EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 28.12.2005 Bulletin 2005/52

Application number: 02801920.6

Date of filing: 21.10.2002

Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Designated Extension States: RO

Priority: 23.10.2001 FR 0113688

Date of publication of application: 21.07.2004 Bulletin 2004/30

Proprietor: Bayer CropScience S.A. 69009 Lyon (FR)

Inventors:
- MERCER, Richard F-69130 Ecully (FR)
- WEGMANN, Thomas F-69450 Saint-Cyr-Au-Mont-D’Or (FR)

Representative: Nowak, Alexander Bayer CropScience S.A. Département Brevets et Licences 14-20, rue Pierre Baizet B.P. 9163 69263 Lyon Cedex 09 (FR)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to combinations of fungicidal compounds intended in particular for protecting crops against fungal diseases, and the corresponding methods of protection by application of the said combinations.

[0002] More precisely, the subject of the present invention is novel fungicidal compositions based on pyridylmethylbenzamide and dithiocarbamate derivatives.

[0003] As regards fungicidal activity, in particular for the protection of crops, one of the problems at the heart of the research studies carried out in this technical field is the improvement of performances, in particular in terms of fungicidal activity and in particular in terms of maintaining this fungicidal activity over time.

[0004] Naturally, the fungicidal compounds useful for the protection of plants against fungi must be endowed with an ecotoxicity which is reduced to the minimum. As far as possible, they should not be dangerous or toxic to the operator during use.

[0005] Furthermore, it is advantageous for fungicidal compounds to have a broad activity spectrum.

[0006] The economic factor should of course not be overlooked in the search for novel fungicidal compounds.

[0007] Without being limiting, attention is paid more particularly in the context of the invention to protection against infestation, by fungi, of grapevine, cereals, fruits, vegetables, lucerne, soyabean, market garden crops, turf, wood and horticultural plants, among others.

[0008] The composition according to the invention includes one compound of the pyridylmethylbenzamide type with fungicidal action as described in European patent application EP-A-1 056 723. These compounds make it possible to prevent the growth and development of phytopathogenic fungi (for example those which are active in the treatment of downy mildew, for example of grapevine, such as *Plasmopara viticola*).

[0009] This patent application EP-A-1 056 723 makes a general allusion to the possibility of combining these fungicidal active agents with products known to also develop a fungicidal activity, without citing by name examples of co-active ingredients, or even families of co-active ingredients, which are capable of being combined with pyridylmethylbenzamides.

[0010] One of the essential objectives of the present invention is to solve the problems set out above.

[0011] One of the essential objectives of the present invention is to provide novel fungicidal products which can be used, in particular by the farmer, for controlling the fungi infesting crops and in particular for controlling the major fungal diseases of grapevine such as downy mildew.

[0012] Another essential objective of the invention is to provide a novel fungicidal composition based on pyridylmethylbenzamide derivatives which is a lot more active against fungi which are harmful to plants, including grapevine, and which is in particular active over longer periods than the antifungal agents known up until now.

[0013] Another essential objective of the invention is to provide a novel fungicidal agent which is completely high-performing in particular as regards its efficacy against fungi and the perenniality of this efficacy so as to be able to reduce the doses of chemical products spread in the environment for combating fungal attacks of crops in particular and vine downy mildew.

[0014] Another essential objective of the invention is to provide a novel fungicidal composition which is more active and active for longer, and which therefore has a lower dose, but which is also less toxic.

[0015] Another essential objective of the invention is to provide a novel broad-spectrum fungicidal composition which is perennially effective and which offers the farmer a large number of products so that the latter finds among them the product best suited to his particular use.

[0016] Another essential objective of the invention is to provide a novel fungicidal composition satisfying the specifications aimed at in the above objectives and which is also of a lower cost price, which is easy and which is not dangerous to handle.

[0017] Another essential objective of the invention is to provide a novel fungicidal composition as defined in the above objectives and which is useful in the preventive and curative treatment of fungal diseases, for example, of grapevine, cereals, Solanaceae, fruit, vegetables, lucerne, soyabean, market garden crops, turf, wood or horticultural plants.

[0018] Another essential objective of the invention is to provide a preventive and/or curative treatment of plants and in particular of crops, using a fungicidal composition or a fungicidal combination combining the products of the composition as defined in the above objectives, it being necessary for such a treatment to have a high and perennial efficacy against a very wide variety of fungi, while minimizing the doses, the toxicity and the cost.

[0019] Another essential objective of the present invention is to provide a kit for controlling, by way of curing and/or preventing and/or eradicating, the phytopathogenic fungi of plants and in particular of crops, such as grapevine, which meets the specifications set out in the objectives above.

[0020] An additional objective of the present invention is to allow improvement in the yield of the crops which is significant from an agronomic point of view.

[0021] All these objectives, among others, were achieved by the inventors who have had the merit of finding a fu-
fucidal combination between pyridylmethylbenzamide derivatives and compounds of the dithiocarbamate type, preferable fungicides. Such a combination surprisingly and unexpectedly exhibiting a very high and perennial antifungal efficacy against a broad spectrum of fungi and in particular against those responsible for diseases such as vine downy mildew.

[0022] The present invention, which completely or partially satisfies the abovementioned objectives, therefore relates firstly to fungicidal compositions comprising:

a) a pyridylmethylbenzamide derivative of formula (I):

\[\text{Formula (I)} \]

in which

- \(R_1 \) is chosen from a hydrogen atom, an optionally substituted alkyl radical and an optionally substituted acyl radical;
- \(R_2 \) is chosen from a hydrogen atom and an optionally substituted alkyl radical;
- \(R_3 \) and \(R_4 \), which are identical or different are independently chosen from a halogen atom, the hydroxyl radical, the cyano radical, the nitro radical, the radical \(-\text{SF}_5\), the trialkylsilyl radical, an optionally substituted amino radical, an acyl radical, and a group \(B, OE \) or \(SE \), in which \(E \) is chosen from an alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl radical, it being possible for each of them to be optionally substituted;
- \(c \) represents 0, 1, 2, 3 or 4;
- \(q \) represents 0, 1, 2, 3 or 4;

and their agriculturally acceptable possible optical and/or geometric isomers, tautomers and addition salts with an acid or a base;

and

b) a compound (II) chosen from dithiocarbamates, and their agriculturally acceptable isomers and addition salts with an acid;

the compound (I)/compound (II) ratio ranging from 1/500 to 30/1.

[0023] In the definitions of the compounds of formula (I) set out above, the various radicals and chemical terms used have, unless otherwise stated, the following meanings:

- "alkyl or alkyl-" denotes a linear or branched saturated hydrocarbon radical containing from 1 to 6 carbon atoms;
- "alkenyl" denotes a linear or branched hydrocarbon radical containing from 1 to 6 carbon atoms and an unsaturation in the form of double bond;
- "alkynyl" denotes a linear or branched hydrocarbon radical containing from 1 to 6 carbon atoms and an unsaturation in the form of a triple bond;
- "alkoxy" denotes an alkyloxy radical;
- "acyl" denotes the formyl radical or an alkoxycarbonyl radical;
- "cycloalkyl" denotes a saturated cyclic hydrocarbon radical containing from 3 to 8 carbon atoms;
- "aryl" denotes a phenyl or naphthyl radical;
- "heterocyclyl" denotes an unsaturated or a completely or partially saturated cyclic radical containing from 3 to 8 atoms, chosen from carbon, nitrogen, sulphur and oxygen, for example, and without limitation, pyridyl, pyridinyl, quinolyl, furyl, thiophenyl, pyrrolyl, oxazolyl;
- the term "optionally substituted " means that the radicals thus termed may be substituted with one or more radicals chosen from chlorine, bromine, fluorine, iodine, alkyl, alkoxy, hydroxyl, nitro, amino; cyano and acyl.
The composition according to the present invention provides a synergistic effect. The term synergistic effect is understood to mean in particular that defined by Colby in an article entitled "calculation of the synergistic and antagonistic responses of herbicide combinations" Weeds, (1967), 15, pages 20-22.

