EUROPEAN PATENT SPECIFICATION

METHOD AND APPARATUS FOR LOADING A CONTAINER WITH A PRODUCT
VERFAHREN UND VORRICHTUNG ZUM ABFÜLLEN EINES BEHÄLTERS MIT EINEM PRODUKT
PROCEDE ET APPAREIL PERMETTANT DE CHARGER UN CONTENANT AVEC UN PRODUIT

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR
Designated Extension States:
LT LV

Priority: 04.04.2002 GB 0207769

Date of publication of application:

Proprietor: GLAXO GROUP LIMITED
Brentford, Middlesex UB6 0NN (GB)

Inventors:
- Bailey, Thomas W.
 Molins Int. Technonogy Centre
 Coventry, West Midlands CV4 8HS (GB)
- Baker, Jeremy K.
 Molins Int. Technology Centre
 Conventry, west Midlands CV4 8HS (GB)
- Scherzer, Raymond H.
 GlaxoSmithKline
 Durham, NC 27709 (US)
- Self, Roger Don
 GlaxoSmithKline
 Ware, Hertfordshire SG12 0DP (GB)

Representative: Rice, Jason Neale et al
GlaxoSmithKline,
Corporate Intellectual Property CN295.1,
980 Great West Road
Brentford,
Middlesex TW8 9GS (GB)

References cited:
- EP-A- 0 903 290
- WO-A-00/32474
- WO-A-00/71419
- US-A- 5 549 144
- US-A- 6 098 675

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of invention

[0001] This invention relates to a method for loading a container with a defined quantity of powder. This invention has particular application to loading a blister in a blister pack with a defined quantity of medicament in powder form.

Background to the invention

[0002] The use of blister packs to hold medicaments for inhalation devices, for example in bronchodilation therapy, is well known. The blister packs usually consist of a base sheet in which blisters are formed. The blisters are arranged on the base sheet and can be filled with medicament to be administered through use of an inhalation device. A lid sheet is applied to cover the filled blisters and the two sheets are sealed together to form a blister pack.

[0003] There can, however, be problems associated with methods of filling the blisters with medicament. Powder, particularly the drug component of the powder, can tend to be attracted to the base sheet surface rather than to the blister pockets. This attraction of the drug to the base sheet can result in inaccurate filling of the blisters, create mess and potentially cause problems with adherence of the lid sheet to the base sheet. Such filling methods may also require a large reservoir of powder, potentially resulting in waste of the medicament.

[0004] In earlier PCT Patent Application No. WO 00/71419, which is the basis of the pre-characterising part of claim 1, the Applicant described that the potential problem of powder adherence can be overcome by using a filling method utilising a perforated plate to mask the base sheet surface during filling to avoid covering this area with powder and a director (e.g. a director blade) to direct the powder into the perforations of the plate. The perforated plate is moved into contact with the appropriate areas of the blister strip during filling and then moved away at the end of the method and can be reused in each cycle. This filling method can also be used to fill other types of containers e.g. injection moulded plastic pockets, capsules or bulk containers.

[0005] The Applicant has now found that the above filling method may be improved when the perforated plate and director blade are moved in a rotary fashion relative to each other. When such a rotary relationship exists between these two components, faster methods of filling are enabled including those operable on a continuous rotary basis.

Summary of the invention

[0007] According to one aspect of the present invention there is provided a method according to claim 1.

[0008] The present invention requires relative rotary motion of the perforated plate in the form of a planar disk and the first director blade. That is to say, the perforated plate and first director blade move relative to each other and the motion is in a rotary sense.

[0009] It is not necessary that either the plate or the director blade be configured to rotate about the other. More typically, one component rotates about an axis and the other component is either (a) held static at a defined radial point separate from that axis; or (b) rotates about a second axis. In any case, it may be appreciated that the overall relative rotary motion will define a relative path (i.e. direction) of motion.

[0010] In one aspect, the first director blade is held static and the perforated plate moves in rotary fashion relative thereto.

[0011] The perforated plate could also be held static and the first director blade could move in rotary fashion relative thereto.

[0012] Both of the first director blade and the perforated plate can move in rotary fashion. In other words, both can be rotated such as to also result in relative movement therebetween. Embodiments are envisaged in which the first (and any other) director blade rotates at a different speed from that of the rotating perforated plate, but about a common rotational axis. Other embodiments are envisaged in which the axes of rotation are different (e.g. perpendicular).

[0013] In one aspect, the planar disk is mountable for rotation about an axis. Suitably, the plural perforations are set out in circular fashion at a defined radial separation from the rotational axis. The disk may comprise plural sets of perforations arranged in circular fashion concentric to each other at defined radial separations from the rotational axis.

[0014] The method requires closing off a perforation in a perforated plate. That is to say, it requires closing off open end of a perforation to form a well into which powder may then be directed.

[0015] Preferably the blanking pin is moveable within the perforation to adjust the volume of the closed-off perforation.

[0016] Suitably, the diameter of the closed-off perforation is between 1.5 and 15mm. The perforation may be a variety of shapes, such as square, circular, oval or rectangular.

[0017] The powder is directable by the action of the first director blade moving relative to the perforated plate. This relative movement creates a sweeping action, which acts such as to direct powder into a closed-off perforation.

[0018] Preferably, the first director blade (and any other director blade) presents a forward acute angle to the path of relative motion. The path of motion is defined by the relative rotary motion of the perforated plate and the first director blade. In this case, the angle between the direction of the (sweeping) path and the first (and any other) director blade is less than 90° (i.e. acute). Prefer-
ably the forward acute angle is between 1 and 60°. More preferably the forward acute angle is between 5 and 25°.

[0019] In a further aspect, the first (and any subsequent) director blade presents multiple forward acute angles to the path of relative motion. Such a first (or any subsequent) director blade is typically articulated or curved.

[0020] It is also possible, but less preferred to use a first (and any subsequent) director blade presenting a perpendicular or forward obtuse angle to the path of relative motion.

