Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention concerns N-protected and N-unsubstituted [1,4']bipiperidine derivatives (intermediates) that are useful in the preparation of piperidine derivatives having pharmaceutical activity (for example as modulators of chemokine receptor (such as CCR3) activity, or as antagonists of H1).WO98/05292 discloses certain [1,4']bipiperidine derivatives.

European Patent Application No. 01920053.4 discloses pharmaceutically active compounds of formula (I):

\[
\text{R}^1 \text{X} \begin{array}{c}
\text{N} \text{m} \\
\text{T}
\end{array} \begin{array}{c}
\text{N} \text{n} \\
\text{P}
\end{array} \begin{array}{c}
\text{N} \text{r} \\
\text{R}^3
\end{array}
\]

wherein:
\[q, s \text{ and } t \text{ are, independently, } 0 \text{ or } 1; \]
\[n \text{ and } r \text{ are, independently, } 0, 1, 2, 3, 4 \text{ or } 5; \]
\[m \text{ and } p \text{ are, independently, } 0, 1 \text{ or } 2; \]
\[X \text{ is CH}_2, \text{C(O), O, S, (O), or NR}_{3b}; \text{provided that when } m \text{ and } p \text{ are both } 1 \text{ then } X \text{ is not CH}_2; \]
\[Y \text{ is NHR}_2 \text{ or OH}; \]
\[T \text{ is C(O), C(S), (O), or CH}_2; \]
\[R^1 \text{ is hydrogen, C}_{1-6} \text{ alkyl, aryl or heterocyclyl;} \]
\[R^2 \text{ and } R^17 \text{ are, independently, hydrogen, C}_{1-6} \text{ alkyl, aryl(C}_{1-6} \text{alkyl or CO(C}_{1-6} \text{alkyl);} \]
\[R^3 \text{ is C}_{1-6} \text{ alkyl (optionally substituted by halogen, CO}_{2}R^4 \text{ or phthalimide), CR}_{3a}R^3bR^3c; \]
\[C_{2-4} \text{ alkyl (optionally substituted by aryl or heterocyclyl), C}_{3-7} \text{ cycloalkyl (optionally substituted by C}_{1-4} \text{alkyl, aryl or oxo), C}_{3-7} \text{ cycloalkenyl (optionally substituted by oxo, C}_{1-6} \text{alkyl or aryl), aryl, heterocyclyl, thioaryl or thioheterocyclyl;} \]
\[R^3a \text{ is hydrogen, C}_{1-6} \text{ alkyl, C}_{1-6} \text{alkoxy or C}_{3-7} \text{cycloalkyl;} R^3b \text{ is aryl, heterocyclyl, S(O) aryl or S(O) heterocyclyl;} \]
\[\text{and } R^3c \text{ is C}_{1-6} \text{ alkyl, C}_{1-4} \text{haloalkyl, hydroxy, heterocyclyl(C}_{1-4} \text{alkyl) or aryl;} \]

wherein, unless stated otherwise, the foregoing aryl and heterocyclyl moieties are optionally substituted by: halogen, OH, SH, NO, oxo, C_{1-6} alkyl (itself optionally substituted by halogen, OC(O)C_{1-6} alkyl, S(O)_{2}R^4, phenyl (itself optionally substituted by halogen (such as one or two chlorine or fluorine atoms), C_{1-6} alkyl, S(O)_{2}R^3 or C(O)NR^{3b}R^{40}), naphthylalkyl (itself optionally substituted by halo or C_{2-6} alkyl), C_{2-10} cycloalkyl (itself optionally substituted by C_{1-4} alkyl or oxo) or NR^{41}C(O)OCH_{2}(fluoren-9-yl)), NR^{41}C(O)OCH_{2}(fluoren-9-yl), C_{1-6}alkoxy (itself optionally substituted by halogen, C_{1-6}alkoxy, NHCO_{2}(C_{1-6}alkyl), CO_{2}R^4, NR^{4b}R^5 or phenyl (itself optionally substituted by halo or NO_{2}), C_{1-6}alkylthio, C_{1-6} haloalkylthio, C_{3-10} cycloalkyl, NR^{7}R^8, NR^{7}C(O)R^{10}, CO_{2}R^{11}, C(O)NR^{12}R^{13}, C(O)R^{14}, S(O)_{2}R^{15}, S(O)_{2}NR^{4b}R^{43}, NR^{4b}S(O)_{2}R^{45}, phenyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy (itself optionally substituted by halogen, OH or pyridinyl), phenyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy) or heterocyclyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy)], heterocyclyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy)), heterocyclyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy), phenyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy) or heterocyclyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy) or halogen, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy, phenyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy) or heterocyclyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy), phenyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy) or heterocyclyl (itself optionally substituted by halo, C_{1-6}alkyl, C_{1-6} haloalkyl, CN, NO_{2} C_{1-6}alkoxy or C_{1-6} haloalkoxy), SCN, CN, SO_{2}H (or an alkali metal salt thereof), methylendioxy or difluoromethylenedioxy; when aryl is phenyl adjacent substituents may join to form, together with the phenyl ring to which they are attached, a dihydrophenanthrene moiety;
d is 0, 1 or 2;
\[R^4 \text{ R}^5, R^6, R^7, R^8, R^{10}, R^{11}, R^{12}, R^{13}, R^{14}, R^{37}, R^{39}, R^{40}, R^{41}, R^{42}, R^{43} \text{ and } R^{44} \text{ are, independently, hydrogen,} \]
EP 1 493 743 B1

C_{1-4} alkyl, aryl (itself optionally substituted by halogen, C_{1-6} alkyl, C_{1-6} haloalkyl, CN, NO_2, C_{1-6} alkoxy or C_{1-6} haloalkoxy) or heterocyclyl (itself optionally substituted by halogen, C_{1-6} alkyl, C_{1-6} haloalkyl, CN, NO_2, C_{1-6} alkoxy or C_{1-6} haloalkoxy);

R^{15}, R^{38}, R^{45} and R^{48} are, independently, C_{1-6} alkyl (optionally substituted by halogen, hydroxy or C_{3-10} cycloalkyl), C_{3-6} alkynyl, aryl (itself optionally substituted by halogen, C_{1-6} alkyl, C_{1-6} haloalkyl, CN, NO_2, C_{1-6} alkoxy or C_{1-6} haloalkoxy) or heterocyclyl (itself optionally substituted by halogen, C_{1-6} alkyl, C_{1-6} haloalkyl, CN, NO_2, C_{1-6} alkoxy or C_{1-6} haloalkoxy);
or an N-oxide thereof; or a pharmaceutically acceptable salt thereof; or a solvate thereof; provided that:

when m and p are both 1, n, q and r are all 0, T and X are both S(O)_{2}, and R^1 is methoxyphenyl then R^3 is not propyl; when m, p, q and r are all 1, n is 0, Y is NH_2, T is CO and R^1X is (CH_2)_{2}N then R^3 is not 3,5-dibromo-4-aminophenyl, 1-methylindol-3-yl or 1-(tert-butoxy carbonyl)indol-3-yl; and when m and p are both 1, n, q and r are all 0, T is CO, X is NH and R^1 is 3-(4-fluorobenzyl)benzimidazol-2-yl then R^3 is not 4-fluorophenyl.

