EUROPEAN PATENT SPECIFICATION

APPARATUS FOR ENERGY AND DATA RETENTION IN A GUIDED PROJECTILE
VORRICHTUNG ZUR ENERGIE- UND DATENSPEICHERUNG IN EINEM GELENKTEN GESCHOSS
APPAREIL DE RETENTION D’ENERGIE ET DE RETENTION DES DONNEES DANS UN PROJECTILE GUIDE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Priority: 30.05.2002 US 158741

Date of filing: 30.05.2003

Date of publication and mention of the grant of the patent:
31.10.2007 Bulletin 2007/44

Applicant: RAYTHEON COMPANY
Waltham, Massachusetts 02451-1449 (US)

Inventors:
• ADAMS, Tovan, L.
 Tucson, AZ 85742 (US)

• MAUGANS, Eric, C.
 Tucson, AZ 85747 (US)

• LANGE, W., Norman, Jr.
 Tucson, AZ 85742 (US)

Representative: Jackson, Richard Eric et al
Carpmaels & Ransford,
43-45 Bloomsbury Square
London WC1A 2RA (GB)

References cited:
US-A- 4 424 745

US-A- 4 837 556
US-B1- 6 268 785

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Technical Field

[0001] The present invention pertains to energy and data transfer, and in one embodiment, the present invention pertains to energy and mission data retention in guided weapons.

Background

[0002] Guided projectiles, including fuses, missiles and other weapons, generally need to be activated quickly. Conventional guided projectiles use a data interface to download mission data prior to launch and deployment. The mission data may include navigation data as well as initialization data for use by the projectile’s Global Positioning System (GPS). The data may be downloaded quickly in order to launch projectiles at a rapid rate. Circuitry on the guided projectile is conventionally connected to a data-hold battery. The data-hold battery supplies power to the GPS circuitry and other circuitry prior to and during an initial portion of the projectile’s deployment. The data-hold battery may be a chemical battery designed for a one-time initiation and may be ignited after mission data transfer by mixing or combining chemicals. Chemically ignited data-hold batteries may be dormant until activated allowing for a longer shelf life.

[0003] One disadvantage with the use of data-hold batteries is that they require the projectile be deployed relatively soon after the mission data has been transferred. One reason for this is that data-hold batteries generally do not allow for recharging without degradation in performance. For example, in some combat situations, a data-hold battery may be required to hold the mission data and power the GPS circuitry for many days on one charge. If the projectile is not deployed within a certain time frame, the data-hold battery must be replaced and the mission data may have to be transferred again to the projectile.

[0004] Another disadvantage with the use of data-hold batteries in guided projectiles is safety. A chemically ignited data-hold battery requires the combining and/or mixing of typically hazardous chemicals. Another disadvantage with the use of data-hold batteries is their high cost.

[0005] Thus there is a general need for improved apparatus for energy storage and data retention suitable for use in guided projectiles. There is also a need for a system for energy storage and data retention for use in a guided projectile that does not require replacement of a data-hold battery when the projectile is not deployed within a certain time frame. There is also a need for a system for energy storage and data retention that does not use a data-hold battery. An apparatus of the invention is disclosed in claim 1, for which US 5 343 795 forms a basis.

Brief Description of the Drawings

[0006] The appended claims point out different embodiments of the invention with particularity. However, the detailed description presents a more complete understanding of the present invention when considered in connection with the figures, wherein like reference numbers refer to similar items throughout the figures and:

FIG. 1 is a functional block diagram of a system for transferring energy and mission data in accordance with an embodiment of the present invention;
FIG. 2 illustrates an example projectile setter and portion of a guided projectile in accordance with an embodiment of the present invention;
FIG. 3 is a functional block diagram of projectile circuitry in accordance with an embodiment of the present invention; and
FIG. 4 is a flow chart of a data and energy transfer procedure in accordance with an embodiment of the present invention.

Detailed Description

[0007] The following description and the drawings illustrate specific embodiments of the invention sufficiently to enable those skilled in the art to practice it. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Examples merely typify possible variations. Individual components and functions are optional unless explicitly required, and the sequence of operations may vary. Portions and features of some embodiments may be included in or substituted for those of others. The scope of the invention encompasses the full ambit of the claims and all available equivalents.