[0021] Optionally, the first director blade has plural movements relative to the perforated plate. The number of plural movements can be varied according to the flow properties of the powder to help ensure that the powder has a uniform density, resulting in more accurate dosing. Passing a director blade across the perforated plate more than once may in some circumstances be more economical than having multiple blades, although the time taken to fill the closed-off perforations may be greater than when using multiple blades.

[0022] Suitably, a thin layer of powder is left on the perforated plate after movement of the first director blade. Preferably the depth of said thin layer of powder is from 3 to 20 mm. More preferably the depth of said thin layer of powder is from 4 to 8 mm.

[0023] Suitably, the powder is directable by at least one subsequent director blade. Said at least one subsequent director blade and the perforated plate move in rotary fashion relative to each other. Preferably, the at least one subsequent director blade moves along the perforated plate at a lower level than that of the first director blade. This ensures that the at least one subsequent director blade can move through the thin layer of powder left by the first director blade and not just along the surface of the powder.

[0024] Suitably, the distance between the level of movement of the first director blade and the at least one subsequent director blade is 0 to 12 mm. More preferably, the distance between the level of movement of the first director blade and the at least one subsequent director blade is 1 to 3 mm. A second subsequent director blade would move along the perforated plate at a lower level to that of a first subsequent director blade.

[0025] An additional aspect of the present invention comprises removing excess powder from said perforated plate subsequent to directing powder into the perforation. Preferably the excess powder is removed by the action of a wiper. It will be appreciated that typically said wiper and the perforated plate are moving in a relative rotary sense. The wiper is typically a blade composed of stainless steel and moves in close proximity to the surface of the perforated plate to ensure that excess powder is not transferred to the blind cavity.

[0026] Suitably, the powder is compacted to a volume of between 50 and 100%, for example 70 to 90%, of the original volume of powder in the closed-off perforation.

[0027] Suitably, the container is a blind cavity. Preferably, the forward acute angle is between 5 and 25°. More preferably the forward acute angle is between 5 and 25°.
where they are typically not sealed to one another at all. Thus, separate base and lid sheet forward end portions are presented at the end of the strip. The respective base and lid sheets are peelably separable from each other to (e.g. separately) release the contents of each pocket.

Suitably, the lid sheet comprises at least the following successive layers: (a) paper; adhesively bonded to (b) polyester; adhesively bonded to (c) aluminium foil; that is coated with a heat seal lacquer for bonding to the base sheet. The thickness of each layer may be selected according to the desired properties but is typically of the order of from 5 to 200 micron, particularly from 10 to 50 micron.

Suitably, the base sheet comprises at least the following successive layers: (a) oriented polyamide (OPA); adhesively bonded to (b) aluminium foil; adhesively bonded to (c) a third layer comprising a polymeric material (e.g. polyvinyl chloride).

Various known techniques can be employed to join the lid and base sheet and hence to seal the blisters of the peelable blister strip. Such methods include adhesive bonding, hot metal bonding, hot metal welding, radio frequency welding, laser welding, ultrasonic welding and hot bar sealing. The lid sheet and base sheet of the peelable blister strip are particularly sealable by 'cold form' sealing methods, which are conducted at lower temperatures than conventional heat sealing methods. Such cold form sealing methods are of particular utility where the medicament or medicament formulation for containment within the blister is heat sensitive (e.g. degrades or denatures on heating). Suitable 'cold form' sealing methods are conducted at a temperature in the range of 150-250°C, more preferably, 210-240°C.

Suitably, the base sheet comprises at least the following successive layers: (a) oriented polyamide (OPA); adhesively bonded to (b) aluminium foil; adhesively bonded to (c) a third layer comprising a polymeric material (e.g. polyvinyl chloride).

Suitably, the base sheet comprises at least the following successive layers: (a) oriented polyamide (OPA); adhesively bonded to (b) aluminium foil; adhesively bonded to (c) a third layer comprising a polymeric material (e.g. polyvinyl chloride).

Figure 1a, 1b and 1c show the first stages in a filling method. A rotationally mounted (mounting not visible) perforated plate 10 in contact with a blanking plate 20 creates closed-off perforations 12a, 12b, which (not visible in side view) are in rotary series (i.e. spaced radially from the axis of rotation of the perforated plate 10). On the opposite side of the perforated plate 10 to the blanking plate 20 is a reservoir of powder 30. The powder 30 comprises a suitable medicament formulation.

Figure 2 shows the first stage in an alternative filling method not in accord with the present invention; Figure 3 shows an optional subsequent compaction stage in the filling method of Figures 1a, 1b, 1c and 2; Figure 3A shows a variation of the embodiment of Figure 3; Figure 4 shows a subsequent transfer stage in the filling method of Figures 1a, 1b, 1c and 2; Figure 4A shows a variation of the embodiment of Figure 4; Figure 5a shows rotary filling apparatus suitable for the method in accord with the present invention; and Figure 5b shows a schematic (flattened out) side view of the rotary apparatus of Figure 5a.

Detailed Description of the Drawings

Figures 1a, 1b and 1c show the first stages in a filling method. A rotationally mounted (mounting not visible) perforated plate 10 in contact with a blanking plate 20 creates closed-off perforations 12a, 12b, which (not visible in side view) are in rotary series (i.e. spaced radially from the axis of rotation of the perforated plate 10). On the opposite side of the perforated plate 10 to the blanking plate 20 is a reservoir of powder 30. The powder 30 comprises a suitable medicament formulation.

Figure 2 shows the first stage in an alternative filling method. A rotationally mounted (mounting not visible) perforated plate 10 in contact with a blanking plate 20 creates closed-off perforations 12a, 12b, which (not visible in side view) are in rotary series (i.e. spaced radially from the axis of rotation of the perforated plate 10). On the opposite side of the perforated plate 10 to the blanking plate 20 is a reservoir of powder 30. The powder 30 comprises a suitable medicament formulation.

