EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 11.11.2009 Bulletin 2009/46

Application number: 03763420.1

Date of filing: 08.07.2003

Int Cl.:
- A23L 1/09 (2006.01)
- A23L 1/10 (2006.01)
- A23L 1/16 (2006.01)
- A23G 3/00 (2006.01)
- A23L 1/305 (2006.01)

Title:
- IMPROVED TASTING ENERGY BAR
- ENERGIERIEGEL MIT VERBESSERTEM GESCHMACK
- BARRE ENERGETIQUE A GOUT AMELIORE

Designated Contracting States:
- AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Priority:
- 08.07.2002 US 394672 P
- 15.10.2002 US 271710
- 15.10.2002 US 272618
- 15.10.2002 US 272571
- 10.02.2003 US 446151 P

Date of publication of application:
- 11.08.2004 Bulletin 2004/33

Divisional application:
- 09075360.9 / 2 111 764

Propietor:
- MARS, INCORPORATED McLean, Virginia 22101-3883 (US)

Inventors:
- RAPP, Edward, L. Blairstown, NJ 07825 (US)
- TROY, Jamie Columbia, NJ 07832 (US)
- DIDO, Jeannette Hoboken, NJ 07030 (US)
- MANN, Douglas Belvidere, NJ 07823 (US)
- COLLINS, Thomas, M. Nazareth, PA 18064 (US)
- RABINOVITH, Kevin Redondo Beach, CA 90277 (US)
- LEE, Ralph Hampton, NJ 08827 (US)
- WILLCOCKS, Neil, A. Fullerton, CA 92835 (US)
- BOUSHELL, Robert Sparta, NJ 07871 (US)
- JEROME, Ralph Blairstown, NJ 07825 (US)
- RODRIGUES, Tiago, O. Marietta, PA 17547 (US)
- KAISER, John, M. Manheim, PA 17545 (US)
- NILL, Ivonne, E. Boonton, NJ 07005 (US)
- COLLINS, Thomas, M. Nazareth, PA 18064 (US)
- RABINOVITH, Kevin Redondo Beach, CA 90277 (US)
- LEE, Ralph Hampton, NJ 08827 (US)
- WILLCOCKS, Neil, A. Fullerton, CA 92835 (US)
- BOUSHELL, Robert Sparta, NJ 07871 (US)
- JEROME, Ralph Blairstown, NJ 07825 (US)
- RODRIGUES, Tiago, O. Marietta, PA 17547 (US)
- KAISER, John, M. Manheim, PA 17545 (US)
- NILL, Ivonne, E. Boonton, NJ 07005 (US)

Representative: James, Anthony Christopher W.P. et al Carpmaels & Ransford 43-45 Bloomsbury Square London WC1A 2RA (GB)

References cited:
- WO-A-2001/22835
- US-A-4055669
- US-B1-6592915

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

[0001] The present invention is directed to energy bars, and methods of making and improving the taste of energy bars. More particularly, the present invention is directed to energy bars that taste good, as exemplified by a mean hedonic score that is superior to similarly categorized energy bars.

Related Background Art

[0002] Food products identified as energy food products, such as energy bars, are gaining in popularity among all consumers. Energy bars are designed to provide a healthful nutritious serving high in protein, vitamins and minerals, in a low fat food product, shaped in a bar or other convenient form. The thought of eating a healthful nutritious energy bar that is shelf stable and packaged in a portable format is appealing to most people, especially individuals who want and/or need a functional benefit from the nutrients offered by such products.

[0003] Energy bars generally fall in one of two categories: grain based or chewy. The grain based energy bars are primarily made of a particulate matrix held together by a binder. The chewy variety is typically comprised of ingredients that have been processed into a homogeneous mass. In either case, the matrix or mass is then pressed, extruded or molded to form bar shaped pieces that are dried or solidified. Both deliver high levels of protein, vitamins and minerals, in a low fat bar. Other ingredients and toppings may be added to both the grain based and chewy energy bars.

[0004] Many of the currently marketed products do not appeal to consumers, who prefer more food like properties. Moreover, the homogeneity of the chewy bar/extruded mass makes an energy bar that has a singular taste throughout the homogeneous product. This leads to mediocre tasting products since nutritious ingredients such as protein, vitamins, and minerals, which often taste bad, are haphazardly mixed in with other ingredients. The combination degrades the overall taste of the product, leaving many of the presently marketed energy bars with an unappealing taste that consumers dislike.

[0005] For example, energy bars are typically fortified with protein powders, which appeals to most consumers who perceive protein as a desirable nutrient. Protein powders are typically made with whey proteins, soy proteins, egg proteins, caseins, and the like. In general, the protein powders along with the other ingredients are mixed together.

[0006] However, the inclusion of protein powders tends to produce a mouth drying sensation that many consumers find undesirable. The mouth drying sensation can be so intense that some consumers will only eat an energy bar with a beverage.

[0007] A method of processing a protein-containing component to improve the taste of a food product is described in U.S. Patent No. 5,494,696 to Holst et al. ("Holst") which is directed to a partially denature whey protein product that is 65-95% by weight protein relative to the dry matter. The protein product is further characterized by the protein denaturation level which is 55-80%, and the mean particle diameter, which is in the range from 30 to 60 microns. The protein product has been used in cold prepared food emulsions, where it is added to provide emulsification properties and for improving textural attributes, such as grittiness and handiness. However, whey proteins are expensive to use. Moreover, the whey protein product of Holst must be processed so that the denaturation level is 55-80%. This requires an additional processing step, which also adds to the cost of the product, further making it cost prohibitive.

[0008] US-A-2002/0064584 describes an "energy bar" prepared by the steps of: (a) preparing an energy bar matrix by mixing a carbohydrate syrup, fat and fruit, followed by (b) adding the remaining ingredients including the protein powder and cocoa powder.

[0009] US-A-2002/0012722 describes a nutritional bar comprising a balanced mix of amino acids, fat and carbohydrate. The bar may be made with addition or chocolate chips to render it more palatable.

[0010] WO-A-01/64044 describes an energy bar product. The core is a non-baked grain-based core comprised of at least one extruded rice crisp and at least one toasted puffed rice crisp. In certain embodiments, a layer of caramel is applied to the core.

[0011] US-A-4055669 describes so-called breakfast bars obtained by mixing a fat-carbohydrate binder with cereal particles. Those breakfast bars are not energy bars, because the fat content of the breakfast bars is much too nigh.

[0012] WO-A-01/22835 describes cereal bars having at least one visible filling layer sandwiched between two cereals layers.

[0013] The energy bars that are currently marketed may provide the healthful nutritional benefits mentioned above, but they do not deliver the taste attributes desired by many consumers leaving them dissatisfied. As a result, some consumers settle on poor taste in order to get the healthful nutritional benefits, while many other consumers choose not to buy energy bars.

[0014] What is missing from the marketplace, what food manufacturers have not been able to deliver, is a truly good tasting energy bar that delivers healthful nutritional benefits, i.e. high protein, fortified with vitamins and minerals, and
The present invention provides a method of making an energy bar, wherein said energy bar has a lubricious mouthfeel and comprises from 15 to 40g of carbohydrates, from 1g to 4.5g of fortification components, from 6g to 35g of protein, from 3g to 8g of fat, and from 150 to 300 calories based on a 55g serving size, and a moisture content of less than 15%, said method comprising the steps of:

(a) mixing one or more solid components and one or more carbohydrate based syrups to form an energy bar matrix, wherein said solid components include a protein powder;
(b) mixing one or more fats and one or more carbohydrate components to form a homogeneous fat-carbohydrate matrix;
(c) mixing said energy bar matrix with said fat-carbohydrate matrix, said mixing being continued until there are no visible identifiable clumps of the fat-carbohydrate matrix remaining, to form an enhanced energy bar matrix; and
(d) forming said enhanced energy bar matrix into said energy bar.

For the purposes of the present invention, energy bars are food products that are shelf stable, in a portable form, and contain carbohydrates, fortification components (e.g., vitamins, minerals, antioxidants, amino acids, herb supplements, polyphenols, etc.), protein, fat, calories and moisture as defined above. The references to "energy bars of the invention" herein are references to energy bars made by the method of the invention.

For the purposes of the present invention, the use of the term "functional" is understood to mean a physiologically functional component.

For the purposes of the present invention, the use of the term "fortification component" or "fortification blend" or "fortification ingredient" is understood to mean one or more vitamins, minerals, fiber, antioxidants, amino acids, herbal supplements, polyphenols, and the like.

For the purposes of the present invention, the use of the term "energy bar matrix" is understood to mean a thick viscous mixture. The energy bar matrix may start out as a less viscous mixture that becomes more viscous upon the removal of moisture.

For the purposes of the present invention, the use of the term "hedonic score" is understood to mean a measurement of an individual consumer's overall acceptance of a product as a result of the product's combined flavor, texture and appearance properties. The hedonic score is measured on a 7-point "acceptability scale," where a score of 1 is equivalent to a rating of "Dislike Extremely," and 7 is equivalent to a rating of "Like Extremely." The hedonic scores are tabulated and calculated to obtain a statistical average, i.e. mean hedonic score, of the overall consumer acceptance of a product.

For the purposes of the present invention, the use of the term "hedonic gain" is understood to mean the resulting increase in the mean hedonic score as determined by target consumers trial has occurred as the result of improvements in the energy bar products through the use of formulation and process methods taught in the present invention. The hedonic gain marks a significant improvement in the overall acceptability of the energy bar when the magnitude of the hedonic gain exceeds the defined confidence interval.