European Patent Application No. 01920053.4 also discloses pharmaceutically active compounds of formula (Ia):

![Diagram](image)

wherein:

T is C(O), C(S), S(O)_{2} or CH_{2};
n is 0, 1, 2, 3, 4 or 5;
m and p are, independently, 0, 1 or 2 (but are especially both 1);
R^{35} is hydrogen, cyano, S(O)_{2}(C_{1-4} alkyl), S(O)_{3}(C_{1-4} haloalkyl), halogen, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy or phenyl (optionally substituted by one or two halogen atoms or by one C(O)NR^{12}R^{13}, NR^{9}C(O)R^{10}, S(O)_{2}R^{15}, S(O)_{2}NR^{42}R^{43} or NR^{44}S(O)_{2}R^{45} group);
R^{36} is hydrogen, halogen or C_{1-4} alkyl;
R^3 is C_{1-6} alkyl (optionally substituted by halogen, CO_{2}R^4 or phthalimide), C_{3-7} cycloalkyl (optionally substituted by C_{1-4} alkyl or oxo), aryl or heterocyclyl;
wherein, unless stated otherwise, the foregoing aryl and heterocyclyl moieties are optionally substituted by: halogen, OH, SH, NO_2, oxo, C_{1-6} alkyl (itself optionally substituted by halogen, OC(O)C_{1-6} alkyl, phenyl (itself optionally substituted by halo or C_{1-6} alkyl), naphthoxy (itself optionally substituted by halo or C_{2-6} alkycylyl) or NR^{3}C(O)OCH_{2} (fluoren-9-yl)), C_{1-6} alkxy (itself optionally substituted by halogen, CO_{2}R^4, NR^4R^6 or phenyl (itself optionally substituted by halogen or NO_2)) C_{1-6} alkxythio, nitro, C_{3-7} cycloalkyl, NR^{7}R^{8}, NR^{9}C(O)R^{10}, CO_{2}R^{11}, C(O)NR^{12}R^{13}, C(O)R^{14}, S(O)_{2}R^{15}, phenyl (itself optionally substituted by NO_2 or C_{1-6} alkxy (itself optionally substituted by OH or pyridinyl)), phenoxy, SCN, CN, SO_2H (or an alkali metal salt thereof) or methylenedioxy; when aryl is phenyl adjacent substituents may join to form, together with the phenyl ring a dihydrophenanthrene moiety; R^4 R^5, R^6 R^7, R^8, R^9 R^9, R^{10}, R^{11}, R^{12}, R^{12} R^{13}, R^{13}, R^{14} R^{42} R^{43} and R^{44} are, independently, hydrogen, C_{1-6} alkyl or phenyl; R^{15}, R^{15'} and R^{45} are, independently, C_{1-6} alkyl or phenyl; or a pharmaceutically acceptable salt thereof.

The present invention provides a compound of formula (XIIIa):

![Diagram](image)

wherein:
L² is hydrogen, tert-butoxycarbonyl or benzyl;
t is 1;
m and p are 1;
X is O;
R¹ is either phenyl substituted with one or more of fluorine, chlorine, C₁₋₄ alkyl or C₁₋₄ alkoxy, or R¹ is phenyl substituted by R³⁵ and R³⁶;
R³⁵ is hydrogen, cyano, S(O)₂(C₁₋₄ alkyl), S(O)₂(C₁₋₄ haloalkyl), halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy or phenyl (optionally substituted by one or two halogen atoms or by one C(O)NR¹²R¹³, NR⁹C(O)R¹⁰, S(O)₂R¹⁵, S(O)₂NR⁴²R⁴³ or NR⁴⁴S(O)₂R⁴⁵ group);
R³⁶ is hydrogen, halogen or C₁₋₄ alkyl;
R⁹, R¹⁰, R¹², R¹³, R⁴², R⁴³ and R⁴⁴ are, independently, hydrogen, C₁₋₆ alkyl or phenyl; and,
R¹⁵ and R⁴⁵ are, independently, C₁₋₆ alkyl or phenyl.

[0006] Halogen includes fluorine, chlorine, bromine and iodine.
[0007] Alkyl groups and moieties are straight or branched chain and are, for example, methyl, ethyl, n-propyl, iso-propyl or tert-butyl.
[0008] In another aspect the present invention provides a compound of formula (XIII) (also referred to as a compound of formula (II) in the processes described below):

\[
(XIII)
\]

wherein R¹, X, t, p and m are as defined above.

[0009] In a further aspect the present invention provides a compound of formula (XIV):

\[
(XIV)
\]

wherein L* is BOC or a benzyl group; and R¹, X, t, p and m are as defined above.

[0010] In a still further aspect R¹ is phenyl substituted with one or more of fluorine, chlorine, C₁₋₄ alkyl (especially methyl) or C₁₋₄ alkoxy (especially methoxy); for example R¹ is phenyl substituted by one, two or three of: fluoro, chloro, methyl or methoxy. For example R¹ is 3,4-dichlorophenyl or 3,4-difluorophenyl.

[0011] A compound of formula (I), wherein s is 0, can be prepared by coupling a compound of formula (II):

\[
(II)
\]

with a compound of formula (III):
wherein \(L \) is a suitable leaving group, and the variables \(Y \) and \(T \) are optionally protected during the course of the reaction by standard protecting groups known in the art and deprotected in a separate step or during the reaction work-up. For example:

- when \(T \) is carbonyl, \(L \) can be OH and the coupling can be carried out in the presence of a coupling agent (such as bromo-tris-pyrrrolidino-phosphonium hexafluorophosphate, known as PYBROPT \(^{TM} \)), oxalyl chloride, thionyl chloride or \(N,N' \)-carbonyl diimidazole, or another coupling agent known to a person skilled in the art); or,

- when \(T \) is sulphonyl, \(L \) can be chloro and the coupling can be carried out in the presence of a suitable base (such as potassium carbonate) in a suitable solvent (such as acetone).

