Spray device with a longitudinal offset between fluid and air exit

Sprüheinrichtung mit einem Längsversatz zwischen Fluid- und Luftausgang

Dispositif de pulverisation avec décalage longitudinal entre la sortie du fluide et la sortie de l’air
SUMMARY OF THE INVENTION

A system and method for reducing fluid drainage into air passageways of a spray device during disassembly. The present technique provides an internally mountable fluid nozzle having a fluid inlet, a fluid exit, and a converging central passageway extending substantially between the fluid inlet and the fluid exit. Accordingly, the internally mountable fluid nozzle has a relatively small internal volume, which reduces the amount of fluid that can be spilled during disassembly of the spray device. The present technique also provides a section of the spray device having an air passageway with an air exit, and a protrusive fluid passageway with a fluid exit in a protrusive offset position from the air exit. The internally mountable fluid nozzle can be mounted to the section in fluid communication with the protrusive fluid passageway, such that fluid spillage or drainage during disassembly does not flow into the air passageway. A spray formation section also may be coupled to the section, such that an internal cavity of the spray formation section is disposed about the internally mountable fluid nozzle.

BACKGROUND OF THE INVENTION

[0001] The present technique relates generally to spray systems. More specifically, a technique is provided for reducing fluid drainage into internal passageways and components of a spray device during disassembly.

[0002] The document US 4,171,096 discloses a nozzle for a spray gun for dispensing paint material according to the preamble of claim 1. The conventional nozzle comprises a body portion having an internally threaded bore which is adapted to matingly engage nozzle attachment threads on a gun body assembly of the spray gun. For assisting in effecting sealing attachment to the spray gun the body portion of the conventional system comprises a plurality of lands formed externally of the body portion in the area of the threaded bore for purposes of creating a standard hexagonal or other head configuration adapted to receive a conventional wrench. Thus, the nozzle body of the conventional system may be attached to or detached from a spray gun body assembly.

[0003] Spray devices generally have several sections and passageways that operate to create a spray, such as an atomized fluid spray. In many situations, it may be desirable to disassemble the spray device for cleaning, servicing, parts replacement, or other reasons. Unfortunately, residual fluid in the spray device often drains into adjacent air passageways and onto other portions of the spray device during the disassembly process. This fluid drainage is partially attributed to the close proximity of fluid and air passageways, particularly the air passageways extending around a fluid nozzle. The internal volume of the fluid nozzle further contributes to this fluid drainage. For example, existing fluid nozzles often have a relatively long cylindrical passageway leading into a converging fluid passageway. As the fluid nozzle is removed, the residual fluid in the cylindrical and converging passageways can drain into the adjacent air passageways.

[0004] In certain applications, spray devices are mounted in a fixed or movable system.

[0005] For example, one or more spray devices may be mounted in a finishing system, which operates to apply a desired material onto a surface of a target object. In such systems, the mounting position of the spray devices may be particularly important to the spraying process. Unfortunately, existing spray devices are generally mounted directly to the desired system via a screw or bolt. If removal is necessary, then the previous mounting position is lost.

[0006] Accordingly, a technique is needed to address one or more of the foregoing problems.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

[0007] As discussed in further detail below, the present technique provides a unique spray device having features that facilitate disassembly, servicing, and repeata-
ble mounting in substantially the same spray position. For example, the spray device of the present technique has various structural features that reduce the likelihood of fluid drainage into undesirable areas of the spray device during disassembly and servicing. The present spray device also has a unique mounting mechanism, which preserves the desired mounting position for the spray device in the event of dismounting and subsequent remounting of the spray device.

[0010] Turning now to the figures, Fig. 1 is a flow chart illustrating an exemplary spray system 10, which comprises a spray device 12 for applying a desired material to a target object 14. For example, the spray device 12 may comprise any suitable spray device, such as an air atomizer, a rotary atomizer, an electrostatic atomizer, or any other suitable spray formation mechanism. The spray device 12 also may comprise an automatic triggering or on/off mechanism, such as a pressure-activated valve assembly. The spray device 12 may be coupled to a variety of supply and control systems, such as a material supply 16 (e.g., a fluid or powder), an air supply 18, and a control system 20. The control system 20 facilitates control of the material and air supplies 16 and 18 and ensures that the spray device 12 provides an acceptable quality spray coating on the target object 14.

For example, the control system 20 may include an automation system 22, a positioning system 24, a material supply controller 26, an air supply controller 28, a computer system 30, and a user interface 32. The control system 20 also may be coupled to a positioning system 34, which facilitates movement of the target object 14 relative to the spray device 12. For example, either one or both of the positioning systems 24 and 34 may comprise an assembly line, a hydraulic lift, a robotic arm, and a variety of other positioning mechanisms controlled by the control system 20. Accordingly, the spray system 10 may provide a computer-controlled spray pattern across the surface of the target object 14.