For the purposes of the present invention, the use of the terms "confidence level" and "confidence interval" are understood to mean a statistical probability/certainty based on a set of measurements, that the actual probability of an event or result occurring, is better or greater than some specified level.

The 7-point "Acceptability Scale" is a simple bi-polar scale that ranges from Like Extremely to Dislike Extremely.

Energy bars were first introduced in the marketplace about 20 years ago and now there are over 200 energy bar products available to consumers. Many of the major food companies make energy bars, but none have been able to deliver good tasting energy bars where the mean hedonic score is greater than 5.1 for grain based energy bars or 4.8 for chewy energy bars. At best, they have only been able to deliver healthful nutritional benefit, i.e. high in protein, vitamins and minerals, and low in fat, that consumers expect.

The energy bar of the present invention provides the healthful nutritional benefits that consumers want and expect and delivers them in a surprisingly good tasting product. In fact, consumers who rated the energy bars of the invention, gave it a mean hedonic score of at least about 5.2. This is not an easily achieved combinations.

The improved mean hedonic scores are attributed to the processing techniques and inventive components used in manufacturing the energy bars of the present invention. The inventors have discovered that the hedonic score can be improved by (a) processing process sensitize ingredients in a manner to preserve the integrity of the process sensitive ingredients by controlling the temperature and/or shear energy imparted on the process sensitive ingredients; (b) strategically positioning physiologically functional ingredients in the energy bar; (c) including a fat-carbohydrate matrix with the energy bar matrix; and (d) using protein powders that have a particle size distribution such that at least 30 wt. % of the protein powder has a mean particle size of at least 35 microns. Incorporating one or more of these techniques will improve the hedonic score of the final energy bar. Conversely, not including one of the above techniques will negatively impact the hedonic score.
Table 1, presents a statistical analyses of the mean hedonic score of the energy bars of the present invention which achieved a score of at least 5.2 as determined by a consumer taste study performed.

<table>
<thead>
<tr>
<th>Confidence Interval</th>
<th>Lower Hedonic Limit</th>
<th>Mean Hedonic Score</th>
<th>Upper Hedonic Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>4.84</td>
<td>5.20</td>
<td>5.56</td>
</tr>
<tr>
<td>95%</td>
<td>4.90</td>
<td>5.20</td>
<td>5.50</td>
</tr>
<tr>
<td>90%</td>
<td>4.95</td>
<td>5.20</td>
<td>5.45</td>
</tr>
<tr>
<td>80%</td>
<td>5.07</td>
<td>5.20</td>
<td>5.33</td>
</tr>
<tr>
<td>70%</td>
<td>5.12</td>
<td>5.20</td>
<td>5.28</td>
</tr>
<tr>
<td>60%</td>
<td>5.16</td>
<td>5.20</td>
<td>5.24</td>
</tr>
</tbody>
</table>

Conventional energy bars that are currently marketed, may deliver nutritional value, but taste attributes have been lacking. This is evident in the consumer taste study that was performed comparing two market leading energy bars, POWERBAR® CHOCOLATE PEANUT BUTTER manufactured by PowerBar Inc. of Berkeley, CA and LUNA™ NUTZ OVER CHOCOLATE™ BAR manufactured by ClifBar Inc. of Berkeley, CA, to the energy bars of the present invention.

A qualitative product selection study was performed to identify energy bars that have the best overall taste and market performance. A large number of products available in the category were assembled. The products were then compared against an Information Resources Incorporated (IRI) ranking of the top 25 products in the category to ensure that the majority of the category’s sales volume was represented in the product sort.

A group of 7 people were put together to review the assortment of products. The products were ranked subjectively by considering flavor, texture, appearance, etc. on a scale of 1 to 10. The top products identified in the ranking were then compared back to the IRI market ranking to ensure that the category’s top selling products were represented in the final collection of products. Products in the Top 10 of the sort that were not selected, were later added to the qualitative product selection study.

Two of the top products from the qualitative product selection study and high performing products in each respective market segmentation were then used in a quantitative consumer test study comparing them to the energy bars of the invention. POWERBAR® CHOCOLATE PEANUT BUTTER and the LUNA™ NUTZ OVER CHOCOLATE™ BAR were selected through the screening study, which picked the energy bars that consumers rated highest for taste appeal.

The population of interest, i.e. target consumers, were current users of energy bars, between the ages of 16 and 34 years old, who eat an energy bar on an average of at least once per week. For this particular consumer test study, the consumer’s selected had to additionally meet the requirement of being SNICKER’S® Bar users. This added requirement was based on the desire to assure that confectionery users were represented. Moreover, SNICKER’S® Bar users are known to be very particular about product taste.

A screening study was first performed to find energy bar consumers in the target consumer group. Using a questionnaire such as the one that follows, individuals meeting the above criteria were selected.

(1) Which of the categories contains your age group?
(a) under 13
(b) 13-15
(c) 16-24
(d) 25-34
(e) 35-45
(f) 46 or older

(2) What is your gender?
(a) male
(b) female
(3) Which, if any, of the following products have you eaten in the past 4 weeks?

(a) potato chips
(b) yogurt
(c) chocolate bars/candy
(d) energy bars/nutrition bars
(e) ice cream
(f) pretzels

(4) What brands of energy/nutrition bars have you eaten in the past 4 weeks?

(a) Balance
(b) Carb Solutions
(c) Clif
(d) Harvest
(e) Luna
(f) Met-Rx
(g) PowerBar
(h) York
(i) Zone
(j) Other ______________________ (specify)

[0034] A proto-monadic evaluation was performed, where respondents evaluated two or more products, one at a time rather than in a side by side comparison. Each Energy Bar Product was evaluated by a unique group of 75 consumers meeting the requirements for target consumers. The target consumers were selected randomly by calling residents of ten geographically dispersed markets within the US and then they were assigned to the product evaluation groups. Each group of 75 consumers was balanced for demographic variables such as gender, age and geographic location.

[0035] In Comparative Examples 1 and 2, and Examples 1, 2, and 3, the results of the consumer taste study are presented where the 75 consumers rated each energy bar on a hedonic scale of 1 to 7. POWERBAR® CHOCOLATE PEANUT BUTTER had a mean hedonic score of about 4.78 and LUNA™ NUTZ OVER CHOCOLATE™ BAR had a mean hedonic score of about 5.06. In contrast, energy bars of the present invention scored higher than the POWERBAR® CHOCOLATE PEANUT BUTTER and the LUNA™ NUTZ OVER CHOCOLATE™ BAR products, with a mean hedonic score of at least 5.2.

[0036] The present invention’s superiority is further demonstrated when comparing similar type energy bars. For example, chewy energy bars such as POWERBAR® CHOCOLATE PEANUT BUTTER and Inventive Prototype I produced significantly different hedonic scores. The mean hedonic score of Inventive Prototype I, 5.2, is clearly greater than the 4.78 mean hedonic score of POWERBAR® CHOCOLATE PEANUT BUTTER. Moreover, Inventive Prototype II also of the chewy variety, had an even higher mean hedonic score of 5.6, further establishing the taste superiority of the energy bars of the present invention. Likewise, LUNA™ NUTZ OVER CHOCOLATE™ BAR and Inventive Prototype III are both grain based energy bars. Again, the energy bar of the present invention, Inventive Prototype III, had a mean hedonic score of 6.0, which clearly is superior to the 5.06 mean hedonic score of LUNA™ NUTZ OVER CHOCOLATE™ BAR. Consumers hedonically rated the energy bars of the invention much higher than these top rated energy bars.

[0037] A mean hedonic score of at least 5.2 was obtained for the energy bars of the present invention. In a particularly preferred embodiment, a chewy energy bar that included a fat-carbohydrate matrix - Inventive Prototype II, received a mean hedonic score of about 5.6. In another preferred embodiment, a grain based energy bar of the present invention had a mean hedonic score of 6.0, which is much higher than any previously made energy bar. Each energy bar product of the invention clearly demonstrated a significant improvement in taste by the consumers’ overall rating of the product.

[0038] In a preferred embodiment, energy bars of the present invention had a mean hedonic score of at least 5.3. More preferably, a mean hedonic score of at least 5.4, even more preferably, a mean hedonic score of at least 5.5, still even more preferably, a mean hedonic score of at least 5.6, and most preferably, a mean hedonic score of at least 5.7. The energy bar of the invention is a grain based energy bar or a chewy energy bar. In one embodiment, the energy bar of the present invention is a chewy energy bar that has a mean hedonic score for consumer acceptability of at least 5.2. In another preferred embodiment, the present invention is a grain based energy bar that has a mean hedonic score for consumer acceptability of at least 5.2.

[0039] In order to determine the mean hedonic score for a particular product, the particular product is compared to one or more category market leading products, which are identified through retail sales volume, and participants are asked to answer the following question for the particular product and the comparative category market leading products.
The mean hedonic score for a particular energy bar is calculated using a statistical software program available from companies such as SAS, Inc. or SPSS, Inc.

The inventors recognize that the hedonic score is greatly determined by a product’s taste and texture, and have advantageously designed the energy bars of the present invention in such a way to minimize processing effects that would negatively affect these attributes. The result is an energy bar that has a mean hedonic score higher than existing energy bars. In addition, the inventors have also included components that enhance the flavor and textural attributes of the energy bars of the invention, further increasing the mean hedonic scores.

