EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 13.02.2008 Bulletin 2008/07

Application number: 04006082.4

Date of filing: 18.08.2000

Method for plating a metal strip for use when manufacturing a multiple walled tube
Verfahren zur Plattierung eines Metallbandes zur Herstellung eines Mehrwandigen Rohrs
Procédé de placage sur une bande métallique pour la fabrication d’un tube à parois multiples

Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Date of publication of application: 30.06.2004 Bulletin 2004/27

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 00307079.4 / 1 181 993

Proprietor: TI GROUP AUTOMOTIVE SYSTEMS LIMITED Oxford OX4 2SU (GB)

Inventors:
- Lamande, Pascal, c/o TI Group Automotive Syst. SA 4020 Wandre-Liege (BE)
- Volvert, Albert, c/o TI Group Automotive Syst. SA 4020 Wandre-Liege (BE)
- Pierini, Vincenzo, c/o TI Group Automotive Syst. SA 4020 Wandre-Liege (BE)

Representative: Chapman, Paul Nicholas Atkinson Burrington Limited 28 President Buildings President Way Sheffield S4 7UR (GB)

References cited:
- EP-A- 0 410 955
- FR-A- 1 015 678
- GB-A- 2 034 206
- US-A- 3 267 010
- DE-A- 2 061 560
- GB-A- 1 591 907
- US-A- 2 436 244
- US-A- 4 412 560

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates to a method for plating a metal strip for use when manufacturing a multiple walled tube comprising a rolling of a plated metal strip through at least two complete revolutions to form a tube having at least a double wall which has a plated layer on the inside of the tube, said rolling being followed by a heating of the tube to cause the surface of the tube walls, which are in contact with one another, to be brazed.

[0002] A method of manufacturing a multiple walled tube is known from FR 1 015 678. According to the known method, a metal strip plated at both sides with copper is used. Once the metal strip is rolled, the tube is heated in order to braze the copper at the contact faces between the walls of the tube. Zinc or tin could be used for the brazing in order to reduce the melting point of the copper.

[0003] A drawback of the known method is that the metal strip is plated at both sides with copper. The copper layer at the outer side of the tube has no real technical purpose. During the brazing process, the outer copper layer reduces the heat transfer inside the tube when heat is applied by means of radiation or induction. The copper layer on the outer wall also imposes some manufacturing constraints such as the use of a black coating during the brazing process. As this black coating renders the brazing device dirty, a regular cleaning is required. When the tube is heated by applying a current to it by direct contact, the melted copper affects the electrical contacts at high temperature.

[0004] A process for one-sided electroplating of flat steel workpieces is disclosed in EP 0 410 955. The method comprises deposition of a thin layer of material on both sides of the workpiece, plating with the same material on just one side and then electrolytic stripping of the thin layer from the opposite side.

[0005] DE 20 61 560 discloses a method of manufacturing a double-walled pipe from a rolled steel strip having a copper (solder) layer on one side only.

[0006] The invention relates to a method for plating a metal strip according to claim 1.

[0007] The invention will now be described in more details with reference to the drawings wherein :

- figure 1 shows a sectional view of a metal strip;
- figure 2 shows a sectional view of a tube obtained by application of the method according to the invention;
- figure 3 shows at an enlarged scale a cross-section through the wall of the tube;
- figures 4, 5, 6 and 7 show curves illustrating the heating power as function of the wall thickness;
- figure 8 shows a preferred embodiment of a method for manufacturing a monoplated metal strip.

[0008] In the drawings, a same reference sign has been assigned to a same or analogous element.

[0009] Figure 1 shows a sectional view of a plated metal strip 1. The strip is made of steel preferably of stainless steel. A copper layer 3 is applied on the steel 2 of the sheet in order to obtain a plated metal strip. A method for obtaining such a monoplated metal strip will be described in more details with reference to figure 8.

