EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 04.01.2006 Bulletin 2006/01

Application number: 04003203.9

Date of filing: 12.02.2004

Temperature adjusting device for an LED light source

Vorrichtung zur Temperaturregelung von einer LED- Lichtquelle

Dispositif de réglage de la température pour source lumineuse à diodes électroluminescentes

Designated Contracting States: DE FR GB

Priority: 13.02.2003 JP 2003035400

Date of publication of application: 18.08.2004 Bulletin 2004/34

Proprietor: NORITSU KOKI CO., LTD.
Wakayama-shi, Wakayama-ken 640-8550 (JP)

Inventor: Nakano, Shoichi
Wakayama-shi
Wakayama-ken
640-8550 (JP)

Representative: Sajda, Wolf E. et al
MEISSNER, BOLTE & PARTNER
Postfach 86 06 24
81633 München (DE)

References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a temperature adjusting device and a temperature adjusting method for an LED light source that is provided with an LED light source, a temperature sensor for detecting an ambient temperature of the LED light source, a cooling fan for cooling the LED light source, a driving circuit for driving the cooling fan, and a control unit which on/off controls a voltage to be applied to the cooling fan so as to set the ambient temperature within a predetermined range based upon the results of detection by the temperature sensor.

2. Description of the Related Art

With respect to a light source used in a copying machine, an image-reading apparatus and the like, after turning the light source on, a temperature rise tends to occur due to self heat generation to cause changes in the light source characteristics and the resulting adverse effects in image quality of a read image. For this reason, a device which carries out temperature adjustments so as to adjust the ambient temperature (environmental temperature) of the light source within a predetermined temperature range by using a heater and a cooling fan has been proposed. For example, from JP-A No. 2-267541 there is known such a device using a fluorescent lamp as the light source.

Further, in a photographic processing device for forming photographic prints, a scanner for reading frame images formed in a developed negative film has been used. With respect to a reading light source for use in this scanner, a halogen lamp has been generally used. Here, those light sources using an LED light source have also been known from the viewpoints of its long life and elimination of the need for exchanging the light sources. For example, JP-A No. 2002-365735 has disclosed such a photographic film reading device.

In the case when an LED light-source is used, the LED is subjected to changes in characteristics in the light amount and wavelength depending on temperatures and the subsequent changes in the reading performance; therefore, it is necessary to carry out temperature adjustments. In order to carry out the temperature adjustments, a temperature sensor for detecting the environmental temperature at which the LED light source is placed is installed, and when the preset temperature range is exceeded, a cooling fan is turned on so as to lower the temperature. When the temperature is cooled to a preset temperature, the cooling fan is turned off.

However, the conventional control method for on/off controlling the above-mentioned cooling fan has the following problems. Since, upon turning the cooling fan on, the LED is quickly cooled, the characteristics of the LED tend to deviate. LED light sources of three colors are required in order to read an image of a color photographic film; however, when there are deviations in the characteristics, adverse effects are caused on the reading performances. Moreover, when the cooling fan is quickly turned on and off, changes in noise are offensive to the ear, and make the workers uncomfortable.

When a halogen lamp is used as the light source, a cooling fan is also used; however, since such a halogen lamp is less susceptible to changes in characteristics due to the ambient temperature, the cooling fan can be continuously rotated without the necessity of turning on and off. When the cooling fan is continuously rotated, the noise from the fan is not offensive to the ear. In the case of a LED light source, however, since the characteristics thereof are changed depending on the ambient temperature, it is not possible to keep the cooling fan rotating all the time.

The present invention has been devised so as to solve the above-mentioned problems, and its objective is to provide a temperature adjusting device and a temperature adjusting method for an LED light source which, upon temperature-adjusting the LED light source by using a cooling fan, neither causes unnecessary deviations in characteristics in the LED, nor makes the workers uncomfortable due to abrupt changes in noise.

SUMMARY OF THE INVENTION

In order to achieve the above-mentioned objective, a temperature adjusting device for an LED light source according to claim 1 is provided.

