EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 27.12.2006 Bulletin 2006/52

Application number: 04252604.6

Date of filing: 05.05.2004

Game apparatus and storage medium storing game program
Spielvorrichtung und Spielprogramm auf Speichermedium
Dispositif de jeu et logiciel sur intermédiaire de stockage

Designated Contracting States: DE FR GB

Priority: 07.05.2003 JP 2003128572

Date of publication of application: 08.12.2004 Bulletin 2004/50

Proprietor: Nintendo Co., Limited
Kyoto-shi,
Kyoto (JP)

Inventors:
Yamamura, Yasuhisa,
Nintendo Co., Ltd.
Kyoto-shi,
Kyoto (JP)

Asuke, Shigeyuki,
Nintendo Co., Ltd.
Kyoto-shi,
Kyoto (JP)

Kawai, Toshinori,
Nintendo Co., Ltd.
Kyoto-shi,
Kyoto (JP)

Perkins, Sarah
Stevens, Hewlett & Perkins
Halton House
20/23 Holborn
London EC1N 2JD (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a game apparatus and a storage medium storing a game program. More specifically, the present invention relates to a game apparatus and a storage medium storing a game program that displays a background image larger than a display screen to be displayed on a display by scrolling. In the conventional game apparatus of such kind, a display screen is scrolled according to position coordinates of a player object. When the player object rides on a specific block, for example, by scrolling a display screen up, an item, and the like which has been out of a display range and hidden is displayed, so that the item, and the like is presented to the player. Such a scrolling action is evident in the Lion King™ game.

[0002] In the conventional game apparatus of such kind, a display screen is scrolled according to position coordinates of a player object. When the player object rides on a specific block, for example, by scrolling a display screen up, an item, and the like which has been out of a display range and hidden is displayed, so that the item, and the like is presented to the player. Such a scrolling action is evident in the Lion King™ game.

[0003] However, in the prior art, there is a problem that since the scrolling is performed on the basis of only the position coordinates of the player object, after a state of the background is changed due to disappearance of the block caused by destruction, even if the player object simply moves once again to a position where the disappeared block was present by jumping, and so forth, the display screen is scrolled. Accordingly, an item, and the like which has already become impossible to be obtained or reached due to the change of the state is scroll-displayed each time. Such the scroll display is senseless and unnatural for advancing the game. Furthermore, in a case that the player moves the player object without intending to scroll, when the player object moves to the above-described position, the screen is largely waved by scrolling, causing too low operability due to drudgery to play with ease.

[0004] Therefore, it is a primary object of the present invention to provide a novel game apparatus and a storage medium storing a game program.

[0005] Another object of the present invention is to provide a game apparatus and a storage medium storing a game program capable of scrolling according to a state of a game, and realizing a natural screen display that is easy for a player to play.

[0006] A game apparatus according to this invention is a game apparatus in accordance with claim 1.

[0007] More specifically, the game apparatus (10: corresponding reference numeral in the embodiments. Hereinafter, the same is applied,) displays on the display the background image larger than the display screen (106) to be displayed on the display (16) by scrolling. In the game apparatus, the operating means (18-30, 32) is operated by the player. The background image generating means (40, 64, S1) generates the background image. The player object generating means (40, 62b, S3, S7) generates the player object (108) moving on the basis of the operation input from the operating means. The contact object generating means (40, 62c, 62d, S3) generates the contact object of variable kinds. The scrolling means (40, 62d, 64b, S9, S15) differentiates between the first scrolling (S75) when being determined that the predetermined action is performed by the predetermined action determining means and the second scrolling (S77) when being determined that the predetermined action is not performed by the predetermined action determining means in a case that it is detected the player object exists at the predetermined position by the position detecting means. Then, the displayed data generating means (40, 66, 68, S11, S13, S17) generates the displayed data to display on the display the display including the player object generated by the player object generating means and the background image generated by the background image generating means that exist within the display range scrolled by the scrolling means.

[0008] In another embodiment, the contact object generating means generates the contact object as a part of the background image. More specifically, when the player object performs the predetermined action on something displayed as a part of the background image, the first scrolling is operated. Accordingly, it is possible to perform a natural screen display according to the action of the player object. Furthermore, it is possible for the player to operate the first scrolling relatively easily.

[0009] In the other embodiment, the contact object generating means generates the contact object as a moving object. More specifically, when the player object performs the predetermined action on something displayed as the moving object, the first scrolling is operated. Accordingly, it is possible to perform a natural screen display according to the action of the player object. Furthermore, the predetermined action with respect to the moving object needs a relatively difficult operation. This makes the game challenging for the player, capable of improving interest as a game.

[0010] In a further embodiment, the scrolling means changes, in a case that it is detected that the player object exists at the predetermined position by the position detecting means, a scroll target in the first scrolling depending on an approach direction of the player object to the predetermined position. More specifically, the scrolling means (S45-S49) changes between first and second scroll targets in the first scrolling depending on the approach direction of the player object to the predetermined position. Accordingly, it is possible to perform varied screen displays according to the approach direction of the player object, capable of improving interest as a game.

[0011] In another embodiment, the contact object generating means generates the contact object of variable kinds. The scrolling means changes a scroll target in the first scrolling depending on a kind of the contact object when being determined that a predetermined action is performed by the predetermined action determining means. More specifically, the contact object of variable...
kinds is generated. Then, the scrolling means (S91, S93) changes the scroll target in the first scrolling depending upon the kind of the contact object when being determined that the predetermined action is performed by the predetermined action determining means. Accordingly, it is possible to perform varied screen displays depending on the kind of the contact object, capable of improving interest as a game.

In one aspect, a game apparatus further comprises a scroll control object generating means for generating a scroll control object arranged in association with the contact object and a scroll control information storing means for storing scroll control information in association with the scroll control object. In the game apparatus, the predetermined action determining means determines whether or not the player object performs the predetermined action on the contact object on which the scroll control object is arranged. The scrolling means controls the first scrolling on the basis of the scroll control information.

More specifically, the scroll control object generating means (40, 62c, S3) generates the scroll control object (114) arranged in association with the contact object. The scroll control information storing means (48, 52) stores the scroll control information (96, 98, 100) in association with the scroll control object. Then, the predetermined action determining means determines whether or not the player object performs the predetermined action on the contact object on which the scroll control object is arranged. The scrolling means controls the first scrolling on the basis of the scroll control information. Accordingly, the scroll control information is prepared in association with the scroll control object aside from the contact object, and the scroll control object is arranged with respect to the contact object only required for the scroll control, capable of decreasing a data volume.

In a further aspect the present invention provides a storage medium in accordance with claim 8.

In one embodiment, the scrolling step differentiates between the first scrolling when being determined that the predetermined action is performed by the predetermined action determining step and the second scrolling when being determined that the predetermined action is not performed by the predetermined action determining step in a case that it is detected that the player object exists at a predetermined position in close to the contact object by the position detecting step.

In another embodiment, the contact object generating step generates the contact object as a part of the background image.

In the other embodiment, the contact object generating step generates the contact object as a moving object.

In a further embodiment, the scrolling step changes, in a case that it is detected that the player object exists at the predetermined position by the position detecting step, a scroll target in the first scrolling depending on an approach direction of the player object to the predetermined position.

In still another embodiment, the contact object generating step generates the contact object of variable kinds. The scrolling step changes between first and second scroll targets in the first scrolling depending on a kind of the contact object when being determined that a predetermined action is performed by the predetermined action determining step.

In one aspect, a game apparatus further comprises a scroll control information storing means for storing scroll control information in association with the scroll control object. The game program further makes the processor of the game apparatus execute a scroll control object generating step for generating a scroll control object arranged in association with the contact object. In the game program, the predetermined action determining step determines whether or not the player object performs the predetermined action on the contact object on which the scroll control object is arranged. The scrolling step controls the first scrolling on the basis of the scroll control information.

In these storage mediums storing the game programs also, it is possible to scroll in correspondence to a state of the game as in the above-described game apparatus, capable of performing a natural screen display that is easy for the player to play.

According to the present invention, the scrolling is controlled not only on the basis of the position of the player object but also on the basis of the presence of the predetermined action with respect to the contact object, capable of scrolling in correspondence with a state of the game. Accordingly, it is possible to realize a natural screen display that is easy for the player to play.

The above described objects and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.

Figure 1 is an exterior view showing a game apparatus of one embodiment of the present invention; Figure 2 is a block diagram showing one example of an internal configuration of the game apparatus of Figure 1 embodiment; Figure 3 is an illustrative view showing one example of a memory map of a ROM of a cartridge in Figure 2; Figure 4 is an illustrative view showing one example of a memory map of a working memory in Figure 2; Figure 5 is an illustrative view showing a relationship between a background image (entire course) and a screen position in Figure 1 embodiment; Figure 6 is an illustrative view showing one example of a relationship among a contact object, a scroll control object, a scroll operating range, and a scroll target value; Figure 7 is an illustrative view showing one example of a screen position in a case that the player object simply passes through a scroll operating range in
A portable game machine such as a game boy advance (GAMEBOY ADVANCE: product name) is applicable as the game machine 12. It is noted that the game apparatus 10 is not limited to the portable game machine 12, and a video game machine, and etc. utilized and connected to a home-use television receiver may be applied thereto. Furthermore, a game information storage medium is not limited to the cartridge 14, and various information storage medium such as an optical information storage medium including a CD-ROM, a DVD and etc., a magnetooptical disk, a magnetic disk, or the like may be applied.

A housing of the game machine 12 is provided with a color liquid crystal display (LCD) 16 as a display at a nearly center of a front surface thereof. On the LCD 16, a game image including a game world, game characters, and so on is displayed.

On the front surface of the housing, a cross button 18, a start button 20 and a select button 22 are provided at a predetermined position of the left of the LCD 16, and an A button 24 and a B button 26 are provided at a predetermined position of the right of the LCD 16. Furthermore, an L button 28 and an R button 30 are provided at left and right edge portions on an upper surface (ceiling surface) of the housing, respectively. The respective buttons are an operating means for allowing a user to play the game, and are collectively shown as an operating portion 32 in Figure 2.

The cross button 18 functions as a direction switch and can move in a top-to-bottom or left-to-right direction a player character (player object), a cursor, and so on that are displayed on the LCD 16 by operating one of four depressing portions. The start button 20 is utilized for instructing starting a game, and so forth, and the select button 22 is utilized for selecting a game mode, and so forth. Mainly, the A button 24 is utilized for selecting (determining) an item designated by the cursor, and so forth, and the B button 26 is utilized for canceling the selected item, and so forth. Furthermore, each of the A button 24, the B button 26, the L button 28, and the R button 30 makes the player object displayed on the LCD 16 perform an arbitrary action set in advance for each operation such as throwing, catching, jumping, cutting by a sword, talking, and so forth by being operated singly or in combination thereof.