The energy bar of the invention has the following composition, based on a 55 g serving size. Carbohydrates: The amount of carbohydrates in the energy bar of the invention is 15 g to 40 g. Fortification components: The amount of fortification components in the energy bar of the invention is 1 g to 4.5 g, and preferably, 2 g to 4 g. Protein: The amount of protein in the energy bar of the invention is from 6 g to 35 g, preferably, 8 g to 30 g, and most preferably, 10 g to 25 g. Fat: The amount of fat in the energy bar of the invention is from 3 g to 8 g, and preferably, 4 g to 7 g. Calories: The amount of calories in the energy bar of the invention is from 150 cal to 300 cal. Preferably, 170 cal to 280 cal, more preferably, 200 cal to 260 cal, and most preferably, 220 cal to 240 cal. Moisture content: The moisture content in the energy bar of the invention is less than 15 %, preferably, 3% to 12 %, more preferably, 5 % to 10 %, and most preferably, 7 % to 9 %, by weight.

The energy bar of the present invention is comprised of one or more solid components and one or more carbohydrate based syrups, which form an energy bar matrix.

The solid components may be, for example, corn starch, oat, rice, wheat, barley, cereal, grains, sorghum, protein, salt, flavors, cocoa powder, flour, fortification blends, mixtures thereof, and other similar materials. Moreover, the solid components include dissolved solids such as sugars, salts, and the like, and may be in the form of powders or large particles. The preferred solid component is protein.

The solid components are included, for example, in the grain based and chewy energy bars of the invention at 10 percent by weight (wt.%), based on the total weight of the energy bar. Preferably, the solid components are from 75 wt.% to 95 wt.%, more preferably, from 85 wt.% to 92 wt.%, and most preferably, from 90 wt.% to 91.5 wt.%, based on the total weight of the energy bar.

Carbohydrate based syrups include, but are not limited to corn syrups, liquid sucrose, honey, high fructose corn syrup, glycerin, and mixtures thereof.

The carbohydrate based syrup is made up of the carbohydrate based syrup. Preferably, the carbohydrate based syrup is from 10 wt.% to 75 wt.%, more preferably, from 15 wt.% to 65 wt.%, and most preferably, from 20 wt.% to 50 wt.% of the total weight of the energy bar.

The solid components and carbohydrate based syrups are combined to form an energy bar matrix. Various mixing means may be used, however, the product design will ultimately determine what type of mixing is required. For example, if the energy bar will be a homogeneous mass, then high shear mixing may be appropriate. Alternatively, if the energy bar has fragile components that should desirably remain intact, then gentle or low shear mixing would be used.

Additionally, the energy bar may include a fat-carbohydrate matrix. The fat-carbohydrate matrix may be the energy bar matrix to coat or blend in with the energy bar matrix. Preferably, the fat-carbohydrate matrix, is incorporated with the energy bar matrix through gentle and low shear mixing, such as by gently folding one matrix into the other, which is a method known in the art. It is desirable that the mixer fold in the fat-carbohydrate matrix into the energy bar matrix, until there are no visible clumps of the fat-carbohydrate matrix. Suitable mixers include, for example, paddle mixers, ribbon blenders, Z-blade mixers and the like may be used. In addition, the fat-carbohydrate matrix should be combined with the energy bar matrix at a temperature of less than about 65 °C.

The fat-carbohydrate matrix is comprised of at least one fat component and at least one carbohydrate component, which are mixed together in a suitable fashion to achieve a homogeneous mixture. Fat components include, but are not limited to, chocolate, peanut butter, fat substitutes, vegetable fats, tropical fats, animal fats, dairy milk and the like. The carbohydrate component may be, for example, starch, sugar, gels, syrups, honey, molasses, rice syrups, and combinations thereof. The fat-carbohydrate matrix will generally comprise from 2 wt.% to 25 wt.% of one or more fat
components, preferably, from 5 wt.% to 20 wt.%, and most preferably from 10 wt.% to 15 wt.% based on the total weight of the fat-carbohydrate matrix prior to cooking or further processing. The one or more carbohydrate components in the fat-carbohydrate matrix, will be from 10 wt.% to 75 wt.%, preferably, from 20 wt.% to 65 wt.%, more preferably from 30 wt.% to 55 wt.%, and most preferably, from 40 wt.% to 50 wt.% based on the total weight of the fat-carbohydrate matrix prior to cooking or further processing.

[0051] The amount of the fat-carbohydrate matrix that is combined with the energy bar matrix is such that the ratio of the energy bar matrix to fat-carbohydrate matrix, is 99:1 to 80:20. Preferably, the ratio is 95:5 to 85:15. Most preferably the energy bar matrix to fat-carbohydrate matrix ratio is about 90:10.

[0052] Preferably, the fat-carbohydrate matrix is caramel, fondants, truffles, creams, ganache, mousse, chocolate, and mixtures thereof. In a preferred embodiment, the fat-carbohydrate matrix is caramel. Caramel is made by mixing at least one fat component and at least one carbohydrate component to create a premix. A preferred caramel premix composition comprises from 5 wt.% to 15 wt.% of vegetable fat, more preferably, from 7 wt.% to 14 wt.%, and most preferably, from 10 wt.% to 13 wt.% of vegetable fat in the caramel premix. A preferred carbohydrate for the caramel premix is corn syrup. The corn syrup in the caramel premix is preferably present in a range of 25 wt.% to 60 wt.%, more preferably, from 35 wt.% to 50 wt.%, and most preferably, from 40 wt.% to 48 wt.% of corn syrup in the caramel premix. The caramel premix is then cooked using any suitable means, e.g., using a scraped surface heat exchanger or jacketed mixing kettle, to form a caramel having a viscosity of up to 250,000 cps, preferably 100,000 cps to 200,000 cps, a moisture content of 7 wt.% to about 15 wt.%, more preferably 10 wt.% to 13 wt.%, most preferably 11 wt.% to 12 wt.%, and a water activity of 0.45 to 0.65. more preferably 0.5 to 0.6, most preferably 0.51 to 0.58. Note that the actual cooking time will affect the flavor, color, and texture of the caramel.

[0053] The caramel is cooled to a temperature of less than 65 °C and then combined with the energy bar matrix. The two are blended together, forming an enhanced energy bar matrix. At this point, the enhanced energy bar matrix can be (a) formed or shaped into an energy bar; (b) mixed with other components, such as inclusions; (c) formed into a sheet or layer that can be combined with other ingredients or other layer.

[0054] Conventional energy bars take an energy bar matrix comprised of solid components and a binder, and proceed to a forming step.

[0055] In the energy bar of the present invention, a binder is optionally included in the grain based energy bar formulation. The binder may supplement or be added in addition to the carbohydrate based syrups. The binder is typically applied to the solid components to create or increase the tackiness and/or stickiness of the surface of the solid components, so that they will adhere to other similar or dissimilar components, when necessary. Suitable binders include, but are not limited to, fat, a gum solution, water, and combinations thereof.

[0056] The binder may be present in an amount of from about 10 wt.% to about 90 wt.% based on the total weight of the energy bar. Preferably, the binder is from about 30 wt.% to about 70 wt.% of the total weight of the energy bar.

[0057] Numerous methods and apparatus may be used to mix or combine components and intermediaries. So long as the mixing device is able to satisfactorily form a mixture that avoids high shear and imparts minimal heat energy, the mixer can be used.

A sampling of such mixing devices includes but is not limited to, for example, mixing kettles and vessels, extruders, paddle mixers, ribbon blenders, mixing pans, processors, Z-blade mixers, dough mixers, planetary mixers, and the like can all be used.

[0058] Various methods and apparatus may be employed to form the energy bar. For example, the energy product matrix or enhanced energy product matrix may be formed into a slab that is later cut and shaped into smaller pieces. Or individual pieces may be made by employing a molding operation. Or a forming roll maybe used to create discrete pieces. Or an extruder may be used to extrude the product through a shaped die.

[0059] One method that may be used to shape the energy product matrix or enhanced energy product matrix is to use a cutting apparatus, especially when the final energy product matrix or enhanced energy product matrix takes the form of a bar. For example, a slitter, guillotine, wirecutter, forming roll, extruder, Stamper, molder, and the like can be used.

[0060] Optionally, additional processing steps may be incorporated. For example, the solid components may be treated to a roasting step to develop or impart flavor notes. This is particularly true when granola, grains, nuts, or crisps such as rice or soy are used in the formulation. Roasting is performed in an oven such as a convection oven, a forced air impingement oven, dielectric oven, microwave oven, radiant oven, and the like. The temperature and time in the oven is largely dependent upon the component being treated.

[0061] Components or intermediate products may be cooked using any suitable means. For example, in processing the binder, the binder may be cooked using a scraped surface heat exchanger (SSHE). The product is cooked in the SSHE at a temperature of about 105 °C to about 135 °C for a time period of about 3 seconds to about 60 seconds.

[0062] A drying step may be used to reduce the moisture content of the product for improving shelf stability. Various drying techniques include, oven drying, forced air, vacuum drying, freeze drying, and the like.

[0063] The product may be cooled to solidify its shape or to prepare the product for the next unit operation. Typically, cooling is performed in an enclosed chamber, such as a cooling tunnel.
The inventors have discovered that the manner in which components are processed in the energy bar may have a significant impact on the hedonic score. By using the inventive components and processing techniques disclosed herein, the hedonic score of the final energy bar can be improved significantly beyond the hedonic scores known for existing energy bars.

One method of improving the hedonic score of an energy bar of the present invention is to process it in a manner that substantially preserves and maintains the integrity of process sensitive components. This is largely achieved by controlling the temperature, and/or shear energy that is imparted on the process sensitive components. Not doing so will negatively impact the hedonic score of the resulting product. For example, exposure of ingredients to high processing temperatures will impact the taste of the ingredients, perhaps burning or overcooking them.