[0011] The spray system 10 of Fig. 1 is applicable to a wide variety of applications, materials, target objects, and types/configurations of the spray device 12. For example, a user may select a desired object 36 from a variety of different objects 38, such as different material and product types. The user also may select a desired material 40 from a plurality of different materials 42, which may include different material types and characteristics for a variety of materials such as metal, wood, stone, concrete, ceramic, fiberglass, glass, living organisms, and so forth. For example, the desired material 40 may comprise paints, stains, and various other coating materials, such as furniture coatings, vehicle coatings, industrial product coatings, and consumer product coatings. By way of further example, the desired material 40 may comprise a porcelain enamel, a ceramic glaze, or another ceramic coating material, which may be applied to toilets, sinks, water heaters, washing machines, dinner plates and bowls, and so forth. The desired material 40 also may comprise insecticides, fungicides, and various other chemical treatments. In addition, the desired material 40 may have a solid form (e.g., a powder), a fluid form, a multi-phase form (e.g., solid and liquid), or any other suitable form.

[0012] Fig. 2 is a perspective view illustrating an exemplary embodiment of the spray device 12. As illustrated, the spray device 12 comprises a body 50 having a base section 52, a mid-section 54 coupled to the base section 52, a head section 56 coupled to the mid-section 54, and a spray formation section 58 coupled to the head section 56. Fluid inlet 60 and air inlet 62 also extend into the body 50, thereby feeding a desired fluid and air into the spray device 12 to form a desired spray via the head and spray formation section 56 and 58. As discussed above, the spray device 12 may comprise any suitable fluid atomizing mechanisms, air valves, fluid valves, spray shaping mechanisms (e.g., air shaping jets or ports), and so forth. The spray device 12 also may be automatically activated or triggered, such as by a pressure-activated valve.

[0013] In the illustrated embodiment, the spray device 12 also comprises a releasable mount 64 that is releasably coupled to the body 50 via a fastening mechanism, such as an externally threaded fastener 66 and an internally threaded fastener 68. Other suitable tool-free or tool-based fasteners are also within the scope of the present technique. For example, the releasable mount 64 may be coupled to the body 50 via a latch, a spring-loaded mechanism, a retainer member, a compressive-fit mechanism, an electro-mechanical latch mechanism, a releasable pin, a releasable joint or hinge, and so forth. The releasable mount 64 also comprises an external mounting mechanism, such as a mounting receptacle 70 and mounting fasteners or set screws 72 and 74 extending into the mounting receptacle 70. As discussed in further detail below, the spray device 12 may be mounted to a desired stationary or movable positioning system by extending a mounting member or rod into the mounting receptacle 70 and securing the releasable mount 64 to the mounting member via the mounting fasteners or set screws 72 and 74. The spray device 12 can be dismounted by either disengaging the mounting fasteners 72 and 74 from the mounting member or by disengaging the fasteners 66 and 68 from the body 50 of the spray device 12. In this exemplary embodiment, the latter approach may be used to preserve the desired mounting position of the releasable mount 64 on the mounting member. Accordingly, if the spray device 12 is removed for maintenance, replacement, or other purposes, then the releasable mount 64 remains attached to the mounting member to ensure that the spray device 12 or its substitute can be reattached in the same or substantially the same mounting position.

[0014] Turning now to the internal features, Fig. 3 is a cross-sectional side view of the spray device 12 illustrating exemplary flow passageways, flow control mechanisms, and spray formation mechanisms. As illustrated, a fluid passageway 76 extends angularly into the head section 56 to a longitudinal centerline 78, where the fluid...
passageway 76 aligns with the longitudinal centerline 78 and continues to a front portion 80 of the head section 56. At the front portion 80, the fluid passageway 76 extends outwardly from the front portion 80 to form a protrusive fluid passageway 82 having a fluid exit 84 that is longitudinally offset from the front portion 80. As illustrated, a fluid nozzle 86 is removably coupled to the protrusive fluid passageway 82 at the fluid exit 84 via a retainer 88, which may comprise an annular structure having internal threads 90 engaged with external threads 92 of the protrusive fluid passageway 82. The illustrated fluid nozzle 86 comprises an inwardly angled inlet surface 94 abutted against an outwardly angled exit surface 96 of the protrusive fluid passageway 82, thereby forming a compressive fit or wedged seal as the retainer 88 is threadably engaged with the protrusive fluid passageway 82. Alternatively, the fluid nozzle 86 may be coupled to the protrusive fluid passageway 82 by a variety of other seal members (e.g., an o-ring), compressive fit mechanisms, threaded engagements, seal materials, and so forth. The fluid nozzle 86 also has a converging inner passageway 98, which extends outwardly from the inwardly angled inlet surface 94 toward an annular fluid exit 100.

