METHOD AND MEANS FOR REDISTRIBUTION OF SUBSCRIBER INFORMATION IN UMTS NETWORKS WHERE THE NODES ARE ARRANGED IN POOLS

VERFAHREN UND MITTEL ZUR WEITERVERTEILUNG VON TEILNEHMERINFORMATIONEN IN UMTS-NETZWERKEN, IN DENEN DIE KNOTEN IN POOLS ANGEORDNET SIND

PROCEDES ET MOYENS DE REDISTRIBUTION D'INFORMATIONS CONCERNANT LES ABONNES DANS DES RESEAUX UMTS DANS LEQUEL LES NOEUDS SONT DISPOSES EN POOLS

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Date of publication and mention of the grant of the patent:

Application number: 01961531.9

Date of filing: 24.08.2001

Int Cl.:
H04W 24/02 [2009.01]

International application number:
PCT/SE2001/001808

International publication number:
WO 2003/019958 (06.03.2003 Gazette 2003/10)

Proprietor: Telefonaktiebolaget LM Ericsson
164 83 Stockholm (SE)

Inventors:
• TURINA, Klaus
71522 Backnang (DE)
• KAIBEL, Martin
52134 Herzogenrath (DE)
• WIFVESSON, Monica
22652 Lund (SE)
• ARVIDSSON, Ake
S-372 37 Ronneby (SE)
• WILLGERT, Mikael
S-163 54 Spanga (SE)
• NISKA, Hakan
S-589 35 Linköping (SE)
• TOIVANEN, Kyösti
FIN-02400 Kyrkslätt (FI)

Representative: Kribber, Klaus-Dieter et al
Ericsson GmbH
Ericsson Allee 1
52134 Herzogenrath (DE)

References cited:
EP-A2- 0 828 354
WO-A2-01/15463
US-A- 6 148 201

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD OF THE INVENTION

[0001] The present invention relates in general to the field of cellular radio communication and, in particular, to a method and means for providing a redistribution of subscriber information in a cellular radio communication system with at least one pool of core network nodes.

DESCRIPTION OF RELATED ART

[0002] A cellular radio communication system is normally divided into an access network and a core network. The access network in GSM includes the Base Transceiver Stations (BTS) and control nodes such as the Base Station Controller (BSC) while the core network includes core network nodes (CNN) such as the Mobile Switching Centre (MSC), the Visiting Location Register (VLR), the Home Location Register (HLR) and also the GPRS Support Node (GSN) if General Packet Radio Service (GPRS) is included in the cellular system. An example of a GSN is the Serving GPRS Support Node (SGSN).

[0003] The next generation cellular radio communication system, i.e. the 3rd generation, is called IMT 2000 by ITU (the International Telecommunication Union) and includes the Universal Mobile Telecommunications System (UMTS). The access network in UMTS includes the base transceiver stations (Node B) and control nodes such as the Radio Network Controller (RNC) while the core network includes the same types of nodes as the GSM system (as described above) and also new types of nodes such as the MSC server, the Circuit switched Media Gateway Function (CS-MGW) and the Home Subscriber Server (HSS). When MSC is written throughout this document this should be read as MSC or MSC server.

[0004] Each control node in the access network (BSC or RNC) is served by one specific MSC, and each MSC in the core network is served by one specific VLR in known GSM and UMTS systems. This means that each control node always communicates with one dedicated MSC that serves a specific geographical area of the cellular system, i.e. an MSC Service Area and that each MSC always communicates with one dedicated VLR. When a mobile station requests a service from the cellular system it will be connected to the MSC of the current MSC Service Area by one of the control nodes. The subscriber information of the mobile subscriber, that is using the mobile station, is stored in the VLR that serves the MSC, i.e. the mobile subscriber is registered in this VLR. It is a common practice to combine the VLR with the MSC into an MSC/VLR, which means that the mobile subscriber is registered in an MSC/VLR.