The housing is, at a depth side of the upper surface, provided with an inserting slot 34. Into this inserting slot 34, the game cartridge 14 is detachably inserted. Connectors 36 and 38 (Figure 2) connectable with each other are respectively provided at a depth portion of the inserting slot 34 and at an opening of edge portion of the inserting direction of the game cartridge 14. Thus, when the connectors 36 and 38 are connected with each other, the cartridge 14 is rendered accessible by a CPU 40 (Figure 2) of the game machine 12. Furthermore, at the near side of an upper surface of the housing, an external expansion connector (connector for communication) 42 (Figure 2) is provided. The connector 42 is connected with a communication cable (not shown) at a time of performing an interactive play of the multi-player game,
and so forth.

On the surface of the housing and below the A button 24 and the B button 26, a speaker 44 is provided for outputting a game sound such as BGM, a sound effect during the game and etc. Furthermore, above the A button 24 and the B button 26, a power lamp 46 which lights up when a power is turned on, and changes in color depending on a remaining amount of a battery is provided.

In addition, although not illustrated, at the back surface of the housing, a battery accommodating box for setting a battery therein is provided, and at the bottom surface of the housing, a power switch, a volume adjustment knob, a headphones connecting terminal, and etc. are provided.

Figure 2 is an electric configuration of the game apparatus 10 (game machine 12 and cartridge 14). Referring to Figure 2, the game machine 12 includes the CPU 40, and the CPU 40 is called as a processor, a computer or the like, and responsible for entirely controlling the game machine 12. The CPU 40 is connected with the LCD 16, the operating portion 32, and the connector 36 described above via an internal bus, and is also connected with a working memory 48, a transmitting/receiving buffer 50, and etc.

On the LCD 16, a game image is displayed in response to a display signal applied from the CPU 40. It is noted that although not illustrated, the CPU 40 is connected with a VRAM, an LCD controller, and etc. so as to render background image data, character image data, game image data, and etc. on the VRAM under an instruction of the CPU 40. Then, the LCD controller reads out the game image data (displayed data) rendered on the VRAM according to an instruction of the CPU 40, and displays the characters, a game screen (display screen), and etc. on the LCD 16. In this embodiment, the VRAM has a larger storing area than the screen to be displayed on the LCD 16.

The operating portion 32 includes the respective operating buttons 18, 20, 22, 24, 26, 28 and 30 described above, and an operation input signal in response to an operation of each of the operating buttons is applied to the CPU 40. Accordingly, the CPU 40 executes a process according to an instruction of the player (user) applied through the operating portion 32.

The working memory 48 is a writable/readable memory, and utilized as a work area or a buffer area of the CPU 40. The transmitting/receiving buffer 50 is for temporarily storing transmitting/receiving data at a time of performing the interactive play of the multi-player game, and connected to the external expansion connector 42. By connecting the connector 42 with another game machine 12 by use of the communication cable (not shown), data communications between a plurality of game machines 12 becomes possible.

Furthermore, although not illustrated, the CPU 40 is connected with the speaker 46 via a sound circuit, and in response to an application of a sound signal from the CPU to the sound circuit, a game sound such as a game music, a sound effect, and etc. is output from the speaker 46.

The cartridge 14 includes a ROM 52 and a RAM 54 that are connected with each other via a bus and that are connected to the connector 38. Accordingly, as described above, when the cartridge 14 is inserted into the game machine 12, the connector 36 and the connector 38 are connected with each other, which electrically connects the CPU 40 with the ROM 52 and the RAM 54. Accordingly, the CPU 40 can read predetermined program data from a predetermined area of the ROM 52 so as to expand the same on the working memory 48, read out predetermined backup data from the RAM 54 so as to write the same to the working memory 48, or write and store to a predetermined area of the RAM 54 game data generated in correspondence with the proceeding of the game in the working memory 48.

It is noted that although the flash memory being a nonvolatile memory is applied to the RAM 54, a ferroelectric memory (FeRAM), EEPROM, and etc. may be applied to another nonvolatile memory.

The ROM 52 includes a game program storing area 56 and a game data storing area 58 as shown in Figure 3. In the game program storing area 56, a controller input detecting program 60, an object control program 62, a background control program 64, an object displaying program 66, a background displaying program 68, a communication control program 70, a sound control program 72, a game progress control program 74, and other game programs 76, and so on are stored in advance. In the game data storing area 58, object image data 78, background image data 80, map arrangement data 82, sound data 84, other data 86, and so on are stored in advance.

Figure 4 shows one example of a memory map of the working memory 48. The working memory 48 includes a program storing area 88 and a data storing area 90. In the program storing area 88, a game program read from the ROM 52 of the cartridge 14 is stored entirely at a time, or partially and sequentially. That is, in the program storing area 88, the object control program 62, the background control program 64, the background displaying program 68, the object displaying program 66, the controller input detecting program 60, and other programs (70, 72, 74, 76, and etc.) are stored. The CPU 40 executes a game process according to the game program. The object control program 62 includes programs respectively controlling the player object (moving image character operable by the player), a scroll control object, and other objects (enemy object, background object, and etc.), and specifically includes a player object position detecting program 62a, a player object operating program 62b, a scroll control object arranging program 62c, a scroll control object operating program 62d, other objects arranging program 62e, other objects control program 62f, and etc. The background control program 64 includes a background arranging program 64a, a scroll control program 64b, and etc.
Furthermore, in the data storing area 90, game data read from the ROM 52 of the cartridge 14 and game data generated during the game are stored. That is, in the game data storing area 90, screen display position data 92, player object position data 94, player object image data 78a, background image data 80, map data 82, object control data, other data 102, and etc. are stored. The object control data includes scroll operating range data 96, scroll target value data 98, scroll operating flag data 100, and etc. Furthermore, in the other data 102, image data of the objects except for the player object 78, sound data 84, other data 86, other game data and flag data required for progressing the game, and etc. are stored.

The scroll control object is an object utilized for controlling the scroll, and generated and arranged by the scroll control object arranging program 62c in the game world. The scroll control object is arranged in a predetermined position in association with a contact object. The contact object is an object that the player object can contact, and may be displayed as a part of the background image such as a static foothold block, a land, and etc., or may be displayed as a moving object such as a moving foothold, the enemy object, and etc. The contact object to which the scroll control object is set allows the scrolling to be operated. It is noted that the scroll control object itself is transparent and invisible to the player, and is not affected by the player object.

Then, to the scroll control object, the scroll control information including the scroll operating range data 96, scroll target value data 98, and etc. is set. By the scroll control object operating program 62d, it is determined whether or not a condition for operating a scroll control is satisfied, and the scroll operating flag data 100 is set according to a state of the game. Then, by the scroll control program 64b, scrolling of the display screen is controlled, and in a case that the scroll operating flag is turned on, a screen display position is moved so as to satisfy a scroll target value.

It is noted that the player object position detecting program 62a is for detecting a position of the player object in the game world. The player object operating program 62b is for operating the player object on the basis of an operation input from the operating portion 32.

Furthermore, the background arranging program 64a generates a background image 104 on the basis of the background image data 80, the map data 82, and etc. as shown in Figure 5 for example. The map data 82 is for indicating what kind of background (land such as a foothold, wall, and so on, and movable area, and so on) is arranged in a map divided by squares for each square or unit. In a case that the game world in this embodiment includes several courses or stages, the background image 104 is equal to one entire course or stage, for example, and is larger than a display screen 106 to be displayed on the LCD 16.

In addition, the background displaying program 68 and the object displaying program 66 are for respectively generating displayed data of the display screen 106 including the background image 104 and the object image to display the same on the display 16. The controller input detecting program 60 is for detecting and obtaining an operation input signal generated in the operating portion 32 according to the operation by the player.

The screen display position data 92 includes position coordinates data of the display screen (game screen) 106 in the background image 104 as shown in Figure 5. The screen display position is indicated by an X-coordinate SCCH and a Y-coordinate SCCV rendering the fixed point O (upper left corner in this embodiment) of the background image 104 the origin. Then, by rendering the screen display position (SCCH, SCCV) the reference point of the display screen 106, a display range having predetermined lengths (dots) from the reference point in an X direction (right direction in Figure 5) and in a Y direction (downward direction in Figure 5) is regarded as the display screen 106. The screen display position data 92 is adjusted so as to be closer to a scroll target when a scroll operating condition is satisfied, or is updated in association with movement of the player object 108 such that the player object 108 is captured within the display screen 106 in a case that the player object 108 comes near to the edge of the display screen 106, and so forth.

As shown in Figure 5, the player object position data 94 is the position coordinates data of the player object 108 in the background image 104, and is indicated by the X-coordinate PLYPOS and the Y-coordinate PLYPOS rendering the fixed point O the origin. The player object position data 94 is calculated and updated on the basis of the operation input from the operating portion 32 obtained by the controller input detecting program 60, the player object operating program 62b, and so on.

The scroll operating range data 96 and the scroll target value data 98 are stored for each scroll control object. The scroll operating range data 96 is for setting one of the scroll operating conditions. That is, that the player object 108 is located within the operating range determined by the scroll operating range data 96 is rendered one condition. The scroll operating range data 96 includes operating range left-side data SCRLEFT defining the X-coordinate on the left side of the operating range, and operating range right-side data SCRRIGHT defining the X-coordinate on the right side of the operating range in this embodiment. It is noted that the scroll operating range is not limited to define boundaries right to left, and may be for defining the boundaries up and down, or may be a constant area, and so on separated by the boundaries from right to left or up and down, for example.

The scroll target value data 98 is data SCRPOINT indicative of a target of movement for the
screen display position of the display screen 106 by the scroll control, and the Y-coordinate can be set if scrolling up and down, and the X-coordinate can be set if scrolling right to left. Or, coordinates of the specific point, and etc. may be set to the scroll target value.