Process sensitive components are those components that are negatively affected by harsh process conditions. They include, but are not limited to, fortification components, friable components, flavor components, shear sensitive inclusion components, heat sensitive ingredients, and the like. Vitamins, minerals, antioxidants, amino acids, essential oils, herbs, and polyphenols are non-limiting examples of the fortification component. Friable and shear sensitive components include, but are not limited to, soy crisps, rice crisps, cookies, nut meats, baked inclusions, fried inclusions, roasted inclusions, extruded food inclusions, encapsulated components, and the like. Flavor components are, for example, vanilla, butter, cinnamon, nutmeg, spices, whole grains, grain flakes, natural and artificial flavors, and the like.

The preferred vitamins are, for example, vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, and their derivatives and/or pro-vitamins. Preferred vitamins also include B vitamins such as, for example, biotin, folic acid, niacin, niacinamide, pantothenate, pyridoxine hydrochloride, riboflavin, thiamin hydrochloride, and the like. The preferred minerals include but are not limited to, calcium, chromium, copper, iodine, iron, magnesium, manganese, phosphates, phosphorus, potassium, selenium, sodium, sulfur, and zinc.

Amino acids include, for example, arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, valine, alanine, aspartic acid, glutamic acid, glutamine, glycine, serine, tyrosine, creatine, and the like. Moreover, phytochemicals, sterols, lycopine, herbal supplements such as ginseng, guarana, yerba mate, and the like may be included.

The inventors have discovered that by controlling the temperature and shear energy imparted on a process sensitive component, harmful and deleterious effects on the process sensitive component can be reduced or minimized. For example, a homogeneous energy product matrix is formed by processing one or more food components. The processing step is performed at a temperature and shear sufficient to form the homogeneous energy product matrix, while minimizing the detrimental effects of processing. Typically, the processing step is performed at a temperature from about 50 °C to about 180 °C. Preferably, from about 60 °C to about 120 °C, and more preferably, from about 60 °C to about 100 °C.

Shear forces originating from mixing, extruding, pumping, cutting, particle size reduction operations, and the like, may be used to form the homogeneous energy product matrix. The shear forces are preferably generated during a mixing operation. The mixer should have an agitator, where the agitator is capable of generating an agitator tip speed (relative to a wall of the mixer) of about 10 to about 50 meters/minute. In a preferred embodiment, the agitator tip speed is about 20 to about 40 meters/minute. Consideration should also be given to the gap formed between the agitator tip and the mixer wall. The gap should be from about 0.025 to about 0.5 mm. Preferably from about 0.125 to about 0.25 mm.

Additional shear forces may be encountered by transporting the in-process product through process piping, valves, strainers, filters, and the like.

Selection of the mixing device should also be given careful consideration. The mixing device should be selected such that the shear action imparted on the process sensitive component is sufficient to mix the process sensitive component into the homogeneous energy bar matrix without affecting the process sensitive component in a deleterious way. Suitable mixers include, but are not limited to, mixers with an agitator, mixers without an agitator, static mixers, paddle blenders, ribbon blenders, and the like. When mixing is performed in a mixer with an agitator, shear forces are usually minimized by operating the agitator at a low speed, such that the tip speed of the agitator is about 0.25 to about 7.5 meters/minute (relative to a wall of the mixer). Preferably, the agitator tip speed is about 2 to about 6 meters/minute. Shear forces are also influenced by the gap between the tip of the agitator and the mixer wall. The gap is desirably set to be greater than about 1.0 mm, preferably, greater than about 2.5 mm, and more preferably, between about 2.5 to about 75 mm. In one embodiment, mixing is performed in a continuous fashion.

The temperature of the mixing step can also have an effect on the process sensitive component. Generally, in order to substantially reduce deleterious effects, mixing should be performed at a temperature that is less than about 65 °C. Preferably, the temperature is less than about 60 °C, and more preferably, less than about 50 °C. In one embodiment, the mixing step is performed at a temperature of from about 30 °C to about 50 °C.

Moreover, the preservation of the process sensitive components may be also improved by (a) strategically positioning them in the energy bar product and/or (b) adding them to the energy bar after performing process steps that involve heating or shearing of the product. For example, process sensitive components may be added to a fat matrix, which surrounds the process sensitive components and forms a protective barrier.
Hedonic score advantages may also be obtained by cleverly and strategically positioning physiologically functional components in certain areas of the bar. This improves the taste of the energy bar by factoring in the taste impact of the physiologically functional components and designing the bar to minimize or neutralize their effects. By not putting them in strategic areas, negative tasting components will be spread throughout the energy bar, impacting the whole taste of the bar.

The physiologically functional component is a component that provides a physiological benefit, such as providing nutrients. Suitable physiologically functional components include, but are not limited to, vitamins, minerals, fiber, antioxidants, herbal supplements, polyphenols, and the like. The vitamins and/or minerals can also be fat soluble and/or water soluble. In addition, the physiologically functional component can also be an amino acid, enzyme, and the like.

The inventors have identified a group of approaches to advantageously position the physiological functional component the energy bar. In one method, the physiological functional component may be applied to the surface of a food substrate, e.g., energy bar matrix layer, and then substantially covered by a flowable edible material. In another method a first flowable edible material is applied to the surface of a food substrate. Then the functional component is applied onto the surface of the first flowable edible material. This is followed by applying a second flowable edible material to substantially cover the functional component. The first flowable edible material may be the same material or a different material from the second flowable edible material. A third technique combines a flowable edible material and a functional component to create a homogenous mixture. The homogenous mixture is then applied to a surface of a food substrate.

Various techniques may be used to apply the functional component onto the food substrate or first flowable edible material. Suitable methods include slabbng (applying a layer), spraying, gravity deposition, electrostatic deposition, and the like. These methods are particularly preferred when the functional component is in powder form.

The flowable edible material is primarily used to trap, cover, or encase the functional component. In certain instances, the fat-carbohydrate matrix performs the same function and may be used as the flowable edible material. Non-limiting examples of the flowable edible materials, e.g., first or second flowable edible materials, are fat based materials such as compound coatings or chocolate, syrups, film-forming edible barriers, and the like. Syrups that are suitable for use, include, carbohydrate based syrups such as sucrose syrup, corn syrup, caramel, and the like. Film-forming edible barriers include, for example, carboxy methyl cellulose, alginate, and the like.

Enrobing, panning, extruding, spraying, depositing, and any other suitable technique may be used for applying the flowable edible material or homogeneous mixture.

One primary ingredient in almost every energy bar is protein. It provides nutrients that help with the growth and repair of body tissues. For adults, many dietary guidelines recommend that a person consume approximately 0.6g of protein per kilogram of body weight per day. Higher levels are recommended for individuals that are more physically active. In addition, protein can be used as a source of energy. One gram of protein provides about 4 kcal of energy. The protein based substrate includes, but is not limited to, whey protein, milk protein, egg protein, casein, peanut flour, nut meats, vegetable protein, and combinations thereof. Vegetable proteins include, for example, soy protein, peanut protein, hazelnut protein, and the like.

One source of protein that is almost always included for the above mentioned reasons in the formulation of energy bar products is protein powder. But, the addition of a protein powder has a negative impact on taste attributes, such as product mouthfeel, which ultimately affects the hedonic score of the energy bar.

A dry powder such as a protein powder, is typically comprised of particles of varying size. The inventors have discovered that by engineering the mean particle diameter of a protein powder, such as a commercial protein powder, exceptional and surprising properties can be achieved. For example, improved mouthfeel and lubricity is obtained by using protein powders where at least 30 wt. % of the protein powder has a mean particle size of at least 35 microns. Preferably, at least 40 wt. % of the protein powder should meet the mean particle diameter requirements. More preferably at least 50 wt. %, even more preferably at least 60 wt. %, even more preferably at least 70 wt. %, and most preferably at least 80 wt. % should meet the mean particle diameter requirements. In a particular embodiment, 50 wt. % to 100 wt. % of the protein powder should meet the mean particle diameter requirements. In another embodiment, 75 wt. % to 100 wt. %, more preferably 85 wt. % to 100 wt. % should meet the mean particle diameter requirements. Preferably, the mean particle diameter of the engineered protein powder is at least 55 microns, more preferably at least 70 microns, and even more preferably at least 100 microns. In a preferred embodiment, the mean particle diameter is 35 microns to 175 microns, more preferably 40 microns to 150 microns, even more preferably 40 microns to 100 microns, even more preferably 40 microns to 80 microns, and most preferably 50 microns to 70 microns.

In one embodiment, the protein powder that is used has a particle size distribution such that at least 50% of the particles have a mean particle diameter in the range from 35 to 175 microns; less than 10% of the particles have a mean particle diameter in the range from 10 to 50 microns; less than 25% of the particles have a mean particle diameter in the range from 20 to 80 microns; less than 50% of the particles have a mean particle diameter in the range from 30 to 100 microns; less than 75% of the particles have a mean particle diameter in the range from 45 to 150 microns; and less than 90% of the particles have a mean particle diameter in the range from 62 to 250 microns.

In a particularly preferred embodiment, less than 20 wt. % of the protein powder has a mean particle diameter
of less than 20 microns and less than 10 wt.% of the protein powder has a mean particle diameter of less than 10 microns.