[0005] A proposed new type of architecture for a cellular radio communication system is to create a pool of core network nodes, e.g. a pool of MSC/VLR’s, that is connected to one or more access networks, e.g. to control nodes, in the system. This means that each control node can access a number of MSC/VLR’s and that an MSC/VLR in a pool of MSC/VLR’s can serve a mobile station in a larger geographical area than in a “normal” MSC service area. This service area that is supported by all MSC/VLR’s in the MSC-pool is called MSC-pool service area. In this case, the MSC service area of each MSC/VLR in the pool will be the same area as the MSC-pool service area. A pool of core network nodes is also called a CNN-pool. If it is a pool of MSC/VLR’s it is called an MSC-pool for simplicity and if it is a pool of SGSN’s it is called an SGSN-pool. This new architecture will reduce the amount of inter MSC handovers, reduce the amount of inter MSC/VLR location updates and reduce the amount of inter SGSN routing area updates. This new architecture will also provide an easy and smooth way to add (e.g. to increase capacity) or remove (e.g. for maintenance) MSC/VLR’s, SGSN’s or other types of core network nodes arranged in pools in the cellular system.

[0006] Each subscriber that is registered in a CNN-pool is given a core network node identifier (CNNI) that identifies the core network node in which it is registered, e.g. an MSC/VLR or SGSN. The CNNI’s are then used by the control nodes to route the communication sessions (e.g. voice calls or data transfers) to the right core network node in the CNN-pool. These identifiers are valid as long as they can be mapped to a CNN address. This means that load-distribution (and load-balancing) among the nodes in the CNN-pool in reality only occurs when CNNI’s are assigned. This happens when a new mobile station is switched on the first time by a subscriber, or when a subscriber with a CNNI from a first CNN-pool roaming into the service area of a second CNN-pool. These situations there is a need for the system to immediately initiate a redistribution of subscriber information between the core network nodes in the pool, i.e. to move the subscriber information associated with specific subscribers. This should of course not affect the end users experience with the mobile station, especially service availability and reachability must be guaranteed. A redistribution of subscriber information is also needed in cases where one or more core network nodes are removed or disconnected from the MSC-pool (e.g. during maintenance). Hence, there is a need for a method and means that enables the system to initiate a redistribution (i.e. the move) of subscriber information between the core network nodes in a CNN-pool irrespective of the subscriber mobility.

[0007] By a mobile station is meant all portable equip-
ment intended for radio communication, like mobile stations, transceivers, pagers, electronic notebooks, laptops with integrated radios, communicators, tailored microchips connected to radios or any other portable electronic equipment that is using a radio link as a means of communication.

WO-0115463 A2 refers to a method and system for handling of subscriber data in a Super-charged network. A subscriber profile in a visitor network entity is updated if necessary and if certain conditions are met. The profile is updated by sending modifications from a home network entity to the visitor network entity.

A dispatching switch in a wireless communication system is disclosed in US-A No. 6148201, which assigns based upon loading a mobile unit to one of the mobile switching centers of the system.

SUMMARY

The present invention meets a problem related to a cellular radio communication system, and in particular, to redistribution of subscriber information in a cellular radio communication system where a pool of core network nodes (e.g. MSC/VLR’s) is arranged to serve at least one access network.

The problem is to find a way to redistribute subscriber information between core network nodes in a CNN-pool.

In light of the foregoing, a primary object of the present invention is to provide method and means to redistribute subscriber information between core network nodes in a CNN-pool.

A further object of the present invention is to provide method and means for enabling the cellular system to perform the redistribution of subscriber information irrespective of the subscriber mobility.

Accordingly, the present invention provides a method as claimed in claim 1.

A core network node and a control node, as claimed in claims 21-25 and 26-28 respectively, are also provided.

The present invention also provides a system as claimed in claim 29.

Embodiments of the present invention are characterised as it appears from the sub-claims.

An advantage with the present invention is that load-balancing between core network nodes in a CNN-pool can be made in a controlled and quick way.

Another advantage is that the redistribution affects all types of subscribers within the CNN-pool equally (and not only the most active subscribers) such that the restored load balance is insensitive to variations in subscriber activity.

Yet another advantage is that the redistribution can be performed in existing and new GSM and UMTS networks and in particular with existing mobile stations.

A further advantage is that few (if any) measurements are needed to perform the redistribution.

Another advantage is that the process of removing or adding core network nodes in a CNN-pool can be made in a smooth way by redistributing stored subscriber information to/from these core network nodes.

A further advantage is that the reachability and service availability of users are not affected.

A still further advantage is that the amount of load, that is temporarily caused by the redistribution, can be controlled by the CNN’s.

A yet further advantage is that subscribers that are to be affected by the redistribution can be selected by a number of different criteria.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1a is illustrating a view of a first cellular radio communication system with a number of core network nodes arranged in a pool.