In the arrangement according to the invention, the control unit which on/off controls the voltage to be applied to the cooling fan is installed. Moreover, upon turning the voltage to be applied on from the off-state, the voltage is not applied abruptly as a target voltage, but applied as a gradually increasing voltage toward the target voltage. With this arrangement, the number of revolutions of the cooling fan is gradually increased so that the LED is not cooled abruptly. Moreover, noise, generated by the cooling fan, gradually increases so that it is possible to avoid making the workers uncomfortable. In the same manner, upon turning the voltage to be applied off from the on-state, the applied voltage is gradually lowered. As a result, it is possible to provide a temperature adjusting device for an LED light source which neither causes unnecessary deviations in characteristics in the LED, nor makes the workers uncomfortable due to abrupt changes in noise.

With respect to a preferred embodiment of the present invention, the above-mentioned LED light source is preferably used as a scanner-use light source used for reading frame images of a photographic film.

In particular, in the case when a color photographic film is read, LED light sources of three colors are required; therefore, when there are deviations in characteristics of the respective LEDs, adverse effects might...
be given to image quality of a read image. In other words, in the case when an LED light-source is used as a scanner-use light source used for reading a photographic film, the arrangement of the present invention particularly exerts superior effects.

[0012] In another preferred embodiment of the present invention, the above-mentioned LED light source is formed into a line shape along the width direction of a photographic film that is to be read, and a line-shaped heater to be placed in parallel with the line direction of the LED light source is prepared, and in this arrangement, the control unit turns the above-mentioned heater off in synchronism with the turning-on of the LED light source, while it on/off controls the above-mentioned cooling fan irrespective of the turning on/off of the heater.

[0013] In order to appropriately carry out temperature adjustments of the LED light source, the temperature control is preferably carried out to an environmental temperature slightly higher than the temperature of a room in which the scanner is placed. In other words, in the case when the environmental temperature is set to a temperature lower than the room temperature, since the temperature is always influenced by the room temperature, the blower fan needs to be continuously set to the on-state. Here, in such a cooling method, the environmental temperature inside the LED unit is susceptible to irregularities. As a result, it is not possible to stabilize the light emission of the LED so that this method is not suitable for the formation of a photographic image that needs to be dealt as high image-quality data. With respect to the supply ends of the photographic processing devices, there are warm areas and cold areas, and when all those supply ends are taken into consideration, the environmental temperature of the LED needs to be set to, for example, a temperature slightly higher than the temperature (or recommended environmental temperature of the machine) of a warm area.

[0014] In this case, when the reading operation for a photographic film is started, it is preferable to preliminarily set the temperature to a desired environmental temperature. Therefore, the line-shaped heater is placed adjacent to the line-shaped LED light source, and prior to the application of the LED light source, the heater is used to heat the LED light source to be set to the desired environmental temperature. When the LED light source is actually turned on, the heater is turned off. After turning the LED light source on, since the LED itself generates heat, it is not necessary to turn the heater on. In other words, when the LED light source is off, heat is generated by the heater, and when the LED light-source is on, heat is generated by the LED light source itself. Therefore, irrespective of the turning on/off of the heater, the setting of the environmental temperature is carried out with high precision by on/off controlling the cooling fan.

[0015] Furthermore, in accordance with the present invention, there is provided a temperature adjusting method for an LED light source which comprises an LED light source; a temperature sensor for detecting an ambient temperature of the LED light source; a cooling fan for cooling the LED light source; a driving circuit for driving the cooling fan; and a control unit adapted to control the cooling fan.

[0016] In accordance with the temperature adjusting method according to the invention, the control unit which controls the on/off voltage to be applied to the cooling fan is controlled in such a manner so as to set the ambient temperature within a predetermined range based upon results of detection by the temperature sensor. For this purpose, the control unit is controlled in such a manner that upon on/off controlling the applied voltage, the applied voltage is gradually raised and lowered respectively.

[0017] In particular, the temperature adjusting method is carried out in such a manner that the control unit is controlled so that it turns the applied voltage on when the detected ambient temperature exceeds an upper-side switching temperature that is set at a temperature lower than the upper limit of a temperature permissible range, and that it turns the applied voltage off, when the detected ambient temperature is lower than a lower-side switching temperature that is set at a temperature higher than the lower limit of the temperature permissible range.

[0018] According to a further aspect of the temperature adjusting method of the invention, the heater is turned off in synchronism with the turning-on of the LED light source, and the cooling fan is turned on/off independent of the on/off operations of the heater.

[0019] In accordance with a further development of the temperature adjusting method, the voltage applied to the cooling fan is gradually increased or decreased, wherein the applied voltage can be applied linearly, in a curved manner or step by step, or even in a combined manner following a straight line, a curved line, and a step-shaped line, respectively.