[0008] In one embodiment, the present invention provides an apparatus to retain energy and data in a guided projectile. In this embodiment, energy and mission data for the guided projectile are transferred from a projectile setter over an inductive interface. The projectile may include a capacitive energy storage element to store the energy and a data storage element to store the mission data. Precision GPS clock circuitry of the projectile may receive power from the capacitive energy storage element during projectile loading and launching operations until a flight battery is activated. In one embodiment, the capacitive energy storage element includes at least one super capacitor and a second capacitor, which may be a gun-hardened capacitor. The clock circuitry may receive power from the gun-hardened capacitor if the super capacitor fails during the launching operation. The capacitive energy storage element may include one-way energy transfer elements coupled between the super capacitor and the gun-hardened capacitor to help prevent discharge of the gun-hardened capacitor into the super capacitor, which may be damaged by the launch envi-
A regulator may be coupled to an output of the capacitive storage element to regulate an output voltage.

A method for storing energy and data may include receiving energy and data over which does not form part of the invention an interface, charging a capacitive storage element with the received energy, and storing the received data in a data storage element. The energy may be provided to clock circuitry until another energy source is activated. The energy and data may be received over an inductive interface of a guided projectile. In this embodiment, the data may be mission data for the guided projectile and the other energy source may include a flight battery of the guided projectile. The receiving, charging and storing may be performed during projectile setting operations, and the energy may be provided to precision GPS clock circuitry subsequent to the projectile setting operations and during loading and launching operations of the guided projectile. The capacitive storage element may comprise a super capacitor and a secondary capacitor. Energy stored in the secondary capacitor may be provided to the clock circuitry if the super capacitor fails during the launching operation.

FIG. 1 is a functional block diagram of a system for transferring energy and mission data in accordance with an embodiment of the present invention. System 100 may be used to transfer data and/or energy to an apparatus, such as a guided projectile. Guided projectiles include, for example, fuses, missiles and other guided weapons, which may be configured to use mission data. System 100 may include setter circuitry 102, interface 104 and projectile circuitry 106. Setter circuitry 102 may transfer mission data 108 and energy 110 to interface 104. Projectile circuitry 106 receives the mission data and/or energy from interface 104 and may store the mission data in data storage element 112 and the energy in energy storage element 114. Energy in energy storage element 114 may provide power to load 116 until another power source becomes available. In one embodiment, energy from energy storage element 114 may also provide power to data storage element 112 for data retention until another power source becomes available.

Setter circuitry 102 may include other functional elements (not illustrated) to configure the data and energy for transfer across interface 104; depending on whether interface 104 is a mechanical-type interface or, for example, an inductive interface. In the case of an inductive interface, setter circuitry 102 may include functional elements to convert energy 110, for example, to an alternating current waveform. Setter circuitry 102 may also include functional elements to modulate data 108 on the waveform.

In a guided projectile embodiment of the present invention, mission data 108 may include GPS information and navigational information, and load 116 may include a precision clock, such as a GPS clock or precision oscillator. In this embodiment, energy in energy storage element 114 provides power to load 116 until a flight energy source, such as a flight battery becomes available shortly after deployment of the projectile.

Interface 104 may be a connector-less interface, such as inductive interface 118, comprised of one or more sets of windings on the projectile setter and one or more sets of windings on the projectile. Data and energy may be transferred from the one or more sets of windings of the projectile setter to the one or more sets of windings of the projectile during projectile setting operations when, for example, the projectile setter is brought in close proximity to the projectile. Alternatively, interface 104 may be an electrical or mechanical interface comprising one or more mechanical and/or electrical connectors.

Although interface 104 is illustrated as a separate functional element from setter circuitry 102 and projectile circuitry 106, a first portion of interface 104 may be fabricated as part of a projectile setter, while a second portion of interface may be fabricated as part of the projectile. In the case of an inductive interface, the first portion may include, for example, first sets of windings and a magnetic core located on the projectile setter, and the second portion may include, for example, second sets of windings and a magnetic core located on the projectile.