Figure 1b is illustrating a simplified view of a second cellular radio communication system with a pool of core network nodes.

Figure 2 is illustrating a flow chart of a first embodiment of the method according to the present invention.

Figure 3 is illustrating a flow chart of a second embodiment of the method according to the present invention.

Figure 4 is illustrating a flow chart of a third embodiment of the method according to the present invention.

Figure 5 is illustrating a flow chart of a fourth embodiment of the method according to the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Figure 1a illustrates a simplified view of an example of a cellular radio communication system 100 with an MSC-pool 101, connected to an access network 102. The MSC-pool 101 includes three MSC/VLR’s 103-105 that belong to the core network. The three MSC/VLR’s in the MSC-pool 101 are connected to three control nodes (Ctrl nodes) 106-108 in the access network 102. The control nodes 106-108 can, as an example, be Base Station Controllers in a GSM-system or Radio Network Controllers in a UMTS-system. The control nodes 106-108 are connected to a number of base stations 109-115, e.g. Base Transceiver Stations in a GSM-system or Node B’s in a UMTS-system. The MSC-pool 101 supports an MSC-pool service area 118 that is served by the access network 102. Other parts of the access and core network
are not illustrated in figure 1a for simplicity. The connection 117 between the MSC/VLR's 103-105 and the control nodes 106-108 can be arranged by circuit connections as illustrated in figure 1a or by a packet network 119, e.g. an IP network, as illustrated in figure 1b. The cellular radio communication system 100 also includes a number of mobile stations that are used by the subscribers. For simplicity only one mobile station 116 is illustrated. The MSC/VLR's, the control nodes and the mobile stations are examples of system units in the cellular radio communication system 100.

0028 All control nodes 106-108 in the access network 102 can access any one of the MSC/VLR's 103-105 in the MSC-pool 101, which means that the control nodes can distribute the traffic generated via the radio access over all the MSC/VLR's 103-105 in the MSC-pool. The known Temporary Mobile Subscriber Identity (TMSI) can be used as a help for the control nodes to find specific MSC/VLR's in the pool.

0029 The use of the TMSI is extended, by letting some or even all of the bits in the TMSI represent a core network node identity. This is done without affecting the known use of the TMSI to identify the mobile subscribers. The bits that are used to represent a core network node identity are called the core network node identifier (CNNI) and the bits that are used to represent the identity of the subscriber are called the user identity (UI). Each of the MSC/VLR's in e.g. the MSC-pool 101 is given a specific number of the TMSI's that are used in the cellular system, i.e. a unique subrange of the whole TMSI range in the cellular system. This means that each TMSI will become associated with a specific MSC/VLR. When a mobile station roams into e.g. the MSC-pool service area 118 and performs location updating the first time via the radio access, the distribution function of the control node in charge distributes the location updating to one of the MSC/VLR's in the MSC-pool 101 according to a distribution algorithm. When the MSC/VLR, e.g. MSC/VLR 105, receives the location updating from the new mobile station it will register the mobile subscriber in the VLR-part of the MSC/VLR 105 and assign a TMSI from its dedicated set of TMSI's to the mobile subscriber. The MSC/VLR 105 provides this TMSI to the mobile station (that is used by the subscriber) where it is stored. The mobile station uses the allocated TMSI (the whole or only the CNNI part) in the next radio accesses with the MSC-pool service area 118. The TMSI (or CNNI) is analysed by the control node in charge, e.g. control node 107, so that the control node can forward the traffic to the MSC/VLR 105 where the mobile subscriber has been registered, i.e. the MSC/VLR that is associated with the used TMSI. The control node translates the TMSI to an actual MSC/VLR address, e.g. with the help of a CNNI-address table, before it can address the MSC/VLR 105.

0030 The TMSI is an example of an existing identifier that can include a CNNI and still be used for its original purpose. A completely new identifier that is only used as a CNNI, i.e. that is not part of a TMSI, can also be used as a possible distribution mechanism in the control nodes.

0031 The present invention provides method and means for a system initiated redistribution of subscriber information in order to achieve a load redistribution within the CNN-pool. In general, one or more subscribers are selected and the corresponding subscriber information is redistributed. These subscribers are identified and/or selected by the bit values in their TMSI's. These TMSI's are then arranged to be treated as invalid by the cellular radio communication system. Messages etc. from subscribers with invalid TMSI's will be "trapped" in the cellular radio communication system and the subscriber information associated with these subscribers is redistributed to new (or some times even the same) core network nodes. This means that the system can control the redistribution.