[0010] The plated metal strip 1 is used for manufacturing a multiple walled tube 4 such as illustrated in figure 2. Although figure 2 shows a double walled tube, it will be clear that the invention is not limited to a double walled tube. Such a double walled tube is obtained by rolling the plated metal through two complete revolutions. For obtaining an n-walled tube (n > 2) n complete revolutions of the sheet are required. Upon rolling the tube, the copper layer 3 is situated at the inner side in order to form the inner tube wall. Consequently the steel side 2 forms the outer tube wall. This causes that at the interface 5 between two successive walls the copper layer 3 of an upper wall faces the steel side of the lower walls, as illustrated in figure 3.

[0011] In order to obtain a tight tube, it is necessary to heat the rolled strips forming the tube, in order to cause the surface of the tube walls, which are in contact with one another, to be brazed. By using the monoplated metal strip, the copper layer will be brazed directly to the steel. Brazing copper to metal such as steel, stainless steel or iron, overcomes the technical prejudices that brazing should be realised by copper with copper or copper with tin, nickel or zinc. Brazing a steel strip with copper on one side and bare steel on the other side has surprisingly proven remarkable performances. Experiments have proven an excellent bonding of the walls.

[0012] Traditionally, the brazing is realised by passing the formed tube through a radiation furnace, also called muffle tubes. According to the known method, a black coating, which mainly comprises bitumen, is applied on the external side of the tube in order to improve the heat transfer. The drawback of using this black coating is that it considerably pollutes the brazing device thus requiring a frequent cleaning thereof.

[0013] Experiments realised with the monoplated tube according to the invention, have surprisingly proven that the radiation heat transfer significantly improved. The absence of copper on the outer side of the tube has increased the heat transfer towards the brazing zone. The heat transfer was that efficient, that the black coating was no longer required, what considerably reduced the pollution of the device and provided a cleaner tube. As less cleaning was required, a higher productivity could be obtained and consequently a reduction of the productions costs.

[0014] Brazing can also be realised by using an induction coil for inducing electrical current into the tube. With this embodiment there is no direct contact between the tube and the inductive coil. By applying an electrical current to the inductive coil, a magnetic field is created which on its turn, induces an electrical current into the tube.
When the tube temperature is below the Curie point, the electrical current is concentrated at the skin of the tube. If a tube with copper on its outer side is used (conventional method) the current density is higher in the copper layer due to the better electrical conductivity of the copper with respect to the steel. Experiments have proven that the copper layer even acts as an electromagnetic shielding for the induced current and reduces the energy transfer in the steel.

[0015] Brazing could also be realised by applying directly an electric current to the tube, for example by means of electrical conductor, rolls or sliding pads. The current is fed through the direct contact between those rolls or pads and the tube and forced to flow into the tube which acts as an electrical resistance. The heat developed in such a manner in the tube will cause the copper to melt and braze with the steel. However, when according to the conventional method, there was also copper on the outer side, the latter copper also started to melt and got accumulated on the rolls or pads. Since according to the invention there is no longer copper on the outer side, that accumulation is avoided and power is saved as there is no longer power consumed to heat the copper on the outer layer. By having the steel surface on the outer side, the heating process is more reliable as the current flows through the steel towards the interface where the brazing is realised.

[0016] Figure 4 illustrates the energy transfer as function of the wall thickness of the double plated tube. The horizontal axis represents the wall thickness of the tube in micron meters and the vertical axis the energy density in 10^{10} W/m^3. The origin being the external side of the tube and μ the internal side of a double walled tube. In this example, the measurements have been carried out on a tube where induction was used for brazing. As can be seen in this figure 4, for a density situated between 0 and 3 μ the graph shows a peak in heating energy at the external copper coating. This signifies that a high amount of energy is required to heat up the external copper layer i.e. to cross the copper layer. When the steel level has been reached, the energy transfer is substantially reduced. The copper layer thus acts as a magnetic shielding for the steel and restricts consequently the heat transfer. Moreover, it results in the sublimation of some copper which deposits again on the cold parts of the induction coils.

