Automatically-activated hand-supportable laser scanning bar code reading system having data-transmission activation switch

Automatisch aktivierter, tragbarer Laser-Strichkodeabtaster mit Datenübertragungsvorrichtung

Système de lecture des symboles d’un code à barres à balayage laser, pouvant être pris à la main, et activé automatiquement, pourvue d’un commutateur d’activation de transmission de données

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Priority:
03.12.1998 US 204176
02.12.1999 US 452976

Inventors:
• Wilz, David M., Sr.
 Sewell
 New Jersey 08080 (US)
• Rockstein, George
 Audobon
 New Jersey 08106 (US)
• Blake, Robert E.
 Woodbury Heights
 New Jersey 08097 (US)
• Schmidt, Mark
 Williamstown
 New Jersey 08094 (US)
• Russell, Garrett
 Newark
 Delaware 19713 (US)
• Hudrick, Donald T.
 Sicklerville
 New Jersey 08081 (US)
• Colavito, Stephen J.
 Brookhaven
 Pennsylvania 19015 (US)
• Knowles, Carl Harry
 Moorestown
 New Jersey 08057 (US)

Representative: Dunlop, Hugh Christopher et al
R G C Jenkins & Co.
26 Caxton Street
London SW1H 0RJ (GB)

References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

Technical Field

[0001] The present invention relates generally to improvements in automatic laser scanning bar code symbol reading systems, wherein laser scanning and bar code symbol reading operations are automatically initiated in response to the automatic detection of objects and/or bar code symbols present thereon.

Brief Description Of The Prior Art

[0002] Bar code symbols have become widely used in many environments such as, for example, point-of-sale (POS) stations in retail stores and supermarkets, inventory management document tracking, and diverse data control applications. To meet the growing demands of this technological innovation, bar code symbol readers of various types have been developed for sending bar code symbols and producing symbol character data for use as input in automated data processing systems.

[0003] In general, prior art hand-held bar code symbol readers using laser scanning mechanisms can be classified into two major categories.

[0004] The first category of hand-held laser-based bar code symbol readers includes lightweight hand-held laser scanners having manually-activated trigger mechanisms for initiating laser scanning and bar code symbol reading operations. The user positions the hand-held laser scanner at a specified distance from the object bearing the bar code symbol, manually activates the scanner to initiate reading, and then moves the scanner over other objects bearing bar code symbols to be read. Prior art bar code symbol readers illustrative of this first category are disclosed in U.S. Patent Nos.: 4,575,625; 4,845,349; 4,825,057; 4,903,848; 5,107,100; 5,080,456; 5,047,617; 4,387,297; 4,806,742; 5,021,641; 5,486,949; 5,180,904; 5,206,492; 4,593,186; 5,247,162; 4,897,532; 5,250,792; 5,047,617; 4,835,374; 5,017,765; 5,600,121; S, 4,593,186; 5,247,162; 4,897,532; 5,250,792; 5,047,617; and 4,490,470.

[0005] The second category of hand-held laser-based bar code symbol readers includes lightweight hand-held laser scanners having automatically-activated (i.e. triggerless) mechanisms for initiating laser scanning and bar code symbol reading operations. The user positions the hand-held laser scanner at a specified distance from an object bearing a bar code symbol, the presence of the object is automatically detected using an infrared (IR) light beam or a low-power laser light beam, the presence of the bar code symbol on the object is detected using a visible laser light beam, and thereafter the detected bar code symbol is automatically scanned and decoded (i.e. read) to produce symbol character data representative of the read bar code symbol. Prior art illustrative of this second category of laser-based bar code symbol reading systems are disclosed in U.S. Patent Nos. 4,639,606; 4,933,538; 5,828,048; 5,828,049; 5,825,012; 5,808,285; 5,796,091; 5,789,730; 5,789,731; 5,777,315; 5,767,501; 5,736,982; 5,742,043; 5,528,024; 5,525,789; D-385,265; 5,484,992; 5,661,292; 5,637,852; 5,468,951; 5,627,359; 5,424,525; 5,616,908; 5,591,953; 5,340,971; 5,340,973; 5,557,093; 5,260,553.

[0006] Automatically-activated laser scanning bar code symbol readers of the type disclosed in the above-referenced US Letters Patents enable the reading of bar code symbols without the shortcomings and drawbacks of manually-activated hand-held bar code symbol readers. However, automatically-activated bar code symbol readers can at times aggressively read bar code symbols that are not desired to be read by the user as, for example, when attempting to read a particular bar code from a list of bar code symbols closely printed on a bar code menu or like structure. This is caused by the laser scanline within the scanning field scanning across two or more bar code symbols at the same time, which is likely to occur when the bar code scanner is positioned at a large distance from the object and the laser scanline is large due to the scanning geometry of the scanner. Oftentimes inadvertent bar code symbol reading errors must be corrected at their time of occurrence, wasting valuable time and resources of the user.

[0007] Notably, the use of the short-range CCD-emulation mode taught in US Patent No. 5,558,024 provides a solution to the problem of inadvertently reading undesired bar code symbols closely printed on bar code menus. However, even when using this short-range CCD emulation mode, it is possible for the automatically-generated laser scanning pattern to inadvertently read an undesired bar code from the bar code menu as the operator moves the head portion of the hand-held reader into position over the bar code symbol to be read. This is due to the width of the laser scanning plane intersecting the object plane bearing the bar code symbol to be read. While it is possible in theory to operate the IR-based object detector in a short-range mode of operation, cost considerations make this difficult to achieve in practice.

[0008] Also, in order to enjoy the benefits of the short-range CCD-emulation mode, the laser scanning bar code symbol reader must be induced into this mode of operation either by reading A presignated (function-) bar code symbol, or by manually a switch on the exterior of the scanner housing. Then, after reading the bar code symbol from the menu while the device is in its short-range CCD-emulation mode, the user is required to reconfigure the scanner back into its long-range mode of operation so that it can be used to read bar codes within a large depth of field of the reader. Until steps are taken to reconfigure the bar code symbol reader into its long range mode of operation, the user is forced to read bar code symbols in its CCD-emulation mode which can be inconvenient in many types of scanning applications, thus reducing worker productivity.

[0009] When using the above-describes system to
read bar code symbols on products that have been placed among a set of previously scanned products at a check-out counter, there is a high likelihood that previously scanned products will be accidentally re-read creating an error in check-out operations. Notably, the structure of this problem is quite similar to the bar code menu reading problem described above.

[0012] There is great need in the art for an improved systems and method for reading bar code symbols using automatically-activated laser scanning mechanisms while overcoming the shortcomings and drawbacks of prior art systems and methods.

[0013] Preferably, the improved system and method should provide the user with a greater degree of control over the disposition of the bar code symbol process, whenever it is automatically-initiated to read bar code symbol printed on diverse types of objects including, but not limited to, printed bar code symbol menus.

DISCLOSURE OF THE PRESENT INVENTION

[0014] Accordingly, a method of reading bar code symbols is provided in accordance with claim 1 and a system in accordance with claim 6.

[0015] A wireless data packet transmission and reception scheme is preferably used to transmit symbol character data to the host system.

[0016] The invention has the ability to prevent multiple reading of the same bar code symbol due to dwelling of the laser scanning beam upon a bar code symbol for an extended period of time.

[0017] A set of color-encoded light sources may be provided on the exterior of the housing for sequentially generating a set of visually-perceptible state indication signals which visually indicate to the user the various states of operation, wherethrough the system automatically passes during each bar code symbol reading cycle.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] For a fuller understanding of the Objects of the Present Invention, the Detailed Description of the Illustrated Embodiments of the Present Invention should be read in conjunction with the accompanying drawings, wherein:

Fig. 1 is a flow-chart type schematic diagram illustrating the steps involved in carrying out the bar code symbol reading method of the present invention when using an automatically-activated bar code symbol reading system constructed in accordance therewith;

Fig. 1A is a schematic representation of the first illustrative embodiment of the automatically-activated bar code symbol reading device of the present invention, showing the major subsystem components thereof as comprising an IR-based object detection subsystem, a laser-based bar code symbol detection subsystem, a laser-based bar code symbol reading subsystem, a data transmission subsystem, and a system control subsystem;

Fig. 1B is a schematic representation of the second illustrative embodiment of the automatically-activated bar code symbol reading device of the present invention, showing the major subsystem components thereof as comprising a laser-based object detection subsystem, a laser-based bar code symbol detection subsystem, a laser-based bar code symbol reading subsystem, a data transmission subsystem, and a system control subsystem;

Fig. 1C is a schematic representation of the third illustrative embodiment of the automatically-activated bar code symbol reading device of the present invention, showing the major subsystem components thereof as comprising a laser-based bar code symbol detection subsystem, a laser-based bar code symbol reading subsystem, and a system control subsystem;

Fig. 2A is a perspective view of the first illustrative embodiment of the automatically-activated bar code symbol reading device of the present invention, shown supported within the scanner support stand portion of its matching base unit, for automatic hands-free operation at a POS-station;

Fig. 2B is an elevated front view of the automatically-activated bar code symbol reading device of Fig. 2A, shown supported within the scanner support stand portion of its base unit for automatic hands-free operation;

Fig. 2C is a schematic diagram of the color-coded state indicating light sources provided on the exterior of the housing of the automatically-activated bar code symbol reading device of Figs. 2A and 2B, as well as all other automatically-activated bar code symbol reading devices of the present invention;

Fig. 2D is a perspective view of the automatically-activated bar code symbol reading device of Fig. 2A, shown being used in the automatic hands-on mode of operation;

Fig. 2E is an elevated, cross-sectional side view taken along the longitudinal extent of the automatically-activated bar code symbol reading device of Figs. 2A and 2B, showing the various components contained therein;

Fig. 2F is a cross-sectional plan view of the automatically-activated bar code symbol reading device of Figs. 2A and 2B taken along line 2F-2F of Fig. 2E, showing the various components contained therein; the next figure is Fig 15A1;

Figs. 15A1 through 15A4, taken together, is a system
block functional diagram of the first general operating system design for the automatically-activated laser scanning bar code symbol reading system of the present invention, wherein automatic IR-based object detection is employed during system operation; the next figure is Fig. 20A1; Figs. 20A1 to 20E, taken together, show a high level flow chart of the control process carried out by the control subsystem of the bar code symbol reading system of Figs. 15A through 15A4; Fig. 21 is a state diagram illustrating the various states that the automatically-activated bar code symbol reading system of Figs. 15A1 through 15A4 may undergo during the course of its programmed operation; the next figure is Fig. 42A Figs. 42A through 42C are perspective views of the automatically-activated bar code symbol reading system of Fig. 2A being used to read a bar code symbol menu in accordance with the principles of the present invention.

DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS OF THE PRESENT INVENTION

[0019] Referring to the figures in the accompanying Drawings, the various illustrative embodiments of the automatically-activated laser scanning bar code symbol reading system of the present invention will be described in great detail, wherein like elements will be indicated using like reference numerals.

[0020] Prior to detailing the various illustrative embodiments of the present invention, it will be helpful to first provide a brief overview of the system and method thereof.

[0021] As illustrated in Blocks A and B of Fig. 1, the present invention teaches an automatically-activated bar code symbol reading system 1000 comprising a bar code symbol reading mechanism 1001 contained within a hand-supportable housing 1002 having a manually-activatable data transmission switch 1003. During symbol reading operations, the bar code symbol reading mechanism 1001 automatically generates a visible laser scanning pattern 1004 for repeatedly reading one or more bar code symbols 1005 on an object 1005B within a bar code symbol reading cycle, and automatically generating a new symbol character data string 1006A, or 1006B, respectively, in response to each bar code symbol read thereby. In general, each bar code symbol reading cycle has a predetermined time extent controlled by one or more timers that are periodically monitored during system operation.