The latter article mentions the formula:

\[E = x + y - \frac{x \times y}{100} \]

in which \(E \) represents the expected percentage of inhibition of the disease for the combination of the two fungicides at defined doses (for example equal to \(x \) and \(y \) respectively), \(x \) is the percentage of inhibition observed for the disease by the compound (I) at a defined dose (equal to \(x \)), \(y \) is the percentage of inhibition observed for the disease by the compound (II) at a defined dose (equal to \(y \)). When the percentage of inhibition observed for the combination is greater than \(E \), there is a synergistic effect.

The term "synergistic effect" also means the effect defined by application of the Tamnes method, "Isoboles, a graphic representation of synergism in pesticides", Netherlands Journal of Plant Pathology, 70(1964), pages 73-80.

The compounds of formula (I) are, for example, described in patent application EP-A-1 056 723 and, among these, the following will be preferred:

- **compounds possessing one of the following characteristics:**
 - \(R_1 \) and \(R_2 \), which are identical or different, are independently chosen from a hydrogen atom and an optionally substituted alkyl radical;
 - \(R_3 \) and \(R_4 \), which are identical or different, are independently chosen from a halogen atom, the hydroxyl radical, the nitro radical, an optionally substituted amino radical, an acyl radical, and a group \(E \), OE or SE, in which \(E \) is chosen from an alkyl, cycloalkyl, phenyl and heterocyclyl radical, it being possible for each of them to be optionally substituted;
 - \(c \) represents 0, 1, 2 or 3;
 - \(q \) represents 0, 1, 2 or 3;

and their agriculturally acceptable possible optical and/or geometric isomers, tautomers and addition salts with an acid or a base.

Among the compounds of formula (I), the following will also be preferred:

- **compounds possessing at least one of the following characteristics:**
 - \(R_1 \) and \(R_2 \), which are identical or different, are independently chosen from a hydrogen atom and a methyl or ethyl radical;
 - \(R_3 \) and \(R_4 \), which are identical or different, are independently chosen from a halogen atom, the nitro radical, an optionally substituted amino radical and an alkyl, cycloalkyl, phenyl or heterocyclyl radical, it being possible for each of them to be optionally substituted;
 - \(c \) represents 1 or 2;
 - \(q \) represents 1 or 2;

and their agriculturally acceptable possible optical and/or geometric isomers, tautomers and addition salts with an acid or a base.

More particularly, the compounds of formula (I) are:

- **products possessing the following characteristics:**
 - \(R_1 \) and \(R_2 \) each represent a hydrogen atom;
 - \(R_3 \) and \(R_4 \), which are identical or different, are independently chosen from a halogen atom, the nitro radical, an alkyl radical and the trifluoromethyl radical;
 - \(c \) and \(q \) represent, independently of each other, 2;

and their agriculturally acceptable possible tautomers and addition salts with an acid or a base.
[0030] By way of examples, the following compounds of formula (I) are most particularly preferred in the context of the present invention:

- compound (Ia) which is 2,6-dichloro-N-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl]methyl}-benzamide;
- compound (Ib) which is N-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl]methyl}-2-fluoro-6-nitrobenzamide;
- compound (Ic) which is N-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl]methyl}-2-methyl-6-nitrobenzamide,

and their agriculturally acceptable possible tautomers and addition salts with an acid or a base.

[0031] The compounds (II) are preferably dithiocarbamates known for their fungicidal activity, and their agriculturally acceptable isomers and addition salts with an acid.

[0032] Still more preferably, the antifungal dithiocarbamate (II) is chosen from the group of compounds comprising: ferbam, mancopper, mancozeb, maneb, metiram, nabam, nickel bis(dimethyldithiocarbamate), propineb, zineb and mixtures thereof.

[0033] Advantageously, the compositions according to the present invention comprise:

- compound (Ia) and/or compound (Ib) and/or compound (Ic) combined with mancozeb or propineb.
- The preferred compositions of the present invention comprise compound (Ia) with mancozeb or propineb, and the possible tautomers and addition salts with an acid or a base of compound (Ia) and mancozeb or propineb, as long as these equivalents are agriculturally acceptable.

[0035] The fungicidal combination of compounds (I) with compounds (II) according to the invention, and in particular mancozeb or propineb, makes it possible to significantly improve the persistence of antifungal activity in the context of the curative and/or preventive treatment of major diseases of crops, including in particular those caused by fungi of the family of Peronosporaceae, in particular Plasmopara viticola (vine downy mildew), Plasmopara halstedei (sunflower mildew), Pseudoperonospora sp (in particular cucurbit mildew (Pseudoperonospora cubensis) and downy mildew of hops (Pseudoperonospora humuli)), Bremia lactucae (mildew of lettuce), Peronospora tabacinae (downy mildew of tobacco), Peronospora destructor (downy mildew of onion), Peronospora parasitica (downy mildew of cabbage), Peronospora farinosa (downy mildew of chicory and downy mildew of beetroot).

[0036] In particular, this combination has eradicant properties which are superior to those of the products alone.

[0037] From the point of view of weight the compound (I)/compound (II) ratio preferably ranges from 1/200 to 20/1, more preferably from 1/10 to 10/1.

[0038] The compound (I)/compound (II) ratio is defined as being the ratio by weight of these 2 compounds. The same applies to any ratio of 2 chemical compounds, which is subsequently measured in the present text, since a definition different from this ratio is not expressly given.

[0039] The compound (I)/compound (II) ratio ranges indicated above do not in any way limit the scope of the invention, but are, rather, mentioned as a guide, a person skilled in the art being entirely capable of carrying out additional tests to find other values of the ratio of doses of these two compounds, in particular for which a synergistic effect is observed.

[0040] Advantageously, the compound (I)/compound (II) ratio is chosen so as to produce a synergistic effect.

[0041] Usually, the compositions according to the invention comprise between 0.00001 and 100%, preferably between 0.001 and 80%, of active compounds, whether these compounds are combined, or whether they are in the form of two active ingredients used separately.

[0042] It is clearly understood that the fungicide composition according to the present invention may be associated with one or more other fungicidal, herbicidal, insecticidal and/or plant growth regulating compounds, according to the use for which they are intended.

[0043] Thus, the fungicidal compositions according to the present invention may also comprise, for example, one or more other fungicidal active ingredients chosen from acibenzolar-S-methyl, azoxystrobin, benalaxyl, benomyl, blasticidin-S, bromuconazole, captafol, captan, carbenzazim, carboxin, carpropamid, chlorothalonil, the fungicidal compositions on copper and copper derivatives such as copper hydroxide and copper oxychloride, cyazofamid, cyfluconamid, cymoxanil, cyproconazole, cyprodinyl, dichloran, diclocymet, diethofencarb, difenoconazole, diflumetorim, dimethomorph, dimoxystrobin, diniconazole, discostrobin, dodemorph, dodine, edifenphos, epoxiconazole, ethaboxam, ethirimol, fenarimol, fenbuconazole, fenhexamid, fencomiphos, fenpropidin, fenpropimorph, ferimzone, fludioxonil, flumetover, fluquinconazole, flusilazole, flusulfamide, flutolanil, flutriafol, folpel, furametpyr, guazatine, hexaconazole, hymexazol, imazaquin, iprobenfos, iprodione, isoprothiolane, kasugamycin, kresoximimethyl, mefenoxam, mepanipyrim, metalaxyl and its entantiomeric forms such as metalaxyl-M, mecoprop, metiram-zinc, metomnorubine, metrafenone, nicobifen, oxadixyl, oxycarboxyl, pareizol, pencycuron, phosphonic acid and its derivatives such as fosetyl-Al, pythalam, picoxystrobin, probenazole, prochloraz, propamocarb, propiconazole, pyraclostrobin, pyrimethanil, pyroquilon, quinoxyfen, silthiofam, simazin, spiroxamine, sup-190, tebuconazole, tetracazol, thiabendazole, thiophanate, for example thi-
ophanatemethyl, thiram, tiadinil, triadimefon, triadimenol, tricyclazole, tridemorph, trifloxystrobin, triticonazole, valinamide derivatives such as, for example, iprovalicarb, vinclozolin and zoxamide.