[0012] A compound of formula (I), wherein \(s \) is 1, \(R^{47} \) is hydrogen and \(T \) is CO, can be prepared by reacting a compound of formula (II), wherein \(m \) and \(p \) are both 1, with an with an isocyanate \(O=C=N-(CH_2)_n(CH_2)_r-R^3 \).

[0013] A compound of formula (II) can be prepared by deprotecting a compound of formula (IV) (which is an example of a compound of formula (XIV)):

\[
\text{R}^1\text{X} \quad \text{NBOc} \quad \text{(IV)}
\]

for example using trifluoroacetic acid in a suitable solvent (such as dichloromethane) or using a source of hydrogen chloride in a suitable solvent (such as dioxane).

[0014] A compound of formula (IV), wherein \(X \) is O, can be prepared by reacting a compound of formula (V):

\[
\text{R}^1\text{O} \quad \text{NH} \quad \text{(V)}
\]

with a compound of formula (VI):

\[
\text{O} \quad \text{NBOc} \quad \text{(VI)}
\]

in the presence of \(\text{NaBH(OAc)}_3 \) and acetic acid.

[0015] Alternatively, a compound of formula (I), wherein \(s, n, q \) and \(r \) are all 0 and \(T \) is CO, can be prepared by reacting a compound of formula (XIII):

\[
\text{(XIII)}
\]
with an acid: R³CO₂H. A compound of formula (XIII) can be prepared by deprotecting a compound of formula (XIV):

![Diagram](XIV)

wherein L* is BOC or a benzyl group. A compound of formula (XIV) can be prepared by performing a fluoride displacement reaction on FR₁ in the presence of compound of formula (XV):

![Diagram](XV)

[0016] A compound of formula (XV) can be prepared by coupling a compound of formula (XVI) with a compound of formula (XVII):

![Diagram](XVI) ![Diagram](XVII)

[0017] Compounds of formula (V), (VI), (XVI) and (XVII) can be prepared by using or adapting methods described in the art.

[0018] The invention will now be illustrated by the following non-limiting Examples. Some Examples illustrate how the compounds of the present invention can be used in the preparation of compounds of formulae (I) or (Ia). In the Method and Example, and unless stated otherwise:

(i) when given, ¹H NMR data is quoted and is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard, determined at 300MHz or 400MHz using perdeuterio DMSO-D₆ (CD₃SOCD₃) or CDCl₃ as the solvent unless otherwise stated;
(ii) mass spectra (MS) were run with an electron energy of 70 electron volts in the chemical ionisation (CI) mode using a direct exposure probe; where indicated ionisation was effected by electron impact (EI) or fast atom bombardment (FAB); where values for m/z are given, generally only ions which indicate the parent mass are reported, and unless otherwise stated the mass ion quoted is the positive mass ion - (M+H)⁺;
(iii) the title and sub-titled compounds of the examples and methods were named using the AUTONOM program from Beilstein informationsysteme GmbH;
(iv) unless stated otherwise, reverse phase HPLC was conducted using a Symmetry, NovaPak or Ex-Terra reverse phase silica column; and
(v) the following abbreviations are used:
Method 1

[0019] This Method illustrates the preparation of 4-(3,4-dichlorophenoxy)piperidine. **Step a:** tert-Butyl 4-(3,4-dichlorophenoxy)-1-piperidinocarboxylate

[0020] Diethyl azodicarboxylate (41.0ml) was added to a solution of triphenylphosphine (62.9g) in tetrahydrofuran (800ml) at 0°C. After 15 minutes 3,4-dichlorophenol (39.1g) was added, after a further 15 minutes tert-butyl 4-hydroxy-1-piperidinocarboxylate (48.3g) in tetrahydrofuran (400ml) was added dropwise over 30 min. The solution was stirred at room temperature for 16 hours and concentrated to a small volume. Purification by chromatography (ethyl acetate : iso-hexane 95:5) gave the title compound as an oil (61.3g).

MS: APCI (+ve): 246 (M-BOC+2H)

Step b: 4-(3,4-Dichlorophenoxy)piperidine

[0021] The product from Step a was dissolved in dichloromethane (600ml) and trifluoroacetic acid (300ml) was added. After 24 hours at room temperature the solution was evaporated and the resultant gum triturated under ether to give the sub-titled product as a solid (36.6g). The free base was liberated by addition of aqueous NaOH (2M) and extraction with ethyl acetate followed by evaporation of solvent to give the title compound as a gum (25g).

[0022] 1H NMR: δ(CDCl₃) 1.77 (1H, br s), 2.05-2.26 (4H, m), 3.20-3.49 (4H, m), 4.61 (1H, s), 6.69-7.52 (3H, m).

Example 1

[0023] This Example illustrates the preparation of 4-(3,4-Dichloro-phenoxy)-[1,4’]-bipiperidinyl-1’-carboxylic acid tert-butyl ester, 4-(3,4-Dichloro-phenoxy)-[1,4’]-bipiperidine, and 4-(3,4-dichlorophenoxy)-[1,4’]-bipiperidinyl-1’-yl-(3-methanesulfonyl-phenyl)-methanone acetate.

Step a: 4-(3,4-Dichlorophenoxy)-[1,4’]-bipiperidinyl-1’-carboxylic acid tert-butyl ester

[0024] 4-(3,4-Dichlorophenoxy)piperidine (Method 1; 1.5g) was dissolved in 1,2-dichloroethane (21ml). 1-Boc-4-piperidine was added (1.21g) followed by NaBH(OAc)₃ (1.81g) and acetic acid (0.37g). After 18 hours at room temperature aqueous NaOH (1M) solution and diethyl ether were added. The product was extracted with diethyl ether, the combined organic extracts dried with MgSO₄ and concentrated. Purification by silica chromatography (dichloromethane : methanol 92:8) gave the sub-title product (1.97g).

MS: APCI (+ve): 429 (M+H)

Step b: 4-(3,4-Dichlorophenoxy)-[1,4’]-bipiperidine

[0025] The product of Step a was dissolved in dichloromethane (30ml) and trifluoroacetic acid (15ml) was added. After 4 hours at room temperature the solution was evaporated and the resultant gum triturated under ether to give the trifluoroacetate salt of the sub-titled product as a solid (1.15g). The free base was liberated by addition of aqueous NaOH (2M) and extraction with ethyl acetate followed by evaporation of solvent to give the sub-title compound as a solid (0.68g).

[0026] 1H NMR: δ(CDCl₃) 1.38-1.51 (2H, m), 1.74-2.02 (6H, m), 2.38-2.50 (3H, m), 2.56-2.61 (2H, m), 2.79-2.86 (2H, m), 3.14-3.18 (2H, m), 4.22-4.28 (1H, m), 6.73-7.32 (3H, m).