An energy bar manufactured using an engineered protein powder (such as those described above) would see an improvement in the mean hedonic score. For example, using an engineered protein powder in a chewy energy bar such as Inventive Prototype II, the mean hedonic score should improve to 5.7 at a 60% confidence interval, preferably 5.7 at a 70% confidence interval, more preferably 5.7 at an 80% confidence interval, still more preferably 5.7 at a 90% confidence interval, still even more preferably 5.7 at a 95% confidence interval, and most preferably 5.7 at a 99% confidence interval.

Preferably the mean hedonic score should improve to 5.75 at a 60% confidence interval, preferably 5.75 at a 70% confidence interval, more preferably 5.75 at an 80% confidence interval, still more preferably 5.75 at a 90% confidence interval, still even more preferably 5.75 at a 95% confidence interval, and most preferably 5.75 at a 99% confidence interval.

More preferably the mean hedonic score should improve to 5.8 at a 60% confidence interval, preferably 5.8 at a 70% confidence interval, more preferably 5.8 at an 80% confidence interval, still more preferably 5.8 at a 90% confidence interval, still even more preferably 5.8 at a 95% confidence interval, and most preferably 5.8 at a 99% confidence interval.

Still more preferably the mean hedonic score should improve to 5.85 at a 60% confidence interval, preferably 5.85 at a 70% confidence interval, more preferably 5.85 at an 80% confidence interval, still more preferably 5.85 at a 90% confidence interval, still even more preferably 5.85 at a 95% confidence interval, and most preferably 5.85 at a 99% confidence interval.

Even more preferably the mean hedonic score should improve to 5.9 at a 60% confidence interval, preferably 5.9 at a 70% confidence interval, more preferably 5.9 at an 80% confidence interval, still more preferably 5.9 at a 90% confidence interval, still even more preferably 5.9 at a 95% confidence interval, and most preferably 5.9 at a 99% confidence interval.

Most preferably the mean hedonic score should improve to 5.95 at a 60% confidence interval, preferably 5.95 at a 70% confidence interval, more preferably 5.95 at an 80% confidence interval, still more preferably 5.95 at a 90% confidence interval, still even more preferably 5.95 at a 95% confidence interval, and most preferably 5.95 at a 99% confidence interval.

In another example, using an engineered protein powder in a grain based energy bar such as Reference Prototype III, the mean hedonic score should improve to 6.04 at a 60% confidence interval, preferably 6.04 at a 70% confidence interval, more preferably 6.04 at an 80% confidence interval, still more preferably 6.04 at a 90% confidence interval, still even more preferably 6.04 at a 95% confidence interval, and most preferably 6.04 at a 99% confidence interval.

Preferably the mean hedonic score should improve to 6.07 at a 60% confidence interval, preferably 6.07 at a 70% confidence interval, more preferably 6.07 at an 80% confidence interval, still more preferably 6.07 at a 90% confidence interval, still even more preferably 6.07 at a 95% confidence interval, and most preferably 6.07 at a 99% confidence interval.

More preferably the mean hedonic score should improve to 6.1 at a 60% confidence interval, preferably 6.1 at a 70% confidence interval, more preferably 6.1 at an 80% confidence interval, still more preferably 6.1 at a 90% confidence interval, still even more preferably 6.1 at a 95% confidence interval, and most preferably 6.1 at a 99% confidence interval.

Still more preferably the mean hedonic score should improve to 6.12 at a 60% confidence interval, preferably 6.12 at a 70% confidence interval, more preferably 6.12 at an 80% confidence interval, still more preferably 6.12 at a 90% confidence interval, still even more preferably 6.12 at a 95% confidence interval, and most preferably 6.12 at a 99% confidence interval.

Most preferably the mean hedonic score should improve to 6.15 at a 60% confidence interval, preferably 6.15 at a 70% confidence interval, more preferably 6.15 at an 80% confidence interval, still more preferably 6.15 at a 90% confidence interval, still even more preferably 6.15 at a 95% confidence interval, and most preferably 6.15 at a 99% confidence interval.

Note that in the previous examples, the statistical analysis is based on a sample size of 75 participants, with a standard deviation of 1.2.

The protein powder can be engineered to the desired mean particle diameter using any suitable means. For example, equipment such as air classifiers, sieves, spray dryers, agglomerators, or hydraulic presses may be used.

The engineered protein powder can be made by treating a commercial protein powder in a particle enhancement process. The particle enhancement process, may be, air classification, sieve classification, spray drying, agglomeration; rehydration, high pressure co-crystallization, and combinations thereof.

A particularly effective means for separating the protein powder into the desired mean particle diameter range and/or distribution is through the use of an air classification system. Forced air in combination with centrifugal forces are used to separate dry powder products into light fractions and heavy fractions, or a fraction above and a fraction below a defined "cut" point. This effectively separates the protein powder particles into different ranges according to their size and density.
Alternatively, protein powders may be engineered to the desired mean particle diameter by increasing the mean particle diameter size using a variety of processing methods. For example, suitable processes that may be employed include spray drying, agglomeration, rehydration, high pressure co-crystallization, and the like.

In a spray drying operation, the protein is hydrated or rehydrated and forced through a nozzle at high pressure to form an atomized spray. The desired mean particle diameter protein powder is produced by controlling process variables, such as temperature, nozzle size and shape, and other dryer column characteristics.

Agglomeration techniques are often used to bring particles together to create larger ones. An atomized mist of a binder solution or appropriate liquid is dispersed over a fluidized bed of a protein powder, to promote agglomeration. This process differs from spray drying in the sense that it involves the formation of a primary particle of a given mean diameter whereas spray drying involves the formation of a bound group of particles having the desired mean particle diameter. With agglomeration, the particle can be one particle or a group of bound particles.

Rehydration techniques involve completely wetting all particles of a protein powder and forming a homogeneous energy bar matrix, e.g., paste, thereby rehydrating the protein powder. The resulting mass is then vacuum dried or dried using any other appropriate method to insure complete removal of residual moisture. The stiff material that results is then milled to the desired particle size.

High pressure co-crystallization relies on a morphological interaction between proteins and another ingredient in order to create a bridge between two protein particles. Such an interaction can be created by making is dry mix of two or more powder ingredients and then subjecting them to high pressures. The resulting bricks or solid masses of the co-crystallized material can then be milled to the desired particle size.

Suitable protein sources include animal proteins and plant proteins. Non-limiting examples include, whey protein, soy protein, milk protein, egg protein, casein, peanut flour, nut meats, and combinations thereof.

Soy protein is extracted from soybean and is considered to be an economical protein source. The most popular types of soy protein are soy protein isolates and soy protein concentrates. Soy protein isolates are highly digestible and a good source of amino acids and isoflavones. In addition, they are low in fat, calories, and cholesterol.

For vegetarians, this is a primary source of protein.

Whey protein is derived from whey, which is a by product obtained from making cheese. Functionally, whey proteins are highly soluble even under acidic conditions. There are primarily two forms of whey protein, whey protein isolate and whey protein concentrate. Both are extremely high quality proteins that are highly digestible. However, whey protein isolate is somewhat superior because it is higher in protein and has lower fat, lactose, and flavor levels than whey protein concentrate.

Casein is the primary protein found in milk protein, which is about 80% casein and 20% whey protein. Casein includes caseinates, which are available in three main types, sodium, calcium, and potassium.

Spray dried egg whites are used in some "egg and milk" protein powder mixes.

In addition, hedonic score advantages may be obtained by using inclusions, which are formulated to have at least one physiologically functional component. The inclusions are dispersed throughout or spread onto a surface of the energy bar. The inclusions provide a means for isolating or concentrating the delivery of physiologically functional components. This allows energy food products to be designed in a way that has several benefits. One benefit is that the inclusion may be formulated with the physiologically functional component to improve taste characteristics. For example, a physiologically functional component may have an unpleasant or undesirable taste, which can be neutralized by masking the taste. Moreover, the inclusion will have its own unique taste, which is different from the rest of the energy bar. Thus, providing the consumer with a wider range of taste sensations. Another benefit is that the inclusion may be formulated to improve the oxidative stability of the physiologically functional component, which by itself may present stability issues. Yet another benefit is that one or more process sensitive components, e.g., components that degrade under exposure to heat and/or shear, may be incorporated into the inclusions, which provides a protective matrix around the process sensitive components. The inclusions can be added at any time during processing, which allows more flexibility in the process and reduces the temperature effects and/or shear effects that could cause degradation of the process sensitive components. Still yet another benefit is that the inclusions can be formulated in such a way as to provide desirable textural attributes. For example, the inclusions may be formulated to provide a crunchy textural feel. The inclusions have at least one physiologically functional component and may be, for example, fat-based inclusions, carbohydrate-based inclusions, protein based inclusions, and the like.

The fat-based inclusions are characterized by having fat as the continuous phase. Non-limiting examples of fat-based inclusions include, chocolate, peanut butter, fat substitutes, and the like. Preferred fat-based inclusions are chocolate chips, peanut butter chips, and combinations thereof.

The protein-based inclusions of the present invention are at least about 25 wt.% protein. Non-limiting examples include, whey protein, soy protein, milk protein, egg protein, peanut flour, nut meats, vegetable protein, casein, and combinations thereof.

The carbohydrate-based inclusions of the present invention are at least about 25 wt.% carbohydrate. Non-limiting examples include, starch, sugar, gels, and combinations thereof. Moreover, the carbohydrate-based inclusions
are preferably, panned inclusions, extruded gel pieces, friable carbohydrate pieces, sugar bits, extruded grain flour pieces and combinations thereof.