[0022] During the first step of the bar code symbol reading method of the present invention illustrated at Block A of Fig. 1, the user 1007 visually aligns the visible laser scanning pattern 1004 with a particular bar code symbol 1005A on an object (e.g. product, bar code menu, etc.) 1005B so that the bar code symbol is scanned, detected and decoded in a cyclical manner during each bar code symbol reading cycle. Each time the scanned bar code symbol is successfully read during a bar code symbol reading cycle, a new bar code symbol character string, schematically depicted as a circulating-arrow structure 1006A, is produced while an indicator light 1008 on the hand-supportable housing 1002 is actively driven.

[0023] As indicated at Block B in Fig. 1, upon actuation of the data transmission switch 1003 during the bar code symbol reading cycle which, in general, can be achieved by changing the state of the switch; a data transmission control activation signal is internally produced, thereby enabling a (currently or subsequently) produced symbol character data string, schematically depicted as a directional-arrow structure 1006B, to be selected and transmitted to the host system 1009.

[0024] By virtue of the present invention, automatically-activated hand-supportable bar code symbol readers are now able to accurately read, in an unprecedented manner, diverse types of bar code symbols on bar code menus, consumer products positioned in crowded POS environments, and other objects requiring automatic identification and/or information access and processing.

[0025] In Figs. 1 to 8D, twenty-one different embodiments of the automatically-activated bar code symbol reading system of the present invention are shown. These twenty-one different embodiments can be classified into three different types of generalized system designs, each based on the general manner in which its underlying laser scanning mechanism is automatically-activated and controlled during the bar code symbol reading process of the present invention. These three different system designs are illustrated in Figs. 1A, 1B and 1C. In each of these generalized system designs, activation of the bar code symbol detection and bar code symbol reading operations is carried out in a fully automatic manner, without the use of a manually-activated trigger or like mechanism, as disclosed, for example, in US Patent Nos. 5,828,046; 5,828,049; 5,825,012; 5,808,285; 5,796,091; 5,789,730; 5,789,731; 5,777,315; 5,767,501; 5,736,482; 5,661,292; 5,627,359; 5,616,908; 5,591,953; 5,557,093; 5,528,024; 5,525,798; 5,484,992; 5,468,951; 5,425,525; 5,240,971; 5,340,973; 5,260,553.

Prior to describing each of the illustrative embodiments of the present invention in detail, it will be helpful at this juncture to briefly describe each of the three generalized system designs of the present invention.

First Generalized System Design For The Automatically-Activated Bar Code Symbol Reading Device Of The Present Invention

[0026] The first generalized system design of the present invention is shown in Fig. 1A. Eight illustrative embodiments of this first generalized system design are represented by the first (2A), fourth (3A), seventh (4A), tenth (5A), thirteenth (6A), sixteenth (7A), nineteenth (8A) and twenty-second (8E1) embodiments shown in Figs. 2A to 2H, 3A to 3C, 4A to 4D, 5A, 6A, 7A, 8A, and 8E1,
respectively. In each such illustrative embodiment of the present invention, the hand-supportable, body-wearable or desktop-supportable bar code symbol reading device (hereinafter referred to as hand-supportable bar code symbol reading device) includes an automatically-activated bar code symbol scanning engine, embedded within the housing of the device. While hand-held, finger-supported, desktop-supported and body-wearable housings will be disclosed hereinafter for the bar code symbol reading device of the present invention, the term "hand-supportable housing" as used hereinafter and in the Claims to Invention shall be deemed to include all such housing designs, as well as an infinite array of variations on the form factors thereof. In general, any of the automatically-activated laser scanning bar code symbol reading engines shown in Figs. 9A to 9D, 10A to 10D, 11A, 13A and 14A can be embodied within the scanner housing of the bar code symbol reading device. In the illustrative embodiments, particular laser scanning engine designs have been incorporated into the scanner housing of the bar code symbol reading device for illustrative purposes. It is understood, however, that other laser scanning engine designs can be integrated into the scanner housings of such bar code symbol reading devices.

[0027] As indicated in Fig. 1A, the automatically-activated bar code symbol scanning device of the first general system design 1 comprises a number of subsystems, namely: an IR-based object detection subsystem 2 as taught in prior US Patent Nos. 5,260,553 and 5,808,285, a laser-based bar code symbol detection subsystem 3; a laser-based bar code symbol reading subsystem 4; a data transmission subsystem 5; a state indication subsystem 6; a data transmission activation switch or control device 7A integrated with the scanner housing in part or whole; a mode-selection sensor 7B integrated with the scanner housing in part or whole; and a system control subsystem 8 operably connected to the other subsystems described above. In general, system 1 has a number of preprogrammed operational states, namely: an Object Detection State; a Bar Code Symbol Detection State; a Bar Code Symbol Reading State; and a Data Transmission State.

[0028] Within the context of the system design shown in Fig. 1A, the IR-based object detection subsystem 2 performs the following primary functions during the object detection state: (i) automatically and synchronously transmitting and receiving pulse infrared (IR) signals within an IR-based object detection field 9 defined relative to the hand-supportable scanner housing (not shown) (ii) automatically detecting an object in at least a portion of the IR-based object detection field 9 by analysis of the received IR pulse signals; and (iii) in response thereto, automatically generating a first control activation signal A1 indicative of such automatic detection of the object within the object detection field. As shown in Fig. 1A, the first control activation signal A1 = 1 is provided to the system control subsystem 8 for detection, analysis and programmed response.

[0029] As shown in the figures hereof, object detection, bar code detection and bar code reading fields 9, 10 and 11, respectively, have been schematically represented only in terms of their general geometrical boundaries. For purposes of clarity, the geometrical characteristics of these fields have not been shown. Notably, however, such characteristics can be ascertained from the various references relating thereto which are identified and incorporated herein by reference.

[0030] Within the context of the system design shown in Fig. 1A, the laser-based bar code symbol detection subsystem 3 performs the following primary functions during the bar code symbol detection state: (i) automatically generating a visible laser scanning pattern of predetermined characteristics within the laser-based bar code (symbol) detection field 10, defined relative to the scanner housing (not shown), to enable scanning of a bar code symbol on the detected object; (ii) automatically processing scan data collected from the bar code symbol detection field 10 and detecting the presence of the bar code symbol thereon; and (iii) automatically generating a control activation signal A2 = 1 indicative thereof in response to the automatic detection of the bar code symbol. As shown in Fig. 1A, the second control activation signal A2 is provided to the system control subsystem 8 for detection, analysis and programmed response.

[0031] Within the context of the system design shown in Fig. 1A, the laser-based bar code symbol reading subsystem 4 performs the following functions during the bar code symbol reading state: (i) automatically generating a visible laser scanning pattern of predetermined characteristics within the laser-based bar code (symbol) reading field 11 defined relative to the scanner housing, to enable scanning of the detected bar code symbol therein; (ii) automatically decoding processing scan data collected from the bar code symbol reading field 11 so as to detect the bar code symbol on the object; (iii) automatically generating a third control activation signal A3 = 1 indicative of a successful decoding operation, and producing decoded symbol character data representative of the detected and read bar code symbol. As shown in Fig. 1A, the third control activation signal A3 is provided to the system control subsystem 8 for detection, analysis and programmed response.

[0032] Within the context of the system design shown in Fig. 1A, the data transmission subsystem 5 during the Data Transmission State automatically transmits produced symbol character data to the host system (to which the bar code reading device is connected) or to some other data storage and/or processing device, only when the system control subsystem 8 detects the following conditions: (i) generation of third control activation signal A3 = 1 within a predetermined time period, indicative that the bar code symbol has been read; and (ii) generation of data transmission activation control signal A4 = 1 (e.g. produced from manually-activatable switch 7A) within a predetermined time frame, indicative that the user desires the produced bar code symbol character data to be
transmitted to the host system or intended device.

[0033] Within the context of the system design shown in Fig. 1A, the state-selection sensor 7B has two primary functions: (i) to automatically generate the fourth control activation signal \(A_3 = 1 \) whenever the scanner housing has been placed within its support stand, or placed on a countertop or like surface in those instances where it has been designed to do so, so that the system is automatically induced into its automatic hands-free mode of operation; and (ii) to automatically generate the fourth control activation signal \(A_4 = 0 \) whenever the scanner housing has been removed from its support stand, or lifted off of a countertop or like surface in those instances where it has been designed to do so, so that the system is automatically induced into its automatic hands-on mode of operation. In the automatic hands-free mode of operation, the mode-select sensor 7B effectively overrides the data transmission switch 7A. In the automatic hands-on mode of operation, the data transmission switch 7A effectively overrides the mode-select sensor 7B.

[0034] Within the context of the system design shown in Fig. 1A, the state indication subsystem 6 performs the following functions: automatically monitors the state of operation of the system at each instant of time; and automatically produces visual indication (e.g. color-coded light) signals from the scanner housing designed to inform the user of the current state of operation of the system (e.g. blue to indicate the object detection state, red to indicate the bar code detection state, yellow to indicate the bar code reading state, and green to indicate the symbol character data transmission state). As will be described in greater detail hereinafter, such state indication signals provide the user with visual feedback on the states of operation of the system, thereby improving the intuitiveness and facility of operation of the system in diverse application environments.

[0035] Within the context of the system design shown in Fig. 1A, the state-control subsystem 8 performs the following primary functions: (i) automatically receiving control activation signals \(A_1, A_2, A_3 \) and \(A_4 \); (ii) automatically generating enable signals \(E_1, E_2, E_3, E_4, E_5, E_6 \), and \(E_7 \); and (iii) automatically controlling the operation of the other subsystems in accordance with a system control program carried out by the system control subsystem 8 during the various modes of system operation.

[0036] In general, the geometrical and optical characteristics of laser scanning patterns generated by the laser-based bar code symbol detection subsystem 3 and the laser-based bar code symbol reading subsystem 4 will depend on each particular embodiment of the bar code symbol reading system of the present invention. In most applications, the laser scanning patterns generated within the bar code detection and reading fields will be substantially congruent, and if not substantially congruent, then arranged so that the bar code symbol reading field 11 spatially-overlaps the bar code symbol detection field 10 to improve the scanning efficiency of the system. Also, the IR-based object detection field 9 will be arranged relative to the bar code detection field 10 so that it spatially-encompasses the same along the operative scanning range of the system defined by the geometrical characteristics of the bar code reading field 11 thereof.

[0037] In general, detected energy reflected from an object during object detection can be optical radiation or acoustical energy, either sensible or non-sensible by the user, and may be either generated from the automatic bar code reading device or an external ambient source. However, the provision of such energy is preferably achieved by transmitting a wide beam of pulsed infrared (IR) light away from transmission aperture of the scanner, as taught herein. In the preferred embodiment, the object detection field 9, from which such reflected energy is collected, is designed to have a narrowly diverging pencil-like geometry of three-dimensional volumetric expanse, which is spatially coincident with at least a portion of the transmitted infrared light beam. This feature of the present invention ensures that an object residing within the object detection field 9 will be illuminated by the infrared light beam, and that infrared light reflected therefrom will be directed generally towards the transmission aperture of the housing where it can be automatically detected to indicate the presence of the object within the object detection field 9.

[0038] Initially, system control subsystem 8 provides enable signal \(E_1 = 1 \) to the IR-based object detection subsystem 2. When an object is presented within the IR-based object detection field 9, the object is automatically detected by the IR-based object detection subsystem 2. In response thereto, the IR-based object detection system automatically generates a control activation signal \(A_1 = 1 \). When control activation signal \(A_1 = 1 \) is detected by the system control subsystem 8, it automatically activates the laser-based bar code symbol detection subsystem 3 by producing enable signal \(E_2 \). This causes the laser-based bar code detection subsystem 3 to generate a laser scanning pattern of predetermined characteristics within the laser-based bar code detection field 10. When the laser scanning pattern scans a bar code symbol on the detected object, scan data signals are produced therefrom, collected, detected and processed to determine whether a bar code symbol has been scanned within the bar code symbol detection field 10. If the scanned bar code symbol is detected, then the system control subsystem 8 automatically generates enable signal \(E_3 \) and \(E_4 \) so as to activate the bar code symbol reading subsystem 4. In response thereto, the laser-based bar code reading subsystem 4 automatically generates a laser scanning pattern within the laser-based bar code reading field 11. If the scanned bar code symbol is read within a predetermined period of time, and the manually-activated data transmission switch 7A is depressed within a pre-
determined time frame established by the system control subsystem 8, then the system control subsystem 8 automatically activates the data transmission subsystem 5. In response thereto, the data transmission subsystem 5 automatically transmits the produced/buffered symbol character data to the host system (to which the bar code symbol reader is connected), a data storage buffer (e.g. disposed in a portable data collection device connected to the bar code symbol reader), or other data storage/processing device.