[0050] In the game apparatus 10, as shown in Figure 6, a contact object 110 is arranged on the background image 104. In Figure 6, the contact object 110 is, as one example, a foothold block placed over a ground 112 in the air. The player object 108 can ride on the foothold block 110, or destroy it. Then, the scroll control object 114 with respect to the foothold block 110 is arranged at the same position as the foothold block 110 in Figure 6 example. It is noted that the scroll control object 114 is transparent and invisible as described above, but in the interests of simplicity, a reference numeral is applied to a position of the foothold block 110 where the scroll control object 114 is also arranged. By scrolling in association with the scroll control object 114, a target object 116 to be captured within the display screen 106 is arranged. The target object 116 is expected to be provided to the player, and may be an arbitrary thing such as an item, money, an entrance to another place, and so on. The target object 116 appears within the display screen 106 when scrolling in association with the scroll control object 114 while being arranged in a hidden position out of the display screen 106 when normally scrolling in association with a movement of the player object 108.

[0051] Furthermore, in this embodiment, the scroll operating range is set so as to become the same widths in the horizontal direction as the scroll control object 114 as shown in Figure 6. That is, the scroll operating range left-side data SCRLFT is set at the far left position of the scroll control object 114, and the scroll operating range right-side data SCRRIGHT is set at the far right position of the scroll control object 114. Thus, the scroll operating range may be set close to the contact object 110. Furthermore, since the screen display position is set at the upper left corner of the display screen 106, the scroll target value data SCRPOINT is set slightly above a position of the target object 116.

[0052] A condition for operating a scroll control in association with the scroll control object 114 (first scrolling) is that the player object 108 is located within the scroll operating range, and a predetermined action is performed on the contact object 110. By satisfying this condition, the screen display position is adjusted to capture the target object 116 within the display screen 106. The predetermined action as the scroll operating condition is to ride on the foothold block 110 in this example. Accordingly, in a case of simply passing through below the foothold block 110 as shown in Figure 7, for example, the scroll operating condition is not satisfied, the scroll control is not executed, and the target object 116 does not appear within the display screen 116. Furthermore, as shown in Figure 8, also in a case of bringing the player object 108 close into the target object 116 by jumping after passing through below the foothold block 110, a enough space is provided between the target object 116 and the player object 108, so that the target object 116 is never captured within the display screen 106.

[0053] As shown in Figure 9, in a case that the player object 108 performs the predetermined action on the foothold block 110, that is, if riding on it in this example, the scroll operating condition is satisfied. It is noted that riding on the foothold block 110 by the player object 108 causes the position coordinates of the player object 108 to exist within the scroll operating range (SCRLFT< PLXPOS < SCRRIGHT). Therefore, by execution of the first scroll control, the screen display position of the display screen 106 is gradually moved closer to the scroll target value SCRPOINT as shown in Figure 10. Then, if the scroll operating condition continues to be satisfied, the screen display position reaches the scroll target value, and such the game image is displayed on the display 16. Accordingly, the target object 116 is captured within the display screen 106, and this enables the player to know the presence of the target object 116. Then, the player can go to that place if necessary, and obtain it if the target object 116 is an item, and etc.

[0054] It is noted that since the scroll operating range is set so as to be in close to the contact object 110 by the scroll control object 114, the player object 108 directly performs a predetermined action on the contact object 110 nearby, capable of performing a natural scrolling according to the action of the player object 108. Furthermore, merely riding on the foothold block 110 displayed in a static state as a part of the background image makes it relatively easy for the player to perform the first scrolling.

[0055] On the other hand, the contact object 110 of this example is the foothold block possible to be destructed, that is, the player object 108 can destruct it by hitting the foothold block 110 from below, for example. As shown in Figure 11, after the foothold block 110 is destructed and disappears, the player object 108 can exist within the scroll operating range, but cannot naturally perform the predetermined action on the foothold block 110. It is noted that the scroll control object 114 is arranged at the same place as the foothold block 110, but is not affected by the player object 108, and remains to be arranged at that place without disappearing. Figure 11 shows the hidden scroll control object 114 by dashed lines. Also, the player object 108 cannot reach the position of the target object 116 due to a change of a state of the background. Accordingly, as shown in Figure 11, after the foothold block disappears, even if the player object 108 moves again to the position where the player object 108 can ride on the foothold block 110 before its disappearance, the scroll operating condition cannot be satisfied, and therefore, the first scrolling is never operated. In this case, a normal screen position adjustment (second scrolling) in association with the moving position of the player object 108 is executed. That is, the screen display position is never adjusted to the scroll target SCRPOINT. Accordingly, the target object 116 which has already become
impossible to be obtained, reached, and so forth due to the change of the state is not scroll-displayed each time, and shake of the screen due to the troublesome scroll, and etc. never occurs.

[0056] Thus, it is possible to scroll according to the state of the game. Accordingly, it is possible to perform appropriate and natural representation of the image, capable of displaying a screen that is easy for the player to play.

[0057] It is noted that it is appropriate that the scroll operating range may be a definite area, and the like divided by the boundaries from right to left, and up and down, for example, and a determination of presence of the player object 108 within the scroll operating range is performed by determining whether or not the player object 108 contacts the unit where the scroll control object 114 is placed, for example.

[0058] In addition, a different target value can be set to the scroll target value SCRPOINIT depending upon how to contact the scroll control object 114. In this embodiment, a different scroll target value is set depending on an approach direction to the scroll operating range. That is, the scroll target value left-side data SCRPOINTL obtained when entering the scroll operating range from the left and the scroll target value right-side data SCRPOINTR obtained when entering the scroll operating range from the right are stored, and either of them is set to be the scroll target value SCRPOINT depending on the approach direction. For example, in a case that the player object 108 enters the scroll operating range from the right, the scroll target value right-side data SCRPOINTR is set to the scroll target value SCRPOINIT as shown in Figure 12, and the screen display position of the display screen 106 is adjusted such that the value of the SCRPOINTR is satisfied. In Figure 12, the scroll target value left-side data is set to a value such that the target object 116 arranged upper right of the scroll operating range is displayed, but the scroll target value right-side data is set to a value such that the target object 116 is not displayed. Thus, the scroll control can be performed such that the target object 116 is displayed only when entering the scroll operating range from an appropriate predetermined direction (left in Figure 12). Consequently, by changing the scroll target depending on the approach direction to the scroll operating range, varied screen displays can be performed, improving interest as a game.

[0059] Furthermore, the scroll target value is not necessarily set to a value such that the target object 116 is displayed, and is arbitrarily and precisely settable. In Figure 13, the scroll control object 114 is arranged below the target object 116a in the direction of movement (right direction), for example. The target object 116a is scroll-displayed on the basis of the scroll control object 114a arranged with respect to the previous contact object 110a. Then, with respect to the scroll control object 114, the scroll target value SCRPOINT is set to be slightly low such that the progress of the game is prompted. That is, in a case that the player object 108 rides on the contact object 110, the screen is scrolled to the display position where the player object 108 has to exist on the ground 112 after getting down the contact object 110. In such the case, it is possible to inform the player that another target object 116 is not hidden with respect to the contact object 110 (scroll control object 114), so that the game can be advanced. Thus, by appropriately setting the scroll target value also, it is possible to scroll according to the state of the game.

[0060] Still furthermore, the arrangement position of the scroll control object 114 is arbitrary, and needs not to be placed at the same place as the contact object 110. The scroll control object 114 may be placed above the arrangement position of the contact object 110 by one unit, for example. Still furthermore, it is possible that the scroll control object 114 is placed at only the right end of the foothold block 110, and the scroll is operated only when the player object 108 rides on the right end of the foothold block 110, for example. Or, it is also possible that the scroll control object 114 is placed above the foothold block 110 in the air, and the scroll is operated only when the player object 108 jumps up from the contact object 110, and contacts the arrangement position of the scroll control object 114, for example.

[0061] In addition, the contact object 110 to which the scroll control object 114 is set is not limited to the static background image such as the foothold block described above, and variable as necessary. The contact object 110 may be a moving object such as an enemy object, a conveyance, and so on. In Figure 14, the contact object 110 is an airplane moving in the air as one example. A predetermined action with respect to the contact object 110 is to get on the airplane.

[0062] The scroll control object 114 with respect to the moving airplane 110 is arranged at a position where the scroll control is expected to be performed. In this example, as understood from Figure 14 (A), the scroll control object 114 is arranged at a destination a predetermined length away from an initial position of the airplane 110 in the direction of movement (right direction). Then, the scroll operating range (SCRLEFT, SCRRIGHT) are set at position where the scroll control object 114 is arranged. Furthermore, the target object 116 is arranged at a vertical position that is normally invisible (is not displayed) in the further direction of movement, and the scroll target value SCRPOINT is set at a position slightly higher than the target object 116.

[0063] The airplane 110 moves back and forth within a constant portion including the arrangement position of the scroll control object 114, for example. Then, the player object 108 can get on the airplane 110 by jumping. When the airplane 110 moves with the player object 108 in the direction of movement, it reaches the arrangement position of the scroll control object 114 before long. At this time, the player object 108 is located within the scroll operating range, and the predetermined action of getting on the airplane 110 is performed, so that the scroll oper-
The target object 116 can be captured within the display screen position of the display screen 106 is adjusted so as to be gradually closer to the scroll target value, so that the target object 116 can be captured within the display screen 106.

[0064] Thus, if applying the moving object to the contact object 110, the player object 108 has to perform a predetermined action on the moving object, for example, in order to operate the scroll, which needs a relatively difficult operation. This makes the game challenging for the player, and improves interest as a game.

[0065] It is noted that in Figure 14 example, the scroll control object 114 is not moved from a position initially set, but in a case that the contact object 110 is the moving object, the scroll control object 114 may be moved in association with a condition for moving the contact object 110, a moving speed, and so on. That is, it is appropriate that the scroll control object 114 is initially arranged at a position the same as the contact object 110, or a nearby position accessible by jumping, and so forth, and the moving condition and moving speed of the scroll control object 114 is set to become the same as that of the contact object 110.

[0066] In Figure 15, one example of a game operation of the game apparatus 10 is shown. When a power source of the game machine 12 to which the cartridge 14 is attached is turned on, a necessary program and data is read from the ROM 52 of the cartridge 14 to be loaded into the working memory 48, which starts a process by the CPU 40. Then, when the game is instructed to be started by an operation input of the operating portion 32 by the player, the CPU 40 reads from the ROM 52 the background image data 80 and the map data 82 that are required for the course or the stage at that time, and loads the same into the data storing area 90 of the working memory 48 in a first step S1 in Figure 15. This generates the background of the course, and arranges the foothold block, the ground 112, and so on.

[0067] Next, in a step S3, the CPU 40 performs an object arrangement process. By the object arrangement process, data of the player object 108 and other object such as the enemy object, and etc. are loaded, and arranged at each of the initial positions, and an initial setting of data for each object is performed. Furthermore, an arrangement process of the scroll control object 114 with respect to contact object 110 is also performed here. A detail of the setting process with respect to especially the scroll control object 114 out of the object arrangement process in the step S3 is shown in Figure 16.