[0020] Further developments and features of the device and the method according to the invention are specified below in connection with specific embodiments and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 is a perspective view that shows a structure of a scanner device in which an LED light source is used.

FIG. 2 is a block diagram that explains a temperature adjusting device of the LED light source and functions thereof.

FIG. 3 is a graph that explains the contents of the temperature adjusting process.

FIG. 4 is a time chart in the case when the scanner is used.
The ambient temperature at which the LED light-sources heaters 12r, 12g and 12b are required so as to control line-shaped LED light sources 11r, 11g and 11b. These are placed adjacent to (preferably in parallel with) the sources 11r, 11g and 11b are attached to LED substrates.

As shown in Fig. 2, the respective LED light sources formed on photographic film are successively acquired. Image data corresponding to the frame images formed on the photographic film F are successively acquired. By transporting the photographic film F at a constant speed, the CCD line sensor 2 through a converging lens 3. By this means, the light rays, applied from the optical fiber 13, are allowed to pass through the photographic film F, and made incident on the photographic film F in a mixed color state. The light rays, are joined into a joining portion 13a, and outputted to the respective LED light sources. Therefore, it is possible to simplify the structure of the scanner device.

An optical fiber 13 for guiding light rays applied from the respective LED light sources 11r, 11g and 11b is installed. The optical fiber 13 includes a red LED-use guide portion 13r, a green LED-use guide portion 13g and a blue LED-use guide portion 13b, and these portions are joined into a joining portion 13a, and outputted to the photographic film F in a mixed color state. The light rays, applied from the optical fiber 13, are allowed to pass through the photographic film F, and made incident on the CCD line sensor 2 through a converging lens 3. By transporting the photographic film F at a constant speed, image data corresponding to the frame images formed on the photographic film F are successively acquired.

As shown in Fig. 2, the respective LED light sources 11r, 11g and 11b are attached to LED substrates 10r, 10g and 10b. Moreover, heaters 12r, 12g and 12b are placed adjacent to (preferably in parallel with) the line-shaped LED light sources 11r, 11g and 11b. These heaters 12r, 12g and 12b are required so as to control the ambient temperature at which the LED light-sources 11r, 11g and 11b are placed to a predetermined range. As the ambient temperature changes, the LED light sources 11r, 11g and 11b also change in characteristics thereof, such as light quantity and wavelength. Consequently, the quality of read images deteriorates. Therefore, in the case when the LED light sources 11r, 11g and 11b are used as scanner-use light sources, it is necessary to carry out temperature adjustments.

A control unit 4 (MPU) that controls the temperature-adjusting device is installed. The control unit 4 carries out controlling operations on respective units in accordance with set programs. Light-quantity data, required for driving the LED light-sources 11r, 11g and 11b, are sent to a D/A conversion unit 7 from the control unit 4 so that the respective LED light sources 11r, 11g and 11b are driven through an LED driving circuit 6. The LED light sources 11r, 11g and 11b are driven and controlled by current-controlling operations.

Moreover, data, required for driving the heaters 12r, 12g and 12b, are sent to a D/A conversion unit 5 so that the respective heaters 12r, 12g and 12b are driven through a heater driving circuit 8. The respective LED light sources 11r, 11g and 11b and the respective heaters 12r, 12g and 12b are installed on substrates 10r, 10g and 10b.

Furthermore, a cooling fan 20 for adjusting the ambient temperature is installed. The ambient temperature is always monitored by a temperature sensor 9, and when the ambient temperature is out of a predetermined range, the cooling fan 20 is on/off controlled. The cooling fan 20 is turned on (activated) by applying a predetermined voltage thereto. Voltage data are sent to a D/A conversion unit 21 from the control unit 4 so that the cooling fan 20 is driven and controlled based upon a voltage applied thereto from a fan driving circuit 22. A signal from the temperature sensor 9 for measuring the ambient temperature is amplified in an amplifier 23. This signal is converted by an A/D conversion unit 24, and sent to the control unit 4. Based upon these temperature data, the control unit 4 on/off controls the cooling fan 20.

