THE USE OF HYDROXYPYRIDONE-DERIVATIVES IN WOUND HEALING
VERWENDUNG VON HYDROXYPYRIDON DERIVATEN ZUR WUNDHEILUNG
UTILISATION DE DERIVES D'HYDROXYPYRIDONE POUR UNE CICATRISATION DE PLAIES

Designated Contracting States:
AT BE BG CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Date of publication of application:
26.01.2005 Bulletin 2005/04

Proprietor: Sanofi-Aventis Deutschland GmbH
65929 Frankfurt am Main (DE)

Inventors:
• BOHN, Manfred
65719 Hofheim (DE)
• KRAEMER, Karl, Theodor
63225 Langen (DE)
• WENGER, Roland, H.
19217 Uetcht (DE)

References cited:
WO-A-99/37300
The present invention relates to the use of compounds of the formula I,

\[
\text{I:} \quad R^1 \quad R^2 \quad R^3 \quad R^4
\]

in which \(R^1\), \(R^2\), \(R^3\) and \(R^4\) have the meanings indicated below, in wound healing wherein the wounds are defined according to claim 1.

Compounds of formula I such as 6-Cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridone 2-aminoethanol salt, also known as ciclopirox olamine (CPX) are widespread anti-fungal agents used to treat mycoses of the skin and nails since more than 20 years. Apart from its antimycotic activity, CPX is also effective against both gram-positive and gram-negative bacteria (Dittmar, W. et al. (1981) Microbiological laboratory studies with ciclopiroxolamine. Arzneimittelforschung 31, 1317-1322). CPX is applied as a 1% cream or gel to treat dermomycoses and as a 8% nail lacquer to treat onychomycoses. CPX is known to inhibit diverse fungal enzymatic activities in microorganisms, including the transmembrane transport of amino acids, potassium and phosphate. However, the general molecular mechanism of the antimicrobial activity of CPX is not exactly known.

In studies addressing the cutaneous effects of a 1% CPX solution applied on rabbit skin over 20 days, occasionally transient reddening of healthy skin and persistent reddening of experimentally wounded skin has been observed (Alpermann, H. G., and Schütz, E. (1981) Studies on the pharmacology and toxicology of ciclopiroxolamine. Arzneimittelforschung 31, 1328-1332). Occasionally transient reddening of healthy skin was explained as a side reaction of CPX.

WO 9937300 describes powder preparations containing hydroxypyridones for treating leg ulcers.

Therapeutic angiogenesis by recombinant angiogenic growth factors or by gene therapy has become an important treatment modality during the past few years (Höckel, M. et al. (1993) Therapeutic angiogenesis. Arch. Surg. 128, 423-429). In ongoing human clinical trials, VEGF gene therapy is applied for the treatment of critical limb ischemia and myocardial ischemia. VEGF therapy has also been experimentally investigated in gastric and duodenal ulceration, as well as in dermal ulcers and in cultured skin substitutes.

It has now been found that the compounds of the formula I have a potent angiogenic activity and induce angiogenesis as evidenced by numerous newly formed arranged vessels. Additionally, it has been found that topical application of CPX does not lead to gross systemic alterations in VEGF expression, which limits its function to regions of topical application. This is rather safe and highly advantageous compared to gene therapy. Thus, the compounds of the formula I can be used for the treatment of wounds and/or wound healing, because the potent angiogenic activity differs considerably from the known anti-microbial activity of the compounds of the formula I. Thus, not only infections are prevented during the treatment of wounds, but also wound healing is improved by e.g. forming of numerous new vessels in and around the wound.

The invention therefore relates to the use of 1-hydroxy-2-pyridones of the formula I for the preparation of a pharmaceutical for the treatment of wounds and/or wound healing wherein the wounds are defined according to claim 1 in which \(R^1\), \(R^2\) and \(R^3\) are identical or different and are a hydrogen atom or alkyl having
1 to 4 carbon atoms, and