[0017] The figures 5, 6 and 7 show curves where a comparison is made between monoplated steel tubes (Cu/Fe) and double plated steel tubes (Cu/Cu) using induction at 100 KHz, 200 KHz and 400 KHz respectively. As can be seen the peak due to the copper outer layer is not present for a monoplated steel tube. Moreover, the curve shows a continuous pattern over the whole thickness of the tube. The higher the frequency of the induction heating, the higher is the gap between the monoplated and double plated tube at its outer skin.

[0018] A main application of a multiple walled tube being the brake lines for automotive. This application imposes a high quality standard on the tube i.e. without any hole, lack of brazing or pin-holes. The quality of the tube is controlled by using an Eddy current tester. This equipment is a non-destructive test, based on high frequency current induced into the tube. One coil induces the current and a second coil, placed downstream the first coil, picks up the induced current. The current in the first and second coil being compared with each other in order to detect a distortion between the two signals indicating a production failure.

[0019] The main difficulty to operate such an Eddy current tester in a reliable manner originates from the physics of the tooling. Indeed, by using high frequency to generate a test current into the tube, the law of physics implies that the test current mainly flows through the tube wall. When a double plated steel is used, the outside copper layer forms the main current path for the test current to the detriment of the rest of the material. Moreover, any deviation into the thickness of the copper layer increases the noise in the test signal. With the tube according to the present invention, where no copper is present on the outer layer, the test current is concentrated into the critical area of the tube to be tested. No noise was surprisingly recorded in the test signal enabling to increase the sensitivity of the test equipment.

[0020] Another advantage of the present invention is that the application of a sacrificial layer such as zinc, galfan or aluminium for enhancing the corrosion resistance, can be realised in an easier manner. When the sacrificial layer was applied on the copper layer, as it is the case according to the prior art, very detrimental electrochemical cells could be created between the iron, the copper and the sacrificial layer. Those cells were speeding up the dissolution of the sacrificial cell.

[0021] If the sacrificial layer was deposited with a hot dip process, it has been observed that the copper layer could not completely alloy with the sacrificial layer and that the copper migrated to the skin of the sacrificial layer by small chimneys. At the final stage, when an organic protection layer such as nylon was applied on the sacrificial layer, for example by extrusion or powder coating, those chimneys formed gas pockets creating a pressure on the organic layer which produced bubbles at the surface of the organic layer. The use of a monoplated strip avoids those problems since the outer copper layer of the tube is no longer present.

[0022] Moreover, using hot dip techniques with a tube having copper on its outer side, the copper is in direct contact with the melted metal for the sacrificial layer. This direct contact leads to a copper pollution of the coating material. By using a bare steel tube, the liquid metal is no longer polluted and neither will be the sacrificial layer.

[0023] Figure 8 shows a first embodiment of a device enabling to produce a monoplated steel strip. The device comprises three successive electrolytic baths 11, 12 and 13 through which the metal strip 10 travels. The first bath 11 and the third bath 13 are cyanide based baths, whereas the second bath 12 is an acid based bath. Each bath
comprises a set of anodes 14, 15 and 16. The anodes 15 and 16 face one side of the strip whereas anode 14 faces the other side of the strip.

In the first 11 and second 12 bath a positive voltage is applied on the anodes once the strip 10 is grounded or at a negative voltage. The cyanide based electrolytic first bath 11 causes a thin copper layer of for example 0.2 μ to apply on both sides of the strip. In the second bath 12 the anodes 14 are shielded in order not to apply a copper layer on the steel strip side facing those electrodes. The acid based bath causes a further copper layer of for example 3 μ to be applied on the side, facing the electrodes 15 and 16.

The third cyanide based bath 13, the polarity is inverted. Either a negative voltage is applied on the electrodes 14, or they are grounded whereas a positive voltage is applied on the strip. This inverted polarity causes the total removal of the copper layer facing the anodes 14 and of the thin film of for example 0.2 μ of the side. In such a manner a monoplated strip is obtained.