Suitably, the lid sheet comprises at least the following successive layers: (a) paper; adhesively bonded to (b) polyester; adhesively bonded to (c) aluminium foil; that is coated with a heat seal lacquer for bonding to the base sheet. The thickness of each layer may be selected according to the desired properties but is typically of the order of from 5 to 200 micron, particularly from 10 to 50 micron.

Various known techniques can be employed to join the lid and base sheet and hence to seal the blisters of the peelable blister strip. Such methods include adhesive bonding, hot metal bonding, hot metal welding, radio frequency welding, laser welding, ultrasonic welding and hot bar sealing. The lid sheet and base sheet of the peelable blister strip are particularly sealable by 'cold form' sealing methods, which are conducted at lower temperatures than conventional heat sealing methods. Such cold form sealing methods are of particular utility where the medicament or medicament formulation for containment within the blister is heat sensitive (e.g. degrades or denatures on heating). Suitable 'cold form' sealing methods are conducted at a temperature in the range of 150-250°C, more preferably, 210-240°C.

Suitably, the base sheet comprises at least the following successive layers: (a) oriented polyamide (OPA); adhesively bonded to (b) aluminium foil; adhesively bonded to (c) a third layer comprising a polymeric material (e.g. polyvinyl chloride).

Various known techniques can be employed to join the lid and base sheet and hence to seal the blisters of the peelable blister strip. Such methods include adhesive bonding, hot metal bonding, hot metal welding, radio frequency welding, laser welding, ultrasonic welding and hot bar sealing. The lid sheet and base sheet of the peelable blister strip are particularly sealable by 'cold form' sealing methods, which are conducted at lower temperatures than conventional heat sealing methods. Such cold form sealing methods are of particular utility where the medicament or medicament formulation for containment within the blister is heat sensitive (e.g. degrades or denatures on heating). Suitable 'cold form' sealing methods are conducted at a temperature in the range of 150-250°C, more preferably, 210-240°C.

Suitably, the base sheet comprises at least the following successive layers: (a) oriented polyamide (OPA); adhesively bonded to (b) aluminium foil; adhesively bonded to (c) a third layer comprising a polymeric material (e.g. polyvinyl chloride).

Various known techniques can be employed to join the lid and base sheet and hence to seal the blisters of the peelable blister strip. Such methods include adhesive bonding, hot metal bonding, hot metal welding, radio frequency welding, laser welding, ultrasonic welding and hot bar sealing. The lid sheet and base sheet of the peelable blister strip are particularly sealable by 'cold form' sealing methods, which are conducted at lower temperatures than conventional heat sealing methods. Such cold form sealing methods are of particular utility where the medicament or medicament formulation for containment within the blister is heat sensitive (e.g. degrades or denatures on heating). Suitable 'cold form' sealing methods are conducted at a temperature in the range of 150-250°C, more preferably, 210-240°C.

Suitably, the lid sheet comprises at least the following successive layers: (a) paper; adhesively bonded to (b) polyester; adhesively bonded to (c) aluminium foil; that is coated with a heat seal lacquer for bonding to the base sheet. The thickness of each layer may be selected according to the desired properties but is typically of the order of from 5 to 200 micron, particularly from 10 to 50 micron.

Various known techniques can be employed to join the lid and base sheet and hence to seal the blisters of the peelable blister strip. Such methods include adhesive bonding, hot metal bonding, hot metal welding, radio frequency welding, laser welding, ultrasonic welding and hot bar sealing. The lid sheet and base sheet of the peelable blister strip are particularly sealable by 'cold form' sealing methods, which are conducted at lower temperatures than conventional heat sealing methods. Such cold form sealing methods are of particular utility where the medicament or medicament formulation for containment within the blister is heat sensitive (e.g. degrades or denatures on heating). Suitable 'cold form' sealing methods are conducted at a temperature in the range of 150-250°C, more preferably, 210-240°C.

Suitably, the base sheet comprises at least the following successive layers: (a) oriented polyamide (OPA); adhesively bonded to (b) aluminium foil; adhesively bonded to (c) a third layer comprising a polymeric material (e.g. polyvinyl chloride).

Various known techniques can be employed to join the lid and base sheet and hence to seal the blisters of the peelable blister strip. Such methods include adhesive bonding, hot metal bonding, hot metal welding, radio frequency welding, laser welding, ultrasonic welding and hot bar sealing. The lid sheet and base sheet of the peelable blister strip are particularly sealable by 'cold form' sealing methods, which are conducted at lower temperatures than conventional heat sealing methods. Such cold form sealing methods are of particular utility where the medicament or medicament formulation for containment within the blister is heat sensitive (e.g. degrades or denatures on heating). Suitable 'cold form' sealing methods are conducted at a temperature in the range of 150-250°C, more preferably, 210-240°C.

Suitably, the lid sheet comprises at least the following successive layers: (a) paper; adhesively bonded to (b) polyester; adhesively bonded to (c) aluminium foil; that is coated with a heat seal lacquer for bonding to the base sheet. The thickness of each layer may be selected according to the desired properties but is typically of the order of from 5 to 200 micron, particularly from 10 to 50 micron.

Various known techniques can be employed to join the lid and base sheet and hence to seal the blisters of the peelable blister strip. Such methods include adhesive bonding, hot metal bonding, hot metal welding, radio frequency welding, laser welding, ultrasonic welding and hot bar sealing. The lid sheet and base sheet of the peelable blister strip are particularly sealable by 'cold form' sealing methods, which are conducted at lower temperatures than conventional heat sealing methods. Such cold form sealing methods are of particular utility where the medicament or medicament formulation for containment within the blister is heat sensitive (e.g. degrades or denatures on heating). Suitable 'cold form' sealing methods are conducted at a temperature in the range of 150-250°C, more preferably, 210-240°C.