Temperature Adjustments

The following description will discuss a specific method for adjusting the temperature by the use of a temperature adjusting device as shown in Fig. 2. Fig. 3 shows a graph that explains the contents of the temperature adjustments, and the axis of abscissas indicates the elapsed time and the axis of ordinates indicates the ambient temperature detected by the temperature sensor 9. To represents a set temperature. \(T_3 \) represents a lower limit temperature of a permissible range. \(T_4 \) represents an upper limit temperature in the permissible range. Here, \(T_1 \) represents a temperature at which the cooling fan 20 is switched off. \(T_2 \) represents a temperature at which the cooling fan 20 is switched on.

Fig. 3(b) shows a graph that explains a conventional on/off controlling method. When the ambient tem-

BODIMENTS

Referring to Figures, the following description will discuss preferred embodiments of a temperature adjusting device for an LED light source in accordance with the present invention. Fig. 1 is a perspective view that shows a structure of a scanner device in which an LED light source is used. Fig. 2 is a block diagram that explains a temperature adjusting device of the LED light source and functions thereof.

Structure of Scanner Device

This scanner device 1 is used for reading frame images formed on a photographic film F, such as a negative-working film and a positive-working film, to form electronic data. With a transporting face on which a photographic film F is transported being sandwiched in between, LED light sources 11r, 11g and 11b serving as reading light sources are placed on one side, and a CCD line sensor 2 serving as a reading sensor is placed on the other side. The red LED light source 11r, the green LED light source 11g and the blue LED light source 11b are installed in order to acquire color image data from the color photographic film. The respective LED light sources are formed in a line shape in association with the line-shaped CCD line sensor 2.

In comparison with a case in which a halogen lamp is used as the light source, the LED light source has a longer service life, and also has the advantage that hardly any exchanging operations are required. Moreover, such a halogen lamp requires a light-adjusting filter, while the LED light source requires no light-adjusting filter. This is because, for example, in order to deal with differences in color in the base of the negative working film, it is only necessary to adjust the output of each of the LED light sources. Therefore, it is possible to simplify the structure of the scanner device.

An optical fiber 13 for guiding light rays applied from the respective LED light sources 11r, 11g and 11b is installed. The optical fiber 13 includes a red LED-use guide portion 13r, a green LED-use guide portion 13g and a blue LED-use guide portion 13b, and these portions are joined into a joining portion 13a, and outputted to the photographic film F in a mixed color state. The light rays, applied from the optical fiber 13, are allowed to pass through the photographic film F, and made incident on the CCD line sensor 2 through a converging lens 3. By transporting the photographic film F at a constant speed, image data corresponding to the frame images formed on the photographic film F are successively acquired.
perature exceeds the upper-side switching temperature \(T_2 \), a voltage \(V \) is abruptly applied to allow the cooling fan 20 to start rotating abruptly. After the cooling fan 20 has been driven, the ambient temperature is gradually lowered, and when the ambient temperature goes lower than the lower-side switching temperature \(T_1 \), the cooling fan 20 is switched off so that the applied voltage suddenly drops from \(V \) to 0. Consequently, the operation of the cooling fan 20 is suddenly stopped. However, such abrupt on/off operations for the applied voltage cause abrupt changes in noise, making the workers uncomfortable due to offensive noise to the ear. Moreover, when the LEDs are abruptly cooled, greater adverse effects due to changes in the characteristics are caused.

For this reason, controlling operations as shown in Fig. 3(c) are carried out. In other words, when the ambient temperature exceeds \(T_2 \), the applied voltage to the LED light sources 11r, 11g and 11b is gradually increased. The time period is represented by \(\Delta t \). The time period is preferably set to 1 to 2 seconds. This is because the time period of less than 1 second fails to eliminate offensive noise, while the time period exceeding 2 seconds causes degradation in temperature-controlling precision. Moreover, in the case when the ambient temperature goes below \(T_1 \), the applied voltage is gradually lowered in the time period of \(\Delta t \). Thus, the changes in noise are smoothed so that offensive noise to the ear is eliminated. Moreover, since the LED light source is not cooled abruptly, it is possible to reduce changes in the characteristics of the LED.

