(54) Ware washing method
Waschverfahren für Ware
Procédé de nettoyage d’articles
This invention relates to a ware washing method using a ware washing machine which employs a textile article immersed in water. The invention relates in particular to such a method carried out in a domestic environment.

It is well known that certain metal compounds, notably calcium compounds, when present in water, have a significant effect on the properties of the water. "Hard" water containing a significant loading of soluble calcium and magnesium compounds and forms a scum with soap or detergent, requiring a large amount of soap or detergent in order to form a lather. Scale deposits can readily form from such water, for example on heating or pH change or evaporation.

There have been many proposals for the removal of metal ions from aqueous solutions. In the industrial context proposals have included filter beds and polymeric filters for capturing heavy metal ions from an aqueous solution flowing within a passageway. Examples are given in EP 992238A and GB 20869564A. In the domestic context chelating compositions can be added to an aqueous washing solution and these can capture metal ions, such as calcium ions. Examples of chelating compositions are given in EP-A-892040. Further, WO 02/18533 A1 shows a ware washing method employing a textile article immersed in water. However in a multi-step washing process, such as that carried out by clothes washing machine, it can be a problem that the chelating agent is discharged, with the water, at an intermediate stage of the process.

There is a need for a technology which can bind metal ions, at least calcium ions and preferably other metal ions in addition, in a convenient manner, through the entire course of a cleaning procedure, including the rinse cycle of a ware washing machine, in particular a clothes' washing machine.

In accordance with a first aspect of the present invention there is provided a ware washing method using a ware washing machine which employs a textile article immersed in water, the textile article having at least one water-softening agent reversibly impregnated into or deposited onto the textile article, such that the water-softening agent is released over a period of time when exposed to water, wherein the article is partially or entirely coated with a water soluble polymer to delay the release of the water softening agent.

One advantage of impregnating into or depositioning onto a textile article water-softening agent(s) is that discrete dosing is easily achieved and that the dosage may be varied without the need of a measuring system, as would be required for a liquid or powder. For example, half doses may be achieved by cutting or tearing the textile article in half. Alternatively multiple single doses may be provided on a single textile article which is marked, for example by printing by the use of weakened tear line(s), to single doses, multiple doses or fractional doses. Alternatively the textile article may itself be set out in such a way, for example as a printed sheet, such that the user uses a size of textile article appropriate for the hardness of the water used in the cleaning method.

Preferably detergent and/or bleach is absent from the textile article ("essentially free of detergent and/or bleach").

The ware washing machine may be a clothes' washing machine or a dishwashing machine.

In such methods the cleaning water is suitably produced by dissolution of a liquid or solid cleaning concentrate, preferably by addition into the machine, at or immediately after the start of the washing operation. Such concentrates suitably include one or more of an anionic surfactant, a non-ionic surfactant, an amphoteric surfactant or a cationic surfactant. For machine washing anionic and non-ionic surfactants are preferred.

A suitable anionic surfactant is an anionic organic surfactant, which is usually employed in a soluble salt form, preferably as an alkali metal salt, especially as a sodium salt. Although other types of anionic detergents may be utilized, such as higher fatty acyl sarcosides, alkyl sulphonates, alkyl sulphosuccinates, alkyl ether sulphonates, alkylamido sulphosuccinates, alkyl sulphonates, alkyl phosphates, alkyl ether phosphates, acyl isothionates, N-acyl taurates and acyl lactylates, or conventional "soaps" of fatty acids, the preferred anionic surfactants employed are those which are described as being of a sulphonate or sulphate type. These include linear higher alkylaryl sulphonates (for example alkylbenzene sulphonates), alkyl sulphonates, alkyl ether sulphonates, alkylamidoether sulphonates, alkylarylpolyether sulphonates, monoglyceride sulphonates, alkyl phosphonates, alkylamido sulphonates, higher fatty alcohol sulphonates, higher fatty alcohol polyalkoxyxilate sulphonates, olefin sulphonates, <<-methyl ester sulphonates and paraffin sulphonates. An extensive listing of anionic detergents, including such sulph(on)ate surfactants, is given at pages 25 to 138 of the text Surface Active Agents and Detergents, Vol. II, by Schwartz, Perry and Berch, published in 1958 by Interscience Publishers, Inc. , and is incorporated herein by reference. Usually the higher alkyl group of such anionic surfactants is of 8 to 24, especially 10 to 20 carbon atoms, preferably 12 to 18 carbon atoms, and the alkoxylate content of such anionic surfactants that are alkoxylated (preferably ethoxylated or ethoxylated/proxyoxylated) is in the range of 1 to 4 alkoxyl groups per mole.