0032 The selection of subscribers mentioned above is made at random with equal probability for all subscribers. The selection may also be restricted to certain subsets of subscribers e.g. subscribers which use prepaid cards or subscribers which subscribe to certain services which not all nodes can support. TMSI's that are arranged to be treated as invalid are mentioned here as "invalid TMSI's". Invalid TMSI's could be one or more specific TMSI's with unique numbers or bit patterns, e.g. with unique UI numbers, that are only used as invalid TMSI's by the cellular system or within a certain CNN-pool. Invalid TMSI's could also be normal TMSI's, i.e. valid TMSI's, that are temporarily treated as invalid during the process of redistribution.

0033 In cases where all subscribers in one or more core network nodes are affected by a redistribution it is enough to select and/or detect the CNNI's that identify the core network node(s) under redistribution. In cases where only a part of the subscribers is affected by the redistribution or where the redistribution is to be done in several steps, there is a need to select and/or detect individual subscribers. This selection and detection are made either directly, based on one or more bit values in the TMSI's, e.g. in the UI part, or indirectly, based on the result of a mathematical function in which a part of the TMSI's, e.g. the UI part, is used as an input. As an example, the Pseudo Random Number Generators (PRNG's) can be used to perform such a mathematical function.

0034 In a first example to select and detect individual TMSI's that are to be treated as invalid, a whole TMSI with a certain bit pattern of '0' and/or '1' is used, e.g. "10101...0" (i.e. AAAAAAAA in hexadecimal). In a second example, only a part of the TMSI is used, e.g. the UI with the pattern "all bits equal to 0" or "the last bit equal to 1". The second example can be used in cases where the redistributed subscriber information is not to be "moved back" to the same core network node again after the redistribution, e.g. in cases where an MSC/VLR is to be removed from an MSC-pool. The CNNI part of the TMSI is kept unchanged so that it is possible for the control node to detect which MSC/VLR the redistribution al-
According to a step 201 in figure 2, the operator of the cellular system 100 generates the conditions for the redistribution by deciding from which MSC/VLR subscriber information is to be moved and the number (or fraction) of subscribers to be affected by the redistribution. In this case it is determined that all the subscribers in MSC/VLR 104 are to be affected by the redistribution, i.e. the corresponding subscriber information is to be redistributed within the MSC-pool 101.

According to a step 202, the operator of the cellular system 100 informs the control nodes 106-108, e.g. by O&M commands, that the MSC/VLR 104 is affected by a redistribution.

According to a step 203, the MSC/VLR 104 receives a first mobile originating request, e.g. a location update request message, (that includes a TMSI) from the mobile station 116.

According to steps 204a-b, the MSC/VLR 104 analyses the TMSI. As the CNNI part identifies MSC/VLR 104, which currently is affected by the redistribution, it continues with step 205 below. Otherwise, it would have continued as usual with the location update without any redistribution.

According to step 205, the MSC/VLR 104 provides the mobile station 116, via access network 102, with a pre-defined invalid TMSI Xi, through a TMSI-reallocation procedure (which is a standardised procedure to assign and change the TMSI in mobile stations). The TMSI Xi includes the number FFFFFFFF in hexadecimal.

The mobile station 116 stores TMSI Xi, without checking the validity of it (defined in the standard document 3GPP TS 23.003). This means that the mobile station is forced to change its TMSI by the MSC/VLR 104.

According to a step 206, the mobile station transmits a TMSI reallocation complete message, confirming the change of TMSI, to the control node 107 which forwards the message to the MSC/VLR 104.

According to a step 207, the mobile station transmits a second mobile originating request (e.g. a second location update) including the IMSI (instead of the stored TMSI Xi), to the control node 107. It has been defined in the 3GPP TS 24.008 standard that if there is no TMSI available in the memory reserved for TMSI in the SIM card (in the mobile station) this memory must be filled with "all bits set to '1'", i.e. FFFFFFFF in hexadecimal. As the TMSI Xi includes "all bits set to '1'", the presently stored TMSI will make the mobile station to act as if there where no TMSI in the memory and it will use the IMSI in its next network access. The mobile station is therefore forced to use the IMSI instead of a TMSI. This implies that a TMSI with number FFFFFFFF in hexadecimal is not intended to be used by the cellular system in normal cases.