[0044] In addition to these additional active agents, the fungicidal compositions according to the invention may also contain any other excipient and/or auxiliary agent useful in plant protection formulations such as, for example, an agriculturally suitable inert carrier and optionally an agriculturally suitable surfactant.

[0045] As regards the presentations of the compositions according to the invention, it should be indicated that they are appropriate for a large number of formulations. Thus, it is possible to use these compositions as aerosol dispenser; bait (ready-to-use); concentrate for preparation of baits; stock bait; suspension of capsules; cold fogging concentrate; dustable powder; emulsifiable concentrate; aqueous/aqueous type emulsion; oil/inverse type emulsion; encapsulated granule; fine granule; suspension concentrate for seed treatment; compressed gas; gas generating product; grain bait; granular bait; granule; hot fogging concentrate; macrogranule; microgranule; oil-dispersible powder, oil miscible suspension concentrate; oil-miscible liquid; paste; plant rodlet; plate bait; powder for dry seed treatment; spray bait; seeds coated with a pesticide; smoke candle; smoke cartridge; smoke generator; smoke pellet; smoke rodlet; smoke tablet; smoke tin; soluble concentrate; soluble powder; solution for seed treatment; suspension concentrate (= flowable concentrate); tracking powder; ultra low volume liquid; ultra low volume suspension; vapour releasing product; water-dispersible granules or tablets; water dispersible powder for slurry treatment; water-soluble granules or tablets; water-soluble powder for seed treatment; wettable powder.

[0046] These compositions cover not only the compositions which are ready to be applied to the crop to be treated by means of a suitable device, such as a spraying device, but also the commercial concentrated compositions which have to be diluted before application to the crop.

[0047] The compositions described below are used in general for application to growing plants, or to sites where crops are grown, or for the coating or film-coating of seeds.

[0048] The compositions according to the invention are, appropriately, applied to the vegetation and in particular to the leaves infested or capable of being infested with the phytopathogenic fungi. Another method of applying the compounds or compositions according to the invention is to add a formulation containing the active ingredients to the irrigation water. This irrigation may be an irrigation using sprinklers.

[0049] For their use in practice, the compositions according to the invention can be used alone and can also advantageously be used in formulations containing one or the other of the active ingredients or alternatively both of them together, in combination or association with one or more other compatible components which are, for example, solid or liquid fillers or diluents, adjuvants, surfactants or equivalents, which are suitable for the desired use and which are acceptable for uses in agriculture. The formulations can be of any type known in the sector which are suitable for application onto all types of plantations or crops. These formulations, which can be prepared in any manner known in this sector, also form part of the invention.

[0050] The formulations can also contain ingredients of other types, such as protective colloids, adhesives, thickeners, thixotropic agents, penetrating agents, oils for spraying, stabilizers, preserving agents (in particular mouldproofing agents), sequestering agents or the like, as well as other known active ingredients which have pesticidal properties (in particular fungicidal, insecticidal, acaricidal or nematicidal properties) or which have properties of regulating plant growth. More generally, the compounds used in the invention can be combined with any liquid or solid additives corresponding to the usual formulation techniques.

[0051] In the present account, the term "filler" means an organic or inorganic, natural or synthetic component with which the active components are combined to facilitate its application, for example, onto the plants, the seeds or the soil. This filler is consequently generally inert and it must be acceptable (for example acceptable for agronomic uses, in particular for treating plants).

[0052] The filler can be solid, for example clays, natural or synthetic silicates, silica, resins, waxes, solid fertilizers (for example ammonium salts), natural soil minerals, such as kaolins, clays, talc, lime, quartz, attapulgite, montmorillonite, bentonite or diatomaceous earths, or synthetic minerals, such as silica, alumina or silicates, in particular aluminium or magnesium silicates. The solid fillers which are suitable for granules are as follows: natural, crushed or broken rocks, such as calcite, marble, pumice, sepiolite and dolomite; synthetic granules of inorganic or organic flours; granules of organic material such as sawdust, coconut shell, corn ear or envelope, or tobacco stem; kieselguhr, tricalcium phosphate, powdered cork or adsorbent carbon black; water-soluble polymers, resins, waxes; or solid fertilizers. Such compositions can, if so desired, contain one or more compatible agents such as wetting agents, dispersing agents, emulsifiers or colourings which, when they are solid, can also act as diluents.

[0053] The fillers can also be liquid, for example: water, alcohols, in particular butanol or glycol, as well as ethers or esters thereof, in particular methyl glycol acetate; ketones, in particular acetone, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone or isophorone; petroleum fractions such as paraffinic or aromatic hydrocarbons, in particular xylenes or alkynaphthalenes; mineral or plant oils; aliphatic chlorohydrocarbons, in particular trichloroethane or methylene chloride; aromatic chlorohydrocarbons, in particular chlorobenzences; water-soluble or highly polar solvents such as dimethylformamide, dimethyl sulphoxide, N,N-dimethylacetamide or N-methylpyrrolidone; N-octylpyrrolidone, liq-
The surfactant can be an emulsifier, a dispersing agent or a wetting agent, of ionic or nonionic type or a mixture of these surfactants. Among those surfactants there are used, for example, polycrylic acid salts, lignosulphonate acid salts, phenolsulphonate or naphthalenesulphonate acid salts, polycondensates of ethylene oxide with fatty alcohols or fatty acids or fatty esters or fatty amines, substituted phenols (in particular alkylyphenols or arylyphenols), ester-salts of sulphosuccinic acid, taurine derivatives (in particular alkyltaurates), phosphoric esters of alcohols or of polycondensates of ethylene oxide with phenols, fatty acid esters with polyols, or sulphate, sulphonate or phosphate functional derivatives of the compounds described above. The presence of at least one surfactant is generally essential when the active ingredients and/or the inert filler are insoluble or only sparingly soluble in water and when the filler for the said composition to be applied is water.

The formulations containing the compositions of the invention, which are used to control the phytopathogenic fungi of crops, can also contain stabilizers, other fungicidal agents, insecticides, acaricides, nematicides, anti-helminths or anti-coccidioses, bactericides, attractant or repellent agents, deodorizers, flavourings or colourings.

These can be chosen for the purpose of improving the strength, the persistence, the safety, and the spectrum of action on the phytopathogenic fungi of crops or to make the composition capable of accomplishing other useful functions for the areas treated.

For foliar applications, the choice of surfactants is crucial to ensure good bioavailability of the active ingredients; thus a combination of a surfactant with a hydrophilic character (HLB>10) and of a surfactant with a lipophilic character (HLB<5) will be preferably used. Such combinations of surfactants are, for example, described in French patent application No. 00 04015.

As regards the preparation of compounds (I), reference may be made to European patent application EP-A-1 056 723.

As regards the production of compounds (II), reference may be made to the book “The Electronic Pesticide Manual - Version 1.0” - British Crop Protection Council - Ed Clive Tomlin.

According to another of these objects, the invention relates to a method for controlling, by way of curing, preventing or eradicating, the phytopathogenic fungi of crops, characterized in that an effective (agronomically effective) and nonphytotoxic quantity of a fungicidal composition as defined above is applied to the soil where plants grow or are capable of growing, to the leaves and/or the fruits of plants or to the seeds of plants.

In this method, a composition is used which is prepared beforehand by mixing the 2 active compounds (I) and (II).