R₄ is a saturated hydrocarbon radical having 6 to 9 carbon atoms or a radical of the formula II

where

X is S or O,
Y is a hydrogen atom or up to 2 halogen atoms such as chlorine and/or bromine,
Z is a single bond or a divalent radical comprising

a) 0, or
b) S, or
c) -(R⁵)(R⁶)- where R⁵ and R⁶ are identical or different and are independently hydrogen atom or (C₁-C₄)-alkyl; or
d) other divalent radicals having 2 to 10 carbon in the form of a chain, which optionally further comprises one or more of the following:

i) a carbon-carbon double bond, or

ii) 0, S, or a mixture thereof, wherein if 2 or more 0 and/or S atoms or a mixture thereof are present, each 0 or S atom is separated by at least 2 carbon atoms; and,

in any of the foregoing bivalent radicals, the free valences of the carbon atoms of said bivalent radical are saturated by a hydrogen atom, (C₁-C₄)-alkyl, or a mixture thereof; and

Ar is an aromatic ring system having up to two rings which can be substituted by up to three radicals from the group consisting of fluorine, chlorine, bromine, methoxy, (C₁-C₄)-alkyl, trifluoromethyl and trifluoromethoxy in free or in salt form.

[0008] In the radicals "Z", the carbon chain members are preferably -CH₂ groups. If the -CH₂-groups are substituted by (C₁-C₄)-alkyl groups, CH₃ and C₂H₅ are preferred substituents.

[0009] Exemplary radicals of "Z" are:

- O-, -S-, -(CH₂)m- (m = 2 -10), -C(CH₃)₂-, -CH₂O-, -CH₂S-, -CH₂-, -SCH₂-, -SCH(CH₃)₂-, -CH=CH-CH₂O-, -O-CH₂-CH₂O-, -OCH₂-CH₂O-, -OCH₂-CH₂CH₂O-, -SCH₂CH₂CH₂S-, -SCH₂CH₂CH₂CH₂O-, -SCH₂CH₂OCH₂CH₂-, -SCH₂CH₂OCH₂CH₂O-CH₂CH₂S- or -S-CH₂-C(CH₃)₂-CH₂-.

[0010] The radical "S" denotes a sulphur atom; the radical "O" denotes an oxygen atom. The term "Ar" denotes phenyl or condensed systems such as naphthyl, tetrahydronaphthyl and indenyl, and also isolated systems such as those, which are derived from biphenyl, diphenylalkanes, diphenyl ethers and diphenyl thiophens.

[0011] The term "saturated hydrocarbon radical having 6 to 9 carbon atoms" means that the radical can be straight-chain, branched or cyclic and contains no aliphatic multiple bonds, i.e. no ethylenic or acetylenic bonds. Examples of the R⁴ radical are e.g. heptyl, heptyl, octyl, cyclohexyl or cyclohexyl.

[0012] The hydrocarbon radical R⁴ in the compound of formula I is preferably an -(C₆-C₉)-alkyl or cyclohexyl radical, which may also be linked via a methylene or ethylene group to the pyridone ring or can contain an endomethyl group. R⁴ can also be an aromatic radical which, however, is preferably bonded to the pyridone radical via at least one aliphatic carbon atom.

[0013] Important representatives of the class of compound characterised by the formula I are:

6-[4-(4-chlorophenoxy)phenoxymethyl]-1-hydroxy-4-methyl-2-pyridone,
The present invention also relates to the use of the compound of the formula I, in which Ar is a bicyclic system, according to the invention.

If organic bases are used, poorly volatile bases are preferably employed, for example low molecular weight alkanolamines such as ethanolamine, diethanolamine, N-ethylethanolamine, N-methylolethanolamine, triethanolamine, diethylaminoethanol, 2-amino-2-methyl-1-propanol, dimethylaminopropanol, 2-amino-2-methylpropanediol, tripropylolamine. Further poorly volatile bases which may be mentioned are, for example, ethylenediamine, hexamethylenediamine, morpholine, piperidine, piperazine, cy clohexylamine, tributylamine, dodecylamine, N,N-dimethyldecylamine, stearylamine, oleylamine, benzylamine, dibenzylamine, N-ethylbenzylamine, dimethylstearylamine, N-methylmorpholine, N-methylpiperazine, 4-methylcyclohexylamine, N-hydroxyethylmorpholine. The salts of quaternary ammonium hydroxides such as trimethylbenzylammonium hydroxide, tetramethylammonium hydroxide or tetraethylammonium hydroxide can also be used, and furthermore guanidine and its derivatives, in particular its alkylation products. However, it is also possible to employ, for example, low molecular alkanolamines such as methylamine, ethylamine or triethylamine as salt-forming agents. Salts with inorganic cations, for example alkali metal salts, in particular sodium, potassium or ammonium salts, alkaline earth metal salts such as in particular the magnesium or calcium salts, and salts with di- to tetravalent cations, for example the zinc, aluminium or zirconium salt, are also suitable for the compounds to be employed according to the invention.

