EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
23.08.2017 Bulletin 2017/34

(21) Application number: 03709956.1

(22) Date of filing: 06.03.2003

(51) Int Cl.:
C06B 21/00 (2006.01)

(86) International application number:
PCT/GB2003/000954

(87) International publication number:

(54) METHOD FOR MIXING EXPLOSIVE MATERIALS AND FOR FILLING OF ORDNANCE
VERFAHREN ZUM MISCHEN VON SPRENGSTOFFEN UND ZUM FÜLLEN VON GRANATEN
PROCEDE DE MELANGE DE MATERIAUX EXPLOSIFS ET DE REMPLISSAGE DE MUNITION

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

(30) Priority: 11.03.2002 GB 0205559

(43) Date of publication of application:
08.12.2004 Bulletin 2004/50

(73) Proprietor: BAE Systems PLC
London SW1Y 5AD (GB)

(72) Inventors:
• PRESSLEY, Malcolm
Bae Systems RO Defence
Gwent NP15 1XL (GB)
• BASTOW, Colin, Henry
Bae Systems RO Defence
Gwent NP15 1XL (GB)
• HICKS, Graham
Bae Systems RO Defence
Gwent NP15 1XL (GB)

(74) Representative: Mukherjee, Aniruddha
BAE Systems plc
Group Intellectual Property Department
P.O. Box 87
Warwick House
Farnborough Aerospace Centre
Farnborough
Hampshire GU14 6YU (GB)

(56) References cited:
DE-A- 4 115 201 DE-A- 2 657 557

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to the field of the filling of ordnance with explosive materials, and more specifically to the use of static mixing in the filling process.

Traditional methods used for filling ordnance with polymer bonded explosive (PBX) utilise a filling process based on the combination of usually two materials, namely an explosive mixture (pre-mix) and hardener, which are mixed together immediately prior to use in filling the chosen ordnance.

In a typical application of the mixing and filling process, a pre-mix of explosive such as for example PBX is produced and typically mixed with a hardener (i.e. IPDI) the combined mixture being mixed together in a high shear mixer.

Once mixed, the bowl of the high shear mixer containing the fully mixed PBX composition is fitted with a pressure plate apparatus and cover, then raised to an appropriate filling height on a specialised bowl lift.

Ordnance to be filled is typically placed in a vacuum chamber and a filling attachment from the bottom outlet valve of the mixer bowl containing the fully mixed PBX composition is attached to the chamber. Typically the vacuum will be evacuated to <100 millibars.

The vacuum provides the physical motivation for the fully mixed PBX composition to flow into the ordnance when the valve from the bottom outlet of the mixer bowl is released. The quantity of fully mixed PBX composition introduced to the cavity within the ordnance is usually judged visually, and when sufficiently filled the vacuum to the chamber is released and the filled component removed ready for the introduction of the next ordnance component to be filled. A process for filling moulds with a mixture of an explosive and a reactive binder system is known from US-A-5114630. The traditional method of filling ordnance as described above suffers from a number of problems associated with the finite ‘pot life’ time of the fully mixed PBX composition and the fact that once the various chemicals have been combined the ‘pot life’ time defines the period within which the filling process must be completed before the PBX composition cures and can no longer be used in the process (i.e. would solidify within the pipe work).

The ‘pot life’ is typically in the order of two hours and in instances where there are no problems associated with a particular batch of components, then the mixing of PBX and hardener (IPDI) in a bowl and the subsequent dispensing of the fully mixed PBX composition into ordnance can be achieved relatively quickly. However, if for any reason (for example mechanical breakdown etc) the filling process has to be interrupted or indeed suspended, then the whole of the fully mixed PBX composition has to be purged from the mixing and filling apparatus, the purged material being lost to waste.

The invention described herein provides for a method for mixing explosive materials comprising: holding in a first reservoir a pre-mix comprising an explosive material in flowable form; holding in a second reservoir a hardener material which when combined with said pre-mix, causes it to solidify; conveying said pre-mix and said hardener material to a static mixer means via separate pipes; and controlling a flow of pre-mix towards said static mixer by using a hydraulic cylinder and ram assembly, located in the reservoir, to apply controlled pressure to the pre-mix within said first reservoir.