According to a variant of such a method of controlling, by way of curing, preventing or eradicating, the phytopathogenic fungi of crops:

- a combination of a compound (I) and of a compound (II) as defined above is used;
- the compounds (I) and (II) are applied simultaneously, separately or sequentially to the soil where plants grow or are capable of growing, to the leaves and/or the fruits of plants or to the seeds of plants, an effective (agronomically effective) and nonphytotoxic quantity.

This variant corresponds to a fresh preparation of the fungicidal composition.

It is also possible to apply simultaneously, successively or separately so as to have the conjugated (I)/(II) effect, of a composition each containing one of the two active ingredients (I) or (II).

Preferably, the fungicidal compositions according to the invention usually contain from 0.5 to 95% of the combination of compound (I) and compound (II). This may be the concentrated composition, that is to say the commercial product combining compound (I) and compound (II). This may also be the dilute composition ready to be applied to the crops to be treated. In the latter case, the dilution with water may be carried out either using a commercial concentrated composition containing compound (I) and compound (II) (this mixture is called ready mix), or using the tank mix of two commercial concentrated compositions each containing compound (I) and compound (II).

The treatment of crops against phytopathogenic diseases, using the fungicidal composition according to the invention, is carried out, for example, by application or by administration, with an effective and nonphytotoxic quantity of the abovementioned fungicidal composition or combination, to the aerial parts of the crops or to the soil where they grow, the said crops being those which are infested or which are capable of being infested by a phytopathogenic

disease such as downy mildew, oidium, brown rust or Septoria disease. The expression treatment of the crop is also understood to mean the treatment of the reproductive products of the crop, such as the seeds or the tubers for example.

[0068] Under specific conditions, for example according to the nature of the phytopathogenic fungus to be treated, a lower dose may offer adequate protection. Conversely, certain climatic conditions, resistance or other factors may require higher doses of active ingredient.

[0069] The effective working doses of the combinations used in the invention can vary within wide proportions, in particular depending on the nature of the phytopathogenic fungi to be eliminated or the degree of infestation, for example, of the plants with these fungi.

[0070] The optimum dose usually depends on several factors, for example on the type of phytopathogenic fungus to be treated, on the type or level of development of the infested plant, on the density of vegetation, or alternatively on the method of application. More preferably, an effective dose of active ingredients (I) and (II) is between about 7 g/ha and about 10 000 g/ha.

[0071] Without it being limiting, the crop treated with the fungicidal composition or combination according to the invention is, for example, a cereal, but this could be grapevine, vegetables, fruits, lucerne, soyabean, market garden crops, turf, wood or horticultural plants.

[0072] The phytopathogenic fungi of crops which may be controlled by this method are selected from the group comprising:

- the group of oomycetes:
 - of the family of Peronosporaceae, in particular Plasmopara viticola (vine downy mildew), Plasmopara halstedei (sunflower mildew), Pseudoperonospora sp (in particular cucurbit mildew (Pseudoperonospora cubensis) and downy mildew of hops (Pseudoperonospora humuli)), Bremia lactucae (mildew of lettuce), Peronospora tabaciniae (downy mildew of tobacco), Peronospora destructor (downy mildew of onion), Peronospora parasitica (downy mildew of cabbage), Peronospora farinosa (downy mildew of chicory and downy mildew of beetroot);
 - of the genus Phytophthora such as Phytophthora phaseoli, Phytophthora citrophthora, Phytophthora capsici, Phytophthora caactorum, Phytophthora palmitovora, Phytophthora cinnamomi, Phytophthora megasperma, Phytophthora parasitica, Phytophthora fragariae, Phytophthora cryptogea, Phytophthora porri, Phytophthora nictitiana, Phytophthora infestans (mildew of Solanaceae, in particular late blight of potato or tomato);

- the group of adelomycetes (ascomycetes):
 - of the genus Alternaria, for example Alternaria solani (early blight of Solanaceae and in particular of tomato and potato),
 - of the genus Guignardia, in particular Guignardia bidwellii (black rot of grapevine),
 - of the genus Venturia, for example Venturia inaequalis, Venturia pirina (apple or pear scabs),
 - of the genus Oidium, for example powdery mildew of grapevine (Uncinula necator); oidium of leguminous crops, for example Erysiphe polygoni (powdery mildew of Cruciferae); Leveillula taurica, Erysiphe cichoracearum, Sphaerotheca fuligina (powdery mildew of cucurbits, of composites and of tomato); Erysiphe communis (powdery mildew of beetroot and cabbage); Erysiphe psii (powdery mildew of pea and lucerne); Erysiphe polyphaga (powdery mildew of haricot bean and cucumber); Erysiphe umbelliferarum (powdery mildew of ombellifera, in particular of carrot), Sphaerotheca humuli (hop mildew); powdery mildew of wheat and barley (Erysiphe graminis forma specie tritici and Erysiphe graminis forma specie hordei),
 - of the genus Taphrina, for example Taphrina deformans (peach leaf curl),
 - of the genus Septoria, for example Septoria nodorum or Septoria tritici (Septoria disease of cereals),
 - of the genus Sclerotinia, for example Sclerotinia sclerotinum,
 - of the genus Pseudocercosporella, for example P. herpotrichoides (eyespot of cereals),
 - of the genus Botrytis cinerea (grapevine, vegetable and market garden crops, pea and the like),
 - of the genus Phomopsis viticola (excoriosis of grapevine),
 - of the genus Pyrenospora,
 - of the genus Helminthosporium, for example Helminthosporium tritici repentis (yellow leaf spot of wheat) or Helminthosporium teres (yellow leaf spot of barley),
 - of the genus Drechslera or Pyrenophora,

- of the group of basidiomycetes :
 - of the genus Puccinia, for example Puccinia recondita or striiformis (wheat rust), Puccinia triticina, Puccinia yhardei,
In addition to their fungicidal activities at the heart of the invention, the compositions or combinations defined above may also have a biocide action against bacteria and viruses, such as for example:

- fire blight, *Erwinia amylovora*;
- bacterial streak of stone fruit trees, *Xanthomonas campestris*;
- pear blossom blight, *Pseudomonas syringae*;
- bacteriosis of rice and cereals;
- the viruses present on rice, vegetable and cereal crops.

The crops envisaged in the context of the present invention are preferably grapevine, cereal crops (wheat, barley, maize, rice) and vegetable crops (haricot bean, onion, cucurbitaceae, cabbage, potato, tomato, sweet pepper, spinach, pea, lettuce, celery, chicory), fruit crops (strawberry plants, raspberry plants), tree crops (apple trees, pear trees, cherry trees, ginseng, lemon trees, coconut palms, pecan trees, cacao trees, walnut trees, olive trees, poplars, banana trees), sunflower, beetroot, tobacco, hop and ornamental crops.

A classification made, no longer based on the fungi or bacteria targeted, but on the target crops may be illustrated as below:

- grapevine: downy mildew (*Plasmopara viticola*), powdery mildew (*Uncinula necator*), grey mould (*Botrytis cinerea*), excoriosis (*Phomopsis viticola*) and black rot (*Guignardia bidwellii*);
- Solanaceae: blight (*Phytophthora infestans*), alternaria disease (*Alternaria solani*) and grey mould (*Botrytis cinerea*);
- vegetable crops: downy mildew (*Peronospora sp.*, *Bremia lactucae*, *Pseudoperonospora sp*.), alternaria (*Alternaria solani*), sclerotinia disease (*Sclerotinia sp.*), grey mould (*Botrytis cinerea*), foot or root rot (*Rhizoctonia sp.*), powdery mildew (*Erysiphe sp.*, *Sphaerotheca fuliginea*),
- arboriculture: scab (*Venturia inaequalis*, *V. pirina*), bacterial diseases (*erwinia amylovora*, *xanthomonas campestris*, *sclerotium**, *powdery mildew* (*Podosphaera leucotricha*) and *Monilia* (*Monilia fruticigena*),
- citrus: scab (*Elisineoe fawcettii*), melanose (*Phomopsis citri*) and *Phytophthora sp.* diseases,
- wheat, as regards controlling the following seed diseases: *Fusarium* diseases (*Microdochium nivale* and *Fusarium roseum*), smuts (*Tilletia caries*, *Tilletia controversa* or *Tilletia indica*), *Septoria* disease (*Septoria nodorum*),
- wheat, as regards controlling the following diseases of the aerial parts of the plant: eyespot (*Pseudocercosporella herpotrichoides*), take-all (*Gaemmamnomyces graminis*), *Fusarium* disease of the foot (*F. culmorum*, *F. graminearum*), *Rhizoctonia* disease (*Rhizoctonia cerealis*), powdery mildew (*Erysiphe graminis forma specie tritici*), *rusts* (*Puccinia striiformis* and *Puccinia recondita*), *Septoria* diseases (*Septoria tritici* and *Septoria nodorum*) and yellow leaf spot of wheat (*Helminthosporium tritici-vulgaris*),
- wheat and barley, as regards controlling bacterial and viral diseases, for example barley yellow mosaic,
- barley, as regards controlling the following seed diseases: yellow leaf spot (*Pyrenophora graminea*, *Bipolaris*, *Pyrenophora teres* and *Cochliobolus sativus*), loose smut (*Ustilago nuda*) and *Fusarium* diseases (*Microdochium nivale* and *Fusarium roseum*),
- barley, as regards controlling the following diseases of the aerial parts of the plant: eyespot (*Pseudocercosporella herpotrichoides*), yellow leaf spot (*Pyrenophora teres* and *Cochliobolus sativus*), powdery mildew (*Erysiphe graminis forma specie hordei*), dwarf leaf rust (*Puccinia hordei*) and leaf blotch (*Rhynchosporium secalis*),
- potato, as regards controlling tuber diseases (in particular *Helminthosporium solani*, *Phoma tuberosa*, *Rhizoctonia solani*, *Fusarium solani*) and certain virus diseases (virus Y),
- cotton, as regards controlling the following diseases of young plants obtained from seeds: damping-off diseases and collar rot (*Rhizoctonia solani*, *Fusarium oxysporum*), black root rot (*Thielaviopsis basicola*),
- pea, as regards controlling the following diseases: anthracnose (*Ascochyta pisi*, *Mycosphaerella pinodes*), *Fusarium disease* (*Fusarium oxysporum*), grey mould (*Botrytis cinerea*), rust (*Uromyces pisi*),
- rape plant, as regards controlling the following seed diseases: *Phoma lingam* and *Alternaria brassicae*, grey mould (*Botrytis cinerea*), and *Sclerotinia sclerotinum*,
- maize, as regards controlling seed diseases (*Rhizopus sp.*, *Penicillium sp.*, *Trichoderma sp.*, *Aspergillus sp.* and *Gibberella fujikuroi*), yellow leaf spot (*Bipolaris*), *Fusarium* disease (*Fusarium oxysporum*),
- *rice*: foot and root rot (*Rhizoctonia sp.*),
- flax, as regards controlling seed disease (*Alternaria liniola*),
- banana: *Cercospora* disease (*Mycosphaerella fijiensis*),
- turf: rust, powdery mildew, yellow leaf spot, turreric diseases (*Microdochium nivale*, *Pythium sp.*, *Rhizoctonia solani*, *Sclerotinia homeocarpa*).
- forest trees, as regards controlling damping-off (*Fusarium oxysporum*, *Rhizoctonia solani*).

[0076] Very advantageously, the method for controlling plant diseases according to the invention has shown excellent results against grapevine diseases: downy mildew (*Plasmopara viticola*), powdery mildew (*Uncinula necator*), grey mould (*Botrytis cinerea*), exocrosis (*Phomopsis viticola*) and black rot (*Guignardia bidwellii*) and against vegetable crop diseases.

[0077] The expression "are applied to the plants to be treated" is understood to mean, for the purposes of the present text, that the fungicidal compositions which are the subject of the invention may be applied by means of various methods of treatment such as:

- spraying onto the aerial parts of the said plants a liquid comprising one of the said compositions,
- dusting, the incorporation into the soil of granules or powders, spraying, around the said plants, and in the case of trees injection or daubing,
- coating or film-coating the seeds of the said plants with the aid of a plant-protection mixture comprising one of the said compositions.

[0078] Spraying a liquid onto the aerial parts of the crops to be treated is the preferred method of treatment.

[0079] The subject of the present invention is also a product comprising a compound (I) and a compound (II) as a combined preparation for simultaneous, separate or sequential use in controlling the phytopathogenic fungi of crops at a site.

[0080] Another object of the invention which is linked to the mode of preparing the composition according to the invention immediately before use consists of a kit for controlling, curatively or preventively, the phytopathogenic fungi of crops, characterized in that it comprises a compound (I) and a compound (II) as defined above, intended to be combined or used simultaneously, separately or sequentially in controlling the phytopathogenic fungi of crops at a site.

[0081] It is therefore a pack in which the user finds all the ingredients for preparing the fungicidal formulation which they wish to apply to the crops. These ingredients, which comprise in particular the active agents (I) and (II) and which are packaged separately, are provided; for example, in the form of a powder or in the form of a liquid which is concentrated to a greater or lesser degree. The user simply has to mix in the prescribed doses and to add the quantities, of liquid, for example of water, necessary to obtain a formulation which is ready to use and which can be applied to the crops.

[0082] Most appropriate is a product for simultaneous, separate, alternate or sequential application of a fungicidal compound (I) and a compound (II).

[0083] It goes without saying that the different variants which may be envisaged of the compositions and methods according to the invention form an integral part of the present invention; it being possible for the said different variants, moreover, to be combined or associated with each other without as a result departing either from the spirit or from the scope of the said invention.

[0084] In the same manner, the different aspects of the present invention which have just been described may be combined or associated with each other without as a result departing either from the spirit or from the scope of the said invention.

[0085] The following example is given purely by way of illustration of the invention and does not limit it in any manner.

Example

[0086] It is intended to give an illustration of the efficacy of the compositions according to the invention on grapevine diseases, in particular the combinations combining compound (Ia), having the chemical name 2,6-dichloro-N-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-methylbenzamide, and compound (II) which is mancozeb in the form of a formulation 85 WP.

1- Conditions and objectives
The trials consisted in curative tests of 24 hours on grapevine infected with *Plasmopara viticola*.

2- Materials and methods
Protocol:

Grapevine (Chardonay variety) plants are grown on sandy soil in plastic pots, with one plant per pot. The plants which are two months old (6- to 7-leaf stage) are inoculated by spraying an aqueous suspension of *Plasmopara viticola* sporocysts obtained from infected leaves. The concentration of sporocysts is about 100 000 units per ml.

[0087] After infection, the inoculated plants are subjected to a curative treatment by spraying with compound (I) alone and compound (II) alone, and with a mixture of compound (I) and compound (II), in each case applied at a dose of 500
The studied compound (I)/compound (II) ratios are detailed in Table 1 below.

After infection and curative treatment, the plants are covered and left for six days at 20°C.

The infection is then assessed on a scale of 1 to 10, according to which 0 indicates that there is no infection and 10 that the infection level is 100%.

The percentage control of the disease (efficacy: see below) is calculated for each treatment with reference to the untreated plants and the expected results are calculated using the Colby formula (see below).

The difference between the real results and the expected results is used to determine the synergy between the two fungicidal compounds of the composition according to the invention.