The present invention also relates to the use of the compound of the formula I, in which Ar is a bicyclic system, which is derived from biphenyl, diphenylalkane or diphenyl ether.

The present invention also relates to the use of the compound of the formula I, which contains a cyclohexyl radical in the position R4.

The present invention also relates to the use of the compound of the formula I, which contains an octyl radical of the formula -CH2-CH(CH3)-CH2-(CH3)2 in the position R4.

The present invention also relates to the use of the compound of the formula I, wherein 1-hydroxy-4-methyl-6-[4-(4-chlorophenoxy)phenoxymethyl]-2-(1H)pyridone, 1-hydroxy-4-methyl-6-cyclohexyl-2-(1H)pyridone or 1-hydroxy-4-methyl-6-(2,4,4-trimethylpentyl)-2-pyridone is employed.

The present invention also relates to the use of the compounds of the formula I for the production of a pharmaceutical for the treatment of wounds wherein the wounds are defined according to claim 1.

The term "wounds" is understood as meaning e.g. crush wounds, cuts, gaping wounds, gunshot wounds, incisions, squeeze wounds, stab wounds, or wounds due to surgery or plastic surgery. The term "wound healing" is understood as meaning regenerative processes for the closing of a wound; especially new forming of capillary vessels and increase of connective tissue and epithelial cells. The compounds of the formula I and their physiologically tolerable salts can be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals for the treatment of wounds and/or wound healing. They can
be administered on their own, or in mixtures with one another or in the form of pharmaceutical preparations, which permit topical administration. The term "mammals" is understood as meaning e.g. human, horse, cattle, pig, rat, mouse, sheep or dog.

The pharmaceuticals can be administered percutaneously or topically, for example in the form of emulsions, ointments, solutions or tinctures, powders, or in other ways, for example in the form of aerosols or foams. For use according to the invention of the compounds mentioned, liquid, semisolid and solid pharmaceutical preparations are suitable, in particular solutions, cream, ointment, powders and gel preparations, where the latter are preferably used because of their increased release of active compound.

The pharmaceutical preparations according to the invention are prepared in a manner known per se and familiar to one skilled in the art, pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts.

The compounds of the formula I can also be incorporated in or on surgical gauze, bandage or dressing.

Suitable dressings are illustrated in more detail by the following examples:

Alginate dressings

Alginate wound dressings are woven from calcium alginate fibers. Calcium alginate is a marine biopolymer that is derived from seaweed. Alginites are highly absorptive. When the alginates dressing comes into contact with wound exudate, a soft gel is formed, maintaining a moist environment at the wound surface that is conducive to the formation of granulation tissue and epithelialization. Alginate dressings are indicated for heavily exudating wounds, as they have the capacity to absorb as much as 20 times their weight.

Composite dressings

They are generally multi-layered, incorporating a nonadherent layer that is in contact with the wound, and various absorbent, wicking, and semi-occlusive layers. The absorptive layer does not incorporate a foam, alginate, hydrocolloid, or hydrogel. A nonwoven adhesive tape backing secures the dressing to the skin. These dressings are used as cover dressings for all phases of wound healing and are primary dressing for many types of post-operative wounds.

Contact layers

Contact layers are thin sheet dressings placed directly on an open wound to protect the wound tissue from direct contact with other agents or dressings applied to the wound. Secondary dressings are always used with contact layers.

Foam dressings

Foam dressings are made primarily from polyurethane, but silicone is also used. They are available as either flat foam dressings or as fillers, and are intended for use on granulation and epithelializing wounds producing some exudate.