[0015] It should be noted that the fluid nozzle 86 may comprise a one-piece structure formed via a molding process, a machining process, or any other suitable manufacturing process. However, any other multi-sectional structure and assembly process is within the scope of the present technique. The illustrated fluid nozzle 86 also has a relatively small internal volume defined substantially by the converging inner passageway 98. As discussed in further detail below, the foregoing protrusive fluid passageway 82 and converging inner passageway 98 may provide certain benefits. For example, the passageways 82 and 98 may reduce drainage or spillage of fluids into other portions of the spray device 12 during servicing, maintenance, and other functions in which the fluid nozzle is removed from the protrusive fluid passageway 82.

[0016] As illustrated in Fig. 3, the spray device 12 also comprises a fluid valve assembly 102 having a needle or valve member 104 extending through the body 50 from the base section 52, through the mid-section 54, and into the head section 56, and into the spray formation section 58. In the base section 52, the fluid valves assembly 102 has a valve spring 106, which springingly biases the valve member 104 outwardly from the base section 52 toward the spray formation section 58, where a wedge tip 108 of the valve member 104 compressively seals against a corresponding internal portion 110 of the converging inner passageway 98 of the fluid nozzle 86. The fluid valve assembly 102 also comprises a pressure-biasing mechanism or piston assembly 112 to facilitate inward opening of the valve member 104 relative to the fluid nozzle 86. The pressure biasing mechanism or piston assembly 112 comprises a valve piston 114 disposed about the valve member 104, a piston biasing spring 116 disposed in a chamber 118 of the base section 52 around the valve spring 106, and an air diaphragm 120 extending about the valve piston 114 and across the chamber 118 to an abutment edge 122 between the base section 52 and the mid-section 54. Other pressure biasing mechanisms are also within the scope of the present technique. For example, the piston assembly 112 may embody a piston disposed sealingly against an internal wall of a cylinder.

[0017] As further illustrated in Fig. 3, the piston biasing spring 116 springingly forces the valve piston 114 outwardly from the base section 52 toward the mid-section 54. In this outwardly biased position, the valve piston 114 is disengaged from a valve engagement member 124 coupled to the valve member 104. If air is supplied from one of the air inlets 62 to an internal air passageway 126, then the air pressurably biases the air diaphragm 120 and corresponding valve piston 114 with sufficient force to overcome the spring force of the piston biasing spring 116. Accordingly, the valve piston 114 moves inwardly from the mid-section 54 to the base section 52. As the air pressure forces the valve piston 114 inwardly against the valve engagement member 124, the air pressure further overcomes the spring force of the valve spring 106. Accordingly, the valve piston 114 pressurably biases the valve engagement member 124 and corresponding valve vendor member 104 inwardly from the mid-section 54 into the base section 52, thereby moving the valve member 104 and corresponding wedge tip 108 inwardly away from the internal portion 110 of the fluid nozzle 86 to an open position. Although illustrated as an inwardly opening valve, the valve assembly 102 may comprise an outwardly opening valve, an independent internal valve, an independent external valve, or any other suitable valve configuration. Moreover, the valve assembly 102 may comprise any suitable manual or automatic valve mechanism, such as a piston-cylinder assembly, an electro-mechanical valve mechanism, a magnetically activated valve, and so forth.

[0018] The various sections, internal passageways, and structures of the spray device 12 are intercoupled and sealed via threads, seals, o-rings, gaskets, compressive fit mechanisms, packing assemblies, and so forth. For example, as illustrated in Fig. 3, the spray device 12 comprises an air packing assembly 127 and a fluid packing assembly 128 disposed about the valve member 104 between the internal air passageway 126 and the fluid passageway 76. In addition, the base section 52 comprises an outer annular structure or cap 130 threadably coupled and sealed to an inner annular structure 132 via threads 134 and o-ring or seal member 136, respectively. The inner annular structure 132 is threadably coupled and sealed to the mid-section 54 via threads 138 and a portion of the air diaphragm 120 disposed within the abutment edge 122 between the base section 52 and the mid-section 54. Additional seals also may be provided within the scope of the present technique.

[0019] In the mid-section 54, the spray device 12 also comprises an air valve or flow control mechanism 140,
which is mounted in a receptacle 142 extending angularly into the mid-section 54. As illustrated, the flow control mechanism 140 comprises a protruding valve member 144, which releasably seals against an annular opening 146 extending into an air passageway 148 between air passageways 126 and 148. Accordingly, the flow control mechanism 140 provides control over the airflow into the head section 56 and the spray formation section 58 via the air passageway 148. The illustrated spray device 12 also has a gasket 150 disposed between the mid-section 54 and the head section 56, thereby creating an airtight seal between the two sections and about the air passageways extending between the two sections. Additional seals also may be provided within the scope of the present technique.