Time Chart

Next, referring to Fig. 4, the following description will discuss a time chart that is used when frame images in a photographic film are read by using the scanner 1. In Fig. 4, a photographic film is set in the scanner 1 so that timing \(t_1 \) in which the film is transported is indicated. The completion of the transporting process is indicated by \(t_2 \). The LED light source is turned on at \(t_2 \) to start the transporting process of the photographic film, and is turned off at \(t_3 \) after the completion of the transporting process. Moreover, the heater is turned off in synchronism with the turning-on of the LED light source (although not shown in Fig. 4, the on/off control of the heater has been started upon carrying out a warming-up process of the photographic processing apparatus). The ambient temperature in which the LED is used needs to be always set in a predetermined range (\(T_3 \) to \(T_4 \)). This temperature range is set to, for example, not less than 40 °C. This temperature is slightly higher than the ambient temperature at which the scanner device is installed. Therefore, in order to maintain the ambient temperature of the LED light source at a predetermined level, even when the scanning process of the photographic film is not carried out, the heater is maintained in the on-state during the corresponding time. Since, during the on-state of the LED light source, the LED itself generates heat, it is not necessary to turn the heater on, and the heater is maintained in the off-state.

For the reason, as described above, the cooling fan 20 is also controlled so as to be always operable. In other words, as shown in Fig. 4, irrespective of the on/off operation of the heater, operation controls are carried out on the cooling fan. Thus, the ambient temperature at which the LED light sources are placed is always maintained appropriately.

Further Embodiments

(1) The temperature adjusting device in accordance with the present invention is applicable not only to the case in which an LED light source is used for a scanner device, but also to the case in which it is used for an exposing light source which exposes and prints an image onto a photosensitive material.

(2) The structure of a light path that directs light from the LED light source to a photographic film is not limited by the present embodiment, and various modified embodiments may be proposed. For example, the light path structure may be formed by using not an optical fiber, but a dichroic mirror and a prism.

(3) In the present embodiment, when the applied voltage is gradually raised or lowered, the voltage is linearly increased or reduced; however, the present invention is not intended to be limited by this method. For example, the voltage may be increased or reduced in a curved manner. Moreover, the voltage may be increased or reduced by changing the voltage step by step. The voltage may be changed in a combined manner between a straight line and a curved line. In short, the voltage may be gradually changed within a range in which the functions and effects of the present invention are properly exerted.

(4) The present embodiment has exemplified a case in which three LEDs are used; however, in the case when a white-color LED is used, the structure may include a single LED.

Claims

1. A temperature adjusting device for an LED light source, comprising:
 - an LED light source (11);
 - a temperature sensor (9) for detecting an ambient temperature of the LED light source (11);
 - a cooling fan (20) for cooling the LED light source (11);
 - a driving circuit (22) for driving the cooling fan (20); and
 - a control unit (4) which on/off controls a voltage to be applied to the cooling fan (20) so as to set
the ambient temperature within a predetermined range based upon results of detection by the temperature sensor (9),

wherein, upon on/off controlling the applied voltage, the control unit (4) is adapted to gradually raise/lower the applied voltage in order to avoid abrupt cooling of the light source (11) and sudden changes in sound of the cooling fan (20),

characterized in that a line-shaped heater (12) is provided that is installed in the LED light source (11), and formed in a line shape along the width direction of an object such as a photographic film (F) to be read so as to be aligned adjacent to the LED light source (11) in the line direction,

and in that the control unit (4) is adapted to turn the heater (12) off in synchronism with the turning-on of the LED light source (11), and to on/off control the cooling fan (20) independent of the on/off operations of the heater (12).

2. The device according to claim 1,

characterized in that the control unit (4) is adapted to turn the applied voltage on when the ambient temperature exceeds an upper-side switching temperature (T2) that is set at a temperature lower than the upper limit of a temperature permissible range, and to turn the applied voltage off when the ambient temperature is lower than a lower-side switching temperature (T1) that is set at a temperature higher than the lower limit of the temperature permissible range.

3. The device according to any of claim 1 or 2,

characterized in that the control unit (4) is adapted to gradually increase/decrease the applied voltage linearly and/or in a curved manner and/or in a step-wise manner.

4. The device according to any of claims 1 to 3,

characterized in that the time period in which the applied voltage is gradually increased/decreased is set to one to two seconds.

5. The device according to any of claims 1 to 4,

characterized by comprising:

- a red LED light source (11r), a green LED light source (11g), a blue LED light source (11b) that constitute an LED light source (11);
- a red LED guiding portion (13r), a green LED guiding portion (13g) and a blue LED guiding portion (13b) that guide light rays applied from the respective light sources (11r, 11g, 11b); and
- a joining portion (13a) that allows the respective guiding portions to join to one another.