Gauze

Woven gauze dressings are made from 100% cotton yarn. The threads are horizontally and vertically woven, with 10 to 20 separate manufacturing steps employed in the process of producing a 4 x 4 inch, 12-ply sponge. Woven gauze dressings come in a wide range of types and are commonly used for packing and debridement. Nonwoven fabrics are neither woven nor knitted. The fibers are arranged such that they appear to be woven. Most nonwoven dressings are manufactured from a blend of rayon and polyester. Rayon provides softness and absorbency, while polyester provides strength. The primary application of nonwoven gauze dressings is for absorption and wrapping.

Impregnated gauze dressings

Impregnated gauze dressings are woven or nonwoven materials in which substances have been incorporated into the dressing material.
Hydrocolloid dressings

[0034] Hydrocolloid dressings are popular second-generation dressings, which are moderate absorptive, moisture-retentive, conformable to the wound, and self-adhesive. They are also occlusive, forming a barrier against bacterial contamination. In addition to being available in dimensional forms, hydrocolloids are supplied as powders, granules, pastes, and other specialised forms. The major functional components are gelatine, pectin, or related hydrocolloids. They are indicated for use on pressure ulcers, burns, and a variety of other wound types.

Hydrogel dressings

[0035] Hydrogels are semipermeable dressings of which water is the major component. Glycerine or propylene glycol are included as humectants, and a co-polymer starch is sometimes added as absorptive. The dressings are available as gauze-impregnated wafers, sheets, and amorphous gels, and are indicated for partial- and full-thickness wounds non-draining to moderately draining.

Transparent film dressings

[0036] Transparent film dressings are occlusive dressings consisting of a polyurethane membrane framed by an adhesive layer. The dressings vary in thickness, degree of occlusiveness, and other properties. Transparent film dressings are indicated for use on small surgical incisions, insertion points for peripheral and central venous catheters, superficial burns, partial-thickness breakdown wounds, and as secondary dressings.

Biological and biosynthetic dressings

[0037] This sector includes

- a group of naturally absorptive and biological compatible collagen-based dressings
- dressings constructed of related biocompatible amino acids and protein hydrolysates
- dressings which combine synthetic and biologically derived materials

[0038] The compounds of the formula I can be topically administered to human and other mammals such as dog, cat, horse, pig, cattle or sheep.

[0039] The pharmaceutical preparations normally contain from about 0.05 % to about 5 %, preferably from 0.5 % to 2 %, especially preferably 1 %, by weight of the compounds of the formula I and/or their physiologically tolerable salts. Smaller and higher percentages are also possible.

[0040] In addition to the active ingredients of the formula I and/or their physiologically acceptable salts and to carrier substances, the pharmaceutical preparations can contain additives such as, for example, fillers, binders, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, colorants, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants. They can also contain two or more compounds of the formula I and/or their physiologically tolerable salts. Furthermore, in addition to at least one compound of the formula I and/or its physiologically tolerable salts, the pharmaceutical preparations can also contain one or more other therapeutically or prophylactically active ingredients. Such additional active ingredients can be dexamethasone, allantoic, dextranomer, and/or extracts of the Echinacea plant.

[0041] It is understood that changes that do not substantially affect the activity of the various embodiments of this invention are included within the invention disclosed herein. Thus, the following examples are intended to illustrate but not limit the present invention.

Example 1

Induction of VEGF gene expression by CPX

Methods

Cell culture

[0042] The HRCH05 cells containing a stable transfected, HIF-1-dependent reporter gene were described previously (Wanner, R. M., et al. (2000) Epolones induce erythropoietin expression via hypoxia-inducible factor-1α activation. Blood 96, 1558-1565). The human HepG2 hepatoma cell line was obtained from American Type Culture Collection (ATCC
numbers HB-8065). All cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM, high glucose, Life Technologies) supplemented with 10% heat-inactivated FCS, 100 U/ml penicillin, 100 μg/ml streptomycin, 1 x non-essential amino acids and 1 mM Na-pyruvate (all purchased from Life Technologies) in a humidified atmosphere containing 5% CO₂ at 37°C. Oxygen partial pressures in the incubator (Forma Scientific, model 3131) were either 140 mm Hg (20% O₂ v/v, normoxia) or 7 mm Hg (1% O₂ v/v, hypoxia). Ciclopirox olamine (CPX), deferoxamine mesylate (DFX) and 2,2’-dipyridyl (DP) were purchased from Sigma. Stock solutions of CPX and DP were prepared in methanol at 0.5 M and 1 M, respectively. DFX was freshly dissolved at 10 mM into the cell culture medium.