[0039] By virtue of the novel system control architecture, the user is permitted to read bar code symbols in a highly intuitive manner, wherein object detection, bar code detection, and bar code symbol reading are carried out in an automatic manner while data transmission of decoded symbol character data to the host device is enabled by manual-activation of a switch, button or like device located on the exterior of the hand-supportable scanner housing. In the preferred embodiment, a visual state indicator is provided on the scanner housing for visually indicating that a bar code symbol has been successfully read in a fully-automatic manner, and that the system is ready for data transmission enablement to the host system or like device. When the visual indicator indicates that a bar code symbol is being read and decoded symbol character data is being generated, the user need only depress the data transmission activation switch on the scanner housing to send subsequently produced symbol character data to the host system or like device. Failure to depress the data transmission switch 7A within the preallotted time frame during automatic bar code symbol reading results in there not being any symbol character data transmission to the host system.

[0040] The structure and functionalities of the first general system design of Fig. 1A described above are shown in greater detail in the system embodiment of Figs. 15A1 through 15A4, and Figs. 20A1 through 21. In this system embodiment, the IR-based object detection subsystem 2 is realized from various electro-optical and electro-mechanical components assembled together as shown in Figs. 15A1 through 15A4, so as to enable automatic detection of objects within the IR-based object detection field 9 of the system. Likewise, the laser-based bar code symbol detection subsystem 3 is realized from various electro-optical and electro-mechanical components assembled together as shown in Fig. 15A1 to 15A4, so as to enable automatic detection of bar code symbols on detected objects within the laser-based bar code detection field of the system. Also, the laser-based bar code symbol reading subsystem 4 is realized from various electro-optical and electro-mechanical components assembled together so as to enable automatic reading of detected bar code symbols within the laser-based bar code reading field 11 of the system. As will be described in greater detail hereinafter, this system embodiment requires a complex control subsystem architecture, but offers a significant improvement in power conservation which can be very important in portable and mobile data acquisition applications.

Second Generalized System Design For The Automatically-Activated Bar Code Symbol Reading Device Of The Present Invention

[0041] The second generalized system design of the present invention is shown in Fig. 1B. The automatically-activated bar code symbol scanning engine of the second general system design 15 comprises a number of subsystems, namely: a laser-based object detection subsystem 16 as taught in prior US Patent Nos. 4,933,538 to Heiman, et al., a laser-based bar code symbol detection subsystem 17; a laser-based bar code symbol reading subsystem 18; a data transmission subsystem 19; a state indication subsystem 20; and a data transmission activation switch or control device 21A integrated with the scanner housing in part or whole; a mode-selection sensor 21B integrated with the scanner housing it part or whole; and a system control subsystem 22 operably connected to the other subsystems described above. In general, system 15 has a number of preprogrammed states of operation, namely: an Object Detection State; a Bar code Symbol Detection State; a Bar code Symbol Reading State; and a Data Transmission State.

[0042] Within the context of the system design shown in Fig. 1B, the laser-based object detection subsystem 16 performs the following primary functions: (i) automatically generates and scans a low-power pulsed (invisible) laser scanning beam across an object within a laser-based object detection field 23 defined relative to the hand-supportable scanner housing (not shown); (ii) automatically detects an object in at least a portion of the laser-based object detection field by analysis of collected scan data; and (iii) in response thereto, automatically generating a first control activation signal A_1 indicative of such automatic detection of the object within the object detection field 23. As shown in Fig. 1B, the first control activation signal A_1 is provided to the system control subsystem 22 for detection, analysis and programmed response.

[0043] Within the context of the system design shown in Fig. 1B, the laser-based bar code symbol detection subsystem 17 performs the following primary functions during the Bar Code Symbol Detection State: (i) automatically generating a laser scanning pattern of predetermined characteristics within the laser-based bar code (symbol) detection field 24, defined relative to the scanner housing, to enable scanning of a bar code symbol on the detected object; (ii) automatically processing scan data collected from the bar code symbol detection field 24 and detecting the presence of the bar code symbol thereon; and (iii) automatically generating a control activation signal A_2 indicative thereof in response to the automatic detection of the bar code symbol. As shown in Fig. 1B, the second control activation signal A_2 is provided to the system control subsystem 22 for detection, analysis and programmed response.
Within the context of the system design shown in Fig. 1B, the laser-based bar code symbol reading subsystem 18 performs the following functions during the Bar Code Symbol State: (i) automatically generating a visible laser scanning pattern of predetermined characteristics within the laser-based bar code (symbol) reading field 25 defined relative to the scanner housing, to enable scanning of the detected bar code symbol therein; (ii) automatically decode processing scan data collected from the bar code symbol reading field 25 so as to detect the bar code symbol on the detected object; (iii) automatically generating a third control activation signal \(A_3 = 1 \) indicative of a successful decoding operation, and producing decoded symbol character data representative of the detected and read bar code symbol. As shown in Fig. 1B, the third control activation signal \(A_3 \) is provided to the system control subsystem 22 for detection, analysis and programmed response.

As shown in the figures hereof, object detection, bar code detection and bar code reading fields 23, 24 and 25, respectively, have been schematically represented only in terms of their general geometrical boundaries. For purposes of clarity, the geometrical characteristics of these fields have not been shown. Notably, however, such characteristics can be ascertained from the various references relating thereto which are identified and incorporated herein by reference.

Within the context of the system design shown in Fig. 1B, the data transmission subsystem 19 during the Data Transmission State, automatically transmits produced symbol character data to the host system (to which the bar code reading device is connected) or to some other data storage and/or processing device, only when the system control subsystem detects at least the following conditions: (1) generation of third control activation signal \(A_3 = 1 \) within a predetermined time period, indicative that the bar code symbol has been read; and (ii) generation of data transmission control activation signal \(A_4 = 1 \) (e.g. produced from manually-activatable switch 21A) within a predetermined time frame, indicative that user desires the produced bar code symbol character data to be transmitted to the host system or intended device.

Within the context of the system design shown in Fig. 1B, the state-selection sensor 21B has two primary functions: (i) to automatically generate the fourth control activation signal \(A_4 = 1 \) whenever the scanner housing has been placed within its support stand, or placed on a countertop or like surface in those instances where it has been designed to do so, so that the system is automatically induced into its automatic hands-free mode of operation; and (ii) to automatically generate the fourth control activation signal \(A_4 = 0 \) whenever the scanner housing has been removed from its support stand, or lifted off of a countertop or like surface in those instances where it has been designed to do so, so that the system is automatically induced into its automatic hands-on mode of operation. In the automatic hands-free mode of operation, the mode-select sensor 21B effectively overrides the data transmission switch 21A. In the automatic hands-on mode of operation, the data transmission switch 21A effectively overrides the mode-select sensor 21B.

Within the context of the system design shown in Fig. 1B, the state indication subsystem 20 performs the following functions: automatically monitor the state of operation of the system at each instant of time; and automatically produce visual indication (e.g. color-coded light) signals from the scanner housing designed to inform the user of the current state of operation of the system (e.g. blue to indicate the object detection state, red to indicate the bar code detection state, yellow to indicate the bar code reading state, and green to indicate the symbol character data transmission state). As will be described in greater detail hereinafter, such state indication signals provide the user with visual feedback on the states of operation of the system, thereby improving the intuitiveness and facility of operation of the system in diverse application environments.

Within the context of the system design shown in Fig. 1B, the system control subsystem 22 performs the following primary functions: (i) automatically receiving control activation signals \(A_1, A_2, A_3 \) and \(A_4 \); (ii) automatically generating enable signals \(E_1, E_2, E_3, E_4, E_5, E_6 \), and \(E_7 \); and (iii) automatically controlling the operation of the other subsystems in accordance with a system control program carried out by the system control subsystem 22 during the various modes of system operation.

In general, the geometrical and optical characteristics of laser scanning patterns generated by the laser-based bar code symbol detection subsystem 17 and the laser-based bar code symbol reading subsystem 18 will depend on each particular embodiment of the bar code symbol reading system of the present invention. In most applications, the laser scanning patterns generated within the bar code detection and reading fields will be substantially congruent; and if not substantially congruent, then arranged so that the bar code symbol reading field spatially-overlaps the bar code symbol detection field to improve the scanning efficiency of the system. Also, the laser-based object detection field will be arranged relative to the bar code detection field so that it spatially-encumbrates the same along the operative scanning range of the system defined by the geometrical characteristics of the bar code reading field thereof.

Initially, system control subsystem 22 provides enable signal \(E_1 = 1 \) to the laser-based object detection subsystem 16. When an object is presented within the laser-based object detection field 23, the object is automatically detected by the laser-based object detection subsystem 16. In response thereto, the laser-based object detection system 16 automatically generates a control activation signal \(A_1 = 1 \). When control activation signal \(A_1 = 1 \) is detected by the control system subsystem 22, the system control subsystem automatically activates the laser-based bar code symbol detection subsystem 17 by...
producing enable signal E_2. This causes the laser-based bar code detection subsystem 17 to generate a visible laser scanning pattern of predetermined characteristics within the laser-based bar code detection field 24. When the laser scanning pattern scans a bar code symbol on the detected object, scan data signals are produced therefrom, collected, detected and processed to determine whether a bar code symbol has been detected within the bar code symbol detection field 24. If the scanned bar code symbol is detected, then the system control subsystem 22 automatically generates enable signal E_3 and E_4 so as to activate the bar code symbol reading subsystem 18. In response thereto, the laser-based bar code reading subsystem 18 automatically generates a visible laser scanning pattern within the laser-based bar code reading field 25, scans the detected bar code symbol disposed therewithin, collects scan data therefrom, decodes the detected bar code symbol, generates symbol character data representative of the decoded bar code symbol, and buffers the symbol character data in memory. If the detected bar code symbol is read within a predetermined period of time, and the manually-activated data transmission switch 21 A is depressed within a predetermined time frame, then the system control subsystem 22 automatically activates the data transmission subsystem 19. In response thereto, the data transmission subsystem 19 automatically transmits the produced/buffered symbol character data to the host system (to which the bar code symbol reader is connected), a data storage buffer (e.g. disposed in a portable data collection device connected to the bar code symbol reader), or other data storage/processing device.

[0052] By virtue of the novel system control architecture, the user is permitted to read bar code symbols in a highly intuitive manner, wherein object detection, bar code detection, and bar code symbol reading are carried out in an automatic manner while data transmission of decoded symbol character data to the host device is enabled by manual-activation of a switch, button or like device located on the exterior of the hand-supportable scanner housing. In the preferred embodiment, a visual indicator is provided on the scanner housing for visually indicating that a bar code symbol has been successfully read in a fully-automatic manner, and that the system is ready for data transmission to the host system or like device. When the visual indicator indicates that a bar code symbol is being read and decoded symbol character data is being generated, the user need only depress the data transmission control activation switch 21 A on the scanner housing to send subsequently produced symbol character data to the host system or like device.

Third Generalized System Design For The Automatically-Activated Bar Code Symbol Reading Device Of The Present Invention

[0053] The third generalized system design of the present invention is shown in Fig. 1C.

[0054] The automatically-activated bar code symbol scanning engine of the third general system design 30 comprises a number of subsystems, namely: a laser-based bar code symbol detection subsystem 31; a laser-based bar code symbol reading subsystem 32; a data transmission subsystem 33; a state indication subsystem 34; a data transmission activation switch or control device 35A integrated with the scanner housing (not shown) in part or whole; a mode-selection sensor 35B integrated with the scanner housing it part or whole; and a system control subsystem 36 operably connected to the other subsystems described above. In general, the system 30 has a number of preprogrammed states of operation, namely: a Bar Code Symbol Detection State; a Bar code Symbol Reading State; and a Data Transmission State.