FIG. 2 illustrates an example projectile setter and portion of a guided projectile in accordance with an embodiment of the present invention. Projectile setter 202 and projectile portion 204 may form connector-less interface 200 across which data and/or energy may be transferred. Connector-less interface 200 is one example of an inductive interface suitable for use as interface 118 (FIG. 1), although other interfaces are also suitable. Connector-less interface 200 may be comprised of one or more sets of windings 206 on projectile portion 204 and one or more sets of windings 208 in projectile setter 202. Windings 206 may be wound directly on magnetic cores 210 which may be separated by spacer 212. Windings 208 of setter 202, similarly, may be wound on magnetic cores (not illustrated). During energy and data transfer operations, projectile portion 204 may be inserted, or disposed, into setter 202 to form a transformer allowing the transfer of energy and data. One suitable inductive interface may be found in U.S. Pat. No. 6,268,785.

FIG. 3 is a functional block diagram of projectile circuitry in accordance with an embodiment of the present invention. Projectile circuitry 300 may be suitable for use as projectile circuitry 106 (FIG. 1) although other circuitry is also suitable. Projectile circuitry 300 may include rectifier 302 to rectify a waveform received from an interface, such as interface 104 (FIG. 1), and capacitive storage element 304 to store energy extracted from the rectified waveform. Projectile circuitry 300 may also include data extractor 306 to extract data from a waveform received from an interface, such as interface 104 (FIG. 1), and data storage element 308 to store the extracted data. Regulator 310 may regulate the voltage of the waveform for data extractor 306.

In a guided projectile embodiment of the present invention, mission data 108 may include GPS information and navigational information, and load 116 may include a precision clock, such as a GPS clock or precision oscillator. In this embodiment, energy in energy storage element 114 provides power to load 116 until a flight energy source, such as a flight battery becomes available shortly after deployment of the projectile.
element 308 may be comprised of volatile and/or non-volatile semiconductor memory devices, as well as other elements suitable for storage of digital information including, for example, magnetic memory and magnetic storage elements.

[0018] Capacitive energy storage element 304 may be suitable for use as energy storage element 114 (FIG. 1) although other energy storage elements are also suitable. Capacitive storage element 304 may provide an output voltage through regulator 312 for circuitry 316. Circuitry 316 may include precision clock and/or oscillator circuitry including, for example, a GPS time-synchronization clock. In one embodiment, regulator 312 may provide power to data storage element 308 for use in retaining stored data. For example, when data storage element 308 includes volatile memory, regulator 312 may provide a voltage to element 308. In one embodiment, capacitive storage element 304 may replace a data-hold battery conventionally used in guided projectiles.

[0019] In one embodiment of the present invention, data received over an interface may include mission data for use by a guided projectile. In this embodiment, energy and data may be transferred very rapidly over the interface. Capacitive energy storage element 304 may be charged rapidly and the mission data may be stored in data storage element 308 during projectile setting operations. During projectile setting operations, power may be supplied to elements of projectile circuitry 300 including guidance electronics 318. After projectile setting operations and during firing, capacitive energy storage element 304 may provide power to precision clock circuitry 316 until chemical energy storage element 320 is activated after launch. Chemical energy storage element 320 may be a flight battery for use in powering guidance electronics 318 and precision clock 316, among other things, during projectile deployment. In one embodiment, the flight battery may be chemically ignited during launch. A controller (not illustrated) may control the operations of the various functional elements of projectile circuitry 300.

[0020] Capacitive energy storage element 304 may include primary capacitive energy storage elements, such as at least one super capacitor 322 for storing energy received from rectifier 302. In one embodiment, capacitive energy storage element 304 may include a backup energy storage element, such as gun-hardened capacitor (GHC) 324, and one-way energy transfer elements 326 between super capacitor 322 and gun-hardened capacitor 324. Gun-hardened capacitor 324 may be a tantalum capacitor or surface mount capacitor, for example that may be gun hardened. One-way energy transfer elements 326 may be diodes. Gun-hardened capacitor 324 may serve as a back up energy storage element and in one embodiment, clock circuitry 316 may receive energy from gun-hardened capacitor 324 if super capacitor 322 fails during projectile launching (e.g., in the event super capacitor 322 may not be "gun hardened"). Capacitive energy storage element 304 may include other functional elements (not illustrated) to allow for charging energy storage elements 322 and 324 with a rectified waveform received from rectifier 302.

[0021] In one embodiment, regulator 312 may be a boost-type voltage regulator that provides an input voltage to circuitry 316 which may be greater than the voltage level received from capacitive energy storage element 304. In this embodiment, only one super capacitor 322 may be needed, although more than one super capacitor may be configured in a parallel arrangement.