Example 2

CPX in a concentration from 5 μM to 20 μM concentrations strongly induced the HIF-1α protein in normoxic HepG2 hepatoma cells after 6 and 24 hours of treatment. While no HIF-1α protein could be detected in normoxic cells, hypoxia (1% O₂) also strongly induced HIF-1α. The combination of CPX and hypoxia did not further increase HIF-1α levels after 6 hours but rather decreased HIF-1α levels after 24 hours of treatment.

Example 3

A luciferase reporter gene driven by a 1180 bp VEGF promoter fragment was transiently transfected into HepG2 cells, which were split and treated with increasing concentrations of CPX for 24 hours. A dose-dependent increase in luciferase activity was observed, suggesting that CPX transcriptionally activates VEGF expression. In summary, these results demonstrate that CPX can activate endogenous VEGF transcription, mRNA expression and secreted protein accumulation.

Method

CAM assays were performed as described by Olivo, M. et al. (A comparative study on the effects of tumor necrosis factor-α (TNF-α), human angiogenic factor (h-AF) and basic fibroblast growth factor (bFGF) on the chorioallantoic membrane (CAM) assay
membrane of the chick embryo. (1992). Anat. Rec. 234, 105-115). Briefly, fertilized eggs (purchased from Lohmann Tierzucht, Cuxhaven, Germany) were incubated at 37°C in a humidified atmosphere. The eggs were kept on their sides and turned upside down twice a day. After 6 days, a small hole was drilled through the shell into the air sac (visualized using a strong light source) and a window of approximately 0.5 cm² was sawed into the side of the egg. The window was sealed with tape and the eggs were reincubated until day 9, when 6-Cyclohexyl-1-hydroxy-4-methyl-2-(1H)-pyridone 2-aminoethanol salt (CPX) was applied to the CAM using the Elvax® method (see Olivo, M. et al. above). Therefore, ethylene/vinyl acetate copolymer beads (Elvax® 40L-03, DuPont, provided by C. H. Erbslöh KG, Krefeld, Germany) were extensively washed in ethanol and dried under reduced pressure. The Elvax® beads were then dissolved in methylene chloride at 10% (w/v) and CPX was added to the desired concentration. One drop (40 μL) of this solution was pipetted onto a siliconized glass slide and the solvent was allowed to evaporate completely. Using forceps, the Elvax® disc was carefully lifted from the glass slides and placed onto the CAM. At day 11, the window was enlarged and the CAM was documented using a digital camera (Olympus) coupled to an ocular of a stereomicroscope.

Result

Based on the observations that CPX induced VEGF expression in cell culture (see example 1), the angiogenic capacity in an in vivo model of angiogenesis was analyzed. Therefore, the chicken CAM at day 9 of development was overlayed with inert polymer discs containing various concentrations of CPX or solvent only. After two days of incubation, no signs of angiogenesis could be observed with the solvent control discs. In contrast, polymer discs containing 50 mM CPX consistently induced CAM angiogenesis as evidenced by numerous newly formed, radially arranged vessels. A total of 10 CAMs treated with 50 mM CPX showed similar angiogenesis, while all 7 control CAMs lacked any signs of angiogenesis. 5 mM CPX was indistinguishable from the controls and 500 mM CPX was toxic to the chick embryo.

Example 4

Mouse skin wound model

Method

Both ears of adult NMRI mice were wounded under anesthesia with 100 mg/kg Ketamine (Narketan®) and 5 mg/kg Xylazine (Rompun®) by punch-through holes of 2 mm diameter using a standard ear-punching tool. The ears were treated daily with a common skin cream containing (Batrafen®) or not containing 1% (w/v) CPX. One ear was treated with CPX and the other ear with the control cream. The amount of cream was sufficient to cover the hole and was equally distributed over the entire ear.

Result

CPX can induce angiogenesis in a mouse skin wound model

Punch-through ear holes of 2 mm diameter (a widespread way of marking mice in animal facilities) were treated daily with a commercially available dermal cream containing 1% CPX on one ear and a CPX-free but otherwise identical common dermal cream on the other ear, respectively. CPX can cause reddening of the wound margin, which was never observed on the healthy skin area of the same ear. In this series 4 of 10 animals showed similar effects and none of the animals had more pronounced reddening on the placebo-treated wound margin than on the CPX-treated wound margin. The reddening induced by CPX might be enhanced vessel growth.