[0055] Within the context of the system design shown in Fig. 1C, the laser-based bar code symbol detection subsystem 31 performs the following primary functions during the Bar Code Symbol Detection State: (i) automatically generates a pulsed visible laser scanning pattern of predetermined characteristics within a laser-based bar code (symbol) detection field 37, defined relative to the scanner housing, to enable scanning of a bar code symbol on the detected object; (ii) automatically processes scan data collected from the bar code symbol detection field 37 and detects the presence of the bar code symbol thereon; and (iii) automatically generates a control activation signal A_3=1 indicative thereof in response to the automatic detection of the bar code symbol. As shown in Fig. 1C, the second control activation signal A_2 is provided to the system control subsystem 36 for detection, analysis and programmed response.

[0056] Within the context of the system design shown in Fig. 1C, the laser-based bar code symbol reading subsystem 32 performs the following functions during the Bar Code Symbol Reading State: (i) automatically generates a visible laser scanning pattern of predetermined characteristics within a laser-based bar code (symbol) reading field 38 defined relative to the scanner housing, to enable scanning of the detected bar code symbol therein; (ii) automatically decode-processes scan data collected from the bar code symbol reading field 38 so as to detect the bar code symbol on the detected object; (iii) automatically generates a third control activation signal A_3=1 indicative of a successful decoding operation, and produces decoded symbol character data representative of the detected and read bar code symbol. As shown in Fig. 1C, the third control activation signal A_3 is provided to the system control subsystem 36 for detection, analysis and programmed response.

[0057] Within the context of the system design shown in Fig. 1C, the data transmission subsystem 33 during the Data Transmission State automatically transmits produced symbol character data to the host system (to which the bar code reading device is connected) or to some other data storage and/or processing device, only when the system control subsystem 36 detects the following conditions: (1) generation of third control activation signal
The following primary functions: (i) automatically receiv-

Within the context of the system design shown

improving the intuitiveness and facility of operation of the

As will be described in greater detail hereinafter, such

functions: (i) to automatically generate the fourth control

Within the context of the system design shown

35B.

switch 35A effectively overrides the mode-

the data transmission switch 35A. In the automatic

matically induced into its automatic hands-free mode of op-

symbol reader), or other data storage/

portable data collection device connected to the bar code

the user need only depress the data trans-

field to improve the scanning efficiency of the system.

[0058] Within the context of the system design shown in

Fig. 1C, the state-selection sensor 35B has two primary

functions: (i) to automatically generate the fourth control

activation signal A4=1 whenever the scanner housing

has been placed within its support stand, or placed on a

countertop or like surface in those instances where it has

been designed to do so, so that the system is automati-

cally induced into its automatic hands-free mode of op-

eration; and (ii) to automatically generate the fourth con-

trol activation signal A4=0 whenever the scanner housing

has been removed from its support stand, or lifted off of

countertop or like surface in those instances where it has

been designed to do so, so that the system is automati-

cally induced into its automatic hands-on mode of op-

eration. In the automatic hands-free mode of opera-

tion, the mode-select sensor 35B effectively overrides the

data transmission switch 35A. In the automatic

hands-on mode of operation, the data transmission

switch 35A effectively overrides the mode-select sensor

35B.

[0059] Within the context of the system design shown in

Fig. 1C, the state indication subsystem 34 performs the

following functions: automatically monitors the state

of operation of the system at each instant of time; and

automatically produces visual indication (e.g. color-cod-

ed light) signals from the scanner housing designed to

inform the user of the current state of operation of the

system (e.g., red to indicate the bar code detection state,

yellow to indicate the bar code reading state, and green to

indicate the symbol character data transmission state).

As will be described in greater detail hereinafter, such

state indication signals provide the user with visual feedback

on the states of operation of the system, thereby improving the intuitiveness and facility of operation of the

system in diverse application environments.

[0060] Within the context of the system design shown in

Fig. 1C, the system control subsystem 36 performs the

following primary functions: (i) automatically receiv-

ing control activation signals A1, A2, A3 and A4; (ii) auto-

matically generating enable signals E2, E3, E4, E5, E6,

and E7; and (iii) automatically controlling the operation

of the other subsystems in accordance with a system

control program carried out by the system control sub-

system 36 during the various modes of system operation.

[0061] In general, the geometrical and optical character-

istics of laser scanning patterns generated by the la-

ser-based bar code symbol detection subsystem 31 and

the laser-based bar code symbol reading subsystem 32

will depend on each particular embodiment of the bar

code symbol reading system of the present invention. In

most applications, the laser scanning patterns generated

within the bar code detection and reading fields will be

substantially congruent, and if not substantially congru-

tent, then arranged so that the bar code symbol reading

field spatially overlaps the bar code symbol detection

field to improve the scanning efficiency of the system.

[0062] Initially, system control subsystem 36 provides

enable signal E2=1 to the laser-based bar code detection

subsystem 31. This causes the laser-based bar code de-

tection subsystem 31 to generate a pulsed laser scanning

pattern of predetermined characteristics within the laser-

based bar code detection field 37. As shown in Fig. 26,

the pulse-on duration of the laser signal is about 50%,

while the pulse-off duration is also about 50%. When the

laser scanning pattern scans a bar code symbol on the

detected object, scan data signals are produced there-

from, collected, detected and processed to determine

whether a bar code symbol has been detected within the

bar code symbol detection field 37. If the scanned bar

code symbol is detected, then the system control sub-

system 36 automatically generates enable signal E2=1 so

as to activate the bar code symbol reading subsystem

32. In response thereto, the laser-based bar code reading

subsystem 32 automatically generates a visible laser

scanning pattern within the laser-based bar code reading

field 38. Scans the detected bar code symbol disposed

therewithin, collects scan data therefrom, decodes the
detected bar code symbol, generates symbol character

data representative of the decoded bar code symbol, and

buffers the symbol character data in memory. If the de-
tected bar code symbol is read within a predetermined

period of time, and the manually-actuated data transmis-
sion switch 35A is depressed within a predetermined time

frame established by the system control subsystem 36,

then the system control subsystem 36 automatically ac-
tivates the data transmission subsystem 33. In response

thereto, the data transmission subsystem automatically

transmits the produced/buffered symbol character data
to the host system (to which the bar code symbol reader

is connected), a data storage buffer (e.g. disposed in a

portable data collection device connected to the bar code

symbol reader), or other data storage/processing device.

[0063] By virtue of the novel system control architec-
ture, the user is permitted to read bar code symbols in a

highly intuitive manner, wherein bar code detection and

bar code symbol reading are carried out in an automatic

manner while data transmission of decoded symbol char-

acter data to the host device is enabled by manual activ-

ation of a switch, button or like device located on the

exterior of the hand-supportable scanner housing. In the

preferred embodiment, a visual indicator is provided on

the scanner housing for visually indicating that a bar code

symbol has been successfully read in a fully-automatic

manner, and that the system is ready for data transmis-

sion enablement to the host system or like device. When

the visual indicator indicates that a bar code symbol is

being read and decoded symbol character data is being

generated, the user need only depress the data trans-

mission enabling switch on the scanner housing to send
the subsequently produced data to the host system or like device.

[0064] The structure and functionalities of the third general system design of Fig. 1C described above does not provide for automatic object detection within the system, but simply provides a continuously-operating bar code symbol presence detection subsystem for automatic detection of bar codes within the scanning field of the system.

[0065] The laser-based bar code symbol detection subsystem 31 is realized from various electro-optical and electro-mechanical components assembled together, so as to enable automatic detection of bar code symbols on detected objects within the laser-based bar code detection field of the system. Also, the laser-based bar code symbol reading subsystem is realized from various electro-optical and electro-mechanical components assembled together, so as to enable automatic reading of detected bar code symbols within the laser-based bar code reading field of the system. As will be described in greater detail hereinafter, this system design requires that a low-power (non-visible) laser beam be continuously or periodically generated within the bar code symbol detection field during system operation, thus consuming electrical power which can be significant in portable and mobile scanning applications where battery power is used.

[0066] While each of the three generalized bar code symbol reading systems described hereinabove can be connected to its base unit, host computer, data processor, data storage device, or like device by way of wires wrapped in a flexible cord-like structure, it will be preferred in many embodiments to connect the bar code symbol reading system of the present invention to its base unit, host computer, data processor or data storage device or like device by way of wireless data communication link. In general, the wireless data communication link can be realized in a variety of different ways, namely: using the two-way RF communication link of the type disclosed in US Patent Nos. 4,460,120, 5,321,246 and 5,142,550 or using the one-way data transmission link as disclosed in US Patent No. 5,808,285 to Rockstein, et al; etc.

First Illustrative Embodiment Of Automatically-Activated Bar Code Symbol Reading System Of The Present Invention

[0067] As shown in Figs. 2A to 2F, the bar code symbol reading system of the first illustrative embodiment 40 comprises an automatically-activated portable bar code symbol reading device 41 operably associated with a base unit 42 having a scanner support stand 43. Bar code symbol reading device 41 is operably connected with its the base unit 42 by way of a one-way or two-way electromagnetic link established between bar code symbol reading device 41 and its mated base unit 42. After each successful reading of a bar code symbol by the bar code symbol reading device 41, symbol character data (representative of the read bar code symbol) is generated, and if timely activated, then subsequently produces symbol character data collected from the same read bar code symbol which is automatically transmitted to the host device. Operable interconnection between the base unit 42 and a host system (e.g. electronic cash register system, data collection device, etc.) 45 is achieved by a flexible multiwire communications cable 46 extending from the base unit and plugged directly into the said data-input communications port of the host computer system 45.

[0068] In the illustrative embodiment, electrical power from a low voltage direct current (DC) power supply (not shown) is provided to the base unit by way of a flexible power cable 47. Notably, this DC power supply can be realized in host computer system 45 or as a separate DC power supply adapter pluggable into a conventional 3-prong electrical socket. As will be described in greater detail hereinafter, a rechargeable battery power supply unit 55 is contained within bar code symbol reading device 41 in order to energize the electrical and electro-optical components within the device.

[0069] As illustrated in Fig. 2A and 2B, scanner support stand 43 is particularly adapted for receiving and supporting portable bar code symbol reading device 41 in a selected position without user support, thus providing a stationary, automatic hands-free mode of operation. In general, portable bar code reading device 41 includes an ultra-light weight hand-supportable housing 49 having a contoured head portion 49A and a handle portion 49B. As will be described in greater detail hereinafter, head portion 49A encloses electro-optical components which are used to generate and project a visible laser beam through light transmissive window 50 in housing head portion 49A, and to repeatedly scan the projected laser beam across its bar code detecting scanning field 10 and bar code reading field 11, both defined external to the hand-supportable housing.

[0070] As illustrated in Figs. 2A and 2B, the scanner support stand portion 43 includes a support frame which comprises a base portion 51A, a head portion support structure 51B, handle portion support structure 51C and a finger accommodating recess 51 D. As shown, base portion 51A has a longitudinal extent and is adapted for selective positioning with respect to a support surface, e.g. countertop surface, counter wall surface, etc. An aperture 51A 1 is formed in the base portion 51A to allow an piezo-electric transducer 559 to generate acoustical acknowledgement signals therethrough upon successful data transmission to the base unit. Head portion support structure 51B is connected to base portion 51A, for receiving and supporting the head portion of bar code symbol reading device 41. Similarly, handle portion support structure 51C is connected to base portion 51A, for receiving and supporting the handle, portion of the code symbol reading device. In order that the user’s hand can
completely grasp the handle portion of the hand-supportable bar code reading device, (i.e. prior to removing it off and away from the scanner support stand), finger-accommodating recess 51D is disposed between head and handle portion support structures 51B and 51C and base portion 51A of the support frame. In this way, finger-accommodating recess 51D is laterally accessible so that when the head and handle portions 49A and 49B are received within and supported by head portion support structure 51B and handle portion support structure 51C, respectively, the fingers of a user's hand can be easily inserted through finger accommodating recess 51D and completely encircle the handle portion of the hand-supportable device.