Turning now to the spray formation section 58, various flow passageways and flow enhancing structures are illustrated with reference to Fig. 3. As illustrated, the spray formation section 58 comprises an internal air deflector ring 156, a front air cap 158 disposed adjacent the internal air deflector ring 156, and an external retainer ring 160 removably coupled to the head section 56 and disposed about the internal air deflector ring 156 and the front air cap 158. The internal air deflector ring 156 is sealed against the front portion 80 of the head section 56 via a compressive fit or wedged interface 162. Similarly, the front air cap 158 is sealed against the internal air deflector ring 156 via a compressive fit or wedged interface 164. Finally, the external retainer ring 160 comprises an inward lip 166 that catches and seals against an outward lip 168 of the front air cap 158. As the external retainer ring 160 is threadably secured to the head section 56 via threads 170, the foregoing longitudinal offset distance between the fluid and air exits 84 and 154 substantially reduces or eliminates the fluid drainage or spillage into the air passageway 152 and other portions of the spray device 12.

Turning now to the spray formation section 58, various flow passageways and flow enhancing structures are illustrated with reference to Fig. 3. As illustrated, the spray formation section 58 comprises an internal air deflector ring 156, a front air cap 158 disposed adjacent the internal air deflector ring 156, and an external retainer ring 160 removably coupled to the head section 56 and disposed about the internal air deflector ring 156 and the front air cap 158. The internal air deflector ring 156 is sealed against the front portion 80 of the head section 56 via a compressive fit or wedged interface 162. Similarly, the front air cap 158 is sealed against the internal air deflector ring 156 via a compressive fit or wedged interface 164. Finally, the external retainer ring 160 comprises an inward lip 166 that catches and seals against an outward lip 168 of the front air cap 158. As the external retainer ring 160 is threadably secured to the head section 56 via threads 170, the external retainer ring 160 compresses the front air cap 158, the internal air deflector ring 156, and the head section 56 toward one another to create a compressive or wedged seal at each of the wedged interfaces 162 and 164. As illustrated, a seal member or o-ring 171 also may be provided between the external retainer ring 160 and the head section 56 adjacent the threads 170.

As illustrated, the various components of the spray formation section 58 also define various passageways to facilitate atomization of the fluid exiting from the fluid nozzle 86. As illustrated, the internal air deflector ring 156, the front air cap 158, and the external retainer ring 116 collectively define a U-shaped or curved air passageway 172, which extends from the air passageway 148 in the head section 56 to air cap passageways 174 in the front air cap 158. The air cap passageways 174 further extend into air shaping ports or jets 176, which are directed inwardly toward the centerline 78 to facilitate a desired spray shape. The internal air deflector ring 156 and the front air cap 158 also define an interior air passageway 178 about the protrusive fluid passageway 82, the fluid nozzle 86, and the retainer 88. As illustrated, the interior air passageway 178 extends from the air passageway 152 in the head section 56 to a plurality of air atomizing ports or jets 180 in a front section 182 of the front air cap 158. These air atomizing ports or jets 180 are disposed about the annular fluid exit 100 of the fluid nozzle 86, such that the air atomizing ports or jets 180 facilitate atomization of the fluid exiting from the fluid nozzle 86. Again, as the spray device 12 creates a fluid spray, the air shaping ports or jets 176 facilitate a desired spray shape or pattern, such as a flat spray, a wide conical spray pattern, a narrow conical spray pattern, and so forth.

Turning now to Fig. 5, a side view of the spray device 12 is provided for better illustration of the releasable mount 64. The releasable mount 64 is removably coupled to an upper portion 184 of the body 50 via the externally and internally threaded fasteners 66 and 68.
However, any other suitable tool-free or tool-based fasteners may be used within the scope of the present technique. As illustrated, the mounting fasteners or set screws 72 and 74 are threadable into the mounting receptacle 70, such that the releasable mount 64 can be releasably coupled to a desired stationary or mobile device. It should be noted that one or both ends of the releasable mount 64, i.e., at fastener 66 and mounting receptacle 70, may be rotatable or pivotal, such that the spray device 12 can be rotated to a desired orientation.

In the illustrated embodiment, the tightness of the fasteners 66, 68, 72, and 74 controls the rotatability of the spray device 12 and the releasable mount 64. If the fasteners 66 and 68 tightly secure the spray device 12 to the releasable mount 64, then the spray device 12 may not be rotatable about the releasable mount 64. Similarly, if the mounting fasteners or set screws 72 and 74 tightly engage the desired stationary or mobile device, then the releasable mount 64 may not be rotatable about that device.