Claims

1. A method for plating a metal strip, wherein a steel sheet (2) is immersed in a first electrolytic bath (11) and consequently in a second electrolytic bath (12), the sheet is plated on both sides with a thin layer of a metal in the first bath, and plated on only one side with said metal in the second bath, the sheet being consequently immersed in a third electrolytic bath (13) wherein the electrode has inverted polarity with respect to the one of the first and second bath thereby removing metal to leave a plated layer (3) on only one side of the steel sheet, characterised in that said metal is copper; said first and third bath are cyanide based baths and said second bath is acid based.

2. A method for manufacturing a multiple walled tube using a plated metal strip manufactured in accordance with claim 1, said method comprising a rolling of said plated metal strip through at least two complete revolutions to form a tube having at least a double wall which has a plated layer on the inside of the tube said rolling being followed by a heating of the tube to cause the surface of the tube walls which are in contact with one another to be brazed characterised in that said metal strip is plated on one side the other side being formed by the steel of the metal strip and wherein said brazing is realised by brazing directly the plated side on the steel.

3. A method as claimed in claim 2, characterised in that said brazing is realised by passing the formed tube through a radiation furnace.

4. A method as claimed in claim 2, characterised in that said brazing is realised by inducing an electric current into said tube.

5. A method as claimed in claim 2, characterised in that said brazing is realised by applying an electric current by means of electrical contacts contacting the steel surface.

6. A method of manufacturing a multiple walled tube (4) which method comprises:

a) electroplating a metal strip in accordance with the method of claim 1, to obtain a metal strip (2) that is plated on only one of its sides, the other side being formed by the steel of the metal strip;
b) rolling the plated metal strip (2, 3) through at least two revolutions to form a tube (4) having at least a double wall, the plated layer (3) being on the inside of the tube (4); and
c) following said rolling, heating the tube to cause the surface of the tube walls, which are in contact with one another, to be brazed, such that said brazing is realised by brazing directly the plated side on the steel, characterised in that said heating is realised by (i) passing the formed tube through a radiation furnace, or (ii) inducing an electric current in the tube, or (iii) applying an electric current by means of electrical contacts contacting the metal strip.

7. A method of manufacturing a multiple walled tube as claimed in claim 6 in which the strip is made of steel or stainless steel.

8. A method of manufacturing a multiple walled tube as claimed in any of claims 2 to 8 in which the bare steel tube has a sacrificial layer applied to it, the sacrificial layer being selected from the group comprising zinc, galvanised steel or stainless steel.

9. A method of manufacturing a multiple walled tube as claimed in claim 8 in which the sacrificial layer is deposited by a hot dip process.

10. A method of manufacturing a multiple walled tube as claimed in claim 8 or claim 9 in which an organic protection layer is applied to the sacrificial layer.

Patentansprüche

1. Verfahren zum Plattieren eines Metallbandes, bei dem ein Stahlblech (2) in ein erstes galvanisches Bad (11) und darauffolgend in ein zweites galvanisches Bad (12) eingetaucht wird und das Blech in dem ersten Bad auf beiden Seiten mit einer dünnen Metallschicht plattiert wird und in dem zweiten Bad lediglich auf einer Seite mit dem Metall plattiert wird,
6. Verfahren zum Herstellen eines mehrwandigen Rohrs (4), wobei das Verfahren Folgendes umfasst:

5. miteinander in Kontakt stehen, derart verlötet wird, dass das Verlöten durch direktes Auflöten der plattierten Seite auf den Stahl erfolgt, **dadurch gekennzeichnet**, dass das Erhitzen dadurch erfolgt, dass (i) das geformte Rohr durch einen Strahlungsofen geführt wird oder (ii) in dem Rohr ein elektrischer Strom induziert wird oder (iii) mittels elektrischer Kontakte, die das Metallband berühren, ein elektrischer Strom angelegt wird.

8. Verfahren zum Herstellen eines mehrwandigen Rohrs nach einem der Ansprüche 2 bis 8, bei dem auf das blanke Stahlrohr eine Opferschicht aufgebracht ist, die aus der Gruppe ausgewählt ist, die Zink, Galvan und Aluminium umfasst.