One preferred class of anionic surfactants comprise the alkali metal (preferably sodium) alkyl sulphonates, preferably having linear C₁₂₋₁₈ alkyl groups.

Another preferred class of anionic surfactants comprise alkali metal (preferably sodium) alkylaryl sulphonates (especially alkylbenzene sulphonates), preferably having linear C₁₀₋₁₃ alkyl groups.

A preferred non-ionic surfactant is a condensation product of a higher fatty alcohol or alkyl phenol with a lower alkylene oxide, such as ethylene oxide or a mixture of ethylene oxide and propylene oxide. In such non-ionic surfactants the higher fatty moiety will normally be of 7 to 16 carbon atoms and there will usually be present from 3 to 20, preferably
4 to 15 moles of alkylene oxide per mole of higher fatty alcohol.

[0014] Another class of non-ionic surfactants that could be used are sorbitan esters of fatty acids having from 10 to 24 carbon atoms, for example sorbitan mono-oleate.

[0015] Amphoteric surfactants which may be used include amphoteric betaine surfactant compounds having the following general formula:

\[
\begin{array}{c}
\text{R} \hspace{1cm} \text{N} \hspace{1cm} \text{R}_1 \hspace{1cm} \text{R}_2 \hspace{1cm} \text{COO}
\end{array}
\]

wherein \(\text{R} \) is a hydrophobic group which is an alkyl group containing from 10 to 22 carbon atoms, preferably from 12 to 18 carbon atoms, an alkylaryl or arylalkyl group containing a similar number of carbon atoms with a benzene ring being treated as equivalent to about 2 carbon atoms, and similar structures interrupted by amido or ether linkages; each \(\text{R}_1 \) is an alkyl group containing from 1 to 3 carbon atoms; and \(\text{R}_2 \) is an alkyl group containing from 1 to 6 carbon atoms.

[0016] Examples of cationic surfactants which may be used include quaternary ammonium compounds and salts thereof, including quaternary ammonium compounds which also have germicidal activity and which may be characterized by the general structural formula:

\[
\begin{array}{c}
\text{R}_1 \hspace{1cm} \text{R}_2 \hspace{1cm} \text{R}_3 \hspace{1cm} \text{R}_4
\end{array}
\]

when at least one of \(\text{R}_1, \text{R}_2, \text{R}_3 \) and \(\text{R}_4 \) is a hydrophobic, aliphatic, aryl aliphatic or aliphatic aryl group containing from 6 to 26 carbon atoms, and the entire cationic portion of the molecule has a molecular weight of at least 165. The hydrophobic groups may be long-chain alkyl, long-chain alkoxy alkyl, long-chain alkyl aryl, halogen-substituted long-chain alkyl aryl, long-chain alkyl phenoxy alkyl or aryl alkyl. The remaining groups on the nitrogen atoms, other than the hydrophobic radicals, are generally hydrocarbon groups usually containing a total of no more than 12 carbon atoms. The radicals \(\text{R}_1, \text{R}_2, \text{R}_3 \) and \(\text{R}_4 \) may be straight chain or may be branched, but are preferably straight chain, and may include one or more amide or ester linkages. The radical \(\text{X} \) may be any salt-forming anionic radical.