Fig. 6 is a front view of the spray device 12 releasably coupled to a mounting member or rod 186 of such a stationary or mobile device. For example, the mounting member or rod 186 may extend from a robotic arm, an assembly line, a fixed positioning structure, a fixed rod or member, a rail mechanism, a cable and pulley assembly, a hydraulic assembly, a movable positioning structure, or any other suitable structure. Referring back to Fig. 1, the mounting member or rod 186 may be an integral portion of the positioning system 24. The spray device 12 may be mounted to the mounting member or rod 186 by receiving the mounting member or rod 186 into the mounting receptacle 70, adjusting the spray device 12 to the desired spraying position, and then securing the desired position by threading the mounting fasteners or set screws 72 and 74 into the mounting receptacle 70 to contact the mounting member or rod 186.

The spray device 12 can be dismounted by either disengaging the mounting fasteners 72 and 74 from the mounting member or rod 186 or by disengaging the fasteners 66 and 68 from the body 50 of the spray device 12. Fig. 7 is a front view of the spray device 12 exploded from the releasable mount 64. As illustrated, the releasable mount 64 is preserved in its mounting position on the mounting member or rod 186, such that the spray device 12 or its substitute may be returned to the original mounting position. For example, the spray device 12 may be removed for servicing, cleaning, maintenance, parts replacement, or other purposes. Given the sensitivity of spray processes to positioning of the spray device, the releasable mount 64 of the present technique facilitates repeatable positioning, repeatable spray patterns, and repeatable spray results for the spray device 12 and the system 10. Again, other releasable mounting mechanisms are within the scope of the present technique.

While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown in the drawings and have been described in detail herein by way of example only. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed.

Claims

1. A spray device (12) having a head section (56), comprising:
 - an air passageway (152) having an air exit (154) at an interior surface;
 - a protrusive fluid passageway (82) extending outwardly from the interior surface and having a fluid exit (84) which is horizontally offset in the direction defined by the central axis of the spray device (12) from the air exit (154);
 - a fluid nozzle (86) removably coupled to the protrusive fluid passageway (82) at the fluid exit (84) via a retainer (88); and
 - a removable spray formation structure (58) for atomizing the fluid exiting from the fluid nozzle (86).

characterized in that
the spray formation structure (58) comprises an internal air deflector ring (156), a front air cap (158) disposed adjacent the internal air deflector ring (156), and an external retainer member (160) removably coupled to the head section (56) of the spray device (12), the internal air deflector ring (156) and the front air cap (158) defining an interior air passageway (178) about the protrusive fluid passageway (82), the fluid nozzle (86), and the retainer (88).

2. The spray device (12) of claim 1, wherein the removable fluid nozzle (86) comprises a one-piece structure having a converging fluid passageway.

3. The spray device (12) of claim 1 or 2, wherein the removable fluid nozzle (86) comprises an internal volume substantially defined by a converging fluid passageway.

4. The spray device (12) of one of the claims 1 to 3, further comprising a fluid valve in fluid communication with the removable fluid nozzle (86).

5. The spray device (12) of claim 4, wherein the fluid valve comprises an inwardly opening valve member (104) extending into the removable fluid nozzle (86).

6. The spray device (12) of one of the claims 1 to 5, further comprising an air jet (180) extending from the second air passageway adjacent a nozzle fluid exit (100) of the removable fluid nozzle (86).

7. The spray device (12) of one of the claims 1 to 6,
wherein the removable spray formation structure (158) comprises at least one air shaping jet (176).

8. The spray device (12) of one of the claims 1 to 7, further comprising a positioning system (34) coupled to the spray device (12).

9. The spray device (12) of claim 8, wherein the positioning system (34) comprises a fixed positioning structure.

10. The spray device (12) of claim 8, wherein the positioning system (34) comprises a movable positioning mechanism.

11. The spray device (12) of one of the claims 1 to 10, further comprising an automation system (22) coupled to the spray device (12).

12. The spray device (12) of one of the claims 1 to 11, wherein the spray device (12) is adapted to spray a ceramic coating material.

13. The spray device (12) of the claims 1 to 11, wherein the spray device (12) is adapted to spray a wood finishing material.

14. The spray device (12) of one of the claims 1 to 11, wherein the spray device (12) is adapted to spray a paint.

15. The spray device (12) of one of the claims 1 to 11, wherein the spray device (12) is adapted to spray a chemical treatment material.

16. A method of manufacturing a spray device (12) having a head section (56), the method comprising the steps of:

- providing a first section (12) integrally comprising fluid (84) and air (154) exits longitudinally offset from one another, along the axis of the spray device (12);
- removably attaching a fluid nozzle (86) with the fluid exit (84) using a retainer (88);
- positioning a second section (58) about the removable fluid nozzle (86);

characterized in that

the step of positioning the second section (58) comprises the steps of positioning an internal air deflector ring (156), a front air cap (158) adjacent to the internal air deflector ring (156), and an external retainer member (160) such that the external retainer member (160) is removably coupled to the head section (56) of the spray device (12), wherein the internal air deflector ring (156) and the front air cap (158) define an interior air passageway (178) about the fluid exit (84), the fluid nozzle (86), and the retainer (88).