9. Verfahren zum Herstellen eines mehrwandigen Rohrs nach Anspruch 8, bei dem die Opferschicht in einem Schmelztauchverfahren aufgebracht wird.

10. Verfahren zum Herstellen eines mehrwandigen Rohrs nach Anspruch 8 oder Anspruch 9, bei dem eine organische Schutzschicht auf die Opferschicht aufgebracht wird.

Revidications

1. Procédé pour plaquer une bande métallique, dans lequel une tôle d’acier (2) est immergée dans un premier bain électrolytique (11) et par conséquent dans un second bain électrolytique (12). La tôle est plaquée des deux côtés avec une fine couche d’un métal dans le premier bain et plaquée uniquement d’un seul côté avec l’édit métal dans le second bain, la tôle étant par conséquent immergée dans un troisième bain électrolytique (13), dans lequel l’électrode...
tube pour amener la surface des parois de tube qui sont en contact entre elles, à être brasées, caractérisé en ce que ladite bande métallique est placée d’un seul côté, l’autre côté étant formé par l’acier de la bande métallique et dans lequel ledit brasage est réalisé en brasant directement le côté plaqué sur l’acier.

3. Procédé selon la revendication 2, caractérisé en ce que ledit brasage est réalisé en faisant passer le tube formé dans un four à rayonnement.

4. Procédé selon la revendication 2, caractérisé en ce que ledit brasage est réalisé en induisant un courant électrique dans ledit tube.

5. Procédé selon la revendication 2, caractérisé en ce que ledit brasage est réalisé en appliquant un courant électrique au moyen de contacts électriques en contact avec la surface d’acier.

6. Procédé pour fabriquer un tube à plusieurs parois (4), lequel procédé comprend les étapes consistant à :

a) soumettre une bande métallique à un dépôt électrolytique selon le procédé de la revendication 1, pour obtenir une bande métallique (2) qui est plaquée sur un seul de ses côtés, l’autre côté étant formé par l’acier de la bande métallique ;

b) laminer la bande métallique plaquée (2, 3) sur au moins deux révolutions pour former un tube (4) ayant au moins une double paroi, la couche plaquée (3) étant à l’intérieur du tube (4) ; et

c) suite audit laminage, chauffer le tube pour amener les surfaces des parois de tube, qui sont en contact entre elles, à être brasées, de sorte que ledit brasage est réalisé en brasant directement le côté plaqué sur l’acier, caractérisé en ce que ledit chauffage est réalisé (i) en faisant passer le tube formé dans un four à rayonnement ou (ii) en induisant un courant électrique dans le tube, ou (iii) en appliquant un courant électrique au moyen de contacts électriques en contact avec la bande métallique.

7. Procédé pour fabriquer un tube à plusieurs parois selon la revendication 6 dans lequel la bande est réalisée avec de l’acier ou de l’acier inoxydable.

8. Procédé pour fabriquer un tube à plusieurs parois selon l’une quelconque des revendications 2 à 8, dans lequel le tube d’acier nu a une couche sacrificielle appliquée sur celui-ci, la couche sacrificielle étant choisie dans le groupe comprenant le zinc, le Galfan et l’aluminium.

9. Procédé pour fabriquer un tube à plusieurs parois, selon la revendication 8, dans lequel la couche sacrificielle est déposée par un procédé d’immersion dans des bains en fusion.

10. Procédé pour fabriquer un tube à plusieurs parois, selon la revendication 8 ou la revendication 9, dans lequel une couche de protection organique est appliquée sur la couche sacrificielle.
Fig. 5

(W/m³)

100 KHZ

Cu/Fe

Cu/Cu

Fig. 6

(W/m³)

200 KHZ

Cu/Fe

Cu/Cu

Fig. 7

(W/m³)

400 KHZ

Cu/Fe

Cu/Cu
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- FR 1015678 [0002]
- EP 0410955 A [0004]
- DE 2061560 [0005]