EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:

Application number: 03724718.6
Date of filing: 16.05.2003

AGRICULTURAL FLOOR PANEL
LANDWIRTSCHAFTLICHES BODENPANEEL
PANNEAU DE PLANCHER A USAGE AGRICOLE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LU MC NL PT RO SE SI SK TR

Priority: 17.05.2002 US 146936
Date of publication of application:
09.03.2005 Bulletin 2005/10

Proprietor: Agra Flooring International LTD.
Calgary, Alberta T2C 4N8 (CA)

Inventors:
• HUTCHINGS, Warren, W.
 Calgary, Alberta T2Z 3C5 (CA)

• CHRISTIE, Thomas
 Calgary, Alberta T2J 7B1 (CA)

• BLATZ, Warren, J.
 103 Rancho Viejo, TX 78575 (US)

Representative: von Ahsen, Erwin-Detlef et al
von Ahsen, Nachtwey & Kollegen
Wilhelm-Herbst-Strasse 5
28359 Bremen (DE)

References cited:
EP-A- 0 021 280
WO-A-93/22905

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

FIELD OF THE INVENTION

[0001] An agricultural floor panel and system having a design for improved strength and cleaning is described. The floor panel is designed for support on at least two cross beams. The floor panel has two opposing edges, each edge having a plurality of flanges for supporting engagement on the cross beams and the plurality of flanges defining a plurality of recesses between adjacent flange. The flanges and recesses are adapted for interlocking engagement with corresponding flanges and recesses of an adjacent panel and also include a locking and spacing system for locking adjacent panels together while substantively maintaining a gap between the opposing edges of two adjacent panels.

BACKGROUND OF THE INVENTION

[0002] The use of plastic flooring for hog and poultry operations is well known as a method of keeping animal pens clean. Plastic grates or panels supported on a structure of steel or fibreglass beams above a manure pit enables animal manure to pass to the lower manure pit while supporting the animals and farmers above the manure pit.

[0003] Ideally, the grated flooring is designed to be easy to clean by pressure washing as is required in order to minimize the risk of disease which may be caused by a build-up of bacteria from the animal's manure on the flooring or within any cracks or crevices on the floor. In addition, the grated flooring must also provide sufficient support to prevent the weight of the animals or the farm personnel from breaking the floor and falling into the pit below. Washing is usually conducted by a farmer using high pressure washers on the top side of the floor.

[0004] Within this field, various designs of flooring have been implemented to simplify the use of the panels. For example, past designs have utilized uniform shaped grating panels which facilitate installation on specific beam systems such as steel or fibreglass using a series of hooks and snaps. Such designs may include features which allow for the reversibility of individual grating panels, as well as allowing individual panels to snap together to ensure that the floor is stable and locked after installation. Other features including support ribs or cross ribs ensure that both large and small animals are supported on the flooring while still permitting their manure to be pass and/or be washed through the floor. Such panels are known from e.g. documents WO-A-9 322 905 or DE-A-3 012 855.

[0005] In the past, individual panels are snapped and locked to each other and the beam system with very little space between adjacent panels. This absence of space between panels tends to result in a build-up of manure within the small cracks between each panel which can not be readily removed or dislodged by the normal washing process. In fact, the washing process has a tendency to tightly pack manure into these cracks with the result that around all four edges of the grate panel significant quantities of manure remain even after washing.

[0006] Further still, in past designs, the interlocking panels also completely cover the underlying support beam with the similar result that various surfaces of the beam cannot be properly washed from above.

[0007] As a result of these deficiencies in the design of past systems, there has been a need for a floor panel system which overcomes these problems and which specifically provides a strong floor panel that can be readily washed by providing sufficient gaps between adjacent panels.

[0008] Another problem of past systems is the connection of the panel to the cross beams. In the past, outwardly projecting flanges have supported the entire loading of the panel directly to the upper surface of the cross beam. As a result, past panels may be weakened at or around the flange/cross beam junction resulting in panel failure and possible injury to an animal or farmer. As a result, there has been a need for floor system having a cross beam design which is fully supported by the beam system to improve the overall strength (and hence durability) of the floor system wherein loading on the panel is at least partially transferred to other surfaces of the cross beam.

[0009] Further still, there has been a need for a floor panel system where the contact area of four abutting corners is minimized to enable proper cleaning while ensuring that adjacent panels maintain contact for proper alignment.

[0010] A review of the prior art has revealed that a floor panel system addressing the above problems has not been provided.