17. The method of claim 16, wherein the step of providing the first section (12) comprises the step of forming a protrusive fluid passageway (82) having the fluid exit longitudinally offset from a surface having the air exit (154).

18. The method of claim 16 or 17, further comprising the step of providing the removable fluid nozzle (86) with an internal volume substantially defined by a converging fluid passageway.

19. The method of one of the claims 16 to 18, wherein the step of removably attaching the fluid nozzle (86) comprises the step of forming a substantially watertight seal between the removable fluid nozzle (86) and the fluid exit (84).

20. The method of claim 19, wherein the step of forming the substantially watertight seal comprises the step of compressing a wedged (94, 96) interface between the fluid nozzle (86) and the fluid exit (84).

21. The method of one of the claims 16 to 20, wherein the step of positioning the second section (58) comprises the step of enclosing the fluid nozzle (86) within an internal cavity of the second section (58).

Patentansprüche

1. Sprühvorrichtung (12), welche einen Kopfteil (56) aufweist, enthaltend:

- einen Luftdurchgang (152), welcher einen Luftauslass (154) an einer Innenfläche aufweist;
- einen vorstehenden Fluiddurchgang (82), der sich von der Innenfläche nach außen erstreckt und einen Fluidauslass (84) aufweist, welcher in der Richtung, welche durch die zentrale Achse der Sprühvorrichtung (12) definiert ist, von dem Luftauslass (154) horizontal versetzt ist;
- eine Fluiddüse (86), welche entferntbar an den vorstehenden Fluiddurchgang (82) am Fluidauslass (84) mittels eines Halteelements (88) gekoppelt ist; und
- eine entfernbare Sprühnebelausbildungsstruktur (58) zur Zerstäubung des aus der Fluiddüse (86) austretenden Fluids,

dadurch gekennzeichnet, dass
die Sprühnebelausbildungsstruktur (58) einen inne-
ren Luftablaufkranz (156), eine vordere Luftkappe (158), die benachbart zu dem inneren Luftablaufkranz (156) angeordnet ist, und ein äußeres Halteelement (160) enthält, welches entferntbar an den Kopfabschnitt (56) der Sprühvorrichtung (12) gekoppelt ist,
wobei der innere Luftablenkring (156) und die vordere Luftkappe (158) einen inneren Luftdurchgang (178) um den vorstehenden Fluiddurchgang (82), die Fluiddüse (86) und das Halteelement (88) herum definieren.

2. Sprühvorrichtung (12) nach Anspruch 1, wobei die entfernbare Fluiddüse (86) eine einteilige Struktur enthält, die einen konvergierenden Fluiddurchgang aufweist.

3. Sprühvorrichtung (12) nach Anspruch 1 oder 2, wobei die entfernbare Fluiddüse (86) ein inneres Volumen enthält, welches im Wesentlichen durch einen konvergierenden Fluiddurchgang gebildet ist.

4. Sprühvorrichtung (12) nach einem der Ansprüche 1 bis 3, ferner enthaltend ein Fluidventil in fluidmäßiger Verbindung mit der entfernbaren Fluiddüse (86).

5. Sprühvorrichtung (12) nach Anspruch 4, wobei das Fluidventil ein nach innen öffnendes Ventilelement (104) enthält, welches sich in die entfernbare Fluiddüse (86) erstreckt.

6. Sprühvorrichtung (12) nach einem der Ansprüche 1 bis 5, ferner enthaltend eine Luftdüse (180), welche sich von dem zweiten Luftdurchgang benachbart zu einem Düsenfluidauslass (100) der entfernbaren Fluiddüse (86) erstreckt.

7. Sprühvorrichtung (12) nach einem der Ansprüche 1 bis 6, wobei die entfernbare Sprühnebelausbildungsstruktur (158) mindestens eine luftformende Düse (176) enthält.

8. Sprühvorrichtung (12) nach einem der Ansprüche 1 bis 7, ferner enthaltend ein Positioniersystem (34), welches an die Sprühvorrichtung (12) gekoppelt ist.

9. Sprühvorrichtung (12) nach Anspruch 8, wobei das Positioniersystem (34) eine fixierte Positionierstruktur enthält.

10. Sprühvorrichtung (12) nach Anspruch 8, wobei das Positioniersystem (34) einen beweglichen Positioniermechanismus enthält.