[0022] In another embodiment, regulator 312 may be a linear voltage regulator or a switching voltage regulator that provides an input voltage to circuitry 316 which may be less than or about equal to a voltage level received from capacitive energy storage element 304. In this embodiment, more than one super capacitor 322 may be used, and the super capacitors may be arranged in a series configuration (as illustrated) to provide a higher combined voltage. Additional super capacitors may be added (e.g., in parallel) to provide additional current capacity. In these embodiments, regulator 312 may provide a regulated output voltage to circuitry 316, which may be in the range of approximately two to four volts, for example.

[0023] In one embodiment, super capacitor 322 may have a high storage density and may have a capacitance of one or more Farads. Super capacitor 322 may be chemically inert (i.e., not including a battery or be a battery-capacitor hybrid) and may have radially configured double layer plates. Super capacitor 322 may also be hermetically sealed and have an electrolyte that does not freeze at temperatures of up to -43 degrees C (-45 degrees F). Super capacitor 322 may also be able to withstand shock forces of up to 15,000 g's and greater during projectile launching operations without failure. The charge and/or discharge rate of super capacitor 322 may be at least 15 Joules per second allowing super capacitor 322 to store up to 15 - 20 watts in less than two seconds, for example. Super capacitor 322 may be referred to as a "quick-charge" capacitor.

[0024] Although projectile circuitry 300 is illustrated as having several functional elements 302 - 320, one or more of these functional elements may be combined with other functional elements and may be fabricated from various combinations of hardware and software configured elements.

[0025] FIG. 4 is a flow chart of a data and energy transfer procedure in accordance with an embodiment of the present invention. Data and energy transfer procedure 400 may be performed by a projectile setting system, such as system 100 (FIG. 1), although other systems are also suitable. Although the individual operations of procedure 400 are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently and nothing requires that the operations be performed in the order illustrated.

[0026] In operation 402, a projectile setter may be placed over a projectile. Operation 402 may establish a connector-less or an inductive interface, such as inter-
face 118 (FIG. 1), between setter circuitry 102 (FIG. 1) and projectile circuitry 106 (FIG. 1). Operation 402 may alternatively establish an electro-mechanical interface. In the case of an electro-mechanical interface, operation 402 may include electrically coupling the setter and projectile circuitry. In operation 404, data and/or energy are transferred over the interface from the setter circuitry to the projectile. The energy may take the form of an AC waveform and the data may be modulated on the waveform.

[0027] In operation 406, a capacitive energy storage element, such as energy storage element 114 (FIG. 1), may be charged. The charging may be performed rapidly allowing up to 25 watts or more of energy to be stored on the capacitive energy storage element in less than a few seconds. Operation 406 may include charging primary and back-up energy storage elements of the capacitive energy storage element. In operation 406, mission data may be stored in a data storage element, such as data storage element 112 (FIG. 1). In one embodiment, operations 404 through 406 may be performed substantially simultaneously. During operations 404 through 406, power to the projectile circuitry may be supplied from an external means.

[0028] In operation 410, the projectile setter may be removed from over the projectile, which may terminate the interface established in operation 402. In the case of an electro-mechanical interface, operation 410 may include electrically decoupling the setter and projectile circuitry.

[0029] In operation 412, a primary storage element of the capacitive energy storage element may provide energy to circuitry, such as circuitry 316 (FIG. 3), until another energy source becomes available. In one embodiment, the capacitive energy storage element may provide energy to the circuitry from the time the projectile is removed from the projectile setter until after launch. This may include the time during which the projectile is transferred to a gun barrel for loading in operation 414, and the time subsequent to launch in operation 416 until a flight battery becomes available. In this embodiment, the capacitive energy storage element may replace a data hold battery used in conventional guided projectiles.

[0030] In operation 418, a backup-energy storage element, such as a gun-hardened capacitor, may provide energy to circuitry, such as circuitry 316 (FIG. 3), in the event of failure 419 of the primary capacitive energy storage element. For example, if super capacitor 322 (FIG. 3) fails during launching operations, gun-hardened capacitor 324 may provide power to the clock circuitry until the flight battery becomes available. In this situation, gun-hardened capacitor 324 may provide power to the clock circuitry for a relatively short amount of time (e.g., less than two seconds) from launch until activation of the flight battery.