According to a step 208, the control node 107 uses the distribution algorithm to select a new MSC/VLR for the subscriber, in this case MSC/VLR 103, and forwards the request to MSC/VLR 103. This is done because the control node received an IMSI and not a TMSI. Note that it is the "normal" distribution algorithm that is used in this step.

According to a step 209, MSC/VLR 103 assigns a new (valid) TMSI to the subscriber, registers the subscriber and provides the mobile station 116 with the new TMSI. The new TMSI contains a CNNI that identifies MSC/VLR 103.

This new TMSI is now used by the mobile station 116 for its subsequent network access(es), and any control node in the access network 102 will be able to route a request or any other kind of traffic towards the MSC/VLR 103. This means that the subscriber information that belongs to the subscriber that uses mobile station 116 has been redistributed from MSC/VLR 104 to MSC/VLR 103. As the normal distribution algorithm was used the subscriber information could also have been redistributed to MSC/VLR 104.

The TMSI Xi can of course not be used for paging, e.g. if a terminating call is addressed to the subscriber during the time the mobile station 116 has TMSI Xi (step 205-209). In this case the MSC/VLR has to use the IMSI to page the subscriber. Hence, the reachability of the subscriber is not affected.

The MSC/VLR 104 can, as a first alternative in step 205 above, provide the mobile station 116 with an invalid location area identity (LAI) together with the invalid TMSI to trigger an immediate second access from the mobile station according to step 207. This will speed up the redistribution operation. The mobile station will detect
the change of LA and initiate a new location update immediately. The invalid LA should be one that is not used anywhere in the cellular system.

[0050] The MSC/VLR 104 can, as a second alternative in step 205 above, provide the mobile station 116 with a combination of an LAI and an IMSI (or a new TMSI) through the TMSI-reallocation procedure (instead of the TMSI X). This means that the mobile station 116 will delete its old (valid) TMSI as stated in 3GPP TS 24.008 chapter 4.3.1.1 ("The TMSI REALLOCATION COMMAND message contains a new combination of TMSI and LAI allocated by the network or a LAI and the IMSI if the used TMSI shall be deleted."). This will also force the mobile station 116 to use the IMSI (or the new TMSI) at its next network access as in step 207. Steps 207 and 208 are the same as before.

[0051] The MSC/VLR 104 can, as a third alternative in step 205 above, provide the mobile station 116 with a specific LAI or a specific TMSI that are used as action indicators. That is, different specific LAls or different special TMSIs (which cannot be used for normal purposes) are taken as action pointers in a table in the control nodes. For example LAI Z1 may mean "this subscriber should be sent to MSC/VLR 103 in the pool", LAI Z2 may mean "this user should be sent to MSC/VLR 105 in the pool" etc. The specific TMSI (which cannot be used for normal purposes) would serve the same purpose. If LAI’s are used together with the IMSI then the LAI could still be a specific LAI that indicate such specific actions.

[0052] The control node 107 will, in step 208 above, detect the specific LAI (or TMSI) as belonging to the class of "special" LAI’s (or TMSI’s) which are not used to indicate LA or user ID but to indicate specific actions. It will then use these specific LAI’s (or TMSI’s) as inputs to control the selection of a new MSC/VLR in step 209. This means that the (re)distribution function is controlled by the specific LAI (or TMSI) which were assigned by the MSC/VLR 104. In this way can MSC/VLR 104 indirectly make the control node 107 to redistribute the subscriber information to e.g. MSC/VLR 103.

[0053] According to a step 201 above, all the subscribers in MSC/VLR 104 are to be affected by redistribution. But if e.g. only 50% where to be redistributed in this embodiment there would be a need to select those 50% out of the subscribers in MSC/VLR 104. This selection can as an example be made by random and specifically by the use of PRNG’s. This is further described after the third embodiment where the PRNG’s have been further described.

[0054] Figure 3 illustrates a flowchart of a second embodiment of the method according to the present invention. The method is applied in the system that is illustrated in figure 1a. This means that there will be references to figure 1a as well as to figure 3. The subscriber that uses the mobile station 116 is currently registered in MSC/VLR 104. A load-unbalance has been detected in the MSC pool 101 and a decision to activate the redistribution is taken. This decision can be made by the operator or automatically based on the operation of a load supervision programme or similar as stated in connection with the first embodiment.

[0055] According to a step 301 in figure 3, the operator informs the control nodes