Claims

1. The use of 1-hydroxy-2-pyridones of the formula I
for the preparation of a pharmaceutical for wound healing, wherein the wounds are crush wounds, cuts, gunshot wounds, incisions, squeeze wounds, stab wounds or wounds due to surgery or plastic surgery, wherein the compound of the formula I is administered topically in the form of emulsions, ointments, solutions, tinctures, powders, cream or gel preparation or in the form of aerosols or foams, in which R¹, R² and R³ are identical or different and are a hydrogen atom or alkyl having 1-4 carbon atoms, and R⁴ is a saturated hydrocarbon radical having 6 to 9 carbon atoms or a radical of the formula II

where

X is S or O,
Y is a hydrogen atom or up to 2 halogen atoms such as chlorine and/or bromine,
Z is a single bond or the divalent radical comprising:

a) 0, or
b) S, or
c) -C(R⁵)(R⁶)-; wherein R⁵ and R⁶ are identical or different and are independently hydrogen atom or (C₁-C₄)-alkyl; or
d) other divalent radicals having 2 to 10 carbon in the form of a chain, which optionally further comprises one or more of the following:

i) a carbon-carbon double bond, or
ii) 0, S, or a mixture thereof, wherein if 2 or more 0 and/or S atoms or a mixture thereof are present, each 0 or S atom is separated by at least 2 carbon atoms; and,

in any of the foregoing bivalent radicals, the free valences of the carbon atoms of said bivalent radical are saturated by a hydrogen atom, (C₁-C₄)-alkyl, or a mixture thereof; and

Ar is an aromatic ring system having up to two rings which can be substituted by up to three radicals from the group consisting of fluorine, chlorine, bromine, methoxy, (C₁-C₄)-alkyl, trifluoromethyl and trifluoromethoxy in free or in salt form.

2. The use as claimed in claim 1, wherein
 Ar in the compound of the formula I is a bicyclic system, which is derived from biphenyl, diphenylalkane or diphenyl ether.

3. The use as claimed in claim 1, wherein the compound of formula I contains a cyclohexyl radical in the position R⁴.
4. The use as claimed in claim 1, wherein the compound of formula I contains an octyl radical of the formula \(-\text{CH}_2\text{-CH}(\text{CH}_3)\text{-CH}_2\text{-C}(\text{CH}_3)_3\) in the position R^4.

5. The use as claimed in one or more of claims 1, wherein the compound of formula I is 1-hydroxy-4-methyl-6-[4-(4-chlorophenoxy)phenoxymethyl]-2-(1H)pyridone, 1-hydroxy-4-methyl-6-cyclohexyl-2-(1H)pyridone or 1-hydroxy-4-methyl-6-[2,4,4-trimethylpentyl]-2-(1H)pyridone.

6. The use as claimed in one or more of claims 1 to 5, wherein the compound of formula I is administered as their own, or in mixtures with one another.

7. The use as claimed in one or more of claims 1 to 6, wherein the dose of the compound of formula I in the pharmaceutical preparation is from about 0.05 % to about 5 %, preferably from 0.5 % to 2 %, especially preferably 1 % by weight of the compound of the formula I and/or their physiologically tolerable salts.

8. The use as claimed in one or more of claims 1 to 7 wherein the pharmaceutical preparation contains in addition an active ingredient such as dexpanthenol, allantoin, dextranomer or extracts of the Echinacea plant or a mixture of said ingredients.