[0017] Examples of quaternary ammonium salts within the above description include the alkyl ammonium halides such as cetyl trimethyl ammonium bromide, alkyl aryl ammonium halides such as octadecyl dimethyl benzyl ammonium bromide, and N-aryl pyridinium halides such as N-cetyl pyridinium bromide. Other suitable types of quaternary ammonium salts include those in which the molecule contains either amide or ester linkages, such as octyl phenoxy ethoxyethyl trimethyl ammonium chloride and N-laurylphenoxyformylmethyl)-pyridinium chloride. Other effective types of quaternary ammonium compounds which are useful as germicides include those in which the hydrophobic radical is characterized by a substituted aromatic nucleus as in the case of lauryloxyphenyltrimethyl ammonium chloride, cetylaminophenyltrimethyl ammonium methosulphate, dodecylphenyltrimethyl ammonium methosulphate, dodecylphenyltrimethyl ammonium chloride and chlorinated dodecylphenyltrimethyl ammonium chloride.

[0018] Preferred quaternary ammonium compounds which act as germicides and which are useful in the present invention include those which have the structural formula:
wherein R2 and R3 are the same or different C8-C12alkyl, or R2 is C12-C16alkyl, C8-C18alkylethoxy, C8-C18alkyl-phenolethoxy and R2 is benzyl, and X is a halide, for example chloride, bromide or iodide, or methosulphate. The alkyl groups R2 and R3 may be straight chain or branched, but are preferably substantially linear. It is a preferred feature of the invention to use cationic surfactant, such as those described above, in combination with a method of the invention as described herein, or with a an article for use in such methods, since the germicidal activity of such compounds is improved in softer water.

In any method of the invention, a mixture of two or more surfactants may be used. Other known surfactants not particularly described above may also be used. Such surfactants are described in McCutcheon’s Detergents and Emulsifiers, North American Edition, 1982; Kirk-Othmer, Encyclopaedia of Chemical Technology, 3rd Ed., Vol. 22, pp 346-387.

A composition used in the invention may optionally include one or more conventional additives known to be useful in cleaning compositions including bleaching agents, viscosity modification agents, fragrances (natural or synthetically produced), foaming or foam-control agents, solvents, fillers, colouring agents, and in the case of compositions for fabric washing, fabric conditioning agents, enzymes, hydrotropes and dye antiredeposition agents. If the composition does not contain a cationic surfactant having germicidal properties as detailed above, a germicidal agent may be incorporated as an optional ingredient into the cleaning agents used in the invention. Examples are phenolic group containing compounds such as o-phenyl-phenol, o-benzyl[p-chlorophenol] and 4-tertamylphenol.

The textile article acts as a water softener within a ware-washing machine. The cleaning agent(s) present in the water can work more effectively, and/or the vessel is soiled or scaled less, whether by soap scum or by encrustations or by watermarks left when droplets on a surface evaporate. The textile article itself can be used as the means for cleaning.

Preferably the textile article is able to bind magnesium ions. Most preferably it is able to bind further ions, for example copper and iron ions. Preferably the moieties which are able to bind calcium ions are also able to bind such further ions, notably magnesium ions.

A dye could be employed to give a colour change, on exhaustion of the available water-softening agent(s) on the textile article.

Suitable water-softening agents are those selected from below. Such components will provide three main types of method of action, described below.

1) Ion exchange agents - such agents include alkali metal (preferably sodium) aluminosilicates either crystalline, amorphous or a mixture of the two. Such aluminosilicates generally have a calcium ion exchange capacity of at least 50 mg CaO per gram of aluminosilicate, comply with a general formula:

\[0.8-1.5 \text{Na}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 0.8-6 \text{SiO}_2\]
and incorporate some water. Preferred sodium aluminosilicates within the above formula contain 1.5-3.0 SiO₂ units. Both amorphous and crystalline aluminosilicates can be prepared by reaction between sodium silicate and sodium aluminate, as amply described in the literature.

Suitable crystalline sodium aluminosilicate ionexchange detergency builders are described, for example, in GB 1429143 (Procter & Gamble). The preferred sodium aluminosilicates of this type are the well known commercially available zeolites A and X, and mixtures thereof. Also of interest is zeolite P described in EP 384070 (Unilever).