Preferably the pipe means for conveying each of said materials are not linked or combined until they reach the inlet of said static mixer means.

Preferably the means for filling each of said ordnance components with said final mixed explosive material will be controlled such that the respective pre-mix explosive material and the hardener materials are introduced to the static mixer means on demand, thereby minimising the amount of combined explosive material in said apparatus to that contained in the static mixer means itself and the associated pipe-work used to connect the output of said static mixer unit to the ordnance for filling.

The invention is now described by way of example only with reference to the following drawing in which Figure 1 is a diagrammatic representation of an explosive mixing and ordnance filling apparatus in accordance with the invention.

Figure 1 shows a pre-mix explosive material 2 is shown in a high shear mixing bowl assembly 4 wherein the mixing of the pre-mix explosive material 2 has been completed, the pre-mix explosive material 2 being held within the mixing bowl 4 subjected to controlled pressure by the action of a hydraulic cylinder 6 and ram 8 assembly. Hydraulic cylinder control means 10 is shown for controlling the flow of pre-mix explosive material 2 through the exit valve 12 and onwards through the pre-mix explosive material pipe work 14.

Hardener material 16 is depicted housed within a header tank 18 having pipe work 20 leading to a pump means 22 to provide the controlled supply of hardener material 16 through the pipe work 24.

A static mixer means 26 is provided having pipe work 14 and 24 at its inlet port 28 and an outlet port 30 and corresponding pipe work 32 for conveying final mixed explosive material 34 to ordnance filling stations 36.

In use, ordnance 38 to be filled with final mixed explosive composition 34 are positioned at ordnance filling stations 36. When the ordnance is correctly in position 38 and the associated fill-to-level control apparatus is connected (not shown). A signal from the process control 40 to initiate the filling operation is activated. A demand signal is received by the fill-to-level controller 42 from the non-contact level sensor 46 indicating that the ordnance is not filled and accordingly the fill-to-level controller 42
purging and cleaning using state of the art apparatus. It is important to note at this point that in accordance with the invention the point at which the pre-mix explosive material 2 and hardener material 16 are first combined is substantially at the inlet port 28 of the static mixer means 26. The pre-mix explosive material 2 and hardener material 16 are conveyed through their respective separate pipe works 12, 24, both materials 2, 16 being introduced individually to the inlet 28 of the static mixer means 26. The method of filling ordnance 38 with combined final explosive mixture 34 in a controlled manner, utilising apparatus that prolongs the 'pot life' of said combined final explosive material 34. This provides for simplified cleaning of the apparatus following the completion of an ordnance filling run, thereby further reducing the inherent complexity and time required for purging and cleaning using state of the art apparatus.

The combined final explosive mixture 34 passes through the static mixer means 26 to the pre-mix explosive material 2 and hardener material 16 are forced through a number of static mixing blade means 4, thereby mixing the two materials 2, 16 together. Such static mixing means are known within the confectionery and food industries and typically comprise a plurality of blade means arranged in a 'corkscrew' type manner which promotes the effective mixing together of two or more materials when forced through the mixer.

Additionally, the use of a static mixing means provides for simplified cleaning of the apparatus following the completion of an ordnance filling run, thereby further reducing the inherent complexity and time required for purging and cleaning using state of the art apparatus.

The combined final explosive mixture 34 into the waiting ordnance 38 is controlled via pinch valves 44, the operation of said pinch valves 44 being controlled so as to limit the volume of combined final explosive mixture 34 introduced into the ordnance 38. A vacuum source 48 is provided to encourage the filling of the volume within the ordnance.

The control of the valves 44 (typically pinch valves) to enable the accurate filling of the ordnance may be effected either by a human operator directly controlling a valve 44 or by a mechanised system, which for the purposes of this specific embodiment utilises a non-contact level controller 46 which forms part of an integrated control system 10, 40, 42, 46, 48.