Patentansprüche

1. Verwendung von 1-Hydroxy-2-pyridonen der Formel I

![Chemical Structure](image)

zur Herstellung eines Arzneimittels für die Wundheilung, wobei es sich bei den Wunden um Quetschwunden, Schnittwunden, Schusswunden, Einschnitte, Druckwunden, Stichwunden oder Wunden aufgrund von operativen oder kosmetischen Eingriffen handelt, wobei die Verbindung der Formel I topisch in Form von Emulsionen, Salben, Lösungen, Tinkturen, Pulvern, Cremen oder Gelzubereitungen oder in Form von Aerosolen oder Schäumen verabreicht wird, in welcher R^1, R^2 und R^3 gleich oder verschieden sind und für ein Wasserstoffatom oder Alkyl mit 1-4 Kohlenstoffatomen stehen, und R^4 für einen gesättigten Kohlenwasserstoffrest mit 6 bis 9 Kohlenstoffatomen oder einen Rest der Formel II

![Chemical Structure](image)

steht, wobei X für S oder O steht, Y für ein Wasserstoffatom oder bis zu zwei Halogenatome, wie Chlor und/oder Brom steht, Z für eine Einfachbindung oder einen zweiwertigen Rest umfassend:
a) O oder
b) S oder
c) \(-C(R^5)(R^6)\); wobei \(R^5\) und \(R^6\) gleich oder verschieden sind und unabhängig voneinander für ein Wasserstoffatom oder \((C_{1-4})\)-Alkyl stehen; oder
d) andere zweiwertige Reste mit 2 bis 10 Kohlenstoffatomen in Form einer Kette, die gegebenenfalls weiterhin eins oder mehrere der folgenden umfaßt:

 i) eine Kohlenstoff-Kohlenstoff-Doppelbindung oder
 ii) O, S oder eine Mischung davon, wobei, wenn zwei oder mehr O- und/oder S-Atome oder eine Mischung davon vorhanden sind, die O- bzw. S-Atome jeweils durch wenigstens zwei Kohlenstoffatome voneinander getrennt sind,

steht, und

in den obigen zweiwertigen Resten die freien Valenzen der Kohlenstoffatome des zweiwertigen Restes jeweils durch ein Wasserstoffatom, \((C_{1-4})\)-Alkyl oder eine Mischung davon gesättigt sind; und

Ar für ein aromatisches Ringsystem mit bis zu zwei Ringen steht, das durch bis zu drei Reste aus der aus Fluor, Chlor, Brom, Methoxy, \((C_{1-4})\)-Alkyl, Trifluormethyl und Trifluormethoxy bestehenden Gruppe substituiert sein kann, in freier Form oder in Salzform.

2. Verwendung nach Anspruch 1, wobei
 Ar in der Verbindung der Formel I für ein bicyclisches System steht, das sich von Biphenyl, Diphenylalkan oder Diphenylether ableitet.

3. Verwendung nach Anspruch 1, wobei die Verbindung der Formel I in der \(R^4\)-Stellung einen Cyclohexylrest enthält.

4. Verwendung nach Anspruch 1, wobei die Verbindung der Formel I in der \(R^4\)-Stellung einen Octylrest der Formel \(-CH_2-CH(CH_3)-CH_2-C(CH_3)_3\) enthält.

5. Verwendung nach einem oder mehreren der Ansprüche 1, wobei es sich bei der Verbindung der Formel I um 1-Hydroxy-4-methyl-6-[4-(4-(chlorphenoxy)-phenoxy)methyl]-2-(1H)pyridon, 1-Hydroxy-4-methyl-6-cyclohexyl-2-(1H)pyridon oder 1-Hydroxy-4-methyl-6-(2,4,4-trimethylpentyl)-2-(1H)pyridon handelt.

6. Verwendung nach einem oder mehreren der Ansprüche 1 bis 5, wobei die Verbindung der Formel I für sich oder als Mischung miteinander verabreicht wird.

7. Verwendung nach einem oder mehreren der Ansprüche 1 bis 6, wobei die Dosis der Verbindung der Formel I in der pharmazeutischen Zubereitung etwa 0,05 Gew.-% bis etwa 5 Gew.-%, vorzugsweise 0,5 Gew.-% bis 2 Gew.-%, besonders bevorzugt 1 Gew.-%, der Verbindung der Formel I und/oder ihrer physiologisch unbedenklichen Salze beträgt.

8. Verwendung nach einem oder mehreren der Ansprüche 1 bis 7, wobei die pharmazeutische Zubereitung zusätzlich einen Wirkstoff wie Dexpantenol, Allantoin, Dextranomer oder Extrakte der Echinacea-Pflanze oder eine Mischung dieser Stoffe enthält.