[0071] As shown in Fig. 2E, bar code symbol reading device 41 includes a mode-selector sensor 800 (e.g. electronic of electrical/mechanical sensor) located on the end portion of the hand-supportable housing. When the housing is placed in its stand, the mode select sensor 800 automatically senses the stand (or countertop surface) and generates a data transmission control activation signal A1=1, which overrides the data transmission activation switch 44 on the housing during the hands-free mode of operation when the bar code symbol reading device is picked up out of the housing, the mode-select sensor 800 generates A1=0, which is overridden by the date transmission activation switch 44 in the hands-on mode of operation.

[0072] As illustrated in Figs. 2E in particular, head portion 49A continuously extends into contoured handle portion 49B at an obtuse angle which, in the illustrative embodiment, is about 146 degrees. It is understood, however, that in other embodiments the obtuse angle may be in the range of about 135 to about 180 degrees. As this ergonomic housing design is sculptured (i.e. form-fitted) to the human hand, automatic hands-on scanning is rendered as easy and effortless as waving one's hand.

[0073] As illustrated in Figs. 2A through 2D, the head portion of housing 49A has a light transmission aperture 50 formed in upper portion of the front panel 52A, to permit visible laser light to exit and enter the housing, as will be described in greater detail hereinafter. The lower portion of front panel 52B is optically opaque, as are all other surfaces of the hand supportable housing.

[0074] As best shown in Figs. 2E and 2F, an automatically-activated laser-scanning bar code symbol reading engine 53 is securely mounted within the head portion of hand-supportable housing 49A, while a printed circuit (PC) board 54 and a rechargeable battery supply unit 55 are mounted within the handle portion of the hand-supportable housing portion 49B. A data packet transmission circuit 56 is realized on PC board 54 and is mounted within hand-supportable housing portion 49B for transmission of a data packet modulated RF carrier signal to a base unit associated with the automatic bar code symbol reading device. The structure and the functionalities of the different types of automatic bar code symbol reading engines that can be incorporated into the device of Fig. 2A will be described in greater detail hereinafter.

[0075] Referring to Figs. 15A1 through 15A4, and 20A1 through 21, the first generalized system design will now be described in greater detail. Notably, the structure and functions of the first generalized system design are provided within each of illustrative embodiments of the present invention described above relating to automatically-activated bar code symbol reading systems comprising an IR-based object detection subsystem, a laser-based bar code presence detection subsystem, a laser-based bar code symbol reading subsystem and data transmission activation subsystem, as illustrated in Fig. 1A.

[0076] As shown in Fig. 15A1-15A4, automatically-activated bar code symbol reading system 300 comprising a number of cooperating components, namely: a system override signal detection circuit 301 for detecting the production of a system override signal and producing in the presence thereof control activation signal A1=1; a primary oscillator circuit 301A for producing a primary clock signal CLK for use by the system override signal detection circuit 301 and object detection circuit 307; a first RC timing network 302 for setting the oscillation frequency of the primary oscillator circuit; means (e.g. Hall-effect sensor) 335 for producing a system override signal; a manually-activatable data transmission switch 303 for generating control activation signal A1=1 in response to activation of the switch; first control means 304, realized as a first control circuit C1, for performing localized system control functions; a second RC timing network 305 for setting a timer T1 in control circuit C1; means (e.g. an object sensing circuit 306 and an object detection circuit 307) for producing a first activation control signal A1=1 upon the detection of an object bearing a bar code in at least a portion of the object detection field; a laser beam scanning mechanism 308 for producing and scanning a visible laser beam across the bar code symbol on the detected object; photoreceiving circuit 309 for detecting laser light reflected off the scanned bar code symbol and producing an electrical signal D1 indicative of the detected intensity; an analog-to-digital (A/D) conversion circuit 310 for converting analog scan data signal D1 into a cor-
responding digital scan data signal \(D_2 \); a bar code symbol (presence) detection circuit 311 for processing digital scan data signal \(D_2 \) in order to automatically detect the digital data pattern of a bar code symbol on the detected object and produce control activation signal \(A_2 = 1 \); a third RC timing network 312 for setting a timer \(T_{BCD} \) in the bar code symbol detection circuit 311; second control means 313, realized as a second control circuit \(C_2 \), for performing local system control operations in response to the detection of the bar code symbol; third control means 314, realized as third control module \(C_3 \); timers \(T_2 \), \(T_3 \), \(T_4 \), and \(T_5 \) identified by reference numerals 315, 316, 317, and 318, respectively; a symbol decoding module 319 for processing digital scan data signal \(D_2 \) so as to determine the data represented by the detected bar code symbol, generate symbol character data representative thereof, and produce activation control signal \(A_3 = 1 \); a second control means \(C_3 \) uniquely capable of modifying control structures during system operation. Owing to the unique architecture of the control subsystem hereof, the automatically activated bar code symbol reading device hereof is capable of versatile performance and ultra-low power operation. The structure, function and advantages of this control subsystem architecture will become apparent hereinafter.

[0076] As will be described in greater detail hereinafter, second control circuit \(C_2 \) is capable of "overriding" (i.e. inhibit and/or enable) first control circuit \(C_1 \), whereas third control circuit \(C_3 \) is capable of overriding first and second control circuits \(C_1 \) and \(C_2 \), respectively. As shown in Figs. 15A1-15A4, such control override functions are carried out by the generation of control override signals (i.e. \(C_2 / C_1 \), \(C_3 / C_2 \) and \(C_3 / C_1 \)) transmitted between respective control structures during system operation. Owing to the unique architecture of the control subsystem hereof, the automatically activated bar code symbol reading device hereof is capable of versatile performance and ultra-low power operation. The structure, function and advantages of this control subsystem architecture will become apparent hereinafter.

[0077] As illustrated in Figs. 15A1-15A4, laser scanning circuit 308 comprises a light source 377 which, in general, may be any source of intense light suitably selected for maximizing the reflectivity from the object bearing a bar code symbol. In the preferred embodiment, light source 377 comprises a solid-state visible laser diode (VLD) which is driven by a conventional driver circuit 378. In the illustrative embodiment, the wavelength of visible laser light produced from the laser diode is preferably about 670 nanometers. In order to repeatedly scan the produced laser beam over the scanning field (having a predetermined spatial extent in front the light transmission window), any number of laser beam scanning mechanisms can be used.

[0079] In Figs. 15A1-15A4, the scanner driver air unit is schematically depicted by reference numeral 381. As the scanning mechanism can be realized in a variety of different ways, as illustrated hereinabove, a scanner motor 380 is used to represent this structure in the system. Notably, this scanning motor 380 need not be electromechanical in nature, but may be based on electro-optical beam scanning/steering principles employing, for example, cholesteric liquid crystal (CLC) Laser Beam Steering Arrays disclosed in U.S. Patent No. 5,459,591. Thus, the term "scanning motor" as used herein is understood as any means for moving, steering, swinging or directing the path of a light beam through space during system operation for the purpose of obtaining information relating to an object and/or a bar code symbol.

[0080] As shown in the generalized system diagram of Figs. 15A1-15A4, laser diode 377 and scanning motor 380 are enabled by enable signal \(E_1 \) provided as input to driver circuits 378 and 381. When enable signal \(E_1 \) is a logical "high" level (i.e. \(E_1 = 1 \)), a laser beam is generated and projected through the light transmissive window, and repeatedly scanned across the bar code symbol detection field. When a bar code symbol is present on the detected object (and bar code) residing within the bar code symbol detection field 10. When laser diode and scanning motor enable signal \(E_1 \) is a logical "low" (i.e. \(E_1 = 0 \)), there is no laser beam produced, projected, or scanned across the bar code symbol detection field 10.

[0081] When a bar code symbol is present on the detected object at the time of scanning, the user visually aligns the visible laser beam across the bar code symbol, and incident laser light on the bar code will be scattered/ reflected (typically according to Lambert's Law). This scattering/reflection process produces a laser light return signal of variable intensity which represents a spatial variation of light reflectivity characteristics of the pattern of bars and spaces comprising the scanned bar code symbol. Photoreceiving circuit 309 detects at least a portion of the reflected laser light of variable intensity and produces an analog scan data signal \(D_1 \) indicative of the detected light intensity.

[0082] In the illustrative embodiment, photoreceiving circuit 309 generally comprises a number of components, namely: laser light collection optics (e.g. planar or parabolic mirror 379, focusing lens 384) for focusing reflected laser light for subsequent detection; a photoreceiver 385 (e.g. a silicon photosensor) for detecting laser light focused by the light collection optics; and a frequency-selective filter 386A, mounted in front of photoreceiver 385, for transmitting thereto only optical radiation having wavelengths up to a small band above 670 nanometers. In order to prevent optical radiation slightly below 670 nanometers from passing through light transmission aperture and entering the housing, the light transmissive window disposed over the light transmission aperture) is realized as a plastic filter lens 386B is installed over the light transmission aperture of the housing. This plastic filter lens has optical characteristics which transmit only
optical radiation from slightly below 670 nanometers. In this way, the combination of plastic filter lens 386B at the transmission aperture and frequency-selective filter 386A before photoreceiver 385 cooperate to form a narrow band-pass optical filter having a center frequency \(f_o = 670 \) nanometers. By permitting only optical radiation associated with the visible laser beam to enter the housing, this optical arrangement provides improved signal-to-noise ratio for detected scan data signals \(D_1 \), as described in greater detail in U.S. Patent No. 5,789,731.

[0083] In response to reflected laser light focused onto photoreceiver 385, the photoreceiver produces an analog electrical signal which is proportional to the intensity of the detected laser light. This analog signal is subsequently amplified by preamplifier 387 to produce analog scan data signal \(D_1 \). In short, laser scanning circuit 308 and photoreceiving circuit 309 cooperate to generate analog scan data signals \(D_1 \) from the scanning field (i.e. bar code detection and reading fields), over time intervals specified by first and second control circuits \(C_1 \) and \(C_2 \) during normal modes of operation, and by third control module \(C_3 \) during "control override" modes of operation.

[0084] Upon entering the bar code symbol reading state, the third control module \(C_3 \) provides override control signal \(C_3/C_{1,2} \) to the first control circuit \(C_1 \). In response to control signal \(C_3/C_{1,2} \), the first control circuit \(C_1 \) produces enable signal \(E_1 = 1 \) which enables the laser scanning circuit 308, photo-receiving circuit 309 and A/D conversion circuit 310. In response to control signal \(C_3/C_2 \), the first control circuit \(C_1 \) produces enable signal \(E_2 = 0 \), which disables bar code symbol detector circuit 311. Thereafter, the third control module \(C_3 \) produces enable signal \(E_4 = 1 \) to enable symbol decoding module 319. In response to the production of such signals, the symbol decoding module 319 decode processes, scan line by scan line, the stream of digitized scan data contained in signal \(D_2 \) in an attempt to decode the detected bar code symbol within the second predetermined time period \(T_2 \) established and monitored by the third control module \(C_3 \). If the symbol decoding module 319 successfully decodes the detected bar code symbol within time period \(T_2 \), then symbol character data \(D_3 \) (representative of the decoded bar code symbol and typically in ASCII code format) is produced. Thereupon symbol decoding module 319 produces and provides the third control activation signal \(A_3 \) to the third control module \(C_3 \).

[0085] If the data transmission control activation signal \(A_4 = 1 \) has been produced by manually-activatable switch 303 within a predetermined time duration (i.e. time frame) set by a timer within the third control module \(C_3 \), then the third control module \(C_3 \) automatically induces a state transition from the bar code symbol reading state to the data (packet) transmission state. In response thereto, three distinct events are programmed to occur. Firstly, the third control module \(C_3 \) automatically produces and provides enable signal \(E_5 \) to data packet synthesis module 320. Secondly, symbol decoding module 319 stores symbol character data \(D_3 \) in a memory buffer associated with data packet synthesis module 320. Thirdly, the third control module \(C_3 \) produces and provides enable signal \(E_7 \) to the data packet transmission circuit 321. These enabling events activate the data (packet) transmission subsystem shown in Figs. 15A1-15A4. Upon activation of the data packet transmission subsystem, the subsequently produced symbol character data string is transmitted to the base unit 440 and therefrom to the host computer 441.