Various known techniques can be employed to join the lid and base sheet and hence to seal the blisters of the peelable blister strip. Such methods include adhesive bonding, hot metal bonding, hot metal welding, radio frequency welding, laser welding, ultrasonic welding and hot bar sealing. The lid sheet and base sheet of the peelable blister strip are particularly sealable by 'cold form' sealing methods, which are conducted at lower temperatures than conventional heat sealing methods. Such cold form sealing methods are of particular utility where the medicament or medicament formulation for containment within the blister is heat sensitive (e.g. degrades or denatures on heating). Suitable 'cold form' sealing methods are conducted at a temperature in the range of 150-250°C, more preferably, 210-240°C.
filling method herein. Blanking pins 180a, 180b are inserted into a rotatable perforated plate 110 to create closed-off perforations 112a, 112b. The blanking pins 180a, 180b and closed-off perforations 112a, 112b are each in corresponding rotary series. The volume of the closed-off perforations 112a, 112b may be varied by varying the insertion depth of the blanking pins 180a, 180b. On the opposite side of the perforated plate 110 to the blanking pins 180a, 180b is a reservoir of powder 130. The powder 130 comprises a suitable medicament formulation. The powder 130 is directed into the perforations 112a, 112b (as shown in Figures 1a and 1b) by the action of a director blade 140 which moves across the powder reservoir 130 on a rotary path as the perforated plate 110 is rotated and moves the powder 130 along the perforated plate 110, leaving a thin layer of excess powder 132 still in contact with the perforated plate 110. The director blade shown illustrates a blade with a longer tail section than the blades shown in Figures 1a, 1b and 1c and this tail section is shown angled at about 10° to the rotary path. However it should be appreciated that any blade in accord with the present invention may be used to fill the perforations closed off by the blanking pins. A wiper 150 follows the director blade 140 (as shown in Figure 1c) and moves radially along the powder reservoir 130 in close proximity to the surface of the perforated plate 110, removing the excess powder 132 from the perforated plate surface 110.

[0047] Figure 3 shows an optional subsequent stage to Figures 1a, 1b and 1c and Figure 2 in which compaction pins 270a, 270b (mounted in rotary series) are inserted into the closed-off perforations 212a, 212b (also in rotary series) to compact the powder 230 held within the perforation 212a, 212b. The figure shows a blanking plate 220 acting to close off the perforations as in Figures 1a, 1b and 1c however it should be appreciated that this stage is also applicable to the situation where blanking pins are used to close off the perforations as in Figure 2. The blanking plate 220 may then be removed from its position in contact with the perforated plate 210 or the blanking pins removed from the closed-off perforations 212a, 212b. The powder 230 generally has poor flow properties and therefore remains in the perforations 212a, 212b.

[0048] Figure 3A shows a variation of the embodiment of Figure 3 in which the compaction pins 270a, 270b (only two labelled for clarity) have piston drive mechanisms, which enable the pins 270a, 270b to be sequentially lowered in a cascade pattern (e.g. sinusoidal pattern) as the perforations 212a, 212b are rotated past. Dotted line A-B shows a snapshot of the cascade pattern wherein the pins cascade in the direction from A to B, such that at point A the pin is moving down to the plate 210 and at point B it is moving away from the plate 210.

[0049] Figure 4 shows a further stage to Figures 1a, 1b, 1c, 2 and 3 in which a blister strip 360 is moved so that it is positioned with blister pockets 362a, 362b into registration with the perforations 312a, 312b, which are in rotary series. It will be appreciated that for a linear blister strip 360 (i.e. having multiple pockets 362a, 362b in linear series) the registration with the perforations 312a, 312b in rotary series may not be exact at all points, but that for a rotary series of sufficient radial characteristic approximate registration is achievable for a certain number (e.g. three or five) of pockets (e.g. see description of Stage C of Figure 8). The solid sections 314a, 314b of the perforated plate 310 mask the surface surrounding the pockets 364. The radially mounted transfer pins 370a, 370b are inserted through the perforated plate 310 and the powder 330 is transferred to the blister pockets 362a, 362b. The filled blister strip 360 is then lowered and the pins 370a, 370b raised. The blanking plate 320 is relocated against the underside of the perforated plate 310, creating closed-off perforations 312a, 312b, which are filled with powder 330 in the next cycle.

[0050] It should be appreciated that the powder can also be transferred to other types of container, for example an injection moulded container, a capsule or other form of blind cavity.

[0051] The blister strip 360 of Figure 4 may be sealed by applying a lid sheet and providing sealing means so that the powder is contained in a medicament container defined by the pocket and elongate strip. Suitable methods of sealing the medicament carrier include the use of adhesives, staples or stamps and welding methods selected from hot metal welding, radio frequency welding and ultrasonic welding. Such sealing techniques may be used to form a suitable seal around the periphery of the medicament pocket which is capable of being peeled away by the patient or by a suitable trigger release mechanism in a controlled manner when in use.

[0052] Figure 4A shows a variation of the embodiment of Figure 4 in which the transfer pins 370a, 370b (only two labelled for clarity) have piston drive mechanisms, which enable the pins 370a, 370b to be sequentially lowered in a cascade pattern (e.g. sinusoidal pattern) as the perforations 312a, 312b are rotated past. Dotted line A-B shows a snapshot of the cascade pattern, wherein as in Figure 3A the pins move in cascade fashion in the direction A to B.

[0053] Figure 5a shows in-top-view an apparatus suitable for use in the filling method according to the invention. Figure 5b shows the apparatus of Figure 5a in a schematic, flattened out view (i.e. the view along the circumference of the apparatus, as if flattened out). The apparatus comprises a circular stainless steel plate (disk) 710 mounted for rotation around axis 711. The plate 710 is provided with three angularly spaced sets (only one labelled for clarity) of dual radial series 712a, 712b of sixty perforations arranged concentrically at a position spaced from the perimeter of the plate 710. A reservoir of powder 730 is provided to the plate 710 and guided by guide blades 732, 750 to adapt a particular configuration on the plate 710 dependent on the stage in the rotational cycle thereof.

[0054] The operation of the apparatus involves three
distinct stages labelled A, B and C in both of Figures 5a and 5b and illustrated in more detail in the corresponding cutaway drawings of Figure 5a. It will be appreciated that the three stages are sequential (direction of rotation indicated on both Figures) and dependent on the experienced stage of the rotary cycle of the plate 710.