Another class of compounds are the layered sodium silicate builders, such as are disclosed in US-A-4464839 and US-A-4820439 and also referred to in EP-A-551375. These materials are defined in US-A-4820439 as being crystalline layered, sodium silicate of the general formula

\[\text{NaMSi}_x\text{O}_{2x+1} \cdot \text{YH}_2\text{O} \]

wherein

M denotes sodium or hydrogen,

x is from 1.9 to 4 and y is from 0 to 20.

Literature references describing the preparation of such materials include Glastechn. Ber. 37,194-200 (1964), Zeitschrift für Kristallogr. 129, 396-404 (1969), Bull. Soc. Franc. Min. Crist., 95, 371-382 (1972) and Amer. Mineral, 62, 763-771 (1977). These materials also function to remove calcium and magnesium ions from water. Also covered are salts of zinc which have also been shown to be effective water softening agents.

2) **Ion capture agents** - agents which prevent metal ions from forming insoluble salts or reacting with surfactants, such as polyphosphate, monomeric polycarbonates, such as citric acid or salts thereof, EDTA, algin, alginates, imidodisuccinico acid or a salt thereof (such as Baypure CX100) and glucoheptanoic acid or a salt thereof.

3) **Anti-nucleating agents** - agents which prevent seed crystal growth, such as polycarbonate polymers, such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphonates, polyaspartic acid polymers or a salt thereof (such as Baypure DS100) and 2-acrylamido-2-methyl propane sulfonic acid polymers.

It will be appreciated that certain actives may perform more than one function, such as polyaspartic acid polymers, which as well as being antinucleating agents are also effective as ion capture agents.

Such ingredient(s) may be reversibly impregnated or deposited on the textile article by dosing a solution to the textile article and evaporating the solute. Spray drying techniques may be employed. Ionic charge may also be employed to reversibly bind anionic ionisable ingredients to the textile article.

The textile article can have bound to it such ingredients in the form of particles of a material, as described above, with those particles not being released from the textile article in use.

Alternatively the textile article could carry on it particles of a material, as described above, with those particles being washed from the textile article, and dissolved or dispersed in the wash water, in use.

Alternatively there can be a hybrid system in which some such particles remain on the textile article and some are washed off, during the method.

The washing off of particles of such materials may be rapid in water or may be slow/progressive. A slow-release system may be attractive in obtaining good activity, for example calcium binding, throughout a cleaning method.

Water may be softened in the wash cycle. Preferably it is softened in the rinse cycle. Most preferably it is softened both in the wash and in the rinse cycles.

The invention will now be described, by way of embodiment, with reference to the following examples.

Example 1

A 25 cm² cellulose fibre non-woven sheet was immersed into a beaker of 6g of Accusol 445N (polyacrylate) dissolved in 100g of water. The sheet was removed after being saturated with the Accusol 444N solution and placed on a hard surface at ambient conditions for 24 hours. After 24 hours the non-woven sheet was found to be dry.

Claims

1. A ware washing method using a ware washing machine which employs a textile article immersed in water, the textile article having at least one water-softening agent reversibly impregnated into or deposited onto the textile article, such that the water-softening agent is released over a period of time when exposed to water, characterised in that
the article is partially or entirely coated with a water soluble polymer to delay the release of the water softening agent.

2. A method as claimed in claim 1, wherein the textile article changes colour on exhaustion of the available water-softening agent.

3. A method as claimed in claim 1 or 2, wherein the textile article is used as a material for wiping a surface to be cleaned.

4. A cleaning method, according to claim 1,2 or 3, suitable for a ware washing machine, the method including softening the water in the machine, using a textile article having at least one water-softening agent reversibly impregnated into or deposited onto the textile article.

5. A method as claimed in any preceding claim, wherein the water-softening agent comprises calcium-binding particles which dissolve or disperse in water with which the textile article is in contact.

6. A method as claimed in any preceding claim, wherein the textile article is a cloth.

7. A method as claimed in claim 6, wherein the textile article is a non-woven sheet.

8. A method as claimed in any preceeding claim, wherein the textile article is marked into single doses.

9. A method as claimed in claim 8, wherein the textile article is marked into single doses by means of printing or weakened tear line(s).