6. The device according to any of claims 1 to 4,

characterized in that the LED light source (11) is a white-color LED.

7. The device according to any of claims 1 to 6,

characterized in that the LED light source (11) is used for a scanner-use light source for reading frame images of a photographic film.

8. The device according to any of claims 1 to 6,

characterized in that the LED light source (11) is used for an exposure-use light source for exposing and printing an image onto a photosensitive material.

9. A temperature adjusting method for an LED light source, comprising an LED light source (11) provided with a line-shaped heater (12) that is installed in the LED light source (11), and formed in a line shape along the width direction of an object such as a photographic film (F) to be read so as to be aligned adjacent to the LED light source (11) in the line direction, a temperature sensor (9) for detecting an ambient temperature of the LED light source (11); a cooling fan (20) for cooling the LED light source (11); a driving circuit (22) for driving the cooling fan (20); and a control unit (4) adapted to control the cooling fan (20),

wherein the control unit (4) which on/off controls the voltage to be applied to the cooling fan (20) is operated in such a manner so as to set the ambient temperature within a predetermined range based upon results of detection by the temperature sensor (9), wherein the control unit (4) is operated in such a manner that upon on/off controlling the applied voltage, the applied voltage is gradually raised and lowered, respectively, in order to avoid abrupt cooling of the light source (11) and sudden changes in sound of the cooling fan (20), and wherein the control unit (4) is operated in such a manner to turn the heater (12) off in synchronism with the turning-on of the LED light source (11), and to on/off control the cooling fan (20) independent of the on/off operations of the heater (12).

Patentansprüche

1. Temperatureinstellvorrichtung für eine LED-Lichtquelle, wobei die Temperatureinstellvorrichtung folgendes aufweist:

- eine LED-Lichtquelle (11);
- einen Temperatursensor (9) zum Erfassen einer Umgebungstemperatur der LED-Lichtquelle (11);
- ein Kühlgebläse (20) zum Kühlen der LED-Lichtquelle (11);
- eine Treiberschaltung (22) zum Ansteuern des Kühlgebläses (20); und
- eine Steuereinheit (4), die eine
Ein-/Aus-Steuerung der an das Kühlgebläse (20) anzulegenden Spannung vornimmt, um die Umgebungstemperatur auf der Basis von Detektionsergebnissen des Temperatursensors (9) in einen vorbestimmten Bereich zu bringen, wobei beim Ein-/Aus-Steuern der angelegten Spannung die Steuereinheit (4) dazu ausgebildet ist, die angelegte Spannung allmählich anzuheben/abzusenken, um ein abruptes Kühlen der Lichtquelle (11) und plötzliche Änderungen im Geräusch des Kühlgebläses (20) zu vermeiden, dadurch gekennzeichnet, daß eine lineinförmi ge Heizeinrichtung (12) vorge sehen ist, die in der LED-Lichtquelle (11) angebracht ist und entlang der Breitenrichtung eines Objekts, beispielsweise eines abzustastenden photographischen Films (F), lineinförmi g ausgebildet ist, damit sie der LED-Lichtquelle (11) benachbart in Linienrichtung ausgerichtet ist, und daß die Steuereinheit (4) dazu ausgebildet ist, die Heizeinrichtung (12) synchron mit dem Einschal ten der LED-Lichtquelle (11) einzuschalten sowie die Ein-/Aus-Steuerung des Kühlgebläses (20) unab hängig von den Einschalt/Ausschaltvorgängen der Heizeinrichtung (12) vorzunehmen.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Steuereinheit (4) dazu ausgebildet ist, die angelegte Spannung einzuschalten, wenn die Umgebungstemperatur eine oberseitige Umschalttemperatur (T2) übersteigt, die auf eine niedrigere Temperatur als die Obergrenze eines zulässigen Temperaturbereichs gesetzt ist, sowie die angelegte Spannung auszuschalten, wenn die Umgebungstemperatur niedriger ist als eine unterseitige Umschalttemperatur (T1), die auf eine höhere Temperatur als die Untergrenze des zulässigen Temperaturbereichs gesetzt ist.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Steuereinheit (4) dazu ausgebildet ist, die angelegte Spannung in linearer Weise und/oder kurvenförmi g und/oder stufenweise allmählich anzuheben/abzusenken.