Step c: [4-(3,4-Dichloro-phenoxy)-[1,4’]-bipiperidinyl-1’-yl]-(3-methanesulfonyl-phenyl)-methanone acetate

[0027] The product of Step b (0.15g) was dissolved in THF (4ml), bromo-tris-pyrrolidino-phosphonium hexafluorophosphate (PYBROP™; 0.235g), 3-methylsulphonylbenzoic acid (0.091g) and N,N-di-isopropylethylamine (0.238ml) were added. After 18 hours at room temperature ethyl acetate and aqueous NaHCO₃ solution were added. The product was extracted with diethyl ether, the combined organic extracts dried with MgSO₄ and concentrated. Purification by silica chromatography (dichloromethane : methanol 92:8) gave the title compound as an oil (0.82g).

MS: APCI (+ve): 586 (M+H).
was extracted with ethyl acetate, the combined organic extracts dried with Na₂SO₄ and concentrated. Purification by reverse phase HPLC (with a gradient eluent system (45% MeCN/NH₄OAc aq (0.1%) to 95% MeCN//NH₄OAc aq (0.1%)) gave the title compound (0.095g).

[0028] 1H NMR: δ(DMSO-D₆) 1.44-1.94 (8H, m), 2.37-2.77 (5H, m), 3.07-3.55 (6H, m), 4.40 (1H, m), 4.50-4.53 (1H, m), 6.96-8.02 (7H, m).

[0030] Melting point of free base: 154°C.

Example 2

[0031] This Example illustrates the preparation of 4-(3,4-Difluoro-phenoxy)-[1,4']bipiperidinyl-1'-carboxylic acid tert-buty1 ester, 4-(3,4-Difluoro-phenoxy)-[1,4']bipiperidinyl, and (4-amino-3-methoxy-phenyl)-[4-(3,4-difluoro-phenoxy)]-1,4']bipiperidinyl-1'-yl]-methanone.

Step a: 4-(3,4-Difluoro-phenoxy)-[1,4']bipiperidinyl-1'-carboxylic acid tert-buty1 ester

[0032] This compound was prepared by the method of Example 1, Step a using 4-(3,4-difluorophenoxy)piperidine to give the sub-title compound as a solid (0.48g).

MS: APCI(+ve): 397 (M+H)

Step b: 4-(3,4-Difluoro-phenoxy)-[1,4']bipiperidinyl

[0033] This compound was prepared by the method of Example 1, Step b to give the sub-title compound as a solid (0.36g).

MS: APCI(+ve): 297 (M+H)

Step c: (4-Amino-3-methoxy-phenyl)-[4-(3,4-difluoro-phenoxy)]-1,4']bipiperidinyl-1'-yl]-methanone

[0034] This compound was prepared by the method of Example 1, Step c using 4-amino-3-methoxybenzoic acid to give the title compound as a gum (0.133g).

[0035] 1H NMR: δ(CDC13) 1.50-1.60 (2H, m), 1.85-1.93 (4H, m), 2.04-2.08 (2H, m), 2.58-2.62 (2H, m), 2.69-2.75 (1H, m), 2.86-2.90 (4H, m), 3.86 (3H, s), 3.86 (2H, m), 4.25-4.30 (1H, m), 6.50-6.61 (1H, m), 6.65 (1H, dd), 6.70-6.75 (1H, m), 6.85 (1H, dt), 6.94 (1H, s), 7.01-7.09 (1H, m).

Example 3

[0036] This Example illustrates the preparation of 4-(3,4-dichlorophenoxy)-[1,4']bipiperidinyl-1'-carboxylic acid tert-butyl ester, 4-(3,4-dichlorophenoxy)-[1,4']bipiperidine, and [4-(3,4-dichloro-phenoxy)]-1,4']bipiperidinyl-1'-yl]--(2-methanesulfonyl-phenyl)-methanone.

Step 1: Preparation of 4-hydroxy-[1,4']bipiperidinyl-1'-carboxylic acid tert-butyl ester

[0037] To 1-tert-butoxycarbonyl-4-piperidone (200g, 1.01mol) in tetrahydrofuran (THF) (1500ml) was added 4-hydroxy-piperidine (78.1 g, 0.77mol). The resultant slurry was stirred for 30 minutes before cooling the reaction mixture with ice/water, acetic acid (47ml) is then added (exotherm) which caused precipitation. The slurry was allowed to warm to room temperature before the addition of sodium triacetoxyborohydride (236g, 1.12mol) which was washed in with THF (500ml). The resultant slurry was stirred overnight at room temperature. To the reaction mixture was added water (2000ml) to give a solution. The solution was then extracted with diethyl ether (3 x 1800ml). The aqueous phase was basified with 10% aq NaOH (950ml) and extracted with dichloromethane (DCM) (3 x 1500ml). The combined DCM layers are dried (MgSO₄), filtered and the solvent removed to give the sub-titled compound as a yellow viscous oil, (177g, 81%; MS: (M+H)285).

Step 2: Preparation of 4-(3,4-dichlorophenoxy)-[1,4']bipiperidinyl-1'-carboxylic acid tert-butyl ester

[0038] To a solution of potassium tert-butoxide (139.0g, 1.24mol) in THF (500ml) was added a solution of the product of Step 1 (176.2g, 0.62mol) in THF (1000ml). The reaction mixture was stirred 10 minutes before the addition of 3,4 dichlorofluorobenzene (122.8g, 0.74mol), this caused a green colouration that subsequently faded. The reaction mixture was then heated at reflux for 90 minutes. The reaction mixture was then cooled to room temperature before the addition
of saturated NaHCO₃ (1600ml). The layers were separated and the organic layer stripped to leave an orange semi-solid. The solid was dissolved in DCM (1500ml) and dried (MgSO₄), filtered and the solvent removed. To the resultant solid was added methyl tert-butyl ether (MTBE) (54ml) and isohexane (1000ml) to give a slurry which was stirred overnight. The slurry was then filtered and washed with isohexane (200ml) and the solid dried in vacuo at 50°C to give the subtitle compound as a pale powder, (211.6g, 80%; MS: (M+H) 429).

Step 3: Preparation of 4-(3,4-dichlorophenoxy)-[1,4']bipiperidine

[0039] The product of Step 2 (10.15g, 23.6mmol) was dissolved in dichloromethane (150ml) and trifluoroacetic acid (40ml, 519mmol) added and the resultant solution stirred. After 90 minutes the dichloromethane and trifluoroacetic acid were removed on a rotary evaporator. The resultant oil was partitioned between ethyl acetate (100ml) and 2M aq - NaOH (100ml). The layers were separated and the organics extracted with 10% aq citric acid (100ml). The layers were separated and the aqueous basified with 2M aq NaOH and extracted with ethyl acetate (200ml). The organics were dried (MgSO₄), filtered and the solvent removed to give the subtitle product as a pale oil which solidified on standing (4.62g, 59%; MS: (M+H) 329).