Revendications

1. Utilisation de 1-hydroxy-2-pyridones de formule (I)
pour la préparation d’un produit pharmaceutique pour la cicatrisation, caractérisée :

en ce que les blessures sont des blessures par écrasement, des coupures, des blessures par balle, des incisions, des blessures par coinement, des blessures par coup de couteau ou des plaies dues à une opération chirurgicale ou à la chirurgie plastique,

en ce que le composé de formule (I) est administré par voie topique sous forme d’émulsions, de pommades, de solutions, de teintures, de poudres, de crème, de préparation de gel ou sous forme d’aérosols ou de mousses,

dans laquelle R^1, R^2 et R^3 sont identiques ou différents et sont un atome d’hydrogène ou un alkyle ayant 1-4 atomes de carbone, et

R^4 est un radical hydrocarboné saturé ayant de 6 à 9 atomes de carbone ou un radical de formule (II)

![Diagramme](image)

en ce que dans laquelle :

- X est S ou O,
- Y est un atome d’hydrogène ou jusqu’à 2 atomes d’halogène tels que le chlore et/ou le brome,
- Z est une simple liaison ou le radical divalent comprenant :
 - a) 0, ou
 - b) S, ou
 - c) $\text{C}(R^5)(R^6)$ où R^5 et R^6 sont identiques ou différents et sont indépendamment l’atome d’hydrogène ou l’(C_1-C_4)-alkyle ; ou
 - d) d’autres radicaux divalents ayant de 2 à 10 atomes de carbone sous forme d’une chaîne, qui en outre comprend éventuellement un ou plusieurs de ce qui suit :
 - i) une double liaison carbone-carbone, ou
 - ii) O, S, ou un mélange de ceux-ci, où si 2 atomes de O et/ou de S ou plus, ou un mélange de ceux-ci, sont présents, chaque atome de O ou de S est séparé par au moins 2 atomes de carbone ; et

dans l’un quelconque des radicaux bivalents précédents, les valences libres des atomes de carbone dudit radical bivalent sont saturées par un atome d’hydrogène, un (C_1-C_4)-alkyle, ou un mélange de ceux-ci ; et

Ar est un système de cycle aromatique ayant jusqu’à deux cycles qui peuvent être substitués par jusqu’à trois radicaux du groupe constitué de fluor, chlore, brome, méthoxy, (C_1-C_4)-alkyle, trifluorométhyle et trifluorométhoxy sous forme libre ou de sel.

2. Utilisation selon la revendication 1, caractérisée en ce que Ar dans le composé de formule (I) est un système bi-
cyclique, qui est dérivé de bipénylène, de diphénylacéane, ou d’éther diphénylique.

3. Utilisation selon la revendication 1, **caractérisée en ce que** le composé de formule (I) contient un radical cyclohexyle en position R₄.

4. Utilisation selon la revendication 1, **caractérisée en ce que** le composé de formule (I) contient un radical octyle de formule -CH₂-CH(CH₃)₂-CH₂-C(CH₃)₃ en position R₄.

5. Utilisation selon l’une ou plusieurs des revendications 1, **caractérisée en ce que** le composé de formule (I) est la 1-hydroxy-4-méthyl-6-[4-(4-chlorophénoxy)phénylméthyl]-2-(1H)pyridone, la 1-hydroxy-4-méthyl-6-cyclohexyl-2-(1H)pyridone ou la 1-hydroxy-4-méthyl-6-(2,4,4-triméthylpentyl)-2-(1H)pyridone.

6. Utilisation selon l’une ou plusieurs des revendications 1 à 5, **caractérisée en ce que** les composés de formule (I) sont administrés seuls ou en mélanges les uns avec les autres.

7. Utilisation selon l’une ou plusieurs des revendications 1 à 6, **caractérisée en ce que** la dose des composés de formule (I) dans la préparation pharmaceutique est d’environ 0,05 % à environ 5 %, de préférence de 0,5 % à 2 %, de préférence notamment de 1 % en poids des composés de formule (I) et/ou leurs sels physiologiquement tolérables.

8. Utilisation selon l’une ou plusieurs des revendications 1 à 7, **caractérisée en ce que** la préparation pharmaceutique contient en outre un principe actif tel que le dexpanthénol, l’allantoïne, le dextranomère ou des extraits de la plante Echinacea ou un mélange desdits ingrédients.