When the non-contact level controller 46 senses that ordnance 38 requires filling with combined final explosive mix 34, then a signal is sent to the fill-to-level controller 42 which in turn initiates the flow of both pre-mix explosive material 2 and hardener material 16 through the static mixing means 42 and via the outlet pipe work into the waiting ordnance 38. When the non-contact level controller 46 senses that any of the ordnance 38 has reached its fill limit, then a signal is sent to the fill-to-level controller 2 to stop the flow of materials 2 and 16.

The non-contact level controller 46 may comprise an optical sensor, a fibre optic sensor, a laser sensor or an LED sensor.

Using the above stated control means thereby provides for both apparatus and a method of filling ordnance 38 with combined final explosive mixture 34 in a controlled manner, utilising apparatus that prolongs the 'pot life' of said combined final explosive material 34. This provides for both apparatus and control means can provide an automated ordnance filling system.

In order to clean the apparatus as described, the action of pumping pre-mix explosive material 2 (or an alternative compatible inert material) through the apparatus in the absence of any hardener material 16 will be substantially sufficient to purge the system of any combined final explosive material 34, thereby reducing the complexity, time and danger level associated with purging state of the art apparatus within which combined final explosive material has been allowed to cure.

In addition to the elements described in the specific embodiment of the invention, a number of measuring sensors and safety devices would also be incorporated into the apparatus as shown in Figure 1, namely a flow meter sensor 50, a pressure sensor 52, temperature probes 56, a pressure switch 58 and a safety burst disc 60. Such sensors and safety devices are known in the art and are included in the specific embodiment by way of example to illustrate the industrial application of the invention.

Additionally, a colour agent or dye can be added to the hardener material 16 such that it will be possible to monitor the amount of hardener 16 present in the final combined explosive mixture 34. The analysis of the colour of the combined mixture 34 may be made by utilising a colour sensor means located after the mixing process calibrated to recognise particular ranges of colour as indicating sufficient percentage of hardener in the combined material 34, or by use of a viewing window in the pipe work containing the combined mixture 34 to allow for visual inspection of the colour of said mixture 34.

It is to be noted that the hydraulic cylinder 6 and ram 8 assembly is far safer than using displacement pumps to pump the pre-mix explosive material to the static mixer 26. It is also to be noted that the pre-mix explosive material is not pumped to the static mixer as this may be too dangerous.

As an alternative to the flow meter 50 being located in the pre-mix explosive material pipe work 14, the flow meter may be located in the hydraulic line to the hydraulic ram 8. In this case, the flow meter accurately measures the displacement of the ram 8 and hence the mass flow of the pre-mix explosive mixture. This alternative is of particular use when the pre-mix explosive material is too viscous and inaccurate flow readings are ob-
tained when the flow meter is in the pre-mix explosive material pipe work 14.

[0030] Other advantages of the invention will be readily apparent to those skilled in the art and the substitution of elements for mechanical equivalents and adaptation of the process using different materials and the like should be construed as being comprised within in the inventive concept as claimed.

[0031] References to ordnance in the above specification and claims shall be construed as non-limiting and in respect of the invention shall include without limitation shells, mortars, rockets, projectiles and any other ordnance or containers which are required to be filled with a combined final explosive mixture.

Claims

1. A method for mixing explosive materials comprising:
 - holding in a first reservoir a pre-mix comprising an explosive material in flowable form;
 - holding in a second reservoir a hardener material which when combined with said pre-mix, causes it to solidify; conveying said pre-mix and said hardener material to a static mixer means (26) via separate pipes; and
 - controlling a flow of pre-mix towards said static mixer by using a hydraulic cylinder and ram assembly to apply controlled pressure to the pre-mix within said first reservoir.

2. The method according to claim 1, further comprising:
 - sensing whether an ordnance requires filling, and
 - sending a signal indicative thereof; and initiating the flow of pre-mix explosive material in response to said signal.

3. A method as claimed in claim 1 or 2, wherein said materials when mixed are conveyed from the outlet (30) of said static mixer means (26) and used to fill ordnance.

4. A method as claimed in claim 1, 2 or 3, wherein said materials (2, 16) are combined substantially at the inlet (28) of said static mixer means (26).