Patentansprüche

1. Geschirrspülverfahren unter Verwendung einer Geschirrspülmaschine, die einen in Wasser getauchten Textilgegenstand einsetzt, wobei der Textilgegenstand wenigstens einen Wasserenthärter derart reversibel im Textilgegenstand imprägniert oder darauf aufgetragen aufweist, dass der Wasserenthärter bei Kontakt mit Wasser über eine Zeitdauer freigesetzt wird, dadurch gekennzeichnet, dass der Gegenstand ganz oder teilweise mit einem wasserlöslichen Polymer beschichtet ist, um die Freisetzung des Wasserenthärters zu verzögern.

2. Verfahren nach Anspruch 1, wobei der Textilgegenstand bei Aufbrauchen des verfügbaren Wasserenthärters die Farbe ändert.

3. Verfahren nach Anspruch 1 oder 2, wobei der Textilgegenstand als ein Material zum Abwischen einer zu reinigenden Oberfläche verwendet wird.

4. Reinigungsverfahren nach Anspruch 1, 2 oder 3, geeignet für eine Geschirrspülmaschine, wobei das Verfahren ein Enthärten des Wassers in der Maschine unter Verwendung eines Textilgegenstands umfasst, der wenigstens einen Wasserenthärter reversibel im Textilgegenstand imprägniert oder darauf aufgetragen aufweist.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Wasserenthärter Calcium bindende Teilchen umfasst, welche sich in Wasser, mit dem der Textilgegenstand in Kontakt ist, auflösen oder dispergieren.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Textilgegenstand ein Tuch ist.

7. Verfahren nach Anspruch 6, wobei der Textilgegenstand ein nichtgewebtes Flächengebilde ist.

8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Textilgegenstand in einzelne Dosen abgegrenzt ist.

9. Verfahren nach Anspruch 8, wobei der Textilgegenstand mittels Druckens oder geschwächter Abrisslinie(n) in einzelne Dosen abgegrenzt ist.
Revendications

1. Procédé de lavage de la vaisselle utilisant un lave-vaisselle qui emploie un article textile immergé dans l’eau, l’article textile comportant au moins un agent d’adoucissement de l’eau imprégné de façon réversible dans ou déposé sur l’article textile, de telle sorte que l’agent d’adoucissement de l’eau est libéré sur une durée une fois exposé à l’eau, caractérisé en ce que l’article est partiellement ou entièrement revêtu avec un polymère soluble dans l’eau pour retarder la libération de l’agent d’adoucissement de l’eau.

2. Procédé selon la revendication 1, dans lequel l’article textile change de couleur lors de l’épuisement de l’agent d’adoucissement de l’eau disponible.

3. Procédé selon la revendication 1 ou 2, dans lequel l’article textile est utilisé comme matériau pour essuyer une surface à nettoyer.

4. Procédé selon la revendication 1, 2 ou 3, approprié pour un lave-vaisselle, le procédé incluant l’adoucissement de l’eau dans la machine, en utilisant un article textile comportant au moins un agent d’adoucissement de l’eau imprégné de façon réversible dans ou déposé sur l’article textile.

5. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’agent d’adoucissement de l’eau comprend des particules se liant au calcium qui se dissolvent ou se dispersent dans l’eau avec laquelle l’article textile est en contact.

6. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’article textile est un tissu.

7. Procédé selon la revendication 6, dans lequel l’article textile est une feuille non tissée.

8. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’article textile est marqué en doses individuelles.

9. Procédé selon la revendication 8, dans lequel l’article textile est marqué en doses individuelles au moyen d’une impression ou de ligne(s) de déchirement fragilisée(s).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- GB 1429143 A [0028]
- US 4464839 A [0028]
- US 4820439 A [0028]
- EP 551375 A [0028]

Non-patent literature cited in the description

- McCutcheon’s Detergents and Emulsifiers. 1982 [0019]
- Kirk-Othmer. Encyclopaedia of Chemical Technology. vol. 22, 346-387 [0019]