Step 4: Preparation of 4-(3,4-dichlorophenoxy)-[1,4']bipiperidinyl-1'-yl)-(2-methanesulfonyl-phenyl)-methanone

[0040] Oxalyl chloride (55ml, 0.63mol) was added dropwise over 10 minutes to a stirred suspension of 2-methanesulfonyl-benzoic acid (7.1g, 0.036) in DCM (550ml) containing DMF (0.5ml). The solution was then stirred for 2 hours at room temperature. The solution was then evaporated to give a solid that was redissolved in dichloromethane and again evaporated to give a yellow solid. The solid acetic acid chloride was dissolved in DCM (275ml) and was added over 10 minutes to a stirred solution of the product of Step 3 (11.0g, 0.033mol) and triethylamine (15.4ml, 0.11mol) in dichloromethane (125ml). The resultant solution was stirred at room temperature for 16 hours. The solution was then washed with water (500ml), 1M aq NaOH (500ml) and water (2 x 500ml). The organic phase was dried (MgSO₄), filtered and the solvent removed to give a pale yellow foam. The foam was triturated with diethyl ether to give the title compound (12.96g, 76%).

[0041] Melting point 141°C.

[0042] 1H NMR: (400 MHz, CDCl₃) δ 1.39 - 1.63 (1H, m), 1.72 - 2.04 (6H, m), 2.42 - 2.68 (2H, m), 2.73 - 2.92 (3H, m), 3.00 - 3.08 (1H, m), 3.28 (1H, s), 3.34 - 3.40 (1H, m), 3.46 - 3.52 (1H, m), 4.21 - 4.30 (1H, m), 4.62 - 4.68 (1H, m), 4.80 - 4.86 (1H, m), 6.72 - 6.76 (1H, in), 6.97 - 7.00 (1H, m), 7.28 - 7.32 (1H, m), 7.32-7.37 (1H, m), 7.56 - 7.61 (1H, m), 7.64 - 7.70 (1H, m), 8.05 - 8.10 (1H, m).

Example 4

[0043] This Example illustrates the preparation of 4-(4-methanesulfonyl-phenoxy)-[1,4']bipiperidinyl-1'-carboxylic acid tert-butyl ester, and 4-(4-methanesulfonyl-phenoxy)-[1,4']bipiperidinyl

Step a: 4-(4-methanesulfonyl-phenoxy)-[1,4']bipiperidinyl-1'-carboxylic acid tert-butyl ester

[0044] To a solution of 4-(4-methanesulfonyl-phenoxy)-piperidine (0.7g) dissolved in THF (5ml) and 1,2-dichloroethane (10ml) with 1-Boc-4-piperidone (0.71g) was added NaBH(OAc)₃ (0.926g) and acetic acid (0.18g). After 16hours at RT aqueous NaOH (1M) solution and dichloromethane were added and the mixture was extracted with dichloromethane. The combined organic extracts were washed with water, dried with magnesium sulfate and concentrated to leave a residue which was purified by chromatography (dichloromethane : methanol 90:10) to give the subtitle product (1.1g; MS: APCI+ (M+H) 439).

Step b: 4-(4-methanesulfonyl-phenoxy)-[1,4']bipiperidinyl

[0045] The product of step a was dissolved in dichloromethane (20ml) and trifluoroacetic acid (5ml) was added. After 16hours at room temperature the solution was evaporated to leave the title compound as a TFA salt. The free base (0.7g; oil; MS: APCI+ (M+H) 339) was liberated by addition of aqueous NaOH (1M) and extraction with dichloromethane followed by evaporation of the solvent.

Claims

1. A compound of formula (XIIIa):
wherein:

1. \(L^2 \) is hydrogen, tert-butoxycarbonyl or benzyl;

2. \(t \) is 1;

3. \(m \) and \(p \) are 1;

4. \(X \) is O;

5. \(R^1 \) is either phenyl substituted with one or more of fluorine, chlorine, C\(_{1-4}\) alkyl or C\(_{1-4}\) alkoxy, or \(R^1 \) is phenyl substituted by \(R^{35} \) and \(R^{36} \);

 \(R^{35} \) is hydrogen, cyano, S(O)\(_2\)(C\(_{1-4}\) alkyl), S(O)\(_2\)(C\(_{1-4}\) haloalkyl), halogen, C\(_{1-4}\) alkyl, C\(_{1-4}\) haloalkyl, C\(_{1-4}\) alkoxy or phenyl (optionally substituted by one or two halogen atoms or by one C(O)NR\(_{12'}\)R\(_{13'}\), NR\(_9'\)C(O)R\(_{10'}\), S(O)\(_2\)R\(_{15'}\), S(O)\(_2\)NR\(_{42}\)R\(_{43}\) or NR\(_{44}\)S(O)\(_2\)R\(_{45}\) group);

 \(R^{36} \) is hydrogen, halogen or C\(_{1-4}\) alkyl;

 \(R^9 \), \(R^{10} \), \(R^{12} \), \(R^{13} \), \(R^{42} \), \(R^{43} \) and \(R^{44} \) are, independently, hydrogen, C\(_{1-6}\) alkyl or phenyl; and,

 \(R^{15'} \) and \(R^{45} \) are, independently, C\(_{1-6}\) alkyl or phenyl.

6. A compound of formula (XIII):

 \[
 \text{(XIII)}
 \]

wherein:

7. A compound as claimed in claim 6 wherein \(R^1 \) is phenyl substituted with one or more of fluorine, chlorine, C\(_{1-4}\) alkyl or C\(_{1-4}\) alkoxy.

8. A compound as claimed in claim 1 wherein \(R^1 \) is phenyl substituted with one or more of fluorine, chlorine, C\(_{1-4}\) alkyl or C\(_{1-4}\) alkoxy.

9. A compound as claimed in claim 1 or 2 wherein \(R^1 \) is phenyl substituted by one, two or three of fluoro, chloro, methyl or methoxy.