[0115] The inclusions may be, for example, agglomerates, capsules, compilations of ingredients, chunks, bits, drops, strands, strings, and the like. They may take on a variety of shapes, so long as the average particle size of the inclusions are from about 1 mm to about 13 mm. The preferred average particle size is from about 1 mm to about 6 mm.

[0116] In addition, it is contemplated that the inclusions of the present invention may be different from one another. That is, it is not necessary that the inclusions be the same. For example, the energy bar may contain inclusions that are protein-based inclusions and inclusions that are carbohydrate-based inclusions.

[0117] Optionally, the inclusions may be coated with a sugar syrup, hard fat, starch solution, or gum solution. The coating may be applied using any suitable means. For example, the coating may be applied by panning, spraying, dipping, enrobing, fluidized bed techniques, and the like.

[0118] The energy bars of the present invention are desirably shelf stable. Product stability and shelf life are enhanced by designing the energy bars so that the total moisture content is less than 15 wt.%, and preferably from 3 wt.% to 12 wt.%, based upon the total weight of the energy bar. More preferably, 5 % to 10 %, and most preferably, 7 % to 9 %, by weight is moisture. The water activity of the energy bar is ideally less than 0.6, and preferably less than 0.5.

[0119] Optionally, the energy bar of the present invention may include a variety of other components such as, for example, nuts, crisps, fruit pieces, chocolate, seeds, and the like. Preferred nuts are almonds, peanuts, hazelnuts, cashews, walnuts, pecans, brazil nuts, and the like. Crisp components include rice crisps, corn crisps, oats, wheat flakes, and the like. The chocolate can be any type of chocolate or chocolate like edible component in various forms, such as, for example, chocolate chips, chunks, flakes and the like. Non-limiting examples of seeds include sesame, sun flower, poppy, caraway, fennel and the like.

[0120] Additionally, traditional food ingredients such as flavors and the like may be included. For example, additional ingredients may include natural and artificial flavors, sweeteners, salt, flavor enhancers, color additives, emulsifiers, stabilizers, fats, preservatives, and the like.

[0121] The energy bar may take on a variety of forms. For convenience, it is preferred that the energy food product be shaped like a box, square, cylinder, string, pie, sphere, triangle, or other portable format.

[0122] The present invention provides a method for making an energy bar as defined in claim 1. The method comprises the steps of (a) mixing one or more solid components and one or more carbohydrate based syrups to form an energy bar matrix; (b) mixing the energy bar matrix with a fat-carbohydrate matrix to form an enhanced energy bar matrix, wherein the fat-carbohydrate matrix is comprised of at least one fat and at least one carbohydrate component, and (c) forming the enhanced energy bar matrix into the energy bar.

[0123] In step (a), mixing may be accomplished using any suitable means that will ensure that the solid component and carbohydrate based syrup are properly blended. Preferred methods of mixing are described above.

[0124] In step (b), mixing of the energy bar matrix with the fat-carbohydrate matrix is typically performed using a gentle, low shear mixing process that folds the components together. The mixing should continue until there are no visible identifiable pieces of the fat-carbohydrate matrix remaining. Once this occurs, mixing should be stopped. For example, a 136 kg batch mixed in an 11 cu.ft. Z-blade mixer would require about 45 seconds of mixing time with the mixer operating at about 45 rpm.

[0125] The forming step, step (c), can involve many different processes. For example, forming the enhanced energy bar matrix into an energy bar can be accomplished using methods previously described. The process selected will depend on the desired product design requirements.

[0126] An energy bar manufactured using any one of the inventive methods described herein will exhibit certain product advantages. For example, product mouthfeel will improve, characterized by an increase in lubricity, smoother texture, and reduced grittiness. In addition, following the method will reduce the impact of undesirable flavors.

[0127] Moreover, the present invention can be used to improve the mean hedonic score of an energy bar, by following one or more of the following steps: (a) processing process sensitive ingredients in a manner to preserve the integrity of the process sensitive ingredients by controlling the temperature and/or shear energy imparted on the process sensitive ingredients; (b) strategically positioning physiologically functional ingredients in the energy bar; (c) including a fat-carbohydrate matrix with an energy bar matrix; and (d) using protein powders that have a particle size distribution such that at least 30 wt% of the protein powder has a mean particle size of at least 35 microns. Each inventive technique, whether processing or formulation related will result in an improvement in the mean hedonic score. The hedonic gain is a measure of the resulting improvement. By practicing any one of the inventive techniques, the energy bar product will have a hedonic gain of at least about 0.2 points. By practicing more than one of the inventive techniques, a hedonic gain of at least 0.4 points is expected. For examples, an energy bar composition containing process sensitive ingredients is processed in a manner that controls the temperature and shear energy imparted on the process sensitive ingredients at levels that minimize processing effects. The integrity of the process sensitive ingredients is preserved and the expected hedonic gain is about 0.4 points. In another example, an energy bar matrix is processed in a manner that controls the temperature and shear energy imparted on process sensitive ingredients, preserving the integrity of the process sensitive
ingredients. In addition, a fat-carbohydrate matrix is combined with the energy bar matrix. The expected hedonic gain is about 0.6 points.

A preferred energy bar is comprised of 22 wt.% to 31 wt.% of one or more carbohydrate based syrups, 23 wt.% to 35 wt.% of one or more proteins, and 2 wt.% to 4 wt.% of a fortification blend, based on the total weight of the energy bar. Another preferred energy bar composition is comprised of 20 wt.% to 26 wt.% of one or more carbohydrate based syrups, 18 wt.% to 26 wt.% of one or more proteins, 2.5 wt.% to 6.0 wt.% of a fortification blend, and 4.5 wt.% to 8.0 wt.% of a fat-carbohydrate matrix, based on the total weight of the energy bar. Yet another preferred energy bar composition is comprised of 29 wt.% to 35 wt.% of one or more carbohydrate based syrups, 14 wt.% to 17 wt.% of one or more grain components, 19 wt.% to 26 wt.% of one or more proteins, and 3 wt.% to 6 wt.% of a fortification blend, based on the total weight of the energy bar. A variety of other components may be included in the preferred composition described above.

COMPARATIVE EXAMPLE 1

Results of a consumer taste study that was conducted using the methodology described above, for POWERBAR® CHOCOLATE PEANUT BUTTER (Chewy Type of Energy Bar) are presented in Table 2.

POWERBAR® CHOCOLATE PEANUT BUTTER (Chewy Type of Energy Bar)

Mean Hedonic Score of 4.78 (SD=1.38) with N=75

<table>
<thead>
<tr>
<th>Confidence Interval</th>
<th>Lower Limit</th>
<th>Mean Hedonic Score</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>4.41</td>
<td>4.78</td>
<td>5.15</td>
</tr>
<tr>
<td>95%</td>
<td>4.47</td>
<td>4.78</td>
<td>5.09</td>
</tr>
<tr>
<td>90%</td>
<td>4.52</td>
<td>4.78</td>
<td>5.04</td>
</tr>
<tr>
<td>80%</td>
<td>4.65</td>
<td>4.78</td>
<td>4.91</td>
</tr>
<tr>
<td>70%</td>
<td>4.70</td>
<td>4.78</td>
<td>4.86</td>
</tr>
<tr>
<td>60%</td>
<td>4.74</td>
<td>4.78</td>
<td>4.82</td>
</tr>
</tbody>
</table>

COMPARATIVE EXAMPLE 2

Results of a consumer taste study that was conducted using the methodology described above, for LUNA™ NUTZ OVER CHOCOLATE™ BAR (Grain Based Type of Energy Bar) are presented in Table 3.

LUNA™ NUTZ OVER CHOCOLATE™ BAR (Grain Based Type of Energy Bar)

Mean Hedonic Score of 5.06 (SD=1.48) with N=75

<table>
<thead>
<tr>
<th>Confidence Interval</th>
<th>Lower Limit</th>
<th>Mean Hedonic Score</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>4.66</td>
<td>5.06</td>
<td>5.46</td>
</tr>
<tr>
<td>95%</td>
<td>4.73</td>
<td>5.06</td>
<td>5.39</td>
</tr>
<tr>
<td>90%</td>
<td>4.78</td>
<td>5.06</td>
<td>5.34</td>
</tr>
<tr>
<td>80%</td>
<td>4.92</td>
<td>5.06</td>
<td>5.20</td>
</tr>
<tr>
<td>70%</td>
<td>4.97</td>
<td>5.06</td>
<td>5.15</td>
</tr>
<tr>
<td>60%</td>
<td>5.02</td>
<td>5.06</td>
<td>5.10</td>
</tr>
</tbody>
</table>

REFERENCE EXAMPLE 1

Prototype I is a chewy energy bar that was processed under low shear and low temperature conditions. The recipe and procedure are provided below.
The ingredients in the solid blend mixture were placed in a 0.31 m³ (11 cu. ft.) jacketed Z-blade mixer. The mixer was operating at about 45 rpm and the mixer's jacket was maintained at a temperature of about 60 °C. The syrup blend was added to the Z-blade mixer at a temperature of about 60°C and mixed with the ingredients from the solid blend mixture, for approximately 3 minutes, to form the energy bar matrix. Operating the mixer under these conditions, that is under low temperature and low shear conditions, preserved the integrity of the ingredients that were added.

In a separate mixer, caramel and peanut splits were combined to form the center mixture.

A portion of the energy bar matrix was cooled and formed into a slab using a first set of forming rolls. The center mixture was also cooled and formed into a slab using a second set of forming rolls, and then applied on top of the energy bar matrix slab. The remaining portion of the energy bar matrix was cooled and formed into a slab using a third set of forming rolls, and then placed on top of the center mixture layer, thereby creating a three layered slab. The three layered slab was then further cooled, slit, cut into bar shapes, and packaged.