[0068] As shown in Figure 16, the CPU 40 performs the initial setting of the scroll control object 114 to be arranged in this course in a step S31. More specifically, the CPU 40 reads initial setting data relating to the scroll control object 114 from the ROM 52, and loads the same in the data storing area 90. Then, an initial value is assigned to each of variables of the scroll control object 114, that is, the scroll operating range left-side data SCRLEFT, the scroll operating range right-side data SCRRIGHT, the scroll target value SCRPON18T, the scroll target value left-side data SCRPOINTL, the scroll target value right-side data SCROPTR, and etc. Furthermore, 0 is assigned to a scroll operating flag SCRFLAG to turn it off. It is noted that it is needless to say that in a case that a plurality of scroll control objects 114 are arranged, the initial setting is set for each scroll control object 114.

[0069] By the process in the step S3 in Figure 15, the player object 108, the scroll control object 114, and the target object 116, and etc. are arranged in the course, and the scroll operating range and the scroll target are set.

[0070] It is noted that although not illustrated, subsequent to the step S3, as shown in Figure 6, for example, the background image 14 including the foothold block 110, and etc. and the object such as the player object 108, and etc. are rendered on the basis of the initial setting, and the display screen 106 based on the initial screen display position is displayed on the LCD 16. Then, the player plays the game course by operating the operating portion 32 while watching the display screen 106 displayed on the LCD 16.

[0071] Returning to Figure 15, in a succeeding step S5, the CPU 40 obtains an operation input signal from the operating portion 32. In a following step S7, the CPU 40 executes an operating process of the player object. That is, in response to the operation input signal (in a case of obtaining the operation input signal in the previous step S5) and the program, the CPU 40 operates the player object 108. For example, when the player operates the cross button 18 of the operating portion 32, the CPU 40 moves the player object 108 to its direction in the game space, and updates the player object position data 94 to the position coordinates after movement in the step S7. Furthermore, when the A button 24 is operated, for example, the CPU 40 causes the player character 108 to jump up in the step S7.

[0072] In a following step S9, the CPU 40 performs an object operating process. In this process, the objects except for the player object 108 (enemy object, background object, scroll control object, and etc.) are operated as necessary on the basis of the operation input signal and the program. In the object operating process, a setting process of the scroll operating flag is also performed. Thus, it is determined whether or not the scroll operating condition is satisfied, and the scroll operating flag is set in correspondence to the state of the game. A scroll operating flag setting process out of the object operating process is especially shown in detail in Figure 17.

[0073] In a step S41 in Figure 17, the CPU 40 determines whether or not scroll operating flag data 100 of the working memory 48 is turned off. If "YES" in the step S41, that is, if a condition for operating the scroll has not yet been satisfied, and the SCRFLAG is set to 0, the CPU 40 determines whether or not the player object 108 exists in a predetermined position, that is, within the scroll op-
ering range in a following step S43. In a case that the scroll operating range left-side data SCRLLEFT and the scroll operating range right-side data SCRRIGHT are set, for example, as in this embodiment, it is determined whether or not the X-coordinate PLXPOS of the player position stored in the player object position data 94 is larger than the SCRLLEFT and smaller than SCRRIGHT. If “YES” in the step S43, that is, if the player object 108 enters the scroll operating range as shown in Figure 9, for example, the process proceeds to a step S45. On the other hand, if “NO” in the step S43, that is, if the player object 108 does not exist within the scroll operating range as shown in Figure 6, Figure 7, Figure 8, or the like, the process returns to the flowchart in Figure 15.

[0074] In the step S45, the CPU 40 determines whether or not the player object 108 enters the scroll operating range from the right. In a case that the player object 108 enters the scroll operating range from the right as shown in Figure 12, for example, the CPU 40 assigns the scroll target value right-side data SCRLTARGET to the scroll target value data SCRPOINT in a following step S47. On the other hand, if the player object 108 enters the scroll operating range from the left as shown in Figure 9, for example, the CPU 40 assigns the scroll target value left-side data SCRLTARGET to the scroll target value data SCRPOINT in a following step S49. Thus, a different scroll target value is set depending on the approach direction to the scroll operating range.

[0075] Succeedingly, in a step S51, the CPU 40 assigns 2 to the scroll operating flag SCRSCROLL to set it to a stand-by state. That is, since one of two conditions for operating the scroll control, that is, a condition that the player object 108 is located within the scroll operating range is satisfied, it is set to the stand-by state in order to discriminate it from a case that the conditions are not satisfied at all. After completion of the process in the step S51, the process returns to the flowchart shown in Figure 15.

[0076] On the other hand, if “NO” in the step S41, that is, if the scroll operating range flag SCROLL is not 0, the CPU 40 determines whether or not the scroll operating flag is turned on in a following step S53.

[0077] If “NO” in the step S53, that is, the scroll operating flag SCROLL is set in a stand-by state, it is determined that whether or not the player object 108 performs the predetermined action on the contact object 110 in a following step S55. In a case that the contact object 110 is the foothold block as shown in Figure 9, for example, it is determined whether or not to ride on the foothold block 110. If “YES” in the step S55, that is, if the other of two conditions for operating the scroll control is satisfied, the CPU 40 assigns 1 to the scroll operating flag SCRSCROLL to turn it on in a succeeding step S57.

[0078] On the other hand, if “YES” in the step S53, that is, if the scroll operating flag SCROLL is 1, the process proceeds to a step S59. Furthermore, if “NO” in the step S55, that is, if the player object 108 is located within the operating range, but the predetermined action has not yet been performed, the process also proceeds to the step S59. Therefore, in a case it is detected that the contact object 110 has already disappeared as shown in Figure 11, and so forth, even if the player object 108 enters the scroll operating range, “NO” is determined in the step S55, and therefore, scrolling to the scroll target is never operated.

[0079] The following process from steps S59 to S65 is for detecting the change of the state of the game, and then changing the setting of the scroll operating flag when the scroll operating flag is turned on or set in a stand-by state.

[0080] In the step S59, the CPU 40 determines whether or not the player object 108 is located within the scroll operating range. If “YES” in the step S59, the CPU 40 determines whether or not the player object 108 performs the predetermined action on the contact object 110 in the following step S61. If “YES” in the step S61, it is appropriate that the scroll operating flag remains to be turned on as it is, and therefore, the process directly returns to the flowchart in Figure 15. On the other hand, if “NO” in the step S61, that is, if the state of the game is changed such that the player object does not perform the predetermined action, the CPU 40 sets the scroll operating flag to the stand-by state in the step S63, and the process returns to the flowchart in Figure 15. On the other hand if “NO” in the step S59, that is, if the state of the game is changed such that the player object 108 moves out of the scroll operating range, the CPU 40 turns the scroll operating flag off in the following step S65, and then, the process returns to the flowchart in Figure 15.

[0081] Returning to Figure 15, in a succeeding step S11, the CPU 40 renders the background image on a predetermined area of the VRAM not shown on the basis of the background image data 80, the map data 82, and etc. Furthermore, in a step S13, the CPU 40 renders the images of the player object 108, another object, and etc. on the basis of the object image data 78 including the player object image data 78a, and etc. on a predetermined area of the VRAM.

[0082] In a succeeding step S15, the CPU 40 executes a scroll movement process. By the scroll movement process, when the scroll operating conditions are satisfied, a scrolling different from the normal scrolling is performed. The detail of the process in the step S15 is shown in Figure 18.

[0083] In a first step S71 in Figure 18, the CPU 40 determines whether or not the scroll operating flag SCRSCROLL is turned on, and if “YES”, it is determined whether or not the screen display position data 92 satisfies the scroll target value data 98 in a step S73. In a case that the Y-coordinate value is set to the scroll target value SCRPOINT, for example, it is determined whether or not the Y-coordinate value SCCV of the screen display position is equal to the SCRPOINT, or, in a case that a specific point is set to the scroll target value, it is determined whether or not the screen display position becomes that target point.
Thus, after the contact object 110 disappears to change performed on the contact object 110 are differentiated. When the player object 108 is located within the scroll target value is displayed on the LCD 16. If the scroll operating flag is turned off or set in a standby state, the CPU 40 adjusts the screen display position on the basis of the position of the player object 108 in a step S77 as necessary. The second scrolling, the display screen 106, in a case that the player object 108 is closer to the edge of the display screen 106, is moved in association with its movement if necessary. After completion of the process in the step S77, the process returns to the flowchart in Figure 15.

On the one hand, if “YES” in the step S73, that is, if the scroll adjustment is completed, the process directly returns to the flowchart in Figure 15. On the other hand, if “NO” in the step S71, that is, if the scroll operating flag is turned off or set in a standby state, the CPU 40 adjusts the screen display position on the basis of the position of the player object 108 in a step S77 as necessary. The second scrolling, the display screen 106, in a case that the player object 108 is closer to the edge of the display screen 106, is moved in association with its movement if necessary. After completion of the process in the step S77, the process returns to the flowchart in Figure 15.

Returning to Figure 15, in a succeeding step S17, the CPU 40 causes the display 16 to display the display screen 106. More specifically, the CPU 40 combines various object images such as the background image 104, the player object 108, and etc. generates image data within the display range, that is, the image data of the display screen 106 in a frame area of the VRAM not shown, for example, on the basis of the screen display position data 92, and applies the image data (displayed data) to the LCD 16 to display the display screen 106 on the LCD 16 by use of an LCD controller not shown.

Then, in a step S19, the CPU 40 determines whether or not the player object 108 reaches a goal of the course, and if “YES”, the game processing of the course is completed. On the other hand, if “NO” in the step S19, the process returns to the step S5 so as to repeat the game processing of the course.

Accordingly, in a case that the scroll operating condition is satisfied, the process from the steps S5 to S19 is repeated for each frame or a predetermined number of frames, and whereby as shown in Figure 10, Figure 12, Figure 13, Figure 14, or the like, the display screen 106 whose screen display position is moved to the scroll target value is displayed on the LCD 16.

According to this embodiment, a scrolling (first scrolling) when the player object 108 is located within the scroll operating range and performs the predetermined action on the contact object 110, and a normal scrolling (second scrolling) when the predetermined action is not performed on the contact object 110 are differentiated. Therefore, it is possible to scroll according to a state of the game. Furthermore, appropriate and natural image representation can be performed in association with the movement of the player object 108, capable of displaying a screen that is easy for the player to play.