10. A compound as claimed in claim 1 wherein \(R^1 \) is 3,4-dichlorophenyl or 3,4-difluorophenyl.

11. A compound as claimed in claim 1 wherein \(R^1 \) is 3,4-dichlorophenyl.

12. A compound of formula (XIII):

 \[
 \text{(XIII)}
 \]

wherein:

13. \(t \) is 1;

14. \(m \) and \(p \) are 1;

15. \(X \) is O;

16. \(R^1 \) is either phenyl substituted with one or more of fluorine, chlorine, C\(_{1-4}\) alkyl or C\(_{1-4}\) alkoxy, or \(R^1 \) is phenyl substituted by \(R^{35} \) and \(R^{36} \);

17. \(R^{35} \) is hydrogen, cyano, S(O)\(_2\)(C\(_{1-4}\) alkyl), S(O)\(_2\)(C\(_{1-4}\) haloalkyl), halogen, C\(_{1-4}\) alkyl, C\(_{1-4}\) haloalkyl, C\(_{1-4}\) alkoxy or phenyl (optionally substituted by one or two halogen atoms or by one C(O)NR\(_{12'}\)R\(_{13'}\), NR\(_9'\)C(O)R\(_{10'}\), S(O)\(_2\)R\(_{15'}\), S(O)\(_2\)NR\(_{42}\)R\(_{43}\) or NR\(_{44}\)S(O)\(_2\)R\(_{45}\) group);

18. \(R^{36} \) is hydrogen, halogen or C\(_{1-4}\) alkyl;

19. \(R^9 \), \(R^{10} \), \(R^{12} \), \(R^{13} \), \(R^{42} \), \(R^{43} \) and \(R^{44} \) are, independently, hydrogen, C\(_{1-6}\) alkyl or phenyl; and,

20. \(R^{15'} \) and \(R^{45} \) are, independently, C\(_{1-6}\) alkyl or phenyl.
8. A compound as claimed in claim 7 wherein \(R^1 \) is phenyl substituted by one, two or three of: fluoro, chloro, methyl or methoxy.

9. A compound as claimed in claim 6 wherein \(R^1 \) is 3,4-dichlorophenyl or 3,4-difluorophenyl.

10. A compound as claimed in claim 6 wherein \(R^1 \) is 3,4-dichlorophenyl.

11. A compound of formula (XIV):

\[
\text{L}^* \text{ is BOC or a benzyl group.}
\]
\[
t \text{ is 1;}
\]
\[
m \text{ and } p \text{ are 1;}
\]
\[
X \text{ is O;}
\]
\[
R^1 \text{ is either phenyl substituted with one or more of fluorine, chlorine, C}_{1-4} \text{ alkyl or C}_{1-4} \text{ alkoxy, or } R^1 \text{ is phenyl substituted by } R^{35} \text{ and } R^{36};
\]
\[
R^{35} \text{ is hydrogen, cyano, } S(O)_2(C_{1-4} \text{ alkyl}), S(O)_2(C_{1-4} \text{ haloalkyl}), \text{halogen, } C_{1-4} \text{ alkyl, } C_{1-4} \text{ haloalkyl, } C_{1-4} \text{ alkoxy or phenyl (optionally substituted by one or two halogen atoms or by one } C(O)NR^{12}R^{13}, NR^9 C(O)R^{10}, S(O)_2R^{15}, S(O)_2NR^{42}R^{43} \text{ or NR}^{44}S(O)_2R^{45} \text{group)};
\]
\[
R^{36} \text{ is hydrogen, halogen or } C_{1-4} \text{ alkyl;}
\]
\[
R^9, R^{10}, R^{12}, R^{13}, R^{42}, R^{43} \text{ and } R^{44} \text{ are, independently, hydrogen, } C_{1-6} \text{ alkyl or phenyl; and,}
\]
\[
R^{15} \text{ and } R^{45} \text{ are, independently, } C_{1-6} \text{ alkyl or phenyl.}
\]

12. A compound as claimed in claim 11 wherein \(R^1 \) is phenyl substituted with one or more of fluorine, chlorine, C\(_{1-4}\) alkyl or C\(_{1-4}\) alkoxy.

13. A compound as claimed in claim 12 wherein \(R^1 \) is phenyl substituted by one, two or three of fluoro, chloro, methyl or methoxy.

14. A compound as claimed in claim 11 wherein \(R^1 \) is 3,4-dichlorophenyl or 3,4-difluorophenyl.

15. A compound as claimed in claim 11 wherein \(R^1 \) is 3,4-dichlorophenyl.

Patentansprüche

1. Verbindung der Formel (XIIIa):

\[
\text{(XIIIa)}
\]
worin:

L² für Wasserstoff, tert-Butoxycarbonyl oder Benzyl steht;

m und p für 1 stehen;

R¹ entweder für ein- oder mehrfach durch Fluor, Chlor, C₁₋₄-Alkyl oder C₁₋₄-Alkoxy substituiertes Phenyl oder durch R³⁵ und R³⁶ substituiertes Phenyl steht;

R³⁵ für Wasserstoff, Cyano, S (O)₂-C₁₋₄-Alkyl, S (O)₂-C₁₋₄-Halogenalkyl, Halogen, C₁₋₄-Alkyl, C₁₋₄-Halogenalkyl, C₁₋₄-Alkoxy oder Phenyl (gegebenenfalls substituiert durch ein oder zwei Halogenatome oder eine C (O) NR¹²R¹³⁻, NR⁹ C (O) R¹⁰⁻, S (O)₂R¹⁵⁻, S (O)₂NR⁴²R⁴³⁻ oder NR⁴⁴S (O)₂R⁴⁵⁻-Gruppe) steht;

R³₆ für Wasserstoff, Halogen oder C₁₋₄-Alkyl steht;

R⁹, R¹⁰⁻, R¹²⁻, R¹³⁻, R⁴², R⁴³ und R⁴⁴ unabhängig voneinander für Wasserstoff, C₁₋₄-Alkyl oder Phenyl stehen und

R¹⁵⁻ und R⁴⁵⁻ unabhängig voneinander für C₁₋₆-Alkyl oder Phenyl stehen.

2. Verbindung nach Anspruch 1, in der R¹ für ein- oder mehrfach durch Fluor, Chlor, C₁₋₄-Alkyl oder C₁₋₄-Alkoxy substituiertes Phenyl steht.

3. Verbindung nach Anspruch 1 oder 2, in der R¹ für ein-, zwei- oder dreifach durch Fluor, Chlor, Methyl oder Methoxy substituiertes Phenyl steht.