Results of the consumer taste study that was conducted using the methodology described above, for Prototype I (Chewy Type of Energy Bar) are presented in Table 4.

Table 4

<table>
<thead>
<tr>
<th>Confidence Interval</th>
<th>Lower Limit</th>
<th>Mean Hedonic Score</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>4.84</td>
<td>5.20</td>
<td>5.56</td>
</tr>
<tr>
<td>95%</td>
<td>4.90</td>
<td>5.20</td>
<td>5.50</td>
</tr>
<tr>
<td>90%</td>
<td>4.95</td>
<td>5.20</td>
<td>5.45</td>
</tr>
<tr>
<td>80%</td>
<td>5.07</td>
<td>5.20</td>
<td>5.33</td>
</tr>
<tr>
<td>70%</td>
<td>5.12</td>
<td>5.20</td>
<td>5.28</td>
</tr>
</tbody>
</table>
EXAMPLE 2

[0137] Inventive Prototype II is a chewy energy bar that was processed under low shear and low temperature conditions. In addition, a fat-emulsifier matrix was included. The recipe and procedure are provided below.

Syrup Blend Mixture

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>WT.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Syrup Blend</td>
<td>22.72</td>
</tr>
<tr>
<td>Consisting of High Fructose, 63 DE corn syrup, and glycerin</td>
<td></td>
</tr>
</tbody>
</table>

Solid Component Matrix

<table>
<thead>
<tr>
<th>Ingredient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Blend</td>
<td>23.25</td>
</tr>
<tr>
<td>Consisting of Whey Protein Isolate, Calcium Caseinate, Soy Protein Isolate and peanut flour or their derivatives</td>
<td></td>
</tr>
<tr>
<td>Peanut Butter</td>
<td>1.36</td>
</tr>
<tr>
<td>Sucrose</td>
<td>2.10</td>
</tr>
<tr>
<td>Salt</td>
<td>0.55</td>
</tr>
<tr>
<td>Fortification Blend</td>
<td>3.49</td>
</tr>
<tr>
<td>Flavorings</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Artificial and/or Natural flavors such as vanillin, cinnamon and cocoa powder

Fat-carbohydrate Matrix

<table>
<thead>
<tr>
<th>Ingredient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caramel</td>
<td>6.15</td>
</tr>
</tbody>
</table>

Center Mixture

<table>
<thead>
<tr>
<th>Ingredient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caramel</td>
<td>23.23</td>
</tr>
<tr>
<td>Soy Nuggets</td>
<td>4.11</td>
</tr>
<tr>
<td>Peanut Splits</td>
<td>10.91</td>
</tr>
</tbody>
</table>

100.00

[0138] The ingredients in the solid blend mixture were placed in 0.31 m³ (11 cu. ft.) jacketed Z-blade mixer. The mixer was operating at about 45 rpm and the mixer’s jacket was maintained at a temperature of about 60 °C. The syrup blend was added to the Z-blade mixer at a temperature of about 60 °C and mixed with the ingredients from the solid blend mixture, for approximately 3 minutes, to form the energy bar matrix. Operating the mixer under these conditions, that is under low temperature and low shear conditions, preserved the integrity of the ingredients that were added.

[0139] Caramel (a fat-carbohydrate matrix) was then added to the Z-blade mixer onto the energy bar matrix. The two components were mixed at about 45 rpm for about 45 seconds, allowing the caramel to be folded into the energy bar matrix. Mixing was stopped when there were no visible caramel clumps left. The combined components formed an improved energy matrix.

[0140] In a separate mixer, caramel, soy nuggets, and peanut splits were combined to form the center mixture.

[0141] A portion of the improved energy matrix was cooled and formed into a slab using a first set of forming rolls. The center mixture was also cooled and formed into a slab using a second set of forming rolls, and then applied on top
of the improved energy matrix slab. The remaining portion of the improved energy matrix was cooled and formed into a slab using a third set of forming rolls, and then placed on top of the center mixture layer, thereby creating a three layered slab. The three layered slab was then further cooled, slit, cut into bar shapes, and packaged.

Results of the consumer taste study that was conducted using the methodology described above, for Inventive Prototype II (Chewy Type of Energy Bar) are presented in Table 5.

Table 5

<table>
<thead>
<tr>
<th>Confidence Interval</th>
<th>Lower Limit</th>
<th>Mean Hedonic Score</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>5.34</td>
<td>5.64</td>
<td>5.94</td>
</tr>
<tr>
<td>95%</td>
<td>5.39</td>
<td>5.64</td>
<td>5.89</td>
</tr>
<tr>
<td>90%</td>
<td>5.43</td>
<td>5.64</td>
<td>5.85</td>
</tr>
<tr>
<td>80%</td>
<td>5.53</td>
<td>5.64</td>
<td>5.75</td>
</tr>
<tr>
<td>70%</td>
<td>5.58</td>
<td>5.64</td>
<td>5.71</td>
</tr>
<tr>
<td>60%</td>
<td>5.60</td>
<td>5.64</td>
<td>5.68</td>
</tr>
</tbody>
</table>

Inventive Prototype II (Chewy Type of Energy Bar)
Made using low shear and low temperature processing, and with fat-carbohydrate matrix (caramel) included Mean Hedonic Score of 5.64 (SD=1.12) with N=75

REFERENCE EXAMPLE 3

Prototype III is a grain based energy bar that was processed under low shear and low temperature conditions. The recipe and procedure are provided below.

Syrup Blend Mixture

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>WT%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Syrup Blend</td>
<td>33.68</td>
</tr>
</tbody>
</table>
 Consisting of 63 DE corn syrup and glycerin

Solid Blend Mixture

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>WT%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain Blend</td>
<td>16.42</td>
</tr>
</tbody>
</table>
 Consisting of Oats, Crisp Rice, and Wheat Flakes
| Protein Blend | 23.92 |
 Consisting of Calcium Cascinate, Soy Protein Isolate and peanut flour or their derivatives
| Peanut Butter | 5.26 |
| Peanut Splits | 9.54 |
| Sucrose | 4.49 |
| Salt | 0.49 |
| Fortication Blend | 4.54 |
| Flavorings | 1.66 |

Artificial and/or Natural flavors such as vanillin, cinnamon and cocoa powder 100.00

The ingredients in the solid blend mixture were placed in a 0.31m³ (11 cu. ft.) jacketed Z-blade mixer. The mixer was operating at about 45 rpm and the mixer’s jacket was maintained at a temperature of about 60 °C. The syrup blend was added to the Z-blade mixer at a temperature of about 60 °C and mixed with the ingredients from the solid blend mixtures, for approximately 3 minutes. Operating the mixer under these conditions, that is under low temperature and low shear conditions, preserved the integrity of the ingredients that were added.

The resulting energy bar matrix was cooled and formed into a slab using forming rolls. The stab was further cooled, slit, cut into bar shapes, and packaged.

Results of the consumer taste study that was conducted using the methodology described above, for Prototype
III (Grain Based Type of Energy Bar) are presented in Table 6.

Prototype III (Grain Based Type of Energy Bar)

[0147] Made using low shear and low temperature processing
Mean Hedonic Score of 6.02 (SD- 0.71) with N=75

<table>
<thead>
<tr>
<th>Confidence Interval</th>
<th>Lower Limit</th>
<th>Mean Hedonic Score</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>5.83</td>
<td>6.02</td>
<td>6.2</td>
</tr>
<tr>
<td>95%</td>
<td>5.96</td>
<td>6.02</td>
<td>6.18</td>
</tr>
<tr>
<td>90%</td>
<td>5.89</td>
<td>6.02</td>
<td>6.15</td>
</tr>
<tr>
<td>80%</td>
<td>5.95</td>
<td>6.02</td>
<td>6.09</td>
</tr>
<tr>
<td>70%</td>
<td>5.98</td>
<td>6.02</td>
<td>6.06</td>
</tr>
<tr>
<td>60%</td>
<td>6.00</td>
<td>6.02</td>
<td>6.04</td>
</tr>
</tbody>
</table>

Reference EXAMPLE 4

[0148] Sensory testing was performed on three energy bars that were made using soy protein isolates of varying mean particle diameters. Sample A was prepared by mixing 12.1 wt.% of a soy protein isolate, where about 50 to 60 wt.% of the soy protein isolate had a mean particle diameter of about 16 microns, into an energy bar product. Sample B was prepared using the same procedure as Sample A, except that the soy protein isolate of sample B had a mean particle diameter of about 33 microns (about 50 to 60 wt.% of the soy protein isolate). Sample C was prepared using the same procedure as Sample A, except that the soy protein isolate of sample C had a mean particle diameter of about 54 microns (about 50 to 60 wt.% of the soy protein isolate). It should be noted that the protein content for all soy protein isolate samples was 90% protein.

[0149] The participants rated samples A, B, and C for mouth drying sensation based on a scale from 0. to 15. 0 being the best and 15 the worst. A score of 5 is considered ideal. The samples were scored by the participants as follows:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A (16 microns)</td>
<td>13.5</td>
</tr>
<tr>
<td>Sample B (33 microns)</td>
<td>10.0</td>
</tr>
<tr>
<td>Sample C (54 microns)</td>
<td>8.5</td>
</tr>
</tbody>
</table>

[0150] The results demonstrate that as the mean particle size of the protein powder increases, the mouth drying sensation decreases.