4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Zeitdauer, in der die angelegte Spannung allmählich angehoben/abgesenkt wird, auf 1 bis 2 Sekunden eingestellt ist.

5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie ferner folgendes aufweist: - eine rote LED-Lichtquelle (11r), eine grüne LED-Lichtquelle (11g), eine blaue LED-Lichtquelle (11b), die eine LED-Lichtquelle (11) bilden; - einen Führungsbereich (13r) für die rote LED, einen Führungsbereich (13g) für die grüne LED und einen Führungsbereich (13b) für die blaue LED, die von den jeweiligen Lichtquellen (11r, 11g, 11b) kommende Lichtstrahlen führen; und - einen Verbindungsbereich (13a), der es ermöglicht, daß die jeweiligen Führungsbereiche miteinander in Verbindung stehen können.

6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die LED-Lichtquelle (1) eine weiße LED ist.

7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die LED-Lichtquelle (11) als Lichtquelle zum Gebrauch für einen Scanner zum Abtasten von Einzelbildern eines photographischen Films verwendet wird.

8. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die LED-Lichtquelle (11) als Lichtquelle für den Belichtungsge brauch zum Belichten und Drucken eines Bildes auf einem photoempfindlichen Material verwendet wird.

9. Temperatureinstellverfahren für eine LED-Lichtquelle, mit einer LED-Lichtquelle (11), die eine lineinförmi ge Heizeinrichtung (12) aufweist, die in der LED-Lichtquelle (11) angebracht ist und entlang der Breitenrichtung eines Objekts, beispielsweise eines abzustastenden photographischen Films (F), lineinförmi g ausgebildet ist, damit sie der LED-Lichtquelle (11) benachbart in Linienrichtung ausgerichtet ist; mit einem Temperatursensor (9) zum Erfassen einer Umgebungstemperatur der LED-Lichtquelle (11); mit einem Kühlgebläse (20) zum Kühlen der LED-Lichtquelle (11); mit einer Treiberschaltung (22) zum Ansteuern des Kühlgebläses (20); und mit einer Steuereinheit (4), die zum Steuern des Kühlgebläses (20) ausgebildet ist, - wobei die Steuereinheit (4), die die Ein-/Aus-Steuerung der an das Kühlgebläse (20) anzulegenden Spannung vornimmt, derart betrieben wird, daß sie die Umgebungstemperatur auf der Basis von Detektionsergebnissen des Temperatursensors (9) in einen vorbestimmten Bereich bringt, - wobei die Steuereinheit (4) derart betrieben wird, daß beim Ein-/Aus-Steuern der angelegten Spannung die angelegte Spannung allmäh-
lich angehoben bzw. abgesenkt wird, um ein abruptes Kühlen der Lichtquelle (11) und plötzliche Änderungen im Geräusch des Kühlgebläses (20) zu vermeiden, und
- wobei die Steuereinheit (4) derart betrieben wird, daß sie die Heizeinrichtung (12) synchron mit dem Einschalten der LED-Lichtquelle (11) einschaltet sowie die Ein-/Aus-Steuerung des Kühlgebläses (20) unabhängig von den Einschalt/Ausschaltvorgängen der Heizeinrichtung (12) vornimmt.

Revendications

1. Dispositif d’ajustement de température pour une source lumineuse à diode électroluminescente (LED), comprenant :

 -- une source lumineuse LED (11) ;
 -- un capteur de température (9) pour détecter une température ambiante de la source lumineuse LED (11) ;
 -- un ventilateur de refroidissement (20) pour refroidir la source lumineuse LED (11) ;
 -- un circuit pilote (22) pour piloter le ventilateur de refroidissement (20) ;
 -- une unité de commande (4) qui commande en tout ou rien un voltage à appliquer au ventilateur de refroidissement (20) de façon à fixer la température ambiante dans une plage prédéterminée en se basant sur les résultats de détection par le capteur de température (9),

 dans lequel, lors de la commande en tout ou rien du voltage appliqué, l’unité de commande (4) est adaptée à augmenter/réduire progressivement le voltage appliqué afin d’éviter un refroidissement abrupt de la source lumineuse (11) et des changements soudains du son du ventilateur de refroidissement (20), **caractérisé en ce qu’il** est prévu un élément chauffant (12) en forme de ligne qui est installé dans la source lumineuse LED (11) et qui est formé en forme de ligne le long de la direction de la largeur d’un objet, comme un film photographique (F) à lire de façon à être aligné et adjacent à la source lumineuse LED (11) dans la direction de la ligne, et **en ce que** l’unité de commande (44) est adaptée à couper l’élément chauffant (12) en synchronisme avec la mise en marche de la source lumineuse LED (11), et à commander en tout ou rien le ventilateur de refroidissement (20) indépendamment des opérations de fonctionnement/arrêt de l’élément chauffant (12).