11. Sprühvorrichtung (12) nach einem der Ansprüche 1 bis 10, ferner enthaltend ein Automationssystem (22), welches an die Sprühvorrichtung (12) gekoppelt ist.

12. Sprühvorrichtung (12) nach einem der Ansprüche 1 bis 11, wobei die Sprühvorrichtung (12) angepasst ist, keramisches Beschichtungsmaterial zu versprühen.

13. Sprühvorrichtung (12) nach Anspruch 1 bis 11, wobei die Sprühvorrichtung (12) angepasst ist, ein Holzverbindungsmaterial zu versprühen.

14. Sprühvorrichtung (12) nach einem der Ansprüche 1 bis 11, wobei die Sprühvorrichtung (12) angepasst ist, einen Lack zu versprühen.

15. Sprühvorrichtung (12) nach einem der Ansprüche 1 bis 11, wobei die Sprühvorrichtung (12) angepasst ist, ein chemisches Behandlungsmaterial zu versprühen.

16. Verfahren zur Herstellung einer Sprühvorrichtung (12), welche einen Kopfabschnitt (56) aufweist, enthaltend die Schritte:

- Bereitstellen eines ersten Abschnitts (12), welcher integral Fluid- (84) und Luft- (154) Auslässe enthält, welche entlang der Achse der Sprühvorrichtung (12) in Längsrichtung von einander versetzt sind;
- Entfernbaren Befestigen einer Fluiddüse (86) am Fluidauslass (84) unter Nutzung eines Halteelements (88);
- Positionieren eines zweiten Abschnitts (58) um die entfernbare Fluiddüse (86) herum;

dadurch gekennzeichnet, dass der Schritt des Positionierens des zweiten Abschnitts (58) die Schritte des Positionierens eines inneren Luftablenkringes (156), einer vorderen Luftkappe (158) benachbart zu dem inneren Luftablenkring (156), und eines äußeren Halteelements (160) so enthält, dass das äußere Halteelement (160) entfernt an der Kopfabschnitt (56) der Sprühvorrichtung (12) gekoppelt ist, wobei der innere Luftablenkring (156) und die vordere Luftkappe (158) einen inneren Luftdurchgang (178) um den Fluidauslass (84), die Fluiddüse (86) und das Halteelement (88) definieren.

17. Verfahren nach Anspruch 16, wobei der Schritt des Bereitstellens des ersten Abschnitts (12) den Schritt des Bildens eines vorstehenden Fluiddurchgangs (82) beinhaltet, welcher den Fluidauslass in Längsrichtung von einer Fläche versetzt aufweist, welche den Luftauslass (154) aufweist.

18. Verfahren nach Anspruch 16 oder 17, ferner enthaltend den Schritt des Bereitstellens der entfernbaren Fluiddüse (86) mit einem inneren Volumen, welches im Wesentlichen durch einen konvergierenden Fluiddurchgang definiert ist.

19. Verfahren nach einem der Ansprüche 16 bis 18, wobei der Schritt des entfernbaren Befestigens der Fluiddüse (86) den Schritt der Bildung einer im We-
sentlichen wasserdichten Abdichtung zwischen der entfernbaren Fluiddüse (86) und dem Fluidauslass (84) enthält.

20. Verfahren nach Anspruch 19, wobei der Schritt der Bildung der im Wesentlichen wasserdichten Abdichtung den Schritt des Zusammendrückens einer keilförmigen (94, 96) Schnittstelle zwischen der Fluiddüse (86) und dem Fluidauslass (84) umfasst.

Revendications

1. Dispositif de pulvérisation (12) comportant une section de tête (56), comprenant :

- un passage à air (152) comportant une sortie d’air (154) au niveau d’une surface intérieure ;
- un passage à fluide saillant (82) se prolongeant vers l’extérieur depuis la surface interne et comportant une sortie de fluide (84) décalée horizontalement dans la direction définie par l’axe central du dispositif de pulvérisation (12) par rapport à la sortie d’air (154) ;
- une buse à fluide (86) couplée de façon amovible au passage à fluide saillant (82) au niveau de la sortie de fluide (84) par l’intermédiaire d’un élément de retenue (88) ; et
- une structure de formation de pulvérisation amovible (58) pour atomiser le fluide sortant de la buse à fluide (86), caractérisé en ce que la structure de formation de pulvérisation (58) comprend une bague de déviation d’air interne (156), un capuchon à air avant (158) disposé en position adjacente à la bague de déviation d’air interne (156), et une pièce de retenue externe (160) couplée de façon amovible à la section de tête (56) du dispositif de pulvérisation (12), la bague de déviation d’air interne (156) et le capuchon à air avant (158) définissant un passage à air intermédiaire (178) autour du passage à fluide saillant (82), de la buse à fluide (86) et de l’élément de retenue (88).