4. Verbindung nach Anspruch 1, in der R¹ für 3,4-Dichlorphenyl oder 3,4-Difluorphenyl steht.

5. Verbindung nach Anspruch 1, in der R¹ für 3,4-Dichlorphenyl steht.

6. Verbindung der Formel (XIII):

worin:

t für 1 steht;

m und p für 1 stehen;

X für 0 steht;

R¹ entweder für ein- oder mehrfach durch Fluor, Chlor, C₁₋₄-Alkyl oder C₁₋₄-Alkoxy substituiertes Phenyl oder durch R³⁵ und R³⁶ substituiertes Phenyl steht;

R³⁵ für Wasserstoff, Cyano, S (O)₂-C₁₋₄-Alkyl, S (O)₂-C₁₋₄-Halogenalkyl, Halogen, C₁₋₄-Alkyl, C₁₋₄-Halogenalkyl, C₁₋₄-Alkoxy oder Phenyl (gegebenenfalls substituiert durch ein oder zwei Halogenatome oder eine C (O) NR¹²R¹³⁻, NR⁹ C (O) R¹⁰⁻, S (O)₂R¹⁵⁻, S (O)₂NR⁴²R⁴³⁻ oder NR⁴⁴S (O)₂R⁴⁵⁻-Gruppe) steht;

R³₆ für Wasserstoff, Halogen oder C₁₋₄-Alkyl steht;

R⁹, R¹⁰⁻, R¹²⁻, R¹³⁻, R⁴², R⁴³ und R⁴⁴ unabhängig voneinander für Wasserstoff, C₁₋₄-Alkyl oder Phenyl stehen und

R¹⁵⁻ und R⁴⁵⁻ unabhängig voneinander für C₁₋₆-Alkyl oder Phenyl stehen.

7. Verbindung nach Anspruch 6, in der R¹ für ein- oder mehrfach durch Fluor, Chlor, C₁₋₄-Alkyl oder C₁₋₄-Alkoxy substituiertes Phenyl steht.

8. Verbindung nach Anspruch 7, in der R¹ für ein-, zwei- oder dreifach durch Fluor, Chlor, Methyl oder Methoxy substituiertes Phenyl steht.
9. Verbindung nach Anspruch 6, in der R\textsubscript{1} für 3,4-Dichlorphenyl oder 3,4-Difluorphenyl steht.

10. Verbindung nach Anspruch 6, in der R\textsubscript{1} für 3,4-Dichlorphenyl steht.

11. Verbindung der Formel (XIV):

![Diagramm](XIV)

worin:

L* für BOC oder eine Benzyllgruppe steht;

m und p für 1 stehen;

X für 0 steht;

R\textsubscript{1} entweder für ein- oder mehrfach durch Fluor, Chlor, C\textsubscript{1-4}-Alkyl oder C\textsubscript{1-4}-Alkoxy substituiertes Phenyl oder durch R\textsubscript{35} und R\textsubscript{36} substituiertes Phenyl steht;

R\textsubscript{35} für Wasserstoff, Cyano, S (O)\textsubscript{2}-C\textsubscript{1-4}-Alkyl, Halogen, S (O)\textsubscript{2}-C\textsubscript{1-4}-Halogenalkyl, Halogen, C\textsubscript{1-4}-Alkyl, C\textsubscript{1-4}-Halogenalkyl, C\textsubscript{1-4}-Alkoxy oder Phenyl (gegebenenfalls substituiert durch ein oder zwei Halogenatome oder eine C(O)NR\textsubscript{12}R\textsubscript{13}, NR\textsubscript{9}C(O)R\textsubscript{10}, S (O)\textsubscript{2}R\textsubscript{15}, S(O)\textsubscript{2}NR\textsubscript{42}R\textsubscript{43}, oder NR\textsubscript{44}S (O)\textsubscript{2}R\textsubscript{45}, Gruppe) steht;

R\textsubscript{36} für Wasserstoff, Halogen oder C\textsubscript{1-4}-Alkyl steht;

R\textsubscript{9}, R\textsubscript{10}, R\textsubscript{12}, R\textsubscript{13}, R\textsubscript{42}, R\textsubscript{43} und R\textsubscript{44} unabhängig voneinander für Wasserstoff, C\textsubscript{1-6}-Alkyl oder Phenyl stehen und

R\textsubscript{15} und R\textsubscript{45} unabhängig voneinander für C\textsubscript{1-6}-Alkyl oder Phenyl stehen.

12. Verbindung nach Anspruch 11, in der R\textsubscript{1} für ein- oder mehrfach durch Fluor, Chlor, C\textsubscript{1-4}-Alkyl oder C\textsubscript{1-4}-Alkoxy substituiertes Phenyl steht.

13. Verbindung nach Anspruch 12, in der R\textsubscript{1} für ein-, zwei- oder dreifach durch Fluor, Chlor, Methyl oder Methoxy substituiertes Phenyl steht.

14. Verbindung nach Anspruch 11, in der R\textsubscript{1} für 3,4-Dichlorphenyl oder 3,4-Difluorphenyl steht.

15. Verbindung nach Anspruch 11, in der R\textsubscript{1} für 3,4-Dichlorphenyl steht.

Revendications

1. Composé de formule (XIIIa) :

![Diagramm](XIIIa)

dans laquelle :

L2 est un atome d’hydrogène, un groupe tert-butoxy-carbonyl ou un groupe benzyle ;

t vaut 1 ;
m et p valent 1 ;
X est un atome d’oxygène ;
EP 1 493 743 B1

\[R^1 \] est soit un groupe phényle substitué par un ou plusieurs parmi un atome de fluor, un atome de chlore, un groupe alkyle en C\(_{1-4}\) ou un groupe alcoxy en C\(_{1-4}\), soit \(R^1 \) est un groupe phényle substitué par \(R^{35} \) et \(R^{36} \); \(R^{35} \) est un atome d’hydrogène, un groupe cyano, un groupe S(O)\(_2\)(C\(_{1-4}\)-alkyle), un groupe S(O)\(_2\)(C\(_{1-4}\)-halogénolaikyle), un atome d’halogène, un groupe alkyle en C\(_{1-4}\), un groupe halogénoalkyle en C\(_{1-4}\), un groupe alcoxy en C\(_{1-4}\) ou un groupe phényle (éventuellement substitué par un ou deux atomes d’halogène ou par un groupe C(O)NR\(_{12}^9\)C(O)R\(_{10}^9\), un groupe S(O)\(_2\)R\(_{15}^9\), un groupe S(O)\(_2\)NR\(_{42}^9\)R\(_{43}^9\) ou un groupe NR\(_{44}^9\)S(O)\(_2\)R\(_{45}^9\); \(R^{36} \) est un atome d’hydrogène, un atome d’halogène ou un groupe alkyle en C\(_{1-4}\); \(R^{8}, R^{10}, R^{12}, R^{13}, R^{42}, R^{43} \) et \(R^{44} \) sont, indépendamment, un atome d’hydrogène, un groupe alkyle en C\(_{1-6}\) ou un groupe phényle; et \(R^{15} \) et \(R^{45} \) sont, indépendamment, un groupe alkyle en C\(_{1-6}\) ou un groupe phényle.