SUMMARY OF THE INVENTION

[0011] In accordance with the invention, there is provided a floor panel for support on at least two cross beams, the floor panel comprising a grated panel having two opposing edges, each edge having a plurality of flanges for supporting engagement on the cross beams, the plurality of flanges defining a plurality of recesses between adjacent flanges wherein the flanges and recesses are adapted for interlocking engagement with corresponding flanges and recesses of an adjacent panel, the flanges and recesses further including a locking and spacing system for locking adjacent panels together while substantively maintaining a gap between the opposing edges of two adjacent panels.

[0012] In another embodiment, the floor panel further comprises two cross beam edges having at least one spacer for operative engagement with an adjacent cross beam edge to substantively maintain a gap between the cross beam edges of two adjacent panels.

[0013] In a further embodiment, the locking and spac-
ing system includes a plurality of pins for locking engagement with corresponding apertures on an adjacent panel wherein the pins project outwardly from respective flanges and the apertures are within respective recesses.

[0014] In yet another embodiment, each opposing edge includes at least one corner flange for butting engagement against a corresponding corner flange of a diagonally adjacent panel and wherein each corner flange preferably abuts a flange on a laterally adjacent panel.

[0015] In another embodiment, the panel further comprises cross beams and the cross beams and cross beam edges include a cross beam contacting surface for butting and supporting engagement against the support beam.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016]

Figure 1 is a perspective view of the floor panel in accordance with the invention mounted to a support beam;

Figure 2 is a plan view of nine floor panels in accordance with the invention in an interconnected configuration;

Figure 3 is a side view of a floor panel in accordance with the invention installed on one support beam type;

Figure 4 is a side view of a floor panel in accordance with the invention showing details of the cross ribs and its installation on an alternate support beam type;

Figure 5 is a plan view of the locking system of two adjacent flange edges;

Figure 6 is a perspective view of a spacing pin on a cross edge;

Figure 7 is a plan view of abutting corners of four adjacent panels in accordance with the invention; and,

Figure 8 is a perspective view of the upper surface of a panel showing details of the raised cross beams.

DETAILED DESCRIPTION OF THE INVENTION

[0017] With reference to the Figures, a floor panel system 1 having an improved design and which is particularly adapted for use as a suspended floor in poultry and hog operations is described. The improved design enables superior cleaning of the flooring while also providing desirable features of self-alignment and interconnection during installation as well as improved structural and anti-slip characteristics.

Overview

[0018] With specific reference to Figures 1, 2, 3 and 4, a flooring panel 10 in accordance with the invention is shown configured to a representative support beam 20. The support beam would normally be installed over a pit (not shown). As shown in Figure 2, a plurality of flooring panels 10 may be interconnected together to create a floor surface on the support beam system 20.

[0019] As shown in Figure 1, each floor panel is characterized by beam support edges 12, cross edges 14, cross beams 16 and cross ribs 18. The beam support edges 12 include a system of alternating flanges 12a and recesses 12b designed to interlock with corresponding flanges and recesses on an adjacent panel while maintaining a gap between adjacent panels. The details of the interconnection between adjacent flanges and recesses is shown in Figure 5 and will be described in greater detail below. The underside of the flanges are also designed to engage with an underlying support beam 20 to support the panel on the beam 20 as shown in Figures 1, 3 and 4. Preferably each flange includes a hook 13 for engagement over the cross beam 20 to prevent disengagement of the flange by lateral displacement of the flange with respect to the support beam 20.

Each cross edge is generally flat as shown in Figure 1. However, in one embodiment, each cross edge 14 includes an alternating boss 30 and recess 32 (Figure 4). The alternating boss 30 and recess 32 are designed to interconnect with corresponding bosses and recesses on the cross edge of an adjacent panel while, in a manner similar to the spacing between beam support edges, maintains a gap between adjacent panels.

[0021] In addition, each corner of a panel is provided with a corner flange to stabilize the floor and to eliminate shifting in directions parallel to the edges and in the diagonal direction. Each corner of the panel contacts the adjacent three other panels through direct or indirect abutment against the other panels as shown in Figures 2 and 7. That is, each corner directly abuts against one adjacent panel and indirectly abuts against two other adjacent panels. Direct abutment between laterally adjacent panels is enabled through corresponding half flanges 12c on each beam support edge and indirect abutment is enabled through contact of an edge of the first flange 12a of each beam supporting edge contacting the first flange of an adjacent first flange on a diagonally abutting panel through the half-flanges 12c as described above.
Beam Support Edges

[0022] With reference to Figures 1 and 5 details of the flanges 12a and recesses 12b are shown. Figure 5 shows that each flange 12a includes a boss 40 which engages a corresponding depression 42 in a corresponding recess 12b. Engagement of the boss 40 and depression 42 interconnects the panels while maintaining the separation between the adjacent panels. The boss 40 is preferably provided with a locking lip which through a twisting operation during installation prevents disconnection the boss 40 from the depression 42 through a perpendicular withdrawal force.