In addition, the scroll control information such as the scroll target value data, the scroll operating range data, and etc. is prepared in association with the scroll control object 114 aside from the contact object 110, and the scroll control object is arranged with respect to the contact object 110 only required for the scroll control, capable of providing a less data volume than in giving the scroll control information to all the contact objects 110. Furthermore, it is possible to easily perform a precise setting and change the control method for each contact object 110.

It is noted that although the kind of the contact object 110 to which the scroll control object 114 is set is not variable during the game but constant in the above-described embodiment, as shown in modified examples described with reference to Figure 19, Figure 20, and Figure 21, in a case that the contact object 110 to which the scroll control object 114 is set is variable kinds in correspondence to the state of the game, the scroll control depending on the kind may be performed.

That is, in the modified example, as shown in Figure 19, the foothold block 110 having, on its surface, an arrow to be changed in correspondence with the state of the game is arranged as the contact object 110 of variable kinds on the background image 104. The direction of the arrow may be rotated with the course of time like a clock, may be changed each time the player object comes to that place, or may be different depending on a state of the player object 108 (amount of money, possessed item, and etc.).

The scroll control object 114 is arranged with respect to such the contact object 110. In the modified example, the scroll control object 114 is arranged at the same place as the contact object 110, and the scroll operating range data SCRLEFT and SCRRIGHT are set at the arrangement position of the scroll control object 114 in correspondence with the width thereof, for example. The scroll target value having a scroll direction and a scroll amount depending on the kind of the contact object 110 (direction of the arrow in this example) is set to the scroll control object 114. More specifically, the scroll target value SCRPRTAU for scrolling down at a time of a down arrow, the scroll target value SCRTDTAU for scrolling up at a time of a up arrow, the scroll target value
SCRPTAL for scrolling to the left at a time of a left arrow, the scroll target value SCRPTAR for scrolling to the right at a time of a right arrow are respectively set. It is noted that the initial setting relating to the scroll target value, the scroll operating range, and etc. is performed in the object arrangement process in the step S3 in Figure 15 as in the above-described embodiment.

[0095] Then, when the scroll operating condition is satisfied, the scroll target value depending on the kind of the contact object 110 at that time is adopted. It is noted that the predetermined condition with respect to this contact object 110 is to ride on it, for example. In Figure 19 example, the target object 116 is arranged at a position that newly becomes the display range when the scroll target value SCRPTAL at a time of the left arrow is adopted. That is, in this example, only when the player object 108 rides on the foothold block 110 on which the left arrow is displayed, the screen in a state that the target object 116 is within the display screen 106 is presented to the player, and except that, the target object 116 is not captured within the display range.

[0096] As shown in Figure 20, the player object 108 moves within the scroll operating range and rides on the contact object 110, so that the scroll operating condition is satisfied, which executes the scroll control. Then, the direction of the arrow of the scroll control object 114 when the scroll operating condition is satisfied is left in Figure 20 example. Accordingly, the scroll target value SCRPTAL at a time of the left arrow is set to the scroll target value SCRPOINT. Then, the screen display position is moved so as to be gradually closer to the scroll target value SCRPTAL, so that the target object 116 is displayed within the display screen 106.

[0097] In Figure 21, one example of an object operating process in the case of the modified example is shown. The object operating process in Figure 21 is the same as the object operating process of the above-described embodiment shown in Figure 17 except that the process in steps S91 and S93 is added subsequent to the step S57. Accordingly, the same reference numeral is applied to the same process in order to omit the description.

[0098] If "YES" in the step S55, that is, if the player object 108 moves within the scroll operating range, and performs the predetermined action on the contact object 110, the CPU 40 turns the scroll operating flag on in the step S57, and it is determined whether or not the kind of the contact object 110 is variable in the succeeding step S91.

[0099] If "NO" in the step S91, that is, if the contact object 110 is not variable kinds such as the foothold in Figure 6 example, the airplane in Figure 14, and etc., the process directly proceeds to the step S59.

[0100] On the other hand, if "YES" in the step S91, that is, if the contact object 110 is variable kinds such as the foothold block having a variable display arrow in Figure 9 example, the CPU 40 sets the scroll target value SCRPOINT depending on the kind of the contact object 110 in the succeeding step S93. For example, as shown in Figure 20, when the contact object 110 at that time is the foothold block on which left arrow is displayed, the scroll target value SCRPTAL at a time of the left arrow is assigned to the scroll target value SCRPOINT. After the completion of the process in the step S93, the process proceeds to the step S95.

[0101] Accordingly, in a case that the scroll operating condition is satisfied at a time of the left arrow as shown in Figure 20, by the subsequent scroll movement process in the step S15 in Figure 15, the screen display position is brought closer to the scroll target value, and by the following sep S17, the display screen 106 on which the adjustment of the screen position is performed is displayed on the LCD 16. Therefore, the target object 116 is displayed within the display screen 106 before long.

[0102] According to the modified example, it is possible to respond to the contact object 110 of variable kinds, so that the scroll in correspondence with the state of the game is performed. Furthermore, it is possible to perform varied screen displays depending on the kind of the contact object 110 and to perform a plurality of screen position adjustment in the same scene, capable of opening up the option of way of playing and improving interest as a game.

[0103] In addition, although the predetermined action with respect to the contact object 110 is to ride on it as one example in the above-described embodiment, the predetermined action may arbitrarily be set. For example, the predetermined action may be to simply contact the contact object 110, to hit it from below in a case that the contact object 110 is not destroyed, to crash into the contact object 110, to jump up on the contact object 110, and so forth. It is noted that in a case that the predetermined action is an instant action such as hitting, crashing, and so forth, and not the successive action such as riding, and etc., the condition of the predetermined action is instantly satisfied, the adjustment of the screen position becomes instant, and is never completed to the scroll target value in most cases. Accordingly, it is appropriate that in place of the process in step S61 in Figure 17 or Figure 21, by determining whether or not the scrolling to the scroll target value is completed, and remaining to be turn the scroll operating flag on until the scrolling is completed, and so forth, the adjustment to the scroll target value is appropriately performed.

[0104] In addition, although by arranging the scroll control object 114 on the contact object 110 required to be scrolled,scrolling is operated in the above-described embodiment, the scroll control object 114 is not necessarily utilized. Depending on the case, if the contact object 110 is moving object, for example, the contact object 110 itself may have the scroll control information. Or, it is conceivable that the kind of the contact object for operating scrolling is limited, and common scroll control information is applied to only the limited kind of the contact object to operate a constant scrolling.

[0105] Although the present invention has been described and illustrated in detail, it is clearly understood
that the same is by way of illustration and example only and is not to be taken by way of limitation, the scope of the present invention being limited only by the terms of the appended claims.

Claims

1. A game apparatus comprising:

a display screen (16,106);

an operating means (18,20,22,24,26,28,30,32) operated by a player;

a background image data generating means (40,48,S1) for generating background image data based on which a background image which is larger than said display screen is displayed on said display screen by scrolling, the background image forming at least a stage of a game world;

a player object data generating means (40,48,S3,S7) for generating player object data based on which a player object, which is moved on the basis of an operation input from said operating means, is displayed on said display screen;

a contact object data generating means (40,48,S3) for generating contact object data based on which a contact object is displayed on said display screen;

a displayed data generating means (40,66,68,S11,S13,S17) for generating displayed data based on said player object data generated by said player object data generating means, said contact object data generated by said contact object data generating means and said background image data generated by said background image data generating means;

a position detecting means (62a) for detecting a position of said player object;

a predetermined action determining means (40,62b,S55) for determining whether or not said player object performs a predetermined action in relation to said contact object; and

scrolling means for performing a scrolling function, in which screen position adjustment relative to the moving position of the player object is performed,

and said apparatus further comprising:

a transparent scroll control object data generating means (62c) for generating transparent scroll control object data based on which a transparent scroll control object is arranged in the game world in association with said contact object in a manner that said scroll control object is invisible to a game player, the scroll control object having associated with it scroll target value data (98) controlled by an object control program (62) which also controls the player object and the control object; and

a differentiating means for selectively performing said first scrolling function when it is determined by said position determining means that said player object exists at a predetermined position with respect to said scroll control object and when said predetermined action is determined by said predetermined action determining means, or said second scrolling function when it is determined by said position determining means that said player object exists at a predetermined position with respect to said scroll control object and when said predetermined action is not determined by said predetermined action determining means, wherein

when said first scrolling function is performed by said first scrolling means, said displayed data within a displaying range to which is scrolled by said first scrolling function is displayed on said display screen (16, 106).

2. A game apparatus according to claim 1, wherein said differentiating means selects said first or second scrolling functions when it is detected by said position detecting means (62a) that said player object exists at a predetermined position close to said scroll control object.

3. A game apparatus according to claims 1 or 2, wherein said contact object data generating means (40,48,S3) generates contact object data based on which said contact object is arranged as a part of said background image.

4. A game apparatus according to claims 1 or 2, wherein said contact object data generating means (40,48,S3) generates contact object data based on
which said contact object is arranged as a moving object.

5. A game apparatus according to claims 1 to 3, further comprising a target object data generating means (40, 48, 80) for generating target object data based on which a target object is displayed as a part of said background image on said display screen.

6. A game apparatus according to claims 1 to 5, wherein when said player object is detected by said position detecting means (62a) at a predetermined position, the differentiating means is adapted to select either said first or second scrolling function in dependence on an approach direction of said player object to said predetermined position.

7. A game apparatus as claimed in any one of claims 1 to 6, wherein the scroll control object has first and second sets of scroll target value data which respectively identify first and second predetermined scroll targets for the first scrolling means and wherein the differentiating means selectively performs said first scrolling function to said first predetermined scroll target when it is determined by said position determining means that said player object exists at a predetermined position with respect to said scroll control object and when said predetermined action is determined by said predetermined action determining means, or instead of said second scrolling function said first scrolling function is performed to said second predetermined scroll target when it is determined by said position determining means that said player object exists at a predetermined position with respect to said scroll control object and when said predetermined action is not determined by said predetermined action determining means.