2. Dispositif selon la revendication 1, **caractérisé en ce que** l’unité de commande (4) est adaptée à mettre en route le voltage appliqué quand la température ambiante dépasse une température de commutation supérieure (T2) qui est fixée à une température inférieure à la limite supérieure d’une plage de température permissible, et à couper le voltage appliqué quand la température ambiante est inférieure à une température de commutation inférieure (T1) qui est fixée à une température supérieure à la limite inférieure de la plage de température permissible.

3. Dispositif selon l’une quelconque des revendications 1 et 2, **caractérisé en ce que** l’unité de commande (4) est adaptée à augmenter/diminuer progressivement le voltage appliqué de façon linéaire et/ou de manière à suivre une courbe et/ou de manière à suivre des gradins.

4. Dispositif selon l’une quelconque des revendications 1 à 3, **caractérisé en ce que** la période temporelle dans laquelle le voltage appliqué est augmenté/diminished progressivement est fixée à une à deux secondes.

5. Dispositif selon l’une quelconque des revendications 1 à 4, **caractérisé en ce qu’il** comprend :

 -- une source lumineuse LED rouge (11r), une source lumineuse LED verte (11g), une source lumineuse LED bleue (11b) qui constituent une source lumineuse LED (11) ;
 -- une portion de guidage LED rouge (13r), une portion de guidage LED verte (13g) et une portion de guidage LED bleue (13b) qui guident les rayons lumineux appliqués depuis les sources lumineuses respectives (11r, 11g, 11b) ; et
 -- une portion de jonction (13a) qui permet aux portions de guidage respectives de se joindre les unes les autres.

6. Dispositif selon l’une quelconque des revendications 1 à 4, **caractérisé en ce que** la source lumineuse LED (11) est une LED de couleur blanche.

7. Dispositif selon l’une quelconque des revendications 1 à 6, **caractérisé en ce que** la source lumineuse LED (11) est utilisée pour une source lumineuse utilisée dans un scanner pour lire des trames d’images d’un film photographique.

8. Dispositif selon l’une quelconque des revendications 11 6, **caractérisé en ce que** la source lumineuse LED (11) est utilisée pour une source de lumière utilisée pour l’exposition et l’impression d’une image sur un...
matériau photosensible.

9. Procédé d’ajustement de température pour une source lumineuse LED, comprenant une source lumineuse LED (11) pourvue d’un élément chauffant (12) en forme de ligne qui est installé dans la source lumineuse LED (11) et formé en forme de ligne le long de la direction de la largeur d’un objet, comme un film photographique (F) à lire de manière à être aligné adjacent à la source lumineuse LED (11) dans la direction de la ligne ; un capteur de température (9) pour détecter une température ambiante de la source lumineuse LED (11) ; un ventilateur de refroidissement (20) pour refroidir la source lumineuse LED (11) ; un circuit pilote (22) pour piloter le ventilateur de refroidissement (20) ; et une unité de commande (4) adaptée à commander le ventilateur de refroidissement (20), dans lequel l’unité de commande (4) qui commande en tout ou rien le voltage à appliquer au ventilateur de refroidissement (20) est amenée à fonctionner de manière à fixer la température ambiante dans une plage prédéterminée en se basant sur les résultats de détection par le capteur de température (9), dans lequel l’unité de commande (4) est amenée à fonctionner de telle manière que lors de la commande en tout ou rien du voltage appliqué, le voltage appliqué est progressivement augmenté ou diminué, respectivement, afin d’éviter un refroidissement abrupt de la source lumineuse (11) et des changements soudains du son du ventilateur de refroidissement (20), et dans lequel l’unité de commande (4) est amenée à fonctionner de manière à couper l’élément chauffant (12) en synchronisme avec la mise en route de la source lumineuse LED (11), et à commander en tout ou rien le ventilateur de refroidissement (20) indépendamment des opérations de mise en marche/arrêt de l’élément chauffant (12).
Fig. 2