At Stage A, the filling stage, blanking pins 720a at the bottom of each perforation 712a of the plate (one closed-off perforation 712a shown in cutaway on Figure 5a) remain in place. Compaction pins 770a are now introduced into the top of each closed-off perforation 712a to compact the powder therein. The degree (e.g. force) of compaction will depend on whether the ultimate product is intended to be a free-flowing powder, or alternatively a more dense powder. It may be appreciated that Stage A of Figures 5a and 5b corresponds to the filling step of Figure 2.

At Stage B, the compaction stage, the blanking pins 720a at the bottom of each perforation 712a of the plate (one closed-off perforation 712a shown in cutaway on Figure 5a) remain in place. Compaction pins 770a are now introduced into the top of each closed-off perforation 712a to compact the powder therein. The degree (e.g. force) of compaction will depend on whether the ultimate product is intended to be a free-flowing powder, or alternatively a more dense powder. It may be appreciated that Stage B of Figures 5a and 5b is analogous to the compaction steps of Figures 3 and 3A.

At Stage C, the transfer stage, the blanking pins 720a at the bottom of each perforation 712a of the plate (one perforation 712a shown in cutaway on Figure 5a) remain in place. Compaction pins 770a are now introduced into the top of each closed-off perforation 712a to compact the powder therein. The degree (e.g. force) of compaction will depend on whether the ultimate product is intended to be a free-flowing powder, or alternatively a more dense powder. It may be appreciated that Stage C of Figures 5a and 5b is analogous to the compaction steps of Figures 4 and 4A.

It may also be appreciated that because the linear velocity of the two radial series of perforations 712a, 712b will differ slightly (although they share the same angular velocity) care is needed at Stage C in achieving a suitable registration with the corresponding series of blisters 762a, 762b, of course, share the same linear velocity. Variations are envisaged in which the perforations 712a, 712b of the two radial series are slightly offset from each other to part compensate for this factor. Other variations are envisaged in which the relative size of the perforations 712a, 712b to the blisters 762a, 762b is selected in order to ensure an acceptable degree of registration (i.e. that which is sufficient to ensure effect transfer of compacted powder).
noic acid (e.g. as free acid or potassium salt), diuretics, e.g., amiloride; anticholinergics, e.g., ipratropium (e.g. as bromide), tiotropium, atropine or oxitropium; hormones, e.g., cortisone, hydrocortisone or prednisolone; xanthines, e.g., aminophylline, choline theophyllinate, lysine theophyllinate or theophylline; therapeutic proteins and peptides, e.g., insulin or glucagon; vaccines, diagnostics, and gene therapies. It will be clear to a person skilled in the art that, where appropriate, the medicaments may be used in the form of salts, (e.g., as alkali metal or amine salts or as acid addition salts) or as esters (e.g., lower alkyl esters) or as solvates (e.g., hydrates) to optimise the activity and/or stability of the medicament. [0064] Preferred medicaments are selected from albuterol, salmeterol, fluticasone propionate and beclomethasone dipropionate and salts or solvates thereof, e.g., the sulphate of albuterol and the xinafoate of salmeterol. [0065] Preferred components of combinations of active ingredients contain a bronchodilator in combination with an anti-inflammatory. The bronchodilator is suitably a beta-agonist, particularly a long-acting beta-agonist (LABA). Suitable bronchodilators include salbutamol (e.g., as the free base or the sulphate salt), salmeterol (e.g., as the xinafoate salt) and formoterol (e.g as the fumarate salt). The anti-inflammatory is suitably an anti-inflammatory steroid. Suitably anti-inflammatory compounds include a beclomethasone ester (e.g., the dipropionate), a fluticasone ester (e.g., the propionate) or budesonide or any salt or solvate thereof. One preferred combination of components comprises fluticasone propionate and salmeterol, or any salt or solvate thereof (particularly the xinafoate salt). A further combination of components of particular interest is budesonide and formoterol or any salt or solvate thereof (e.g. formoterol as the fumarate salt). [0066] Generally, powdered medicament particles suitable for delivery to the bronchial or alveolar region of the lung have an aerodynamic diameter of less than 10 micrometers, preferably less than 6 micrometers. Other sized particles may be used if delivery to other portions of the respiratory tract is desired, such as the nasal cavity, mouth or throat. The medicament may be delivered as pure drug, but more appropriately, it is preferred that medicaments are delivered together with excipients (carriers) which are suitable for inhalation. Suitable excipients include organic excipients such as polysaccharides (i.e. starch, cellulose and the like), lactose, glucose, mannitol, amino acids, and maltodextrins, and inorganic excipients such as calcium carbonate or sodium chloride. Lactose is a preferred excipient. [0067] Particles of the powdered medicament and/or excipient may be produced by conventional techniques, for example by micronisation, milling or sieving. Additionally, medicament and/or excipient powders may be engineered with particular densities, size ranges, or characteristics. Particles may comprise active agents, surfactants, wall forming materials, or other components considered desirable by those of ordinary skill. [0068] The excipient may be included with the medicament via well-known methods, such as by admixing, co-precipitating and the like. Blends of excipients and drugs are typically formulated to allow the precise metering and dispersion of the blend into doses. A standard blend, for example, contains 13000 micrograms lactose mixed with 50 micrograms drug, yielding an excipient to drug ratio of 260:1. Dosage blends with excipient to drug ratios of from 100:1 to 1:1 may be used. At very low ratios of excipient to drug, however, the drug dose reproducibility may become more variable. [0069] It will be understood that the present disclosure is for the purpose of illustration only and the invention extends to modifications, variations and improvements thereto within the scope of the claims.