Beam Design

[0023] As indicated above, the underside of the flanges are preferably shaped to hook over a support beam 20. In the field of agricultural flooring, the profile of the beams used may include a variety of different profiles but will generally include an upper narrow lip 20a (Figures 3 and 4) over which the flanges are placed. In a preferred design, as shown in Figure 4, the beam 20 may include an outwardly sloping base 20b having a triangular cross-section. In this embodiment, and for further structural integrity, the cross edges 14 and cross beams 16 include a lower beam abutment edge 16a for engagement against the sloping surface 20b of the support beam 20. This design distributes additional load from the flooring against the lower regions of the beam 20 and thereby removes load from the flanges 12a.

Cross Edges, Cross Beams and Cross Ribs

[0024] The cross edges and cross beams provide structural integrity to the floor panel 10 between adjacent support beams. The cross ribs interconnect adjacent cross beams or cross beams and cross edges. With respect to the cross ribs, each cross rib is preferably provided with a tear drop profile as shown in Figure 4 in order to minimize the underside surface area of each cross rib on which manure may collect. By providing inwardly tapering surfaces on each cross rib 18, cleaning water can be directed more forcefully against a greater area of each cross rib 18 to remove contaminants.

[0025] Preferably, the cross ribs are provided with a surface profile to promote the grip as shown in Figure 8 where the cross beams 16 are elevated with respect to the cross ribs 18.

Claims

1. A floor panel for support on at least two support beams (20), the floor panel comprising a grated panel (10) having two opposing edges (12), each edge (12) having a plurality of flanges (12a) for supporting engagement on the support beams (20), the plurality of flanges (12a) defining a plurality of recesses (12b) between adjacent flanges (12a) wherein the flanges (12a) and recesses (12b) are adapted for interlocking engagement with corresponding flanges (12a) and recesses (12b) of an adjacent panel (10), characterised in that the flanges (12a) and recesses (12b) further include a locking and spacing system for locking adjacent panels together while substantively maintaining a gap between the opposing edges (12) of two adjacent panels(10).

2. A floor panel as claimed in Claim 1, wherein each floor panel further comprises two cross beam edges (14), each edge (14) having at least one spacer (30) for operative engagement with an adjacent cross beam edge (14) to substantively maintain a gap between the cross beam edges (14) of two adjacent panels (10).

3. A floor panel as claimed in Claim 2, wherein the panel further comprises cross beams (16) and the cross beams (16) and cross beam edges (14) include a cross beam contacting surface for butting and supporting engagement against the support beam (20).

4. A floor panel as claimed in any of the Claims 1 through 3, wherein the locking and spacing system includes a plurality of pins (40) for locking engagement with corresponding apertures (42) on an adjacent panel (10).

5. A floor panel as claimed in Claim 4, wherein the pins (40) project outwardly from respective flanges (12a) and the apertures (42) are within respective recesses (12b).

6. A floor panel as claimed in any of the Claims 1 through 5, wherein each opposing edge (12) includes at least one corner flange (12c) for butting engagement against a corresponding corner flange (12c) of a diagonally adjacent panel.

7. A floor panel as claimed in Claim 6, wherein each corner flange (12c) abuts a flange (12c) on a laterally adjacent panel (10).

Patentansprüche

1. Bodenplatte zur Abstützung von mindestens zwei Stütz trägern (20), wobei die Bodenplatte eine Gitterplatte (10) mit zwei sich gegenüber stehenden Kanten (12) aufweist, wobei jede Kante (12) eine Vielzahl von Flanschen (12a) zum abstützenden Eingriff auf den Stütz trägern (20) besitzt und die Vielzahl der Flansche (12a) eine Vielzahl von Ver-
tiefe (12b) zwischen benachbarten Flanschen (12a) definiert, bei welcher die Flansche (12a) und Vertiefungen (12b) zum gegenseitig verriegelnden Eingriff mit entsprechenden Flanschen (12a) und Vertiefungen (12b) einer angrenzenden Platte (10) ausgelegt sind, dadurch gekennzeichnet, dass die Flansche (12a) und die Vertiefungen (12b) des Weiteren ein Verriegelungssystem mit Abstandhalterung zum Verriegeln aneinander angrenzenden Platten umfassen, während zwischen den sich gegenüber stehenden Kanten (12) von zwei aneinander angrenzenden Platten (10) im Wesentlichen ein Spalt aufrechterhalten wird.