The efficacy of the treatment is calculated using the following Abbott formula:

\[
\text{Efficacy} = \frac{(\text{untreated}) - \text{treated}}{\text{untreated}} \times 100
\]

Analysis of the results is carried out using the Colby model:

\[
E = x + y - \frac{xy}{100}
\]

in which E represents the expected percentage of inhibition of the disease for the combination of the two fungicides at defined doses (for example equal to x and y respectively), x is the percentage of inhibition observed for the disease by the compound (I) at a defined dose (equal to x), y is the percentage of inhibition observed for the disease by the compound (II) at a defined dose (equal to y). When the percentage of inhibition observed for the combination is greater than E, there is a synergistic effect. Results:

<table>
<thead>
<tr>
<th>Treatment 1 Level (ppm)</th>
<th>Treatment 2 Level (ppm)</th>
<th>Percentage efficacy</th>
<th>Results obtained</th>
<th>Percentage synergistic effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound (1a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td>65.7</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td>58.2</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>0.1</td>
<td>/</td>
<td>11.9</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>mancozeb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>/</td>
<td>17.2</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>10</td>
<td>/</td>
<td>5.2</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td>23.1</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Compound(1a)</td>
<td>5 mancozeb</td>
<td>84.0</td>
<td>71.6</td>
<td>+12.4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>76.9</td>
<td>73.9</td>
<td>+3</td>
</tr>
<tr>
<td>0.1</td>
<td>10</td>
<td>32.8</td>
<td>16.5</td>
<td>+16.3</td>
</tr>
</tbody>
</table>

The compositions according to the invention comprising compound (Ia) and mancozeb as compound (II), in the (I)/(II) ratios = 1/5 and 1/100, show a significant synergistic effect.

Claims

1. Fungicidal compositions comprising:

 a) a pyridylmethylbenzamide derivative of formula (I):
in which

- R_1 is chosen from a hydrogen atom, an optionally substituted alkyl radical and an optionally substituted acyl radical;
- R_2 is chosen from a hydrogen atom and an optionally substituted alkyl radical;
- R_3 and R_4, which are identical or different are independently chosen from a halogen atom, the hydroxyl radical, the cyano radical, the nitro radical, the radical -SF$_5$, the trialkylsilyl radical, an optionally substituted amino radical, an acyl radical, and a group E, OE or SE, in which E is chosen from an alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl radical, it being possible for each of them to be optionally substituted;
- c represents 0, 1, 2, 3 or 4;
- q represents 0, 1, 2, 3 or 4;

and their agriculturally acceptable possible optical and/or geometric isomers, tautomers and addition salts with an acid or a base;

and

b) a compound (II) chosen from dithiocarbamates, and their agriculturally acceptable isomers and addition salts with an acid;

the compound (I)/compound (II) ratio ranging from 1/500 to 30/1.

2. Fungicidal compositions according to Claim 1, characterized in that compound (I) possesses one of the following characteristics, taken in isolation or in combination:

- R_1 and R_2, which are identical or different, are independently chosen from a hydrogen atom and an optionally substituted alkyl radical;
- R_3 and R_4, which are identical or different, are independently chosen from a halogen atom, the hydroxyl radical, the nitro radical, an optionally substituted amino radical, an acyl radical, and a group E, OE or SE, in which E is chosen from an alkyl, cycloalkyl, phenyl and heterocyclyl radical, it being possible for each of them to be optionally substituted;
- c represents 0, 1, 2 or 3;
- q represents 0, 1, 2 or 3;

and their agriculturally acceptable possible optical and/or geometric isomers, tautomers and addition salts with an acid or a base.

3. Fungicidal compositions according to Claim 1, characterized in that compound (I) possesses one of the following characteristics, taken in isolation or in combination:

- R_1 and R_2, which are identical or different, are independently chosen from a hydrogen atom and a methyl or ethyl radical;
- R_3 and R_4, which are identical or different, are independently chosen from a halogen atom, the nitro radical, an optionally substituted amino radical and an alkyl, cycloalkyl, phenyl or heterocyclyl radical, it being possible for each of them to be optionally substituted;
- c represents 1, or 2;
- q represents 1 or 2;
4. Fungicidal compositions according to Claim 1, characterized in that compound (I) possesses one of the following characteristics:

- **R**
- **R**
- **R**
- **R**
- **c** and **q** represent, independently of each other, 2;

and their agriculturally acceptable possible optical and/or geometric isomers, tautomers and addition salts with an acid or a base.

5. Fungicidal compositions according to Claim 1, characterized in that the compound of formula (I) is chosen from:

- 2,6-dichloro-N-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl]methyl}benzamide:
- N-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl][methyl]-2-fluoro-6-nitrobenzamide; and
- N-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl][methyl]-2-methyl-6-nitrobenzamide,

and their agriculturally acceptable possible tautomers and addition salts with an acid or a base.

6. Fungicidal compositions according to Claim 1, characterized in that compound (II) is chosen from the dithiocarbamates with fungicidal activity, and their agriculturally acceptable isomers and addition salts with an acid.

7. Fungicidal compositions according to Claim 6, characterized in that compound (II) is selected from the group comprising: ferbam, mancopper, mancozeb, maneb, metiram, nabam, nickel bis(dimethylthiocarbamate), propineb, zineb and mixtures thereof.

8. Fungicidal compositions according to Claim 5 and Claim 7.

9. Fungicidal compositions according to Claim 8, characterized in that compound (I) is 2,6-dichloro-N-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl]methyl}benzamide and in that compound (II) is mancozeb or propineb.

10. Fungicidal compositions according to one of the preceding claims, characterized in that they comprise a compound of formula (I) and a compound (II), the compound (I)/compound (II) ratio ranging from from 1/200 to 20/1.

11. Fungicidal compositions according to one of the preceding claims, characterized in that they comprise, in addition to compounds (I) and (II), an agriculturally suitable inert carrier and optionally an agriculturally suitable surfactant.

12. Fungicidal compositions according to one of the preceding claims, characterized in that they comprise between 0.00001 and 100%, preferably between 0.001 and 80%, of the combination of compound (I) and of compound (II)

13. Method for the curative or preventive control of phytopathogenic fungi of crops, characterized in that an effective (agronomically effective) and non-phytotoxic quantity of a fungicidal composition according to one of Claims 1 to 12 is applied to the soil where plants grow or are capable of growing, to the leaves and/or the fruits of plants or to the seeds of plants.

14. Method according to Claim 13, characterized in that the fungicidal composition is applied by spraying a liquid to the aerial parts of the crops to be treated.

15. Method according to either of Claims 13 and 14, characterized in that the quantity of fungicidal composition corresponds to a dose of compound (I) and of compound (II) of between about 1 g/ha and about 10 000 g/ha.

16. Method according to one of Claims 13 to 15, characterized in that the crop treated is chosen from grapevine, cereal crops (wheat, barley, maize, rice) and vegetable crops (haricot bean, onion, cucurbiteaeae, cabbage, potato, tomato, sweet pepper, spinach, pea, lettuce, celery, chicory), fruit crops (strawberry plants, raspberry plants), tree crops (apple trees, pear trees, cherry trees, ginseng, lemon trees, coconut palms, pecan trees, cacao trees, walnut...
trees, rubber trees, olive trees, poplars, banana trees), sunflower, beetroot, tobacco, hop and ornamental crops.

17. Product comprising a compound of formula (I) and a compound of formula (II) as a combined preparation for simultaneous, separate or sequential use in controlling the phytopathogenic fungi of crops at a site.

Patentansprüche

1. Fungizide Zusammensetzungen, umfassend:

a) ein Pyridylmethylbenzamidderivat der Formel (I):

\[
\begin{align*}
\text{in der} & \\
\bullet & R_1 \text{ aus der Reihe Wasserstoffatom, gegebenenfalls substituierter Alkylrest und gegebenenfalls substituierter Acylrest stammt;} \\
\bullet & R_2 \text{ aus der Reihe Wasserstoffatom und gegebenenfalls substituierter Alkylrest stammt;} \\
\bullet & R_3 \text{ und } R_4 \text{, die gleich oder verschieden sind, unabhängig aus der Reihe Halogenatom, Hydroxyrest, Cyanrest, Nitrorest, } -\text{SF}_5 \text{-Rest, Trialkylsilylrest, gegebenenfalls substituierter Aminorest, Acylrest oder Gruppe } E, OE \text{ oder } SE \text{ stammen, wobei } E \text{ aus der Reihe Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl-, Cycloalkenyl-, Aryl- und Heterocyclylrest stammt, die jeweils gegebenenfalls substituiert sein können;} \\
\bullet & c 0, 1, 2, 3 \text{ oder } 4 \text{ bedeutet}; \\
\bullet & q 0, 1, 2, 3 \text{ oder } 4 \text{ bedeutet}; \\
\end{align*}
\]

und ihre möglichen landwirtschaftlich annehmbaren optischen und/oder geometrischen Isomere, Tautomere und Säure- oder Basenadditionssalze;

b)eine Verbindung (II) aus der Reihe der Dithiocarbamate und ihre landwirtschaftlich annehmbaren Isomere und Säureadditionsalze;

wobei das Verhältnis zwischen Verbindung (I) und Verbindung (II) von 1/500 bis 30/1 reicht.

