current for the lighting circuit when the application voltage is lower than the lower limit voltage for lighting, wherein the power supply comprises;

- a driving power source that applies a lighting voltage at or higher than the lower limit voltage for lighting during a lighting-up state of the light emitting devices, an identification power supply that applies an identification voltage lower than the lower limit voltage for lighting to the identification circuit during a not lighting-up state of the light emitting devices,

a current setter that sets an appropriate current to be supplied to the lighting circuit based on the current identification signal outputted from the identification circuit, and

a lighting current control circuit that maintains the current flowing in the lighting circuit in the lighting-up state of the light emitting devices to an appropriate current in accordance with the current setting signal outputted from the current setter.
Fig. 1

Fig. 2

<table>
<thead>
<tr>
<th>Appropriate Current I_R (mA)</th>
<th>Voltage Drop V_c (V)</th>
<th>Identification Resistor R_c (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.1</td>
<td>5280</td>
</tr>
<tr>
<td>40</td>
<td>0.2</td>
<td>2530</td>
</tr>
<tr>
<td>60</td>
<td>0.3</td>
<td>16.13</td>
</tr>
<tr>
<td>80</td>
<td>0.4</td>
<td>11.55</td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>8.80</td>
</tr>
<tr>
<td>120</td>
<td>0.6</td>
<td>6.96</td>
</tr>
<tr>
<td>140</td>
<td>0.7</td>
<td>5.66</td>
</tr>
<tr>
<td>160</td>
<td>0.8</td>
<td>4.67</td>
</tr>
<tr>
<td>180</td>
<td>0.9</td>
<td>3.91</td>
</tr>
<tr>
<td>200</td>
<td>1.0</td>
<td>3.30</td>
</tr>
</tbody>
</table>
Fig. 3

Fig. 4

<table>
<thead>
<tr>
<th>Appropriate Current I_R (mA)</th>
<th>Voltage Drop V_C (V)</th>
<th>Identification Resistor 8 (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.0088</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>0.0095</td>
<td>56</td>
</tr>
<tr>
<td>60</td>
<td>0.0101</td>
<td>52</td>
</tr>
<tr>
<td>80</td>
<td>0.0109</td>
<td>48</td>
</tr>
<tr>
<td>100</td>
<td>0.0119</td>
<td>44</td>
</tr>
<tr>
<td>120</td>
<td>0.0130</td>
<td>40</td>
</tr>
<tr>
<td>140</td>
<td>0.0144</td>
<td>36</td>
</tr>
<tr>
<td>160</td>
<td>0.0161</td>
<td>32</td>
</tr>
<tr>
<td>180</td>
<td>0.0192</td>
<td>28</td>
</tr>
<tr>
<td>200</td>
<td>0.0210</td>
<td>24</td>
</tr>
</tbody>
</table>
Fig. 7(a) (prior art)

Fig. 7(b) (prior art)

Fig. 7(c) (prior art)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (Int.Cl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 244 334 A (HELLA KG HUECK & CO) 25 September 2002 (2002-09-25) * column 1, paragraph 1 - column 5, paragraph 20; figures 1,3-6</td>
<td>1,2,7,8</td>
<td>H05B33/08 B60Q1/26</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 896 899 A (REITTER & SCHEFENACKER GMBH) 17 February 1999 (1999-02-17) * column 2, paragraph 8 - column 5, paragraph 22; figures 1-3,5</td>
<td>1-8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 1 246 511 A (PATRA PATENT TREUHAND) 2 October 2002 (2002-10-02) * column 2, paragraph 6 - column 2, paragraph 6; figure 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>EP 1 411 750 A (CCS INC) 21 April 2004 (2004-04-21) * column 5, paragraph 1 - column 8, paragraph 44; figures 1,2,4-6,8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL FIELDS SEARCHED (Int.Cl.)

- H05B
- B60Q
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

17-11-2004

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1244334 A2</td>
<td>25-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0896899 A2</td>
<td>17-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5896084 A</td>
<td>20-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 50200723 D1</td>
<td>09-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1246511 A1</td>
<td>02-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002140380 A1</td>
<td>03-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004158640 A</td>
<td>03-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004090189 A1</td>
<td>13-05-2004</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/02