5. A method as claimed in any one of the preceding claims, comprising a flow meter for measuring flow of hydraulic fluid in said hydraulic cylinder and ram assembly (6, 8, 10) for determining flow of said pre-mix explosive material (2).

6. A method as claimed in any one of the preceding claims, wherein the means (32, 36) for filling said ordnance (38) with said combined final explosive material (34) is controlled such that the respective pre-mix explosive material (2) and hardener materials (16) are introduced to the static mixer means (26) on demand, the demand controlled by an automated ordnance fill-to-level control means (40, 42, 44, 46).

7. A method as claimed in any one of the preceding claims, wherein the pre-mix explosive comprises a polymer bonded explosive (PBX).

8. A method as claimed in any one of the preceding claims wherein said fill-to-level control means comprises at least one fibre optic sensor (46).

9. A method as claimed in any one of the preceding claims, wherein the pre-mix explosive comprises a polymer bonded explosive (PBX).
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Auslass (30) des statischen Mischermittels (26) mit Mitteln (32, 36) zur Durchführung der Füllung von Kampfmitteln (38) verbunden ist.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Mittel (32, 36) zum Füllen der Kampfmittel (38) mit dem kombinierten Endsprengstoff (34) derart gesteuert werden, dass der Vormischungssprengstoff (2) und die Hartmittel (16) jeweils nach Bedarf in das statische Mischermittel (26) eingeführt werden, wobei der Bedarf durch ein automatisiertes Kampfmittel-Füllstandfüllungssteuermittel (40, 42, 44, 46) gesteuert wird.

9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Vormischungssprengstoff einen polymergebundenen Sprengstoff (PBX) umfasst.

Revendications

1. Procédé de mélange de matériaux explosifs comprenant les étapes suivantes : maintenir dans un premier réservoir un prémélange comprenant un matériau explosif sous forme fluide ; maintenir dans un deuxième réservoir un matériau durcisseur qui, lorsqu'il est combiné avec ledit prémélange, le fait solidifier ; transporter ledit prémélange et ledit matériau durcisseur jusqu'à un moyen de mélange statique (26) par des tuyaux séparés ; et contrôler un écoulement de prémélange vers ledit mélangeur statique en utilisant un ensemble vérin et came hydraulique pour appliquer une pression contrôlée au prémélange à l'intérieur dudit premier réservoir.

2. Procédé selon la revendication 1, comprenant en outre les étapes suivantes : détecter si une munition nécessite un remplissage, et envoyer un signal qui en est l'indicateur ; et initier l'écoulement de matériau explosif prémélangé en réponse aud signal.

3. Procédé selon la revendication 1 ou 2, dans lequel lesdits matériaux, une fois mélangés, sont transportés depuis la sortie (30) dudit moyen de mélange statique (26) et utilisés pour remplir une munition.

4. Procédé selon la revendication 1, 2 ou 3, dans lequel lesdits matériaux (2, 16) sont combinés sensiblement à l'entrée (28) dudit moyen de mélange statique (26).

5. Procédé selon l'une quelconque des revendications précédentes, comprenant un débitmètre pour mesurer l'écoulement de fluide hydraulique dans ledit ensemble vérin et came hydraulique (6, 8, 10) pour déterminer l'écoulement dudit matériau explosif prémélangé (2).

6. Procédé selon l’une quelconque des revendications précédentes, dans lequel la sortie (30) dudit moyen de mélange statique (26) est raccordée à un moyen (32, 36) pour effectuer le remplissage d’une munition (38).

7. Procédé selon l’une quelconque des revendications précédentes dans lequel le moyen (32, 36) est contrôlé de telle sorte que le matériau explosif prémélangé respectif (2) et le matériau durcisseur (16) sont introduits dans le moyen de mélange statique (26) à la demande, la demande étant contrôlée par un moyen de contrôle de remplissage à niveau de munition automatisé (40, 42, 44, 46).

8. Procédé selon l’une quelconque des revendications précédentes dans lequel le moyen de contrôle de remplissage à niveau comprend au moins un capteur à fibre optique (46).

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 5114630 A [0007]