[0086] Alternatively, upon generation of control activation signals \(A_2 = 1 \) and \(A_3 = 1 \) within the time period established by the third system control module \(C_3 \), a different set of events can be programmed to occur. For example, the third control module \(C_3 \) can produce and provide enable signal \(E_6 \) to the data storage module, and thereafter produce and provide enable signal \(E_7 \) to the data transmission circuit 321. These enabling events activate the data (packet) transmission subsystem of the system shown in Fig. 15. Upon activation of the data packet transmission subsystem, the subsequently produced symbol character data string is transmitted to the base unit 440, and therefrom to the host computer 441.

[0087] In the illustrated embodiment, symbol decoding module 319, data packet synthesis module 320, and timers \(T_2, T_3, T_4 \) and \(T_5 \) are each realized using programmed microprocessor and accessible memory 334. Similarly, the third control module \(C_3 \) and the control functions which it performs at Blocks I to GG in Figs. 20A1 through 20E, for example, are realized as a programming implementation using techniques well known in the art.

[0088] The function of data packet synthesis module 320 is to use the produced symbol character data to synthesize a group of data packets for subsequent transmission to its mated base unit 440 by way of data packet transmission circuit 321. The construction of the data packet transmission circuit 321 will vary from embodiment to embodiment, depending on the type of data communication protocol being used in the particular embodiment of the bar code symbol reading system.

[0089] As illustrated in Figs. 15A1-15A4, the data packet transmission circuit 321 comprises a carrier signal generation circuit 430, a carrier signal frequency modulation circuit 431, a power amplifier 432, a matching filter 433, and a quarterwave (1/4) transmitting antenna element 434. The function of the carrier signal generation circuit 430 is to generate a carrier signal having a frequency in the RF region of the electromagnetic spectrum. In the illustrative embodiment, the carrier frequency is about 912 MHz, although it is understood that this frequency may vary from one embodiment of the present invention, to another embodiment thereof. As the carrier signal is being transmitted from transmitting antenna 434, frequency modulation circuitry 431 modulates the instantaneous frequency of the carrier signal using the digital data sequence (i.e. digital data stream) 435 constituting the group of data packets synthesized by the data packet synthesis module 320. The function of the power amplifier 432 is to amplify the power of the transmitted modu-
lated carrier signal so that it may be received by a base unit 440 located within a predetermined data transmission range (e.g. from about 0 to about 30 feet), illustrated in Figs. 2D and 3D, in particular.

[0090] Having described the detailed structure and internal functions of automatic bar code symbol reading device of the first generalized system design, the operation of the control system thereof will now be described while referring to the system block diagram shown in Figs. 15A1-15A4 and control Blocks A to GG shown in Figs. 20A1 to 20E.

[0091] Beginning at the START block of Main System Control Routine and proceeding to Block A of Fig. 20A1, the bar code symbol reading system is “initialized”. This initialization step involves: activating (i.e. enabling) system override detection circuit 301, first control circuit C1 (304), oscillator circuit 301, the system override signal producing means 333, and IR-based object sensing circuit 306; and deactivating (i.e. disabling) laser scanning circuit 308, photoreceiving circuit 309, and all subcircuits aboard ASIC chip 333 shown in Figs. 15A1-15A4 that are not associated with the system override detection circuit 301, i.e. object detection circuit 307, A/D conversion circuitry 310, second control circuit C2 (313), bar code presence detection circuit 311, third control module C3 (314), symbol decoding module 319, data packet synthesis module 320, and data packet transmission circuit 321. During this initialization step, all timers T1, T2, T3, T4, and T5 are reset to t = 0, the Decoded Symbol Data Buffer (maintained within the symbol decoding module 319) is initialized, and the A3=1 Flag (monitored within the third control module C3) is cleared.

[0092] Proceeding to Block B in Fig. 20A1, the first control circuit C1 checks to determine whether it has received control activation signal A0=1 from system override detection circuit 301. If this signal is not received, then the first control circuit C1 returns to Block A. If control activation signal A0=1 is received, then at Block C the first control circuit C1 activates (i.e. enables) the object detection circuit 307 by producing enable signal E0, and drives the object detection state indicator 451 using enable signal E0. At Block D, the first control circuit C1 determines whether it has received control activation signal A1=1, indicating that an object has been detected within the object detection field 9 of the system. If control activation signal A1=1 is not received at Block D, then at Block E the first control circuit C1 determines whether it has received control activation signal A0=1 at Block E, then the system control process returns to Block A in Fig. 20A1, as shown.

[0093] If the first control circuit C1 has received control activation signal A0=1, then the control system returns to Block D, as shown in Fig. 20A2. If at Block D the first control circuit C1 has received first control activation signal A1=1, then at Block F the first control circuit C1 (i) deactivates (i.e. disables) the object sensing circuit 306 and the object detection circuit 307 using disabling signal E2=0, (ii) activates (i.e. enables) laser scanning circuit 308, photoreceiving circuit 309 and A/D signal conversion circuit 310 using enable signal E1=1, (iii) activates bar code detection circuit 311 and second control circuit C2 using enable signal E2=1, (iv) starts timer T1, maintained in the first control circuit C1 (i.e. 0 ≤ T1 ≤ sec, and (v) drives bar code symbol detection state indicator 452 using enable signal E3=1, and ceases driving object detection state indicator 451 using disable signal E3=0. Notably, the activation of these system components permits the bar code symbol reading device to collect and analyze scan data signals for the purpose of determining whether or not a bar code is within the bar code symbol detection field.

[0094] Thereafter, the system control process moves to Block G where the second control circuit C2 determines whether it has received control activation signal A2=1 within T1 seconds, indicating that the bar code has been detected in the bar code symbol detection field 10 within the duration of this time period. If at Block G the second control circuit C2 does not receive control activation signal A2=1 from the bar code detection circuit 311 within time period T1, indicating that a bar code symbol is detected in the bar code symbol detection field 10, then the control system advances to Block H, at which the second control circuit C2 checks if the A3=1 flag has been set to true. If the A3=1 flag has been set to A3=1, then the system proceeds to Block A, returning system control to the first control unit C1, as shown in Fig. 20A1. If at Block H the A3=1 flag has been not been set to true, then the system control process hereof proceeds to Block I, at which the data element stored in the Decoded Symbol Data Buffer (e.g. in the second control circuit C2 and/or third control module C3) is set to zero, and then the system control process returns back to Block A via Blocks HH and II. At Block HH, the laser scanning mechanism 308 and 309 and its subcomponents are deactivated for laser emission control reasons, and then at Block II the system controller determines whether control activation signal A1=1 has changed to A1=0, indicating that the object has been moved out of the object detection field 9. So long as the object remains in the object detection field 9, the system control process will reside at Block II, thereby preventing the laser scanning mechanism and associated subsystems from being activated while the bar code symbol reading device is placed on a counter or like surface.

[0095] If at Block G, the bar code symbol detection circuit 111 provides the second control circuit C2 with control activation signal A2=1, then at Block J the second control circuit C2 activates (i.e. enables) third control module C3 (i.e. microprocessor 334) using enable signal E3=1, and also resets the timer T1. Then at Block K, the third system control module C3 activates the symbol decoding module using signal E4=1, resets and restarts timer T2 permitting it to run for a second predetermined time period (e.g. 0 ≤ T2 ≤ 1 second), and resets and restarts timer T3 permitting it to run for a third predetermined time period.
period (e.g. $0 \leq T_3 \leq 5.0$ seconds).

At Block L, the third control module C$_3$ checks to determine whether control activation signal A$_2$=1 is received from the symbol decoding module 319 within $T_2=1$ seconds, indicating that a bar code symbol has been successfully read (i.e. scanned and decoded) within the allotted time period. If control activation signal A$_2$=1 is not received within the time period $T_2=1$ second, then at Block M third control module C$_3$ checks to determine whether control activation signal A$_2$=1 is received. If a bar code symbol is not detected (e.g. A$_2$=0), then the control system returns to Block H, to determine if the A$_2$=1 flag has been set to true (which it would not have been) and then onto Block I and then back to Block A. However, if at Block M the third control module C$_3$ receives control activation signal A$_2$=1, indicating that a bar code once again is within the bar code symbol detection field 10, then at Block N the third control module C$_3$ checks to determine whether time period T_3 has elapsed (i.e. $A_3 > 5$ seconds). If at Block N the T_3 timer has elapsed, then the control system returns to Block A. If, however, at Block N it is determined that timer T_3 has not elapsed, then the control system process returns to Block L, at which the third control module C$_3$ determines whether control activation signal A$_2$=1 has been received. If not, then the system control process returns to Block M. During typical bar code reading applications, the control system may progress through the control loop defined by Blocks L-M-N-L several times before a bar code symbol in the laser-based bar code symbol reading field 11 is read within the time period allotted by timer T_3. In the illustrative embodiment, the allotted time period is 5.0 seconds. However, it is understood that in other embodiments of the present invention, the time period may be greater or lesser than this exemplary time period without departing from the principles of the present invention.

Upon receiving control activation signal A$_2$=1 from symbol decoding module 319 at Block L, indicating that a bar code symbol has been successfully read, the control system proceeds to Block O where the third control module C$_3$ sets the A$_3$=1 flag to true and generates enable signal E$_3$=1 which drives the bar code read state indicator 452 (signaling the operator to depress the data transmission switch 303) and ceases driving bar code detection state indicator 452 using disable signal E$_3$=0. Thereafter, the system control process proceeds to Block P where the third system control module C$_3$ determines whether the Timer T_3 has elapsed. If Timer T_3 has elapsed, then the system control system process returns to Block A. If the Timer T_3 has not elapsed, then the system control process advances to Block O, at which the control module C$_3$ determines whether data transmission control activation signal A$_3$=1 has been received within the T_3 time frame. If the third control module C$_3$ determines that the A$_3$=0, indicating that the data transmission activation switch 303 has not been depressed within the T_3 time frame, then the control module C$_3$ sets the data in the Decoded Symbol Data Module to zero value, and then the system control process returns back to Block M. If at Block Q the control module C$_3$ determines that control activation signal A$_4$=1 has been generated within a short predetermined time period (e.g. 60 milliseconds), then the system control process advances to Block S in Fig. 20C. Notably, this 60 millisecond time period has been selected in the illustrative embodiments as it has been found to complement the manual response characteristics of most human beings. It is understood, however, that other time durations may be used with acceptable results.

At Block S in Fig. 20C, the control module C$_3$ determines whether the data within the Decoded Symbol Data Buffer has been set to zero value. If this data has not been set to zero value, then the system control process advances to Block T, at which the control module C$_3$ determines whether the bar code symbol character data produced by the symbol decoding module is different than the symbol character data stored in the Decoded Symbol Data Buffer. If these data elements are not the same, then the system control process advances to Block U, where the control module determines whether Timer T_3 has elapsed. If Timer T_3 has elapsed, then the system control process returns to Block H, as shown in Fig. 20A2. If, however, the Timer T_3 has not elapsed at Block U, then the system control process returns to Block M, as shown in Fig. 20B.

If at Block S in Fig. 20C, the control module C$_3$ has determined that the data set in the Decoded Symbol Data Buffer is not zero value, then the system control process advances to Block V, at which the control module C$_3$ stores the symbol character data (produced by the symbol decoding module 319) into the Decoded Symbol Data Module. Thereafter, the system control process proceeds to Block W, at which the third control module C$_3$ continues activation of laser scanning circuit 308, photoreceiving circuit 309, and A/D conversion circuit 310, while deactivating symbol decoding module 319 and commencing activation of data packet synthesis module 320. While the laser beam is being continuously scanned during the data transmission state of operation, the operations at Blocks X to DD described below, are carried out in a high speed manner under the orchestration of control module C$_3$.