8. A storage medium storing a game program to be executed by a game apparatus (10) which is provided with a processor (40) for executing the game program, an operating means (18, 20, 22, 24, 26, 28, 30, 32) operable by a player, and a display screen (16, 106) on which is displayed at any one time a portion of a background image, the background image forming at least a stage of a game world; a player object data generating step (S3, S7) for generating player object data based on which a player object, which is moved on the basis of an operation input from said operating means, is displayed on the display screen; a contact object data generating step (S3) for generating contact object data based on which a contact object is displayed on the display screen; a displayed data generating step (S11, S13, S17) for generating displayed data based on said player object data generated by said player object data generating step, said contact object data generated by said contact object data generating step and said background image data generated by said background image data generating step; a position detecting step (S43, S59) for detecting a position of said player object: a predetermined action determining step (S55) for determining whether or not said player object performs a predetermined action in relation to said contact object; and a scrolling step for performing a scrolling function, said storage medium being characterised by said scrolling step of said game program comprising a first scrolling step (S9, S15) for performing a first scrolling function (S75) in which said display screen is scrolled to a predetermined scroll target that is a predetermined position in said background image; and a second scrolling step (S9, S15) for performing a second scrolling function (S77) different from said first scrolling function in which screen position adjustment relative to the moving position of the player object is performed, and said game program comprising the following further steps:

a transparent scroll control object data generating step for generating transparent scroll control object data based on which a transparent scroll control object is arranged in the game world in association with said contact object in a manner that said scroll control object is invisible to a game player, the scroll control object having associated with it scroll target value data (98) and being controlled by an object control program (62) which also controls the player object and the control object; and a differentiating step for selectively performing said first scrolling function when it is determined at said position determining step that said player object exists at a predetermined position with respect to said scroll control object and
when said predetermined action is determined at said predetermined action determining step, or said second scrolling function when it is determined at position determining step that said player object exists at a predetermined position with respect to said scroll control object and when said predetermined action is not determined at said predetermined action determining step, wherein when said first scrolling function is performed at said scrolling step, said displayed data within a displaying range to which is scrolled by said first scrolling function is displayed on said display screen (16, 106).

9. A storage medium storing a game program according to claim 8, wherein said differentiating step selects between the first scrolling function and the second scrolling function when it is detected that said player object exists at a predetermined position close to said scroll control object.

10. A storage medium storing a game program according to claims 8 or 9, wherein said contact object data generating step generates contact object data based on which a contact object is arranged as a part of said background image.

11. A storage medium storing a game program according to claims 8 or 9, wherein said contact object data generating step generates contact object data based on which said contact object is arranged as a moving object.

12. A storage medium storing a game program according to claims 8 to 11, further comprising a target object data generating step (S3) for generating target object data based on which a target object is arranged in said display screen.

13. A storage medium storing a game program according to claims 8 to 10, wherein when said player object is detected at a predetermined position, said differentiating step selects either said first or second scrolling functions in dependence on an approach direction of said player object to said predetermined position.

14. A storage medium as claimed in any one of claims 8 to 13, wherein the scroll control object has first and second sets of scroll target value data which respectively identify first and second predetermined scroll targets for the first scrolling means and wherein said differentiating step selectively performs said first scrolling function to said first predetermined scroll target when it is determined by said position determining step that said player object exists at a predetermined position with respect to said scroll control object and when said predetermined action is determined by said predetermined action determining step, or instead of said second scrolling function said first scrolling function is performed to said second predetermined scroll target when it is determined by said position determining step that said player object exists at a predetermined position with respect to said scroll control object and when said predetermined action is not determined by said predetermined action determining step.

Patentansprüche

1. Spielvorrichtung umfassend:
 - einen Bildschirm (16, 106);
 - eine von einem Spieler betätigte Betätigungsseinrichtung (18, 20, 22, 24, 26, 28, 30, 32);
 - eine Hintergrundbilddaten-Erzeugungseinrichtung (40, 48, S1) zum Erzeugen von Hintergrundbilddaten, auf deren Grundlage auf dem Bildschirm durch Rollen ein Hintergrundbild angezeigt wird, welches größer ist als der Bildschirm, wobei das Hintergrundbild mindestens eine Stufe einer Spielwelt bildet;
 - eine Spielerobjektdaten-Erzeugungseinrichtung (40, 48, S3, S7) zum Erzeugen von Spielerobjektdaten, auf deren Grundlage ein Spielerobjekt auf dem Bildschirm angezeigt wird, welches auf der Grundlage einer Betätigungseingabe von der Betätigungsseinrichtung aus bewegt wird;
 - eine Kontaktobjektdaten-Erzeugungseinrichtung (40, 48, S3) zum Erzeugen von Kontaktobjektdaten, auf deren Grundlage ein Kontaktobjekt auf dem Bildschirm angezeigt wird;
 - eine Positionsfeststellungseinrichtung (62a) zum Feststellen einer Position des Spielerobjektes;
 - eine Vorgabeaktionsfeststellungseinrichtung (40, 62b, S55) zum Feststellen, ob das Spielerobjekt in Bezug auf das Kontaktobjekt eine Vorgabeaktion ausführt oder nicht und eine Rolleinrichtung zum Durchführen einer
Spielvorrichtung nach Anspruch 1, bei welcher

tionsfeststellungseinrichtung (62a) festgestellt wird,

zweite Rollfunktion auswählt, wenn durch die Posi-

tionsfestlegungseinrichtung (62a) festgestellt wird

vorgegebene Position.

wobei die Vorrichtung dadurch gekennzeichnet

ist, dass die Rollenrichtung umfasst:

3. Spielvorrichtung nach Anspruch 1 oder 2, bei wel-
cher die Kontaktobjektdaten-Erzeugungseinrich-

tung (40, 48, S3) Kontaktobjektdaten erzeugt, auf
denen Grundlage das Kontaktobjekt als ein Teil des
Hintergrundbildes angeordnet wird.

4. Spielvorrichtung nach Anspruch 1 oder 2, bei wel-
cher die Kontaktobjektdaten-Erzeugungseinrich-
tung (40, 48, S3) Kontaktobjektdaten erzeugt, auf
denen Grundlage das Kontaktobjekt als ein beweg-
tes Objekt angeordnet wird.

5. Spielvorrichtung nach Anspruch 1 bis 3, welche fer-
ner eine Zielobjektdaten-Erzeugungseinrichtung
(40, 48, 80) zum Erzeugen von Zielobjektdaten um-
fasst, auf deren Grundlage ein Zielobjekt als ein Teil

des Hintergrundbildes auf dem Bildschirm angezeigt

wobei die Vorrichtung ferner umfasst:

6. Spielvorrichtung nach Anspruch 1 bis 5, bei welcher,

wenn das Spielerobjekt durch die Positionsfeststel-

lungseinrichtung (62a) an einer vorgegebenen Po-

sition festgestellt wird, die Differenzierungseinrich-
tung eingerichtet ist, in Abhängigkeit von einer An-

näherungsrichtung des Spielers um ein vorgegebenes

Objekt angeordnet wird.

7. Spielvorrichtung nach einem der Ansprüche 1 bis 6,

bei welcher das Rollsteuerungssystem einen ersten

und einen zweiten Satz von Rollzielwertdaten ent-
hält, welche jeweils ein erstes und ein zweites vor-
gegebene Rollziel für die erste Rollenrichtung
identifizieren und bei welcher die Differenzierungsein-
richtung selectiv die erste Rollenrichtung zum ersten
vorgegebenen Rollziel durchführt, wenn von der Po-

sitionsfeststellungseinrichtung festgestellt wird, dass
das Spielerobjekt in einer vorgegebenen Position

beziehungsweise in der Nähe des Rollsteuerungsobjektes

existiert.

2. Spielvorrichtung nach Anspruch 1, bei welcher

die Differenzierungseinrichtung die erste oder die

zweite Rollenrichtung auswählt, wenn durch die Posi-

tionsfeststellungseinrichtung (62a) festgestellt wird,
Durchführung der folgenden Schritte umfasst:

- einen Hintergrundbild-daten-Erzeugungsschritt (S1) zum Erzeugen von Hintergrundbildbdaten, wobei das Hintergrundbild mindestens eine Stufe einer Spielwelt bildet;
- einen Spielerobjektdaten-Erzeugungsschritt (S3, S7) zum Erzeugen von Spielerobjektdaten, auf deren Grundlage ein Spielerobjekt auf dem Bildschirm angezeigt wird, welches auf der Grundlage einer Betätigungseingabe von der Betätigungseinrichtung aus bewegt wird;
- einen Kontaktobjektdaten-Erzeugungsschritt (S3) zum Erzeugen von Kontaktobjektdaten, auf deren Grundlage ein Kontaktobjekt auf dem Bildschirm angezeigt wird;
- einen Anzeigedaten-Erzeugungsschritt (S11, S13, S17) zum Erzeugen von Anzeigedaten auf der Grundlage der beim Spielerobjektdaten-Erzeugungsschritt erzeugten Spielerobjektdaten, der beim Kontaktobjektdaten-Erzeugungsschritt erzeugten Kontaktobjektdaten und der beim Hintergrundbild-daten-Erzeugungsschritt erzeugten Hintergrundbildbdaten;
- einen Positions feststellungsschritt (S43, S59) zum Feststellen einer Position des Spielerobjektes;
- einen Vorgabebefeststellungsschritt (S55) zum Feststellen, ob das Spielerobjekt in Bezug auf das Kontaktobjekt eine Vorgabeaktion ausführt oder nicht und einen Rollschritt zum Durchführen einer Rollfunktion, wobei das Speichermedium dadurch gekennzeichnet ist, dass der Rollschritt des Spielprogrammes umfasst:

- einen ersten Rollschritt (S9, S15) zum Durchführen einer ersten Rollfunktion (S75), bei welchem der Bildschirm zu einem vorgegebenen Rollziel gerollt wird, welches eine vorgegebene Position im Hintergrundbild ist und
- einen zweiten Rollschritt (S9, S15) zum Durchführen einer zweiten, von der ersten Rollfunktion verschiedenen Rollfunktion (S77), bei welchem die Bildschirmposition relativ zur bewegten Position des Spielerobjektes ausgeführt wird, wobei das Spielprogramm die folgenden weiteren Schritte umfasst:

- einen Transparent-Rollsteuerungsoberflächen-Erzeugungsschritt zum Erzeugen von Transparent-Rollsteuerungsobjektbdaten, auf deren Grundlage ein transparentes Rollsteuerungsobjekt in der Spielwelt in Verbindung mit dem Kontaktobjekt in einer Weise angeordnet wird, dass das Rollsteuerungsobjekt für einen Spieler des Spiele auf dem Bildschirm durch Rollen das Spielprogramm anzuzeigen, das Anweisungen zur Durchführung der folgenden Schritte umfasst:
- einen zweiten Rollschritt (S9, S15) zum Durchführen einer zweiten, von der ersten Rollfunktion verschiedenen Rollfunktion (S77), bei welchem die Bildschirmposition relativ zur bewegten Position des Spielerobjektes ausgeführt wird,
- einen ersten Rollschritt (S9, S15) zum Durchführen einer ersten Rollfunktion (S75), bei welchem der Bildschirm zu einem vorgegebenen Rollziel gerollt wird, welches eine vorgegebene Position im Hintergrundbild ist und
- einen zweiten Rollschritt (S9, S15) zum Durchführen einer zweiten, von der ersten Rollfunktion verschiedenen Rollfunktion (S77), bei welchem die Bildschirmposition relativ zur bewegten Position des Spielerobjektes ausgeführt wird, wobei das Spielprogramm die folgenden weiteren Schritte umfasst:

9. Speichermedium, das ein Spielprogramm speichert, nach Anspruch 8, bei welchem die Differenzierungsschritt die erste oder die zweite Rollfunktion ausführt, wenn festgestellt wird, dass das Spielerobjekt in einer vorgegebenen Position nahe des Rollsteuerungsschrittes existiert.
10. Speichermedium, das ein Spielprogramm speichert, nach Anspruch 8 oder 9, bei welchem der Kontaktobjektdaten-Erzeugungsschritt Kontaktobjektdaten erzeugt, auf deren Grundlage das Kontaktobjekt als ein Teil des Hintergrundbildes angeordnet wird.
11. Speichermedium, das ein Spielprogramm speichert, nach Anspruch 8 oder 9, welches ferner einen Kontaktobjektdaten-Erzeugungsschritt Kontaktobjektdaten erzeugt, auf deren Grundlage das Kontaktobjekt als ein bewegtes Objekt angeordnet wird.
12. Speichermedium, das ein Spielprogramm speichert, nach Anspruch 8 bis 11, welches ferner einen Zielobjektdaten-Erzeugungsschritt (S3) zum Erzeugen von Zielobjektdaten umfasst, auf deren Grundlage ein Zielobjekt auf dem Bildschirm angezeigt wird.
13. Speichermedium, das ein Spielprogramm speichert, nach Anspruch 8 bis 10, bei welchem, wenn das Spielerobjekt an einer vorgegebenen Position festgestellt wird, der Differenzierungsrichtung in Abhängigkeit von einer Annäherungsrichtung des Spielerobjektes an die vorgegebene Position die erste oder die zweite Rollfunktion auswählt.

14. Speichermedium nach einem der Ansprüche 8 bis 10, bei welchem das Rollsteuerungsobjekt einen ersten und einen zweiten Satz von Rollzielwertdaten enthält, welche jeweils ein erstes und ein zweites vorgegebenes Rollziel für die erste Rolleinrichtung identifizieren und bei welchem der Differenzierungsselektionsrichtung die erste Rollfunktion zum ersten vorgegebenen Rollziel durchgeführt, wenn beim Positionsbestimmungsschritt festgestellt wird, dass das Spielerobjekt in einer vorgegebenen Position in Bezug zum Rollsteuerungsobjekt existiert und wenn die Vorgabeadaption beim Vorgabeadaptionsfeststellungsschritt festgestellt wird, oder die erste Rollfunktion wird anstelle der zweiten Rollfunktion zum zweiten vorgegebenen Rollziel durchgeführt, wenn beim Positionsbestimmungsschritt festgestellt wird, dass das Spielerobjekt in einer vorgegebenen Position in Bezug zum Rollsteuerungsobjekt existiert und wenn die Vorgabeadaption beim Vorgabeadaptionsfeststellungsschritt nicht festgestellt wird.

Revendications

1. Appareil de jeu comprenant :

un écran de visualisation (16, 106) ;
des moyens d'actionnement (18, 20, 22, 24, 26, 28, 30, 32) actionnés par un joueur ;
des moyens de génération de données d'image d'arrière-plan (40, 48, S1) pour générer des données d'image d'arrière-plan sur la base desquelles une image d'arrière-plan, qui est plus grande que ledit écran de visualisation, est affichée sur ledit écran de visualisation ;
des moyens de génération de données d'objet joueur (40, 48, S3, S7) pour générer des données d'objet joueur sur la base desquelles un objet joueur, qui est déplacé sur la base d'une entrée d'action provenant desdits moyens d'actionnement, est affiché sur ledit écran de visualisation ;
des moyens de génération de données d'objet contact (40, 48, S3) pour générer des données d'objet contact sur la base desquelles un objet contact est affiché sur ledit écran de visualisation ;
des moyens de génération de données affichées (40, 66, 68, S11, S13, S17) pour générer des données affichées basées sur lesdites données d'objet joueur générées par lesdits moyens de génération de données d'objet joueur, lesdites données d'objet contact générées par lesdits moyens de génération de données d'objet contact et lesdites données d'image d'arrière-plan générées par lesdits moyens de génération de données d'image d'arrière-plan ;
des moyens de détection de position (62a) pour détecter une position dudit objet joueur ;
des moyens de détermination d'action prédéterminée (40, 62b, S55) pour déterminer si ledit objet joueur exécute ou pas une action prédéterminée en relation avec ledit objet contact ;
et des moyens de défilement pour exécuter une fonction de défilement, ledit appareil étant caractérisé par le fait que lesdits moyens de défilement comprennent :

des premiers moyens de défilement (40, 62d, 64b, S9, S15) adaptés pour exécuter une première fonction de défilement (S75) dans laquelle ledit écran de visualisation défile vers une cible de défilement prédéterminée qui est une position prédéterminée dans ladite image d'arrière-plan ;
et des seconds moyens de défilement (40, 64b, S9, S15) adaptés pour exécuter une seconde fonction de défilement (S77) différente de ladite première fonction de défilement, dans laquelle est exécuté un réglage de la position d'écran par rapport à la position de déplacement de l'objet joueur, et ledit appareil comprenant en outre :

des moyens de génération de données d'objet commande de défilement transparent (62c) pour générer des données d'objet commande de défilement transparent sur la base desquelles un objet commande de défilement transparent est agencé dans le monde du jeu en association avec ledit objet contact de telle manière que ledit objet commande de défilement soit invisible pour un joueur du jeu, l'objet commande de défilement étant associé à des données de valeur cible de défilement (98) commandées par un programme de commande d'objet (62) qui commande également l'objet joueur et l'objet commande ;
et des moyens de différenciation pour exécuter de manière sélective la première fonction de défilement lorsque lesdits moyens de détermination de position déterminent que ledit objet joueur existe en une position.
prédéterminée par rapport audit objet commande de défilement, et lorsque lesdits moyens de détermination d’action prédéterminée déterminent ladite action prédéterminée, ou ladite seconde fonction de défilement lorsque lesdits moyens de détermination de position déterminent que ledit objet joueur existe en une position prédéterminée par rapport audit objet commande de défilement et lorsque lesdits moyens de détermination d’action prédéterminée ne déterminent pas ladite action prédéterminée, dans lequel lorsque lesdits premiers moyens de défilement exécutent ladite première fonction de défilement, lesdites données affichées à l’intérieur d’une plage d’affichage qui est mise en défilement par ladite première fonction de défilement, sont affichées sur ledit écran de visualisation (16, 106).

2. Appareil de jeu selon la revendication 1, dans lequel lesdits moyens de différenciation sélectionnent ladite première ou seconde fonction de défilement lorsque lesdits moyens de détection de position (62a) détectent que ledit objet joueur existe en une position prédéterminée près dudit objet commande de défilement.

3. Appareil de jeu selon la revendication 1 ou 2, dans lequel lesdits moyens de génération de données d’objet contact (40, 48, S3) génèrent des données d’objet contact sur la base desquelles ledit objet contact est agencé comme une partie de ladite image d’arrière-plan.

4. Appareil de jeu selon la revendication 1 ou 2, dans lequel lesdits moyens de génération de données d’objet contact (40, 48, S3) génèrent des données d’objet contact sur la base desquelles ledit objet contact est agencé comme un objet qui se déplace.

5. Appareil de jeu selon les revendications 1 à 3, comprenant de plus des moyens de génération de données d’objet cible (40, 48, 80) pour générer des données d’objet cible sur la base desquelles un objet cible est affiché comme une partie de ladite image d’arrière-plan sur ledit écran de visualisation.

6. Appareil de jeu selon les revendications 1 à 5, dans lequel lorsque lesdits moyens de détection de position (62a) détectent ledit objet joueur en une position prédéterminée, les moyens de différenciation sont adaptés pour sélectionner l’une ou l’autre dite première ou seconde fonction de défilement en fonction d’une direction d’approche dudit objet joueur vers ladite position prédéterminée.

7. Appareil de jeu selon l’une quelconque des revendications 1 à 6, dans lequel l’objet commande de défilement présente des premier et second ensembles de données de valeur cible de défilement qui identifient respectivement des première et seconde cibles de défilement prédéterminées pour les premiers moyens de défilement et dans lequel les moyens de différenciation exécutent de manière sélective ladite première fonction de défilement vers ladite première cible de défilement prédéterminée lorsque lesdits moyens de détermination de position déterminent que ledit objet joueur existe en une position prédéterminée par rapport audit objet commande de défilement et lorsque lesdits moyens de détermination d’action prédéterminée déterminent ladite action prédéterminée, ou au lieu de ladite seconde fonction de défilement, ladite première fonction de défilement est exécutée vers ladite seconde cible de défilement prédéterminée lorsque lesdits moyens de détermination de position déterminent que ledit objet joueur existe en une position prédéterminée par rapport audit objet commande de défilement et lorsque lesdits moyens de détermination d’action prédéterminée ne déterminent pas ladite action prédéterminée.