2. Bodenplatte nach Anspruch 1, bei welcher jede Bodenplatte außerdem zwei Querträgerkanten (14) aufweist, wobei jede Kante (14) mindestens einen Abstandhalter (30) für den funktionellen Eingriff mit einer Querträgerkante (14) in der Weise besitzt, dass zwischen den Querträgerkanten (14) von zwei benachbarten Platten (10) im Wesentlichen ein Spalt belassen wird.

3. Bodenplatte nach Anspruch 2, bei welcher die Platte außerdem Querträger (16) aufweist und die Querträger (16) und Querträgerkanten (14) eine Berührungsfäche der Querträger für den stumpf anstoßenden und abstützenden Eingriff gegen den Stützträger (20) aufweisen.

5. Bodenplatte nach Anspruch 4, bei welcher die Vorsprünge (40) von den jeweiligen Flanschen (12a) nach außen vorstehen und die Öffnungen (42) sich innerhalb der jeweiligen Vertiefungen (12b) befänden.

6. Bodenplatte nach einem der Ansprüche 1 bis 5, bei welcher jede gegenüber liegende Kante (12) mindestens einen Eckflansch (12c) für die stumpfe anliegende Anlage gegen einen entsprechenden Eckflansch (12c) einer diagonal angrenzenden Platte aufweist.

7. Bodenplatte nach Anspruch 6, bei welcher jeder Eckflansch (12c) gegen einen Flansch (12c) auf einer seitlich angrenzenden Platte (10) anliegt.

Revendications

1. Plaque de plancher pour l'appui d'au moins deux poutrelles de support (20), à la plaque de plancher comprenant une plaque en treillis (10) à deux bords opposants (12), dont chaque bord (12) présente une pluralité de pattes (12a) pour la prise en appui sur lesdites poutrelles de support (20) et dans laquelle la pluralité de pattes (12a) définit une pluralité de creux (12b) entre des pattes adjacentes (12a), dans laquelle les pattes (12a) et les creux (12b) sont conçus pour la prise verrouillée l'un dans l'autre dans des pattes correspondantes (12a) et les creux correspondants (12b) d'une plaque contiguë (10), caractérisée en ce que lesdites pattes (12a) et lesdits creux (12b) comprennent au plus un système de verrouillage à écartement pour le verrouillage des plaques adjacentes, pendant qu'une fente est essentiellement maintenue entre les bords opposés (12) de deux plaques adjacentes (10).

2. Plaque de plancher selon la revendication 1, dans laquelle chaque plaque de plancher comprend au plus deux bords de poutrelle transversale (14), dont chaque bord (14) expose au moins un écarter (30) pour la prise opérationnelle dans un bord de poutrelle transversale (14) d'une telle manière, qu'une fente soit essentiellement laissé entre les bords de poutrelle transversale (14) de deux plaques adjacentes (10).

3. Plaque de plancher selon la revendication 2, dans laquelle la plaque comprend au plus des poutrelles transversales (16) et lesdits poutrelles transversales (16) ainsi que lesdits bords de poutrelle transversale (14) présentent une aire de contact des poutrelles transversales pour une contact bout à bout et d'appui contre la poutrelle de support (20).

4. Plaque de plancher selon une quelconque des revendications 1 à 3, dans laquelle le système de verrouillage à écartement comprend une pluralité de bosses (40) pour la prise verrouillant dans des ouvertures respectives (42) à une plaque y adjacente (10).

5. Plaque de plancher selon la revendication 4, dans laquelle lesdites bosses (40) font saillie à partir des pattes respectives (12a) vers l'extérieur et lesdites ouvertures (42) se trouvent au-dedans des creux respectifs (12b).

6. Plaque de plancher selon une quelconque des revendications 1 à 5, dans laquelle chaque bord opposé (12) présente au moins une patte angulaire (12c) pour l'appui bout à bout contre une patte angulaire correspondante (12c) d'une plaque adjacente en diagonale.

7. Plaque de plancher selon la revendication 6, dans laquelle chaque patte angulaire (12c) s'appui contre
une patte (12c) à une plaque (10) adjacente latéra-
FIG. 2