As indicated at Block X in Fig. 20D, under the control of module C$_3$, the data packet synthesis module 320 first sets the Packet Number to "1", and increments the Packet Group Number from the previous number. Preferably, the data packet synthesis module keeps track of (i.e. manages) the "Packet Number" using a first modulo-M counter realized by programmable microprocessor 334, while it manages the "Packet Group Number" using a second modulo-M counter also realized by programmed microprocessor 334. In the illustrative embodiment, the first modulo counter has a cyclical count range of N=2 (i.e. 0,1,2,0,1,...), whereas the second modulo counter has a cyclical count range of M=10 (i.e. 0,1,2,3,4,5,6,7,8,9,0,1,2,...).
ered, the third control module C3 activates at Block Z the
Number, a Packet Number, a Packet Group Number,
ning a packet format as shown in Fig. 150, i.e. consisting
module 320 synthesizes or constructs a data packet hav-
the frequency of the carrier signal as it is being transmit-
synthesized or constructs a data packet having the
Packet Number by +1. At Block DD, the third control module then
waits for a time delay T5 maintained by Timer T5 to lapse
control subsystem; and/or
States of Operation whenever a detected object remains
States of Operation whenever a detected object remains
in Fig. 20D. Notably, the occurrence of time delay T5
causes a delay in transmission of the next data packet
in the data packet group. As illustrated in Fig. 17, the
duration of time delay T5 is a function of the (last two
digits of the) Transmitter Number of the current data
group, and thus is a function of the bar code symbol
reading device transmitting symbol character data to
its mated base unit. For the case of three data packet
groups, time delay T5 will occur between the transmission
of the first and second data packets in a packet group
and between the transmission of the second and third
data packets in the same packet group.

[0103] Returning to Block Y, the data packet synthesis
module 320 synthesizes or constructs the second data
packet in the same data packet group. After the second
data packet has been formed and the digital data se-
sequence constituting the same is buffered, the third control
module C3 reactivates, at Block Z, the data packet trans-
mission circuit 321. Thereafter at Block AA, the data
packet synthesis module outputs the buffered digital data
sequence (of the second synthesized data packet) to the
data packet transmission circuit (34), which uses the dig-
ital data sequence to modulate the frequency of the car-
rier signal as it is being transmitted from the bar code
symbol reading device, to its mated base unit 440, as described hereinabove, and then au-
tomatically deactivates itself. When at Block BB third control module C3 determines that the Packet
Number is equal to “3”, the control system advances to
Block EE in Fig. 20E.

[0104] At Block EE in Fig. 20E, the third control module
C3 continues activation of laser scanning circuit 308, pho-
toreceiving circuit 309, and A/D conversion circuit 310
using control override signals C2/C1, and deactivates
symbol decoding module 319, data packet synthesis
module, 320 the data packet transmission circuit 321 us-
ing disable signals E4=0, E5=0, E6=0, and E9=0, respec-
tively. Then at Block FF the third control module C3
determines whether control activation signal A1=1, indicat-
ing that an object is present in the object detection field
9. If this control activation signal is not provided to the
third control module C3, then the control system returns
to Block A, as shown. If control activation signal A1=1 is
received, then at Block GG the third control module C3
reactivates the bar code symbol detection circuit 311 us-
ing override signal C3/C2, and resets and restarts timer
T3 to start running over its predetermined time period,
i.e. 0<T3<5 seconds, and resets and restarts timer T4 for
a predetermined time period 0<T4<3 seconds. Thereaf-
ter, the system control process returns to Block F in Fig.
20A2 in order to attempt to read another bar code symbol.

[0105] As illustrated in Fig. 21, the automatic hand-
supportable bar code reading device of the present in-
vention has four basic states of operation, namely: object
detection, bar code symbol presence detection, bar code
symbol reading, and symbol character data transmis-
storage. The nature of each of these states has been
described above in great detail.

[0106] Transitions between the various states are in-
dicated by directional arrows. Besides each set of direc-
tional arrows are transition conditions expressed in terms
of control activation signals (e.g. A1, A2, A3 and A4) and
where appropriate, state time intervals (e.g. T1, T2, T3,
T4, and T5). Conveniently, the state diagram of Fig. 21
expresses most simply the four basic operations occur-
ing during the control flow within the system control pro-
gram of Figs. 20A1 to 20E. Significantly, the control ac-
tivation signals A1, A2, A3 and A4 shown in Fig. 21 indicate
which events within the object detection field 9, the bar
code detection field 10 and/or the bar code reading fields
11 can operate to affect a state transition within the all-
lotted time frame(s), where prescribed.

[0107] Modifications may be made to certain compo-
nents in the system in order to enter "Time-Extended
States of Operation" which provides the user with an ex-
tended time period (e.g. 20 seconds) within which to (i)
read (detect and decode) a bar code symbol on the de-
tected object and (ii) manually-enable the transmission
of its symbol character data to the associated host com-
puter system. The system enters this Time-Extended
States of Operation whenever a detected object remains
within the object detection field of the system whenever
a timer, set to run, "times out" within the system control
process. Examples of when a timer may "time out" in the
system control process include, for example: when the
system fails to read (i.e. detect and decode) a bar code
symbol on the detected object within the prescribed time
periods established by the control subsystem; and/or
when the user fails to manually enable the transmission
of produced symbol character data (representative of a read bar code symbol) to the host system, upon manual activation of the data transmission switch 303 within the pre allotted time frame established by the control subsystem.

0108] When the system enters the Time-Extended Object Detection State, the laser beam is pulsed (i.e. flickered) at the flicker-frequency rate during both bar code detection and reading modes of operation. Such modifications offer many important advantages to the user while reading bar coded objects of various sorts. For example, when a user brings a bar coded object within the IR-based object detection field of the system and automatically detects the object, but the system does not read (i.e. detect and decode) the bar code symbol thereto and/or the user fails to transmit produced symbol character data to the host system by manual-activation of the data transmission switch 303, the system automatically enters the Time-Extended States of Operation and is provided an additional time period (e.g. 20 seconds) to allow the system to automatically read the bar code symbol on the detected object and the user manually activate the data transmission subsystem so that produced symbol character data is transmitted to the host system or device. The conditions for YES and NO responses may be reversed from that shown at Block Q in the method in accordance with the present invention will involve 1-D and/or 2-D bar code structures, it is understood that the laser scanning mode will be distinct from the reading modes. In the illustrative embodiments of the present invention, particular types of bar code symbol reading engines disclosed herein have been suggested for incorporation into various types of systems differentiated primarily on the basis of their form factors. It is understood, however, that with or without mode function, any bar code symbol reading engine disclosed herein can be incorporated into any bar code symbol reading system, regardless of its form factor in relation to the form factor of the engine.

0110] In Fig. 42B, the user is shown moving the bar code symbol reader closer to a particular bar code symbol sought to be read. At this stage of the method, symbol character data strings (associated with the particular bar code symbol) are repeatedly generated and the "bar code symbol read state" indicator repeatedly driven in correspondence with the generated symbol character data, but none of these symbol character data elements are transmitted to the host system 45 during this phase of the bar code symbol reading cycle.

0111] In Fig. 42C, the user is shown depressing the data transmission switch 44 on the automatically-activated bar code symbol reading device 41 momentarily after the bar code symbol read state indicator has been observed to be driven. In response to the manual activation of the data transmission switch 44, a subsequently produced symbol character data string (associated with the particular bar code symbol) is automatically selected within the bar code symbol reading device and transmitted to the host system to which it is connected. At substantially the same instant, the "data transmission state" indicator on the device is momentarily driven for the user to see in the form of visual feedback. To re-transmit a previously transmitted symbol character data string collected from the bar code symbol menu, the user need only depress the data transmission switch 44 once again while the particular bar code symbol remains aligned with the visible scanning beam. Such retransmission of the symbol character data string is carried out upon each depression of the data transmission switch 44. Notably, during each retransmission of symbol character data, there is no need to redetect the object underlying the bar code symbol, or momentarily moving off the read bar code symbol before rereading it and retransmitting its symbol character data to the host system.

0112] Having described the preferred embodiments of the present invention, several modifications come to mind.

0113] For example, in the illustrative embodiments of the present invention, particular types of bar code symbol reading engines disclosed herein have been suggested for incorporation into various types of systems differentiated primarily on the basis of their form factors. It is understood, however, that with or without mode function, any bar code symbol reading engine disclosed herein can be incorporated into any bar code symbol reading system, regardless of its form factor in relation to the form factor of the engine.

0114] While the illustrative embodiments of the present invention have been described in connection with various types of bar code symbol reading applications involving 1-D and 2-D bar code structures, it is understood that the present invention can be used in connection with any machine-readable indicia or graphical structures including, but not limited to bar code symbol structures. Hereinafter, the term code symbol shall be deemed to include such information carrying structures.

0115] It is understood that the laser scanning modules, engines and bar code symbol reading systems of the illustrative embodiments may be modified in a variety of ways which will become readily apparent to those skilled in the art of having the benefit of the novel teachings disclosed herein.
Claims

1. A method of reading bar code symbols on an object using a hand-supportable device (1, 41, 1002) comprising the steps of:

 (a) repeatedly reading one or more bar code symbols on an object within a predetermined time period, in response to each new successful reading of one of said bar code symbols and within said predetermined time period, producing a new symbol character data string representative of said read bar code symbol; and
 (b) manually, actuating a data transmission switch (7A, 44, 1003) integrated with said hand-supportable device, for generating a data transmission activation control signal within said predetermined time period;
 (c) in response to said data transmission activation signal, selecting and transmitting one of said produced symbol character data strings to a host system (45, 441, 1009) operably connected to said hand-supportable device.

2. The method of claim 1, which further comprises producing a visual indication upon each new successful reading of one of said bar code symbols.

3. The method of claim 1, which further comprises the steps:

 generating said data transmission control activation signal in response to said hand-supportable device being placed in a scanner stand or on a countertop surface.

4. The method of claim 1, wherein step (c) comprises further comprises transmitting, by way of wireless electromagnetic transmission, the selected one of said symbol character data strings to a remote base station operably connected to said host system.

5. The method of claim 4, which further comprises:

 displaying data on a display panel integrated with said hand-supportable device, and manually entering data into said hand-supportable device using data entry device integrated with said hand-supportable device.

6. A system for reading bar code symbols on an object using a hand-supportable device (1, 41, 1002) characterized by:

 a bar code symbol reading engine (4, 18, 32, 53, 319, 334) for repeatedly reading one or more bar code symbols on an object within a predetermined time period, and in response to each new successful reading of one of said bar code symbols within said predetermined time period, producing a new symbol character data string representative of said read bar code symbol; and
 a manually activatable data transmission switch (7A, 44, 1003) integrated with said hand-supportable device, for generating a data transmission activation control signal within said predetermined time period; wherein, in response to said data transmission activation signal, one of said produced symbol character data strings is selected and transmitted to a host system operably connected to said hand-supportable device.

7. The system of claim 6, which further comprises means for producing a visual indication upon each new successful reading of one of said bar code symbols.

8. The system of claim 6, which further comprises a detection mechanism for automatically generating said data transmission control activation signal in response to said hand-supportable device being placed in a scanner stand or on a countertop surface.

9. The system of claim 6, which further comprises a 2-way RF-based data communication mechanism for transmitting, by way of wireless electromagnetic transmission, the selected one of said symbol character data strings to a remote base station operably connected to said host system.