Claims

1. A method of loading a container with a defined quantity of powder (730) comprising the steps of providing:

 a) a perforated plate (710) having plural perforations (712a, 712b), each perforation extending from a first opening in a first side of the plate to a second opening on a second side of the plate; a first director blade (740) spaced from the first side of the plate; a blanking pin (720a) insertable into one of the perforations in the plate through the second opening for closing off the perforation; and a compacting pin (770a) insertable into the closed-off perforation through the first opening for compacting powder disposed therein and for transferring the compacted powder contents of the perforation into a container placed in registration with the second opening, after withdrawal of the blanking pin from the second opening to reopen the perforation, by movement of the compaction pin towards the second opening; characterised by providing the perforated plate (710) in the form of a planar disk with the perforations arranged on a circular path on the disk and further comprising the steps of:

 a) having relative rotary motion of the planar disk and said first director blade with powder being disposed on the first side of the planar disk on a first path thereon which is different from the circular path; and, while there is said relative rotary motion;

 b) closing off one of the perforations in the planar disk by inserting the blanking pin into the perforation through its second opening;

 c) directing powder from the first path onto the disk by inserting the blanking pin into the perforation into a container placed in registration with the second opening, after withdrawal of the blanking pin from the second opening to reopen the perforation, by movement of the compaction pin towards the second opening;
d) directing powder on the circular path into said closed-off perforation by the sweeping action of the first director blade;
e) compacting said powder in the closed-off perforation by inserting the compacting pin into the closed-off perforation through the first opening; and
f) transferring the compacted powder contents of the perforation to said container through the second opening by withdrawing the blanking pin from the perforation through the second opening to reopen the perforation, placing the container in registration with the second opening and moving the compacting pin towards the second opening to transfer the compacted powder contents into the container.

2. A method according to claim 1, wherein the first director blade is held static and the planar disk moves in rotary fashion relative thereto.

3. A method according to claim 1 or 2, wherein the first director blade presents a forward acute angle to the path of relative motion.

4. A method according to claim 3, wherein said forward acute angle is between 1 and 60°, preferably between 5 and 25°.

5. A method according to claim 3 or 4, wherein the first director blade presents multiple forward acute angles to the path of relative motion.

6. A method according to claim 5, wherein the first director blade is curved or articulated in form.

7. A method according to any of claims 3 to 6, wherein the first director blade has a flat tail section.

8. A method according to any of claims 3 to 7, wherein the powder is further directed into the perforation by at least one subsequent director blade (742).

9. A method according to claim 8, wherein the at least one subsequent director blade moves along the first side of the planar disk at a lower level than that of the first director blade.

10. A method according to any of claims 1 to 9 further comprising the step of removing excess powder from said circular path and directing the excess powder back to the first path subsequent to step d).

11. A method according to claim 10, comprising removing the excess powder by the action of a wiper (750).

12. A method according to any of claims 1 to 11 comprising the further following steps subsequent to step f):-

 i) withdrawing the compacting pin from the perforation through the first opening, and
 ii) repeating steps b) - f) at least once more to load another container with a defined quantity of powder.

13. A method according to any of claims 1 to 12, wherein directing powder into the closed-off perforation and transfer into the container is a continuous step.

14. A method according to any of claims 1 to 13, wherein the powder is compacted to a volume of between 50 and 100% of the original volume of powder in the closed-off perforation.

15. A method according to claim 14, wherein the powder is compacted to a volume of between 70 and 90% of the original volume of powder in the closed-off perforation.

16. A method according to any of claims 1 to 15, wherein the container is a blind cavity, preferably selected from the group consisting of a blister pocket, an injection moulded plastic pocket, a capsule and a bulk container.

17. A method according to any of claims 1 to 16, additionally comprising applying a lid to the container to protect the contents therein.

18. A method according to any one of claims 1 to 17 for loading each of plural blisters arranged in series on an elongate blister strip with a defined quantity of powder, wherein the perforations are arranged in series on the circular path and each perforation is associated with its own blanking pin and compacting pin and wherein the method comprises:

 - closing off each perforation with its associated blanking pin in step b),
 - directing powder into each closed-off perforation in step d) by the sweeping action of the first director blade,
 - compacting said powder in each closed-off perforation in step e) by inserting the associated compacting pin into the closed-off perforation through the first opening, and
 - transferring the compacted powder contents from the second opening of each perforation to a corresponding blister of said elongate blister strip in step f) by withdrawing the associated blanking pin from each perforation through the second opening and moving the associated compacting pin towards the second opening.
19. A method according to claim 18, wherein in step f) each perforation of the planar disk is serially brought into registration with the corresponding blister of the blister strip.

20. A method according to claim 19, wherein at registration the planar disk is rotating and the blister strip is moving on a linear path.

21. A method according to any of claims 1 to 20, wherein the powder comprises a medicament, preferably selected from the group consisting of albuterol, salmeterol, fluticasone propionate and beclomethasone dipropionate and salts or solvates thereof.

22. A method according to any of the preceding claims, wherein step c) is carried out by the action of a wiper (732).

23. A method according to any of claims 18 to 20, wherein each of steps b), d), e) and f) are performed serially on the perforations.

24. A method according to claim 23 when dependent on claim 12 further comprising the step of serially performing step g) on each perforation with its associated compacting pin.

Patentansprüche

1. Verfahren zum Füllen eines Behälters mit einer definierten Menge von Pulver (730), umfassend die Schritte des Bereitstellens:

 einer perforierten Platte (710) in der Form einer ebenen Scheibe, wobei sich jede perforation von einer ersten Öffnung in einer ersten Seite der Platte zu einer zweiten Öffnung an einer zweiten Seite der Platte erstreckt;

 einer ersten Leitklinge (740), die von der ersten Seite der Platte beabstandet ist;

 eines Blindstifts (720a), der in eine der perforationen in der Platte durch die zweite Öffnung einfühbar ist, zum Verschließen der perforation und

 eines Verdichtungsstifts (770a), der in die verschlossene perforation einfühbar ist, zum Verdichten von darin angeordnetem Pulver und zum Überführen der verdichteten Pulverinhalte der perforation in einen Behälter, der in Lagegenauigkeit mit der zweiten Öffnung platziert ist, nach einem Zurückziehen des Blindstifts aus der zweiten Öffnung, um die verdichteten Pulverinhalte in den Behälter zu überführen.