[0031] In operation 420, another energy source, such as flight battery 320 (FIG. 3), may be activated and becomes available. In operation 420, the capacitive energy storage element may refrain from providing energy to the clock circuitry.

[0032] The foregoing description of specific embodiments reveals the general nature of the invention sufficiently that others can, by applying current knowledge, readily modify and/or adapt it for various applications without departing from the generic concept. Therefore such adaptations and modifications are within the meaning and range of equivalents of the disclosed embodiments. The phraseology or terminology employed herein is for the purpose of description and not of limitation. Accordingly, the invention embraces all such alternatives, modifications, equivalents and variations as fall within the scope of the appended claims.

Claims

1. An apparatus (100) to transfer and store energy and data, said apparatus (100) comprising a guided projectile, and a projectile setter (102) which transfers mission data (108) and energy (110) to the guided projectile over an inductive interface (104); the guided projectile comprising:

- a capacitive energy storage element (114/304) to receive and store the energy (110) transferred over the inductive interface (104);
- a data storage element (112/308) to receive data (108) transferred over the interface (104) concurrently with the energy (110) with a combined data and energy signal;
- a flight battery (320); and
- circuitry (316) to receive power from the capacitive energy storage element (114/304); and the flight battery (320);

wherein the circuitry (316) receives power from the capacitive energy storage element (114/304) during loading and firing, and the flight battery (320) is activated after launching of the projectile.

2. The apparatus (100) set forth in claim 1, wherein the capacitive energy storage element (114/304) comprising a primary energy storage element (322) and a back-up energy storage element (324); and wherein, in the event of a failure of the primary capacitive energy storage element (322), the backup-energy storage element (324) can provide energy to the circuitry (316) until the flight battery (320) becomes available.

3. The apparatus (100) set forth in either of the preceding claims, wherein the guided projectile further comprises:

- a rectifying element (302) to rectify a signal from the interface (104), the signal including the en-
energy (110) and the mission data (108); and a data extraction element (306) to extract the mission data (108) from the signal and provide the extracted mission data (108) to a data storage element (308).

4. The apparatus (100) of the preceding claim, wherein the rectifying element (302) is coupled to the capacitive storage element (304) to provide the received energy to the capacitive storage element (304).

5. The apparatus (100) set forth in any of the preceding claims, wherein the guided missile comprises a regulator (312) coupled to an output of the capacitive storage element (304) to regulate an input voltage of the circuitry (316).

Patentansprüche

1. Einrichtung (100) zur Übertragung und Speicherung von Energie und von Daten, wobei die Einrichtung (100) einen Lenkflugkörper und eine Flugkörpersteuerung (102) enthält, welche Missionsdaten (108) und Energie (110) auf den Lenkflugkörper über eine induktive Schnittstelle (104) überträgt; wobei der Lenkflugkörper folgendes umfasst:

 - ein kapazitives Energiespeicherelement (114/304) zum Aufnehmen und Speichern der Energie (110), welche über die induktive Schnittstelle (104) übertragen wird;
 - ein Datenspeicherelement (112/308) zur Aufnahme von Daten (108) welche über die induktive Schnittstelle (104) zusammen mit der Energie (110) von einem kombinierten Daten- und Energiesignal übertragen werden;
 - eine Flugbatterie (320); und
 - Schaltungsmittel (316) zum Aufnehmen von Leistung von dem kapazitiven Energiespeicherelement (114/304) und der Flugbatterie (320);

 wobei die Schaltungsmittel (316) Leistung von dem kapazitiven Energiespeicherelement (114/304) während des Ladens und des Abschusses aufnehmen und die Flugbatterie (320) nach dem Starten des Flugkörpers aktiviert wird.

2. Einrichtung (100) nach Anspruch 1, bei welcher das kapazitive Energiespeicherelement (114/304) ein primäres Energiespeicherelement (322) und ein Reserveenergiespeicherelement (324) enthält und bei welcher im Falle eines Ausfalles des primären kapazitiven Energiespeicherelementes (322) das Reserveenergiespeicherelement (324) Energie an die Schaltungsmittel (316) liefern kann, bis die Flugbatterie (320) verfügbar wird.