2. Dispositif de pulvérisation (12) selon la revendication 1, dans lequel la buse à fluide amovible (86) comprend une structure d’un seul tenant comportant un passage à fluide convergent.

3. Dispositif de pulvérisation (12) selon la revendication 1 ou 2, dans lequel la buse à fluide amovible (86) comprend un volume interne essentiellement défini par un passage à fluide convergent.

4. Dispositif de pulvérisation (12) selon l’une des revendications 1 à 3, comprenant en outre une valve à fluide en communication fluidique avec la buse à fluide amovible (86).

5. Dispositif de pulvérisation (12) selon la revendication 4, dans lequel la valve à fluide comprend une pièce de valve s’ouvrant vers l’extérieur (104) se prolongeant dans la buse à fluide amovible (86).

6. Dispositif de pulvérisation (12) selon l’une des revendications 1 à 5, comprenant en outre un jet à air (180) se prolongeant depuis le deuxième passage à air en position adjacente à une sortie de fluide (100) de la buse à fluide amovible (86).

7. Dispositif de pulvérisation (12) selon l’une des revendications 1 à 6, dans lequel la structure de formation de pulvérisation amovible (158) comprend au moins un jet de mise en forme d’air (176).

8. Dispositif de pulvérisation (12) selon l’une des revendications 1 à 7, comprenant en outre un système de positionnement (34) couplé au dispositif de pulvérisation (12).

9. Dispositif de pulvérisation (12) selon la revendication 8, dans lequel le système de positionnement (34) comprend une structure de positionnement fixe.

10. Dispositif de pulvérisation (12) selon la revendication 8, dans lequel le système de positionnement (34) comprend un mécanisme de positionnement mobile.

11. Dispositif de pulvérisation (12) selon l’une des revendications 1 à 10, comprenant en outre un système d’automatisation (22) couplé au dispositif de pulvérisation (12).

12. Dispositif de pulvérisation (12) selon l’une des revendications 1 à 11, adapté pour pulvériser une matière de revêtement de la céramique.

13. Dispositif de pulvérisation (12) selon l’une des revendications 1 à 11, adapté pour pulvériser une matière de finition du bois.

14. Dispositif de pulvérisation (12) selon l’une des revendications 1 à 11, adapté pour pulvériser une peinture.

15. Dispositif de pulvérisation (12) selon l’une des revendications 1 à 11, adapté pour pulvériser une matière de traitement chimique.
16. Procédé de fabrication d’un dispositif de pulvérisation (12) comportant une section de tête (56), le procédé comprenant les étapes consistant à :

- réaliser une première section (12) comprenant de manière solidaire des sorties de fluide (84) et d’air (154) décalées longitudinalement l’une par rapport à l’autre le long de l’axe du dispositif de pulvérisation (12) ;
- attacher de façon amovible une buse à fluide (86) sur la sortie de fluide (84) à l’aide d’un élément de retenue (88) ;
- positionner une deuxième section (58) autour de la buse à fluide amovible (86) ;

caractérisé en ce que
l’étape consistant à positionner la deuxième section (58) comprend l’étape consistant à positionner une bague de déviation d’air interne (156), un capuchon à air avant (158) en position adjacente à la bague de déviation d’air interne (156) et une pièce de retenue externe (160) de façon à coupler de façon amovible la pièce de retenue externe (160) à la section de tête (56) du dispositif de pulvérisation (12), la bague de déviation d’air interne (156) et le capuchon à air avant (158) définissant une passage à air intérieur (178) autour de la sortie de fluide (84), de la buse à fluide (86) et de l’élément de retenue (88).

17. Procédé selon la revendication 16, dans lequel l’étape consistant à réaliser la première section (12) comprend l’étape consistant à former un passage à fluide saillant (82) comprenant la sortie de fluide décalée longitudinalement par rapport à une surface comportant la sortie d’air (154).

18. Procédé selon la revendication 16 ou 17, comprenant en outre l’étape consistant à doter la buse à fluide amovible (86) d’un volume interne essentiellement défini par un passage à fluide convergent.

19. Procédé selon l’une des revendications 16 à 18, l’étape consistant à attacher de façon amovible la buse à fluide (86) comprend l’étape consistant à former un joint essentiellement étanche à l’eau entre la buse à fluide amovible (86) et la sortie de fluide (84).

20. Procédé selon la revendication 19, dans lequel l’étape consistant à former le joint essentiellement étanche à l’eau comprend l’étape consistant à comprimer une interface à coins (94, 96) entre la buse à fluide (86) et la sortie de fluide (84).

21. Procédé selon l’une des revendications 16 à 20, dans lequel l’étape de positionnement de la deuxième section (58) comprend l’étape de confinement de la buse à fluide (86) à l’intérieur d’une cavité in-