2. Fungizide Zusammensetzungen nach Anspruch 1, **dadurch gekennzeichnet, daß** die Verbindung (I) eines der folgenden Merkmale allein oder in Kombination aufweist:

\[
\begin{align*}
\bullet & R_1 \text{ und } R_2, \text{ die gleich oder verschieden sind, stammen unabhängig aus der Reihe Wasserstoffatom und gegebenenfalls substituierter Alkylrest;} \\
\bullet & R_3 \text{ und } R_4, \text{ die gleich oder verschieden sind, stammen unabhängig aus der Reihe Halogenatom, Hydroxyrest, Nitrorest, gegebenenfalls substituierter Aminorest, Acylrest oder Gruppe } E, OE \text{ oder } SE \text{, wobei } E \text{ aus der Reihe Alkyl-, Cycloalkyl-, Phenyl- und Heterocyclylrest stammt, die jeweils gegebenenfalls substituiert sein können;} \\
\bullet & c 0, 1, 2, \text{ oder } 3 \text{ bedeutet}; \\
\bullet & q 0, 1, 2, \text{ oder } 3 \text{ bedeutet}; \\
\end{align*}
\]
3. Fungizide Zusammensetzungen nach Anspruch 1, **dadurch gekennzeichnet, daß** die Verbindung (I) eines der folgenden Merkmale allein oder in Kombination aufweist:

- R_1^1 und R_2^2, die gleich oder verschieden sind, stammen unabhängig aus der Reihe Wasserstoffatom und Methyl- oder Ethylrest;
- R_3^3 und R_4^4, die gleich oder verschieden sind, stammen unabhängig aus der Reihe Halogenatom, Nitrorest, gegebenenfalls substituierter Aminorest, und Heterocyclrest, die jeweils gegebenenfalls substituiert sein können;
- c_1 oder 2 bedeutet;
- q_1 oder 2 bedeutet;

und ihre möglichen landwirtschaftlich annehmbaren optischen und/oder geometrischen Isomere, Tautomere und Säure- oder Basenadditionssalze.

4. Fungizide Zusammensetzungen nach Anspruch 1, **dadurch gekennzeichnet, daß** die Verbindung (I) eines der folgenden Merkmale aufweist:

- R_1^1 und R_2^2 bedeuten jeweils ein Wasserstoffatom;
- R_3^3 und R_4^4, die gleich oder verschieden sind, stammen unabhängig aus der Reihe Halogenatom (vorzugsweise Cl), Nitrorest, Alkylrest und Trifluormethylrest;
- C und q bedeuten unabhängig voneinander 2;

und ihre möglichen landwirtschaftlich annehmbaren optischen und/oder geometrischen Isomere, Tautomere und Säure- oder Basenadditionssalze.

5. Fungizide Zusammensetzungen nach Anspruch 1, **dadurch gekennzeichnet, daß** die Verbindung der Formel (I) aus der folgenden Reihe stammt:

- 2,6-Dichlor-N-[(3-chlor-5-(trifluormethyl)-2-pyridinyl)methyl]benzamid;
- N-[(3-Chlor-5-(trifluormethyl)-2-pyridinyl)[methyl]-2-fluor-6-nitrobenzamid; und
- N-[(3-Chlor-5-(trifluormethyl)-2-pyridinyl)[methyl]-2-methyl-6-nitrobenzamid

und ihre möglichen landwirtschaftlich annehmbaren Tautomere und Säure- oder Basenadditionssalze.

6. Fungizide Zusammensetzungen nach Anspruch 1, **dadurch gekennzeichnet, daß** die Verbindung (II) aus der Reihe der fungizidwirksamen Dithiocarbamate und ihren landwirtschaftlich annehmbaren Isomeren und SäureadDITIONssalzen stammt.

7. Fungizide Zusammensetzungen nach Anspruch 6, **dadurch gekennzeichnet, daß** die Verbindung (II) aus der Gruppe Ferbam, Mancopper, Mancozeb, Maneb, Metiram, Nabam, Nickel Bis(dimethylthiocarbamat), Propineb, Zineb und deren Mischungen stammt.

9. Fungizide Zusammensetzungen nach Anspruch 8, **dadurch gekennzeichnet, daß** es sich bei der Verbindung (I) um 2,6-Dichlor-N-[(3-chlor-5-(trifluormethyl)-2-pyridinyl)[methyl]benzamid und bei der Verbindung (II) um Mancozeb oder Propineb handelt.

10. Fungizide Zusammensetzungen nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, daß** sie eine Verbindung der Formel (I) und eine Verbindung (II) umfassen, wobei das Verhältnis zwischen Verbindung (I) und Verbindung (II) von 1/200 bis 20/1 reicht.

11. Fungizide Zusammensetzungen nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, daß** sie zusätzlich zu den Verbindungen (I) und
12. Fungizide Zusammensetzungen nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, daß** sie zwischen 0,00001 und 100% vorzugsweise zwischen 0,001 und 80%, der Kombination von Verbindung (I) und Verbindung (II) umfassen.

13. Verfahren für die kurative oder präventative Bekämpfung von phytopathogenen Kulturpflanzenpilzen, **dadurch gekennzeichnet, daß** eine wirksame (landwirtschaftlich wirksame), nichtphytotoxische Menge einer fungiziden Zusammensetzung nach einem der Ansprüche 1 bis 12 auf dem Boden, wo Pflanzen wachsen oder wachsen können, auf die Blätter und/oder die Früchte von Pflanzen oder die Samen von Pflanzen ausgebracht wird.

14. Verfahren nach Anspruch 13, **dadurch gekennzeichnet, daß** die fungizide Zusammensetzung durch Versprühen einer Flüssigkeit auf die oberirdischen Teile der zu behandelnden Kulturpflanzen ausgebracht wird.

15. Verfahren nach einem der Ansprüche 13 und 14, **dadurch gekennzeichnet, daß** die Menge an fungizider Zusammensetzung einer Aufwandmenge von Verbindung (I) und von Verbindung (II) von zwischen ungefähr 1 g/ha und ungefähr 10.000 g/ha entspricht.

16. Verfahren nach einem der Ansprüche 13 bis 15, **dadurch gekennzeichnet, daß** die behandelte Kulturpflanze aus der Reihe Rebe, Getreidekulturen (Weizen, Gerste, Mais, Reis) und Gemüsekulturen (Gartenbohne, Zwiebel, Cucurbitaceae, Kohl, Kartoffel, Tomate, Gemüsepaprika, Spinat, Erbse, Salat, Sellerie, Chicorée), Obstkulturen (Erdbeerpflanzen, Birnbäume, Kirschbäume, Ginseng, Zitronenbäume, Kokospalmen, Pecanbäume, Kakaobäume, Walnußbäume, Olivenbäume, Pappeln, Bananenstauden), Sonnenblume, Roote Rübe, Tabak, Hopfen und Zierpflanzen stammt.