2. Composé selon la revendication 1, dans lequel \(R^1 \) est un groupe phényle substitué par un ou plusieurs parmi un atome de fluor, un atome de chlore, un groupe alkyle en C\(_{1-4}\) ou un groupe alcoxy en C\(_{1-4}\).

3. Composé selon la revendication 1 ou 2, dans lequel \(R^1 \) est un groupe phényle substitué par un, deux ou trois parmi : un groupe fluoro, un groupe chloro, un groupe méthyle ou un groupe méthoxy.

4. Composé selon la revendication 1, dans lequel \(R^1 \) est un groupe 3,4-dichlorophényle ou un groupe 3,4-difluorophényle.

5. Composé selon la revendication 1, dans lequel \(R^1 \) est un groupe 3,4-dichlorophényle.

6. Composé de formule (XIII) :

\[
\text{(XIII)}
\]

dans laquelle :

\(t \) vaut 1 ;
\(m \) et \(p \) valent 1 ;
\(X \) est un atome d’oxygène ;
\(R^1 \) est soit un groupe phényle substitué par un ou plusieurs parmi un atome de fluor, un atome de chlore, un groupe alkyle en C\(_{1-4}\) ou un groupe alcoxy en C\(_{1-4}\), soit \(R^1 \) est un groupe phényle substitué par \(R^{35} \) et \(R^{36} \); \(R^{35} \) est un atome d’hydrogène, un groupe cyano, un groupe S(O)\(_2\)(C\(_{1-4}\)-alkyle), un groupe S(O)\(_2\)(C\(_{1-4}\)-halogénolaikyle), un atome d’halogène, un groupe alkyle en C\(_{1-4}\), un groupe halogénoalkyle en C\(_{1-4}\), un groupe alcoxy en C\(_{1-4}\) ou un groupe phényle (éventuellement substitué par un ou deux atomes d’halogène ou par un groupe C(O)NR\(_{12}^9\)C(O)R\(_{10}^9\), un groupe S(O)\(_2\)R\(_{15}^9\), un groupe S(O)\(_2\)NR\(_{42}^9\)R\(_{43}^9\) ou un groupe NR\(_{44}^9\)S(O)\(_2\)R\(_{45}^9\); \(R^{36} \) est un atome d’hydrogène, un atome d’halogène ou un groupe alkyle en C\(_{1-4}\); \(R^{8}, R^{10}, R^{12}, R^{13}, R^{42}, R^{43} \) et \(R^{44} \) sont, indépendamment, un atome d’hydrogène, un groupe alkyle en C\(_{1-6}\) ou un groupe phényle; et \(R^{15} \) et \(R^{45} \) sont, indépendamment, un groupe alkyle en C\(_{1-6}\) ou un groupe phényle.

7. Composé selon la revendication 6, dans lequel \(R^1 \) est un groupe phényle substitué par un ou plusieurs parmi un atome de fluor, un atome de chlore, un groupe alkyle en C\(_{1-4}\) ou un groupe alcoxy en C\(_{1-4}\).

8. Composé selon la revendication 7, dans lequel \(R^1 \) est un groupe phényle substitué par un, deux ou trois parmi : un groupe fluoro, un groupe chloro, un groupe méthyle ou un groupe méthoxy.

9. Composé selon la revendication 6, dans lequel \(R^1 \) est un groupe 3,4-dichlorophényle ou un groupe 3,4-difluorophényle.
10. Composé selon la revendication 6, dans lequel R¹ est un groupe 3,4-dichlorophényle.

11. Composé de formule (XIV) :

\[\text{L}^* \text{ est un groupe BOC ou un groupe benzyle ;} \\
\text{t vaut 1 ;} \\
\text{m et p valent 1 ;} \\
\text{X est un atome d’oxygène ;} \\
\text{R}^1 \text{ est soit un groupe phényle substitué par un ou plusieurs parmi un atome de fluor, un atome de chlore, un groupe alkyle en C\textsubscript{1-4} ou un groupe alcoxy en C\textsubscript{1-4}, soit R}^1 \text{ est un groupe phényle substitué par R}^{35} \text{ et R}^{36} ; \\
\text{R}^{35} \text{ est un atome d’hydrogène, un groupe cyano, un groupe S(O)\textsubscript{2}(C\textsubscript{1-4}-alkyle), un groupe S(O)\textsubscript{2}(C\textsubscript{1-4}-halogénénoalkyle), un atome d’halogène, un groupe alkyle en C\textsubscript{1-4}, un groupe halogénoalkyle en C\textsubscript{1-4}, un groupe alcoxy en C\textsubscript{1-4} ou un groupe phényle (éventuellement substitué par un ou deux atomes d’halogène ou par un groupe C(O)NR\textsubscript{12}R\textsubscript{13}, un groupe NR\textsubscript{9}C(O)R\textsubscript{10}, un groupe S(O)\textsubscript{2}NR\textsubscript{42}R\textsubscript{43} ou un groupe NR\textsubscript{44}S(O)\textsubscript{2}R\textsubscript{45}) ;} \\
\text{R}^{36} \text{ est un atome d’hydrogène, un atome d’halogène ou un groupe alkyle en C\textsubscript{1-4} ;} \\
\text{R}^8, R^{10}, R^{12}, R^{13}, R^{42}, R^{43} et R^{44} sont, indépendamment, un atome d’hydrogène, un groupe alkyle en C\textsubscript{1-6} ou un groupe phényle ; et} \\
\text{R}^{15} et R^{45} sont, indépendamment, un groupe alkyle en C\textsubscript{1-6} ou un groupe phényle.

12. Composé selon la revendication 11, dans lequel R¹ est un groupe phényle substitué par un ou plusieurs parmi un atome de fluor, un atome de chlore, un groupe alkyle en C\textsubscript{1-4} ou un groupe alcoxy en C\textsubscript{1-4}.

13. Composé selon la revendication 12, dans lequel R¹ est un groupe phényle substitué par un, deux ou trois parmi : un groupe fluoro, un groupe chloro, un groupe méthyle ou un groupe méthoxy.

14. Composé selon la revendication 11, dans lequel R¹ est un groupe 3,4-dichlorophényle ou un groupe 3,4-difluorophényle.

15. Composé selon la revendication 11, dans lequel R¹ est un groupe 3,4-dichlorophényle.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 01920053 A [0001] [0003] [0004]
- EP 1274701 B [0001]
- WO 9805292 A [0002]