2. Verfahren nach Anspruch 1, wobei die erste Leitklinge statisch gehalten wird und sich die ebene Scheibe auf eine rotierende Art relativ dazu bewegt.

3. Verfahren nach Anspruch 1 oder 2, wobei die erste Leitklinge dem Pfad der Relativbewegung einen spitzen Vorwärtswinkel darbietet.

4. Verfahren nach Anspruch 3, wobei der spitze Vorwärtswinkel zwischen 1 und 60° liegt, vorzugsweise zwischen 5° und 25°.

5. Verfahren nach Anspruch 3 oder 4, wobei die erste Leitklinge dem Pfad der Relativbewegung mehrere spitze Vorwärtswinkel darbietet.

6. Verfahren nach Anspruch 5, wobei die erste Leitklinge eine gebogene oder gelenkige Form aufweist.
7. Verfahren nach einem der Ansprüche 3 bis 6, wobei die erste Leitklinge einen flachen Heckabschnitt aufweist.

8. Verfahren nach einem der Ansprüche 1 bis 7, wobei das Pulver ferner in die Perforation durch zumindest eine nachfolgende Leitklinge (742) geleitet wird.

9. Verfahren nach Anspruch 8, wobei sich die zumindest eine nachfolgende Leitklinge entlang der ersten Seite der ebenen Scheibe in einer niedrigeren Höhe als diejenige der ersten Leitklinge bewegt.

11. Verfahren nach Anspruch 10, umfassend das Entfernen des überschüssigen Pulvers durch die Tätigkeit eines Wischers (750).

12. Verfahren nach einem der Ansprüche 1 bis 11, die weiteren folgenden Schritte umfassend, nachfolgend auf Schritt f):

 g) Zurückziehen des Verdichtungsstifts aus der Perforation durch die erste Öffnung, und
 Wiederholen der Schritte b)-f) zumindest noch einmal, um einen anderen Behälter mit einer definierten Pulvermenge zu füllen.

13. Verfahren nach einem der Ansprüche 1 bis 12, wobei das Leiten von Pulver in die verschlossene Perforation und das Überführen in den Behälter ein kontinuierlicher Schritt ist.

14. Verfahren nach einem der Ansprüche 1 bis 13, wobei das Pulver auf ein Volumen von zwischen 50 und 100% des Ausgangsvolumens von Pulver in der verschlossenen Perforation verdichtet wird.

15. Verfahren nach Anspruch 14, wobei das Pulver auf ein Volumen von zwischen 70 und 90% des Ausgangsvolumens des Pulvers in der verschlossenen Perforation verdichtet wird.

17. Verfahren nach einem der Ansprüche 1 bis 16, zusätzlich das Aufbringen eines Deckels auf den Behälter umfassend, um die Inhalte darin zu schützen.

18. Verfahren nach einem der Ansprüche 1 bis 17, zum Füllen von jeder von mehreren Blister, die in Reihe an einem länglichen Blister-Streifen angeordnet sind, mit einer definierten Pulvermenge, wobei die Perforationen in Reihe auf dem kreisförmigen Pfad angeordnet sind und jede Perforation ihr eigener Blindstift und Verdichtungsstift zugeordnet ist, und wobei das Verfahren umfasst:

 - Verschließen von jeder Perforation mit ihrem zugehörigen Blindstift in Schritt b),
 - Leiten von Pulver in jede verschlossene Perforation in Schritt d) durch die Kehraktivität der ersten Leitklinge,
 - Verdichten des Pulvers in jeder verschlossenen Perforation in Schritt e) durch Einführen des zugehörigen Verdichtungsstifts in die verschlossene Perforation durch die erste Öffnung, und

20. Verfahren nach Anspruch 19, wobei bei Lagegenauigkeit die ebene Scheibe rotiert und sich der Blister-Streifen auf einem linearen Pfad bewegt.

21. Verfahren nach einem der Ansprüche 1 bis 20, wobei das Pulver ein Medikament umfasst, das vorzugsweise aus der Gruppe ausgewählt wird, die aus Albuterol, Salmeterol, Fluticason-Proprionat und Beclomethason-Dipropionat und Salzen oder Solvaten von Albuterol, Salmeterol, Fluticason-Proprionat und Beclomethason-Dipropionat und Salzen oder Solvaten davon, und jeglichen Mischungen daraus, besteht.

22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Tätigkeit eines Wischers (732) ausgeführt wird.

23. Verfahren nach einem der Ansprüche 18 bis 20, wobei jeder der Schritte b), d), e) und f) aufeinanderfolgend an den Perforationen durchgeführt wird.

Revendications

1. Procédé de chargement d’un contenant avec une quantité de poudre définie (730) comprenant les étapes consistant à fournir :

une plaque perforée (710) ayant une pluralité de perforations (712a, 712b), chaque perforation s’étendant d’une première ouverture dans un premier côté de la plaque à une seconde ouverture sur un second côté de la plaque ;

une première lame directrice (740) espacée par rapport au premier côté de la plaque ;

un axe d’obturation (720a) insérable dans l’une des perforations dans la plaque à travers la seconde ouverture pour fermer la perforation ; et

un axe de compression (770a) insérable dans la perforation fermée à travers la première ouverture pour compresser la poudre disposée à l’intérieur et pour transférer le contenu de poudre comprimée de la perforation dans un contenant placé en correspondance avec la seconde ouverture, après retrait de l’axe d’obturation de la seconde ouverture pour rouvrir la perforation, grâce au mouvement de l’axe de compression vers la seconde ouverture ;

caractérisé par la fourniture de la plaque perforée (710) sous la forme d’un disque plan avec les perforations agencées sur une trajectoire circulaire sur le disque et comprenant en outre les étapes consistant à :

a) avoir un mouvement rotatif relatif du disque plan et de ladite première lame directrice avec la poudre disposée sur le premier côté du disque plan sur une première trajectoire de celui-ci qui est différent de la trajectoire circulaire et, en présence dudit mouvement rotatif relatif ;
b) fermer l’une des perforations dans le disque plan en insérant l’axe d’obturation dans la perforation à travers sa seconde ouverture ;
c) diriger la poudre de la première trajectoire sur la trajectoire circulaire ;
d) diriger la poudre sur la trajectoire circulaire dans ladite perforation fermée grâce à l’action de balayage de la première lame directrice ;
e) comprimer ladite poudre dans la perforation fermée en insérant l’axe de compression dans la perforation fermée à travers la première ouverture ; et
f) transférer le contenu de poudre comprimée de la perforation vers ledit contenant à travers la seconde ouverture en retirant l’axe d’obturation de la perforation à travers la seconde ouverture pour rouvrir la perforation, en plaçant le contenant en correspondance avec la seconde ouverture et en déplaçant l’axe de compression vers la seconde ouverture pour transférer le contenu de poudre comprimée dans le contenant.