8. Support de stockage qui stocke un programme de jeu à faire exécuter par un appareil de jeu (10) qui est équipé d’un processeur (40) pour exécuter le programme de jeu, de moyens d’actionnement (18, 20, 22, 24, 26, 28, 30, 32) pouvant être actionnés par un joueur, et d’un écran de visualisation (16, 106) sur lequel est affichée à chaque fois une partie d’une image d’arrière-plan, l’image d’arrière-plan étant plus grande que l’écran de visualisation et étant destinée à un affichage sur ledit écran de visualisation par défilement, ledit programme de jeu comprenant des instructions pour exécuter les étapes suivantes :

une étape de génération de données d’image d’arrière-plan (S1) pour générer des données d’image d’arrière-plan, l’image d’arrière-plan formant au moins une étape d’un monde de jeu ;

une étape de génération de données d’objet joueur (S3, S7) pour générer des données d’objet joueur sur la base desquelles un objet joueur, qui est placé sur la base d’une entrée d’action provenant desdits moyens d’actionnement, est affiché sur l’écran de visualisation ;

une étape de génération de données d’objet contact (S3) pour générer des données d’objet contact sur la base desquelles un objet contact est affiché sur l’écran de visualisation ;

une étape de génération de données affichées (S11, S 13, S17) pour générer des données affichées basées sur lesdites données d’objet joueur générées par ladite étape de génération de données d’objet joueur, lesdites données
d’objet contact générées par ladite étape de génération de données d’objet contact et lesdites données d’image d’arrière-plan générées par ladite étape de génération de données d’image d’arrière-plan ;
une étape de détection de position (S43, S59) pour détecter une position dudit objet joueur ;
une étape de détermination d’action prédéterminée (S55) pour déterminer si ledit objet joueur exécute ou pas une action prédéterminée en relation avec ledit objet contact ; et
une étape de défilement pour exécuter une fonction de défilement,
ledit support de stockage étant caractérisé par le fait que ladite étape de défilement dudit programme de jeu comprend :

une première étape de défilement (S9, S15) pour exécuter une première fonction de défilement (S75) dans laquelle ledit écran de visualisation défile vers une cible de défilement prédéterminée qui est une position prédéterminée dans ladite image d’arrière-plan ; et
une seconde étape de défilement (S9, S15) pour exécuter une seconde fonction de défilement (S77) différente de ladite première fonction de défilement, dans laquelle est exécuté un réglage de la position d’écran par rapport à la position de déplacement de l’objet joueur ;

et par le fait que ledit programme de jeu comprend les étapes supplémentaires :

une étape de génération de données d’objet commande de défilement transparent pour générer des données d’objet commande de défilement transparent sur la base desquelles un objet commande de défilement transparent est agencé dans le monde du jeu en association avec ledit objet contact de telle manière que ledit objet commande de défilement soit invisible pour un joueur du jeu, l’objet commande de défilement étant associé à des données de valeur cible de défilement (98) et étant commandé par un programme de commande d’objet (62) qui commande également l’objet joueur et l’objet commande ;
une étape de différenciation pour exécuter de manière sélective ladite première fonction de défilement quand il est déterminé à ladite étape de détermination de position que ledit objet joueur existe en une position prédéterminée par rapport audit objet commande de défilement, et lorsque ladite action prédéterminée est déterminée à ladite étape de détermination d’action prédéterminée, ou ladite seconde fonction de défilement quand il est déterminé à l’étape de détermination de position que ledit objet joueur existe en une position prédéterminée par rapport audit objet commande de défilement et lorsque ladite action prédéterminée n’est pas déterminée à ladite étape de détermination d’action prédéterminée, dans lequel lorsque ladite première fonction de défilement est exécutée à ladite étape de défilement, lesdites données affichées à l’intérieur d’une plage d’affichage qui est mise en défilement par ladite première fonction de défilement, sont affichées sur ledit écran de visualisation (16, 106).

9. Support de stockage qui stocke un programme de jeu selon la revendication 8, dans lequel ladite étape de différenciation procède à une sélection entre la première fonction de défilement et la seconde fonction de défilement quand il est détecté que ledit objet joueur existe en une position prédéterminée près du dit objet commande de défilement.

10. Support de stockage qui stocke un programme de jeu selon la revendication 8 ou 9, dans lequel ladite étape de génération de données d’objet contact génère des données d’objet contact sur la base desquelles un objet contact est agencé comme une partie de ladite image d’arrière-plan.

11. Support de stockage qui stocke un programme de jeu selon la revendication 8 ou 9, dans lequel ladite étape de génération de données d’objet contact génére des données d’objet contact sur la base desquelles un objet contact est agencé comme un objet qui se déplace.

12. Support de stockage qui stocke un programme de jeu selon les revendications 8 à 11, comprenant de plus une étape de génération de données d’objet cible (S3) pour générer des données d’objet cible sur la base desquelles un objet cible est agencé dans ledit écran de visualisation.

13. Support de stockage qui stocke un programme de jeu selon les revendications 8 à 10, dans lequel lorsque ledit objet joueur est détecté en une position prédéterminée, ladite étape de différenciation sélectionne l’une ou l’autre dite première ou seconde fonction de défilement en fonction d’une direction d’approche dudit objet joueur vers ladite position prédéterminée.

14. Support de stockage selon l’une quelconque des revendications 8 à 13, dans lequel l’objet commande
de défilement présente des premier et second ensembles de données de valeur cible de défilement qui identifient respectivement des première et seconde cibles de défilement prédéterminées pour les premiers moyens de défilement et dans lequel ladite étape de différenciation exécute de manière sélective ladite première fonction de défilement vers ladite première cible de défilement prédéterminée quand il est déterminé par ladite étape de détermination de position que ledit objet joueur existe en une position prédéterminée par rapport audit objet commande de défilement, et lorsque ladite action prédéterminée est déterminée par ladite étape de détermination d’action prédéterminée, ou au lieu de ladite seconde fonction de défilement, ladite première fonction de défilement est exécutée vers ladite seconde cible de défilement prédéterminée quand il est déterminé par ladite étape de détermination de position que ledit objet joueur existe en une position prédéterminée par rapport audit objet commande de défilement et lorsque ladite action prédéterminée n’est pas déterminée par lesdits moyens de détermination d’action prédéterminée.
FIG. 3

ROM OF CARTRIDGE 52

GAME PROGRAM STORING AREA

- CONTROLLER INPUT DETECTING PROGRAM
 - 60
- OBJECT CONTROL PROGRAM
 - 62
- BACKGROUND CONTROL PROGRAM
 - 64
- OBJECT DISPLAYING PROGRAM
 - 66
- BACKGROUND DISPLAYING PROGRAM
 - 68
- COMMUNICATION CONTROL PROGRAM
 - 70
- SOUND CONTROL PROGRAM
 - 72
- GAME PROGRESS CONTROL PROGRAM
 - 74
- OTHER GAME PROGRAMS
 - 76

GAME DATA STORING AREA

- OBJECT IMAGE DATA
 - 78
- BACKGROUND IMAGE DATA
 - 80
- MAP ARRANGEMENT DATA
 - 82
- SOUND DATA
 - 84
- OTHER DATA
 - 86
FIG. 4

WORKING MEMORY

PROGRAM STORING AREA

OBJECT CONTROL PROGRAM

PLAYER OBJECT PROGRAM

PLAYER OBJECT POSITION DETECTING PROGRAM
PLAYER OBJECT OPERATING PROGRAM

62

62a

62b

SCROLL CONTROL OBJECT PROGRAM

SCROLL CONTROL OBJECT ARRANGING PROGRAM
SCROLL CONTROL OBJECT OPERATING PROGRAM

62c

62d

OTHER OBJECT PROGRAM

OTHER OBJECT ARRANGING PROGRAM
OTHER OBJECT CONTROL PROGRAM

62e

62f

BACKGROUND CONTROL PROGRAM

BACKGROUND ARRANGING PROGRAM
SCROLL CONTROL PROGRAM

64

64a

64b

BACKGROUND DISPLAYING PROGRAM
OBJECT DISPLAYING PROGRAM
CONTROLLER INPUT DETECTING PROGRAM
OTHER PROGRAM

68

66

60

DATA STORING AREA

SCREEN DISPLAY POSITION DATA
PLAYER OBJECT POSITION DATA
PLAYER OBJECT IMAGE DATA
BACKGROUND IMAGE DATA
MAP DATA
OBJECT CONTROL DATA

SCROLL OPERATING RANGE DATA
SCROLL TARGET VALUE DATA
SCROLL OPERATING FLAG DATA

92

94

78a

80

82

96

98

100

OTHER DATA

102
FIG. 15

COURSE START

LOAD BACKGROUND IMAGE DATA AND MAP DATA ~ S1

OBJECT ARRANGEMENT ~ S3

OBTAIN OPERATION INPUT ~ S5

PLAYER OBJECT OPERATING PROCESS ~ S7

OBJECT OPERATING PROCESS ~ S9

RENDER BACKGROUND ~ S11

RENDER PLAYER OBJECT AND OBJECT ~ S13

SCROLL MOVEMENT PROCESS ~ S15

DISPLAYING DISPLAY SCREEN ON DISPLAY ~ S17

GOAL? ~ S19

YES

COURSE END

NO
FIG. 16

OBJECT ARRANGEMENT

INITIAL SETTING OF SCROLL CONTROL OBJECT

SET SCROLL OPERATING RANGE LEFT-SIDE SCRLEFT
SET SCROLL OPERATING RANGE RIGHT-SIDE SCRRIGHT
SET SCROLL TARGET VALUE SCRPOINT
SET SCROLL TARGET VALUE LEFT-SIDE SCRPOINTL
SET SCROLL TARGET VALUE RIGT-SIDE SCRPOINTR
SCROLL OPERATIN FLAG SCRFLAG= 0 (OFF)

RETURN
OBJECT OPERATING PROCESS

S41 IS OPERATING FLAG TURNED OFF?

S43 IS PLAYER OBJECT WITHIN OPERATING RANGE?

S45 DOES PLAYER OBJECT ENTER OPERATING RANGE FROM RIGHT?

S47 SET TARGET VALUE RIGHT-SIDE TO SCROLL TARGET VALUE

S49 SET TARGET VALUE LEFT-SIDE TO SCROLL TARGET VALUE

S51 SET OPERATING FLAG TO STAND-BY STATE

S53 IS OPERATING FLAG TURNED ON?

S55 DOES PLAYER OBJECT PERFORM PREDETERMINED ACTION ON CONTACT OBJECT?

S57 TURN OPERATING FLAG ON

S59 IS PLAYER OBJECT WITHIN OPERATING RANGE?

S61 DOES PLAYER OBJECT PERFORM PREDETERMINED ACTION ON CONTACT OBJECT?

S63 SET OPERATING FLAG TO STAND-BY STATE

S65 TURN OPERATING FLAG OFF

RETURN
SCROLL MOVEMENT PROCESS

S71

IS OPERATING FLAG TURNED ON?

YES

S73

DOES SCREEN DISPLAY POSITION SATISFY SCROLL TARGET VALUE?

NO

ADJUST SCREEN DISPLAY POSITION ON THE BASIS OF PLAYER OBJECT POSITION

S77

YES

GRADUALLY MOVE SCREEN DISPLAY POSITION SO AS TO BE CLOSE TO SCROLL TARGET VALUE

S75

RETURN