Patentansprüche

1. Verfahren zum Lesen von Barcodesymbolen auf einem Objekt unter Gebrauch eines mit der Hand haltbaren Geräts (1, 41, 1002), das die folgenden Schritte umfasst:

 a) wiederholtes Lesen eines oder mehrerer Barcodesymbole auf einem Objekt innerhalb eines vorbestimmten Zeitraums und als Reaktion auf jedes erfolgreiche Lesen eines der Barcodesymbole innerhalb des vorbestimmten Zeitraums Erzeugen einer neuen Symboleichen-datenkette, die für das gelesene Barcodesymbol repräsentativ ist, und
 b) manuelles Betätigen eines Datenübertragungsschalters (7A, 44, 1003), der in das mit der Hand haltbare Gerät integriert ist, zum Erzeugen eines Datenübertragungssaktivierungssignals innerhalb des vorbestimmten Zeitraums,
 c) als Reaktion auf das Datenübertragungssaktivierungssignal Auswählen und Übertragen ei-
ner der erzeugten Symbolzeichendatenketten zu einem Hostsystem (45, 441, 1009), das operativ mit dem mit der Hand haltbaren Gerät verbunden ist.

2. Verfahren nach Anspruch 1, das ferner das Erzeugen einer visuellen Anzeige bei jedem neuen erfolgreichen Lesen eines der Barcodesymbole umfasst.

3. Verfahren nach Anspruch 1, das ferner die folgenden Schritte umfasst:

Erzeugen des Datenübertragungssteueraktivierungssignals als Reaktion auf das Abstellen des mit der Hand haltbaren Geräts auf einem Scannerständer oder einer Tresenoberfläche.

4. Verfahren nach Anspruch 1, wobei der Schritt (c) ferner das Übertragen über drahtlose elektromagnetische Übertragung der ausgewählten Symbolzeichendatenkette zu einer dezentralen Basisstation, die operativ mit dem Hostsystem verbunden ist, umfasst.

5. Verfahren nach Anspruch 4, das ferner Folgendes umfasst:

Anzeigen von Daten auf einem Anzeigefeld, das in das mit der Hand haltbare Gerät eingebaut ist, und manuelles Eingeben von Daten in das mit der Hand haltbare Gerät unter Einsatz einer Dateneingabevorrichtung, die in das mit der Hand haltbare Gerät eingebaut ist.

6. System zum Lesen von Barcodesymbolen auf einem Objekt, unter Verwendung einer mit der Hand haltbaren Vorrichtung (1, 41, 1002), gekennzeichnet durch:

- ein Barcodesymbollesesystem (4, 18, 32, 53, 319, 334) zum wiederholten Lesen eines oder mehrerer Barcodesymbole auf einem Objekt innerhalb eines vorbestimmten Zeitraums und als Reaktion auf jedes erfolgreiche neue Lesen eines der Barcodesymbole innerhalb des vorbestimmten Zeitraums Erzeugen einer neuen Symbolzeichendatenkette, die für das gelesene Barcodesymbol repräsentativ ist, und ein manuell aktivierbarer Datenübertragungsschalter (7A, 44, 1003), der in das mit der Hand haltbare Gerät eingebaut ist, um ein Datenübertragungssteueraktivierungssignal innerhalb des vorbestimmten Zeitraums zu erzeugen, wobei als Reaktion auf das Datenübertragungsaktivierungssignal eine der erzeugten Symbolzeichendatenketten ausgewählt und zu einem Hostsystem übertragen wird, das operativ mit der mit der Hand haltbaren Vorrichtung verbunden ist.

7. System nach Anspruch 6, das ferner Mittel zum Erzeugen einer visuellen Anzeige bei jedem neuen erfolgreichen Lesen eines der Barcodesymbole aufweist.

Revendications

1. Procédé de lecture de symboles de codes-barres sur un objet utilisant un dispositif pouvant être tenu à la main (1, 41, 1002) comprenant les étapes consécutives à

(a) lire de façon répétitive un ou plusieurs symboles de codes-barres sur un objet en un intervalle de temps prédéterminé, en réponse à chaque nouvelle lecture réussie de l’un desdits symboles de codes-barres dans ledit intervalle de temps prédéterminé, produire une nouvelle chaine de données de caractères de symbole représentative dudit symbole de codes-barres lu ; et

(b) actionner manuellement un commutateur de transmission de données (7A, 44, 1003) intégré audit dispositif pouvant être tenu à la main, afin de générer un signal d’activation de commande de transmission de données dans ledit intervalle de temps prédéterminé ;

(c) en réponse audit signal d’activation de transmission de données, sélectionner et transmettre une desdites chaînes de données de caractères de symbole produites à un système hôte (45, 441, 1009) relé de façon fonctionnelle audit dispositif pouvant être tenu à la main.

2. Procédé selon la revendication 1, comprenant en outre la production d’une indication visuelle lors de chaque nouvelle lecture réussie de l’un des symboles de codes-barres.

3. Procédé selon la revendication 1, comprenant en
outre les étapes consisant à générer ledit signal d'activation de commande de transmission de données en réponse à la mise en place dudit dispositif pouvant être tenu à la main dans un berceau de scanner ou sur une surface de dessus de comptoir.

4. Procédé selon la revendication 1, dans lequel l’étape (c) comprend en outre la transmission, au moyen d’une transmission électromagnétique sans fil, de la chaîne sélectionnée parmi les chaînes de données de caractères de symbole, à des stations de base éloignées reliées de façon fonctionnelle audit système hôte.

5. Procédé selon la revendication 4, comprenant en outre l’affichage de données sur un écran d’affichage intégré audit dispositif pouvant être tenu à la main, et l’entrée manuelle de données dans ledit dispositif pouvant être tenu à la main utilisant un dispositif d’entrée de données intégré audit dispositif pouvant être tenu à la main.

6. Système de lecture de symboles de codes-barres sur un objet, utilisant un dispositif pouvant être tenu à la main (1, 41, 1002) caractérisé par un moteur de lecture de symboles codes-barres (4, 18, 32, 53, 319, 334) pour lire de façon répétitive un ou plusieurs symboles de codes-barres sur un objet en un intervalle de temps prédéterminé, et en réponse à chaque nouvelle lecture réussie de l’un desdits symboles de codes-barres dans ledit intervalle de temps prédéterminé, de produire une nouvelle chaîne de données de caractères de symbole représentative dudit symbole de codes-barres lu ; et un commutateur de transmission de données pouvant être activé manuellement (7A, 44, 1003), intégré audit dispositif pouvant être tenu à la main, afin de générer un signal d’activation de commande de transmission de données dans ledit intervalle de temps prédéterminé ; dans lequel, en réponse audit signal d’activation de transmission de données, une desdites chaînes de données de caractères de symbole produites est sélectionnée et transmise à un système hôte relié de façon fonctionnelle audit dispositif pouvant être tenu à la main.

7. Système selon la revendication 6, qui comprend en outre des moyens pour produire une indication visuelle lors de chaque nouvelle lecture réussie de l’un des symboles de codes-barres.

8. Système selon la revendication 6, qui comprend un mécanisme de détection pour générer automatiquement ledit signal d’activation de commande de transmission de données en réponse à la mise en place dudit dispositif pouvant être tenu à la main dans un
FIG. 1
START

ACTIVATE SYSTEM OVERRIDE DETECTION CKT, FIRST CONTROL CKT C1, OSCILLATION CKT, SYSTEM OVERRIDE SIGNAL PRODUCING MEANS, IR SENSING CKT, PHOTODETECTION CKT; DEACTIVATE STATUS DETECTION, AND CONTROL CKT, CONTROL CKT C2, BAR CODE DETECTION CKT, CONTROL MODULE C3, SYMBOL DECODING MODULE, DATA PACKET SYSTEM MODULE, DATA PACKET TRANSMISSION MODULE; RESET ALL TIMERS TO T = 0, INITIALIZE DECODED SYMBOL DATA BUFFER; CLEAR A3 = 1 FLAG

DOES FIRST CONTROL CIRCUIT C1 RECEIVE CONTROL ACTIVATION SIGNAL A0 = 1?

YES

C1 ACTIVATES THE INFRARED DETECTION CIRCUIT AND DRIVES OBJECT DETECTION STATE INDICATOR USING E1 = 1

NO

IS A1 = 1?

YES

DEACTIVATE LASER SCANNING MECHANISM

NO

FIG. 20A1
DOES FIRST CONTROL CIRCUIT C_1 RECEIVE CONTROL ACTIVATION SIGNAL $A_a = 1$ INDICATING AN OBJECT IS DETECTED?

YES

D

NO

DOES FIRST CONTROL CIRCUIT C_1 RECEIVE CONTROL ACTIVATION SIGNAL $A_b = 1$?

YES

E

NO

C_1 DEACTIVATES IR DETECTION CIRCUIT, IR TRANSMITTER, AND IR RECEIVER USING E_{a1}; C_1 ALSO ACTIVATES SCANNING CIRCUIT, PHOTO-RECEIVING CIRCUIT, AND A/D CONVERSION CIRCUIT USING E_{a2}; BARCODE PRESENCE DETECTION CIRCUIT USING E_{a3}; AND STARTS TIMER T_1; AND DRIVES BAR CODE DETECTION STATE INDICATOR USING E_{a4}

YES

F

NO

DOES SECOND CONTROL CIRCUIT C_2 RECEIVE CONTROL ACTIVATION SIGNAL $A_a = 1$ INDICATING A BARCODE IS DETECTED WITHIN T_1?

YES

G

NO

H

IS $A_a = 1$ FLAG SET TO "TRUE"?

YES

I

SET DATA IN SYMBOL DECODED DATA BUFFER TO ZERO

NO

1

2

3
THIRD CONTROL CIRCUIT \(C_3 \) CONTINUES ACTIVATION OF LASER DIODE, SCANNING MOTOR, PHOTORECEIVING CIRCUIT, A/D CONVERSION CIRCUIT; DEACTIVATES SYMBOL DECODING MODULE; AND COMMENCES ACTIVATION DATA PACKET SYNTHESIS MODULE.

UNDER \(C_3 \) CONTROL DATA PACKET SYNTHESIS MODULE SETS PACKET NUMBER TO 1 AND INCREMENTS DATA PACKET GROUP NUMBER MODULE COUNTER.

UNDER \(C_3 \) CONTROL DATA PACKET SYNTHESIS MODULE CONSTRUCTS DATA PACKET CONSISTING OF SYMBOL CHARACTER DATA, TRANSMITTER NUMBER, DATA PACKET GROUP NUMBER, CHECK CHARACTER AND FRAMING CHARACTERS.

\(C_3 \) ACTIVATES DATA PACKET TRANSMISSION CIRCUIT.

UNDER \(C_3 \) CONTROL DATA PACKET SYNTHESIS MODULE OUTPUTS PACKET TO DATA PACKET TRANSMISSION CIRCUIT.

\(C_3 \) DETERMINES IS PACKET NUMBER \(< 3 \)?

UNDER \(C_3 \) CONTROL DATA PACKET SYNTHESIS MODULE INCREMENTS DATA PACKET GROUP NUMBER.

\(C_3 \) ALLOWS \(T_2 \) TO EXPIRE IN ORDER TO DELAY TRANSMISSION BASED ON LAST TWO DIGITS OF TRANSMITTER NUMBER.
C₂ CONTINUES ACTIVATION OF SCANNING CIRCUIT, PHOTO-RECEIVING CIRCUIT USING C₂/C₁ OVERRIDE; DEACTIVATES SYMBOL DECODING MODULE USING E₄; DEACTIVATES THE DATA PACKET SYNTHESIS MODULE, DATA STORAGE UNIT, AND DATA TRANSMISSION CIRCUIT USING E₅, E₆ AND E₇ RESPECTIVELY; AND DISABLES DATA TRANSMISSION STATE INDICATOR USING E₈=0

DOES THIRD CONTROL CIRCUIT C₃ CONTINUE TO RECEIVE CONTROL ACTIVATION SIGNAL A₁=1 INDICATING AN OBJECT IS PRESENT?

CONTROL MODULE C₃ REACTIVATES BAR CODE PRESENCE DETECTION CIRCUIT USING C₂/C₂ OVERRIDE, RESETS AND RESTARTS TIMER T₄, 0 < T₄ < 3 sec. AND STARTS TIMER T₃, 0 < T₃ < 5 sec.
FIG. 21

*: SYMBOL CHARACTER DATA IS DIFFERENT THAN DATA ELEMENT IN DECODED SYMBOL DATA BUFFER