EXAMPLE 5

[0151] A chewy energy bar product, sample B, is made following the steps of the energy bar of Example 2, with the exception that the protein powder that is to be used will have a particle size distribution such that about 30 wt.% of the protein powder has a mean particle size of about 35 microns. Upon consumer testing of the product, sample B, is expected to achieve the mean hedonic scores shown in Table 7 below:

<table>
<thead>
<tr>
<th>Confidence Interval</th>
<th>Lower Limit</th>
<th>Mean Hedonic Score</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>5.4</td>
<td>5.70</td>
<td>6.0</td>
</tr>
<tr>
<td>95%</td>
<td>5.45</td>
<td>5.70</td>
<td>5.95</td>
</tr>
<tr>
<td>90%</td>
<td>5.5</td>
<td>5.70</td>
<td>5.9</td>
</tr>
<tr>
<td>80%</td>
<td>5.59</td>
<td>5.70</td>
<td>5.81</td>
</tr>
</tbody>
</table>
Similarly, a grain based energy bar product, sample C, is made in the same manner described in the invention summary, with the exception that the protein powder to be used will have a particle size distribution such that about 30 wt.% of the protein powder has a mean particle size of about 35 microns. Upon consumer testing of the product, sample C, is expected to achieve the mean hedonic scores shown in Table 8 below:

<table>
<thead>
<tr>
<th>Confidence Interval</th>
<th>Lower Limit</th>
<th>Mean Hedonic Score</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>5.63</td>
<td>5.70</td>
<td>5.77</td>
</tr>
<tr>
<td>60%</td>
<td>5.66</td>
<td>5.70</td>
<td>5.74</td>
</tr>
</tbody>
</table>

While the invention has been described above with reference to specific embodiments thereof, it is apparent that many changes, modifications, and variations can be made without departing from the scope of the appended claims.

Claims

1. A method of making an energy bar, wherein said energy bar has a lubricious mouthfeel and comprises from 15 to 40g of carbohydrates, from 1g to 4.5g of fortification components, from 6g to 35g of protein, from 3g to 8g of fat, and from 150 to 300 calories based on a 55g serving size, and a moisture content of less than 15%, said method comprising the steps of:
 (a) mixing one or more solid components and one or more carbohydrate based syrups to form an energy bar matrix, wherein said solid components include a protein powder;
 (b) mixing one or more fats and one or more carbohydrate components to form a homogeneous fat-carbohydrate matrix;
 (c) mixing said energy bar matrix with said fat-carbohydrate matrix, said mixing being continued until there are no visible identifiable clumps of the fat-carbohydrate matrix remaining, to form an enhanced energy bar matrix; and
 (d) forming said enhanced energy bar matrix into said energy bar.

2. The method according to claim 1, wherein said energy bar has a mean hedonic score of at least 5.2.

3. The method according to any preceding claim, wherein said fortification components comprise vitamins and/or minerals.

4. The method according to any preceding claim, wherein said protein powder has a particle size distribution such that at least 30 wt. % of said protein powder has a mean particle size of at least 35 micrometers.

5. The method according to claim 4, wherein at least 50 wt. % of said protein powder has a mean particle size of at least 35 micrometers.

6. The method according to claim 4, wherein less than 20 wt.% of the protein powder has a mean particle diameter of less than 20 micrometers, and less than 10 wt.% of the protein powder has a mean particle diameter of less than
10 micrometers.

7. The method according to any preceding claim, wherein said fat-carbohydrate matrix is gently folded into said energy bar matrix in said mixing step (c).

8. The method according to any preceding claim, wherein said fat-carbohydrate matrix comprises from 2wt.% to 25wt.% of fat and from 10wt.% to 75wt.% of carbohydrate.

9. The method according to any preceding claim, wherein said fat-carbohydrate matrix is selected from the group consisting of caramel, fondants, truffles, creams, ganache, mousse, chocolate, and mixtures thereof.

10. The method according to claim 9, wherein the fat-carbohydrate matrix is a caramel.

11. The method according to any preceding claim, wherein said fat-carbohydrate matrix is combined with the energy bar matrix such that the ratio of the energy bar matrix to the fat-carbohydrate matrix is from 99:1 to 80:20.

12. The method according to any preceding claim, wherein said energy bar comprises from 8g to 30g of protein based on a 55g serving size.

Patentansprüche

1. Verfahren zur Herstellung eines Energieriegels, wobei der Energieriegel ein gleitendes Mundgefühl besitzt und von 15 bis 40 g Kohlehydrate, von 1 g bis 4,5 g Anreicherungskomponenten, von 6 g bis 35 g Protein, von 3 g bis 8 g Fett und von 150 bis 300 Kalorien, bezogen auf eine 55g-Serviergröße, und einen Feuchtigkeitsgehalt von weniger als 15% umfasst, wobei das Verfahren die Schritte umfasst:

(a) Mischen einer oder mehrerer fester Komponenten und eines oder mehrerer Sirupe auf Kohlehydrat-Basis, um eine Energieriegel-Matrix zu bilden, wobei die festen Komponenten ein Proteinpulver einschließen;
(b) Mischen eines oder mehrerer Fette und einer oder mehrerer Kohlehydratkomponenten, um eine homogene Fett-Kohlehydrat-Matrix zu bilden;
(c) Mischen der Energieriegel-Matrix mit der Fett-Kohlehydrat-Matrix, wobei das Mischen fortgesetzt wird, bis keine sichtbaren identifizierbaren Klumpen der Fett-Kohlehydrat-Matrix zurückbleiben, um eine verstärkte Energieriegel-Matrix zu bilden; und
(d) Ausformen der verstärkten Energieriegel-Matrix zum Energieriegel.

2. Verfahren nach Anspruch 1, wobei der Energieriegel eine mittlere Beliebtheitsbewertung von wenigstens 5,2 besitzt.

3. Verfahren nach einem vorangehenden Anspruch, wobei die Anreicherungskomponenten Vitamine und/oder Mineralstoffe umfassen.

7. Verfahren nach einem vorangehenden Anspruch, wobei die Fett-Kohlehydrat-Matrix im Mischschritt (c) vorsichtig zur Energieriegel-Matrix gefaltet wird.

12. Verfahren nach einem vorangehenden Anspruch, wobei der Energieriegel von 8 g bis 30 g Protein umfasst, bezogen auf eine 55g-Serviergröße.

Revendications

1. Procédé de fabrication d’une barre énergétique, dans lequel ladite barre énergétique a une sensation onctueuse en bouche et comprend 15 à 40 g de glucides, 1 à 4,5 g de composants d’enrichissement, 6 à 35 g de protéines, 3 à 8 g de graisses, et 150 à 300 calories sur la base d’une portion de 55 g, et une teneur en eau inférieure à 15 %, ledit procédé comprenant les étapes consistant à :

(a) mélanger un ou plusieurs composants solides et un ou plusieurs sirops à base de glucides pour former une matrice de barre énergétique, lesdits composants solides comprenant une poudre de protéines ;
(b) mélanger une ou plusieurs graisses et un ou plusieurs composants glucidiques pour former une matrice graisse-glucide homogène ;
(c) mélanger ladite matrice de barre énergétique avec ladite matrice graisse-glucide, ledit mélange étant poursuivi jusqu’à ce qu’il ne reste plus de grumeaux visibles identifiables de la matrice graisse-glucide, pour former une matrice de barre énergétique améliorée ; et
(d) donner à ladite matrice de barre énergétique améliorée la forme de ladite barre énergétique.

2. Procédé selon la revendication 1, dans lequel ladite barre énergétique a une note hédonique moyenne d’au moins 5,2.

4. Procédé selon l’une quelconque des revendications précédentes, dans lequel ladite poudre de protéines a une distribution de la taille des particules telle qu’au moins 30 % en poids de ladite poudre de protéines a une taille de particules moyenne d’au moins 35 micromètres.

5. Procédé selon la revendication 4, dans lequel au moins 50 % en poids de ladite poudre de protéines a une taille de particules moyenne d’au moins 35 micromètres.

6. Procédé selon la revendication 4, dans lequel moins de 20 % en poids de la poudre de protéines a un diamètre de particules moyen inférieur à 20 micromètres, et moins de 10 % en poids de la poudre de protéines a un diamètre de particules moyen inférieur à 10 micromètres.

7. Procédé selon l’une quelconque des revendications précédentes, dans lequel ladite matrice graisse-glucide est incorporée doucement dans ladite matrice de barre énergétique dans ladite étape de mélange (c).

8. Procédé selon l’une quelconque des revendications précédentes, dans lequel ladite matrice graisse-glucide comprend de 2% à 25 % en poids de graisses et de 10% à 75 % en poids de glucides.

9. Procédé selon l’une quelconque des revendications précédentes, dans lequel ladite matrice graisse-glucide est choisie dans le groupe constitué par le caramel, les fondants, les truffes, les crèmes, la ganache, la mousse, le chocolat, et leurs mélanges.

10. Procédé selon la revendication 9, dans lequel la matrice graisse-glucide est un caramel.

11. Procédé selon l’une quelconque des revendications précédentes, dans lequel ladite matrice graisse-glucide est
combinée avec la matrice de barre énergétique de façon à que le rapport de la matrice de barre énergétique à la matrice graisse-glucide soit de 99/1 à 80/20.

12. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite barre énergétique comprend de 8 g à 30 g de protéines sur la base d'une portion de 55 g.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5494696 A, Holst [0007]
- US 20020064584 A [0008]
- US 20020012722 A [0009]
- WO 0122835 A [0012]