17. Produkt, umfassend eine Verbindung der Formel (I) und eine Verbindung der Formel (II) als Kombinationspräparat für die gleichzeitige, getrennten oder aufeinanderfolgenden Verwendung bei der Bekämpfung der phytopathogenen Kulturpflanzenpilze an einem Standort.

Revendications

1. Compositions fongicides comprenant :

 a) un dérivé de pyridylméthylbenzamide de formule (I) :

 dans laquelle :

 - R^1 est choisi parmi l'atome d'hydrogène, un radical alkyle éventuellement substitué et un radical acyle éventuellement substitué ;
 - R^2 est choisi parmi l'atome d'hydrogène et un radical alkyle éventuellement substitué ;
 - R^3 et R^4, identiques ou différents, sont indépendamment choisis parmi un atome d'halogène, le radical hydroxy, le radical cyano, le radical nitro, le radical \cdotSF$_5$, le radical trialkylsilyle, un radical amino éven-
tuellement substitué, un radical acyle, et un groupement E, OE ou SE, dans lequel E est choisi parmi un radical alkyle, alcényle, alcynyle, cycloalkyle, cycloalcényle aryle ou hétérocyclyle, chacun d'eux pouvant être éventuellement substitué ;

- c représente 0, 1, 2, 3 ou 4 ;
- q représente 0, 1, 2, 3 ou 4 ;

ainsi que leurs éventuels isomères optiques et/ou géométriques, tautomères et sels d'addition à un acide ou une base, acceptables dans le domaine de l'agriculture ;

et

b) un composé (II) choisi parmi les dithiocarbamates, ainsi que leurs isomères et sels d'addition à un acide, acceptables dans le domaine de l'agriculture ;

le rapport composé (I)/composé (II) allant de 1/500 à 30/1.

2. Compositions fongicides selon la revendication 1, caractérisées en ce que le composé (I) possède l'une des caractéristiques suivantes, prises isolément ou en combinaison :

- R₁ et R₂, identiques ou différents, sont indépendamment choisis parmi l'atome d'hydrogène et un radical alkyle éventuellement substitué ;
- R₃ et R₄ identiques ou différents, sont indépendamment choisis parmi un atome d'halogène, le radical hydroxy, le radical nitro, un radical amino éventuellement substitué, un radical acyle, et un groupement E, OE ou SE, dans lequel E est choisi parmi un radical alkyle, cycloalkyle, phényle et hétérocyclyle, chacun d'eux pouvant être éventuellement substitué ;
- c représente 0, 1, 2 ou 3 ;
- q représente 0, 1, 2, ou 3 ;

ainsi que leurs éventuels isomères optiques et/ou géométriques, tautomères et sels d'addition à un acide ou une base, acceptables dans le domaine de l'agriculture.

3. Compositions fongicides selon la revendication 1, caractérisées en ce que le composé (I) possède l'une des caractéristiques suivantes, prises isolément ou en combinaison :

- R₁ et R₂, identiques ou différents, sont indépendamment choisis parmi l'atome d'hydrogène et un radical méthyle ou éthyle ;
- R₃ et R₄ identiques ou différents, sont indépendamment choisis parmi un atome d'halogène, le radical nitro, un radical amino éventuellement substitué et un radical alkyle, cycloalkyle, phényle ou hétérocyclyle, chacun d'eux pouvant être éventuellement substitué ;
- c représente 1 ou 2 ;
- q représente 1 ou 2 ;

ainsi que leurs éventuels isomères optiques et/ou géométriques, tautomères et sels d'addition à un acide ou une base, acceptables dans le domaine de l'agriculture.

4. Compositions fongicides selon la revendication 1, caractérisées en ce que le composé (I) possède l'une des caractéristiques suivantes :

- R₁ et R₂ représentent chacun l'atome d'hydrogène ;
- R₃ et R₄, identiques ou différents, sont indépendamment choisis parmi un atome d'halogène (de préférence
Cl), le radical nitro, un radical alkyle et le radical trifluorométhyle ;

- c et q représentent, indépendamment l'un de l'autre, 2 ;

ainsi que leurs éventuels isomères optiques et/ou géométriques, tautomères et sels d'addition à un acide ou une base, acceptables dans le domaine de l'agriculture.

5. Compositions fongicides selon la revendication 1, caractérisées en ce que le composé de formule (I) est choisi parmi :
- le 2,6-dichloro-N-[[3-chloro-5-(trifluorométhyl)-2-pyridinyl]méthyl]benzamide,
- le N-[[3-chloro-5-(trifluorométhyl)-2-pyridinyl]méthyl]-2-fluo-ro-6-nitrobenzamide, et
- le N-[[3-chloro-5-(trifluorométhyl)-2-pyridinyl]méthyl]-2-méthyl-6-nitrobenzamide,

ainsi que leurs éventuels tautomères et sels d'addition à un acide ou une base, acceptables dans le domaine de l'agriculture.

6. Compositions fongicides selon la revendication 1, caractérisées en ce que le composé (II) est choisi parmi les diithiocarbamates à activité fongicide, ainsi que leurs isomères et sels d'addition à un acide, acceptables dans le domaine de l'agriculture.

7. Compositions fongicides selon la revendication 6, caractérisées en ce que le composé (II) est sélectionné dans le groupe comprenant : le ferbam, le mancopper, le mancozeb, le maneb, le metiram, le nabam, le nickel bis (diméthyl/dithiocarbamate), le propineb, le zineb, et leurs mélanges.

9. Compositions fongicides selon la revendication 8, caractérisées en ce que le composé (I) est le 2,6-dichloro-N-[[3-chloro-5-(trifluorométhyl)-2-pyridinyl]méthyl]benzamide et en ce que le composé (II) est le mancozeb ou le propineb.

10. Compositions fongicides selon l'une des revendications précédentes, caractérisées en qu'elles comprennent un composé de formule (I) et un composé (II), le rapport composé (I)/composé (II) allant de 1/200 à 20/1.

11. Compositions fongicides selon l'une des revendications précédentes, caractérisées en ce qu'elles comprennent outre les composés (I) et (II) un support inerte convenable en agriculture et éventuellement un tensioactif convenable en agriculture.

12. Compositions fongicides selon l'une des revendications précédentes, caractérisées en ce qu'elles comprennent entre 0,00001 et 100%, de préférence entre 0,001 et 80%, de la combinaison du composé (I) et du composé (II).

13. Procédé de lutte, à titre curatif ou préventif, contre les champignons phytopathogènes des cultures, caractérisé en ce que l'on applique sur le sol où poussent ou où sont susceptibles de pousser les végétaux, sur les feuilles et/ou les fruits des végétaux ou sur les semences des végétaux, une quantité efficace (agronomiquement efficace) et non phytotoxique d'une composition fongicide selon l'une des revendications 1 à 12.

14. Procédé selon la revendication 13, caractérisé en ce que la composition fongicide est appliquée par pulvérisation d'un liquide sur les parties aériennes des cultures à traiter.

15. Procédé selon l'une des revendications 13 à 14, caractérisé en ce que la quantité de composition fongicide correspond à une dose de composé (I) et de composé (II) comprise entre environ 1 g/ha et environ 10 000 g/ha.

16. Procédé selon l'une des revendications 13 à 15, caractérisé en ce que la culture traitée est choisie parmi la vigne, les cultures céréalières (blé, orge, maïs, riz) et légumières (haricot, oignon, cucurbitacées, chou, pomme de terre, tomate, poivron, épinard, pois, laitue, céleri, endive), les cultures fruitières (frasiers, framboisiers), les cultures arboricoles (pommiers, poiriers, cerisiers, ginseng, citronniers, cocotiers, cacayiers, noyers, hévéas, oliviers, peupliers, bananiers), le tournesol, la betterave, le tabac, le houblon et les cultures ornementales.
17. Produit comprenant un composé de formule (I) et un composé de formule (II) en tant que préparation combinée pour l'utilisation simultanée, séparée ou séquentielle dans la lutte contre les champignons phytopathogènes des cultures en un lieu.