2. Procédé selon la revendication 1, dans lequel la première lame directrice est maintenue statique et le disque plan se déplace de façon rotative par rapport à celle-ci.

3. Procédé selon la revendication 1 ou 2, dans lequel la première lame directrice présente un angle aigu avant par rapport à la trajectoire du mouvement relatif.

4. Procédé selon la revendication 3, dans lequel ledit angle aigu avant est compris entre 1 et 60°, de préférence, entre 5 et 25°.

5. Procédé selon la revendication 3 ou 4, dans lequel la première lame directrice présente de multiples angles aigus avant par rapport à la trajectoire du mouvement relatif.

6. Procédé selon la revendication 5, dans lequel la première lame directrice est de forme incurvée ou articulée.

7. Procédé selon l’une quelconque des revendications 3 à 6, dans lequel la première lame directrice a une section de queue plate.

8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel la poudre est en outre dirigée dans la perforation par au moins une lame directrice suivante (742).

9. Procédé selon la revendication 8, dans lequel l’au moins une lame directrice suivante se déplace le long du premier côté du disque plan à un niveau inférieur à celui de la première lame directrice.

10. Procédé selon l’une quelconque des revendications 1 à 9, comprenant en outre l’étape consistant à éliminer la poudre en excédent de ladite trajectoire circulaire et à rediriger la poudre en excédent vers la première trajectoire suite à l’étape d).

11. Procédé selon la revendication 10, comprenant l’élimination de la poudre en excédent grâce à l’action d’un balai (750).

12. Procédé selon l’une quelconque des revendications 1 à 11, comprenant les autres étapes suivantes suite à l’étape f) consistant à :

 g) retirer l’axe de compression de la perforation à travers la première ouverture, et à
11. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel la poudre est comprimée à un volume compris entre 50 et 100 % du volume original de poudre dans la perforation fermée.

12. Procédé selon l’une quelconque des revendications 1 à 11, dans lequel la poudre est comprimée à un volume compris entre 50 et 100 % du volume original de poudre dans la perforation fermée.

13. Procédé selon l’une quelconque des revendications 1 à 12, dans lequel diriger la poudre dans la perforation fermée et la transférer dans le contenant est une étape continue.

14. Procédé selon l’une quelconque des revendications 1 à 13, dans lequel la poudre est comprimée à un volume compris entre 50 et 100 % du volume original de poudre dans la perforation fermée.

15. Procédé selon la revendication 14, dans lequel la poudre est comprimée à un volume compris entre 70 et 90 % du volume original de poudre dans la perforation fermée.

16. Procédé selon l’une quelconque des revendications 1 à 15, dans lequel le contenant est une cavité borgne, de préférence choisie dans le groupe comprenant une poche alvéolée, une poche en plastique moulée par injection, une capsule et un contenant en vrac.

17. Procédé selon l’une quelconque des revendications 1 à 16, comprenant en outre l’application d’un couvercle au contenant pour protéger le contenu à l’intérieur.

18. Procédé selon l’une quelconque des revendications 1 à 17 pour charger chacune de la pluralité d’alvéoles agencées en série sur une bande alvéolée allongée avec une quantité définie de poudre, dans laquelle les perforations sont agencées en série sur la trajectoire circulaire et chaque perforation est associée à son propre axe d’obturation et axe de compression et dans lequel le procédé consiste à :

- fermer chaque perforation avec son axe d’obturation associé dans l’étape b),
- diriger la poudre dans chaque perforation fermée dans l’étape d) grâce à l’action de balayage de la première lame directrice,
- comprimer ladite poudre dans chaque perforation fermée dans l’étape e) en insérant l’axe de compression associé dans la perforation fermée à travers la première ouverture, et
- transférer le contenu de poudre comprimée de la seconde ouverture de chaque perforation vers une alvéole correspondante de ladite bande alvéolée allongée de l’étape f) en retirant l’axe d’obturation associé de chaque perforation à travers la seconde ouverture et en déplaçant l’axe de compression associé vers la seconde ouverture.

19. Procédé selon la revendication 18, dans lequel dans l’étape f) chaque perforation du disque plan est amenée en série en correspondance avec l’alvéole correspondante de la bande alvéolée.

20. Procédé selon la revendication 19, dans lequel lors de la mise en correspondance, le disque plan tourne et la bande alvéolée se déplace sur une trajectoire linéaire.

21. Procédé selon l’une quelconque des revendications 1 à 20, dans lequel la poudre comprend un médicamente, de préférence choisi dans le groupe comprenant l’albutérol, le salmétérol, le propionate de fluticasone et le dipropionate de béclométasone et des sels ou solvants de ceux-ci et n’importe quels mélanges de ceux-ci.

22. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape c) est réalisée grâce à l’action d’un balai (732).

23. Procédé selon l’une quelconque des revendications 18 à 20, dans lequel chacune des étapes b), d), e) et f) est effectuée en série sur les perforations.

24. Procédé selon la revendication 23, lorsqu’elle est dépendante de la revendication 12, comprenant en outre l’étape consistant à effectuer en série l’étape g) i) sur chaque perforation avec sa goupille de compression associée.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 0071419 A [0004]
- WO 0071424 A [0006]
- US 5549144 A [0006]