3. Einrichtung (100) nach einem der vorhergehenden Ansprüche, bei welcher der Lenkflugkörper weiter folgendes umfasst:

 - ein Gleichrichterelement (302) zum Gleichrichten eines Signals von der Schnittstelle (104), wobei dieses Signal die Energie (110) und die Missionsdaten (108) enthält; und
 - ein Datenaufbereitungselement (306) zum Extra-

 - ein Datenspeicherelement (308).

4. Einrichtung (100) nach dem vorausgehenden Anspruch, bei welcher das Gleichrichterelement (302) mit dem kapazitiven Speicherelement (304) gekoppelt ist, um die aufgenommene Energie an das kapazitive Speicherelement (304) zu liefern.

5. Einrichtung (100) nach irgendeinem der vorausge- henden Ansprüche, bei welcher der Lenkflugkörper einen Regler (312) enthält, welcher an einen Ausgang des kapazitiven Speicherelementes (304) an- gekoppelt ist, um die Eingangsspannung der Schal- tungsmittel (316) zu regeln.

Revendications

1. Appareil (100) pour transférer et stocker de l’énergie et des données, cet appareil (100) comprenant un projectile guidé, et un dispositif de réglage de projectile (102) qui transfère des données de mission (108) et de l’énergie (110) au projectile guidé, par l’intermédiaire d’une interface inductive (104) ;

 - le projectile guidé comprenant :

 - un élément de stockage d’énergie capacitif (114/304) pour recevoir et stocker de l’énergie (110) transférée par l’intermédiaire de l’interface inductive (104) ;
 - un élément de stockage de données (112/308) pour recevoir des données (108) transférées par l’intermédiaire de l’interface (104), simultanément à l’énergie (110), avec un signal de données et d’énergie combiné ;
 - une batterie de vol (320) ; et
 - un circuit (316) pour recevoir de l’énergie à partir de l’élément de stockage d’énergie capacitif (114/304) et de la batterie de vol (320) ;

 dans lequel le circuit (316) reçoit de l’énergie à partir de l’élément de stockage d’énergie capacitif (114/314) pendant le chargement et la mise à feu, et la batterie de vol (320) est activée après le lance- ment du projectile.

2. Appareil (100) selon la revendication 1, dans lequel
l’élément de stockage d’énergie capacitif (114/304) comprend un élément de stockage d’énergie principal (322) et un élément de stockage d’énergie de secours (324) et dans lequel, en cas de défaillance de l’élément de stockage d’énergie capacitif principal (322), l’élément de stockage d’énergie de secours (324) peut fournir de l’énergie au circuit (316) jusqu’à ce que la batterie de vol (320) devienne disponible.

3. Appareil (100) selon l’une quelconque des revendications précédentes, dans lequel le projectile guidé comprend en outre :

 un élément redresseur (302) pour redresser un signal provenant de l’interface (104), le signal incluant l’énergie (110) et les données de mission (108) ; et
 un élément d’extraction de données (306) pour extraire du signal les données de mission (108) et fournir à un élément de stockage de données (308) les données de mission (108) extraites.

4. Appareil (100) selon la revendication précédente, dans lequel l’élément redresseur (302) est couplé à l’élément de stockage capacitif (304) pour fournir à l’élément de stockage capacitif (304) l’énergie qui est reçue.

5. Appareil (100) selon l’une quelconque des revendications précédentes, dans lequel le missile guidé comprend un régulateur (312) couplé à une sortie de l’élément de stockage capacitif (304) pour réguler une tension d’entrée du circuit (316).
DATA AND ENERGY TRANSFER PROCEDURE

PLACE SETTER OVER PROJECTILE

TRANSFER DATA AND/OR ENERGY OVER INTERFACE

CHARGE CAPACITIVE ENERGY STORAGE ELEMENT

STORE MISSION DATA IN DATA STORAGE ELEMENT

REMOVE SETTER

PROVIDE POWER TO PRECISION CLOCK AND DATA STORAGE

TRANSFER PROJECTILE TO BARREL

FIRE/LAUNCH PROJECTILE

PROVIDE BACK-UP POWER WITH GUN HARDENED CAPACITOR

FLIGHT BATTERY ACTIVATION

SUPER CAP FAILURE

FIG. 4
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 5343795 A [0005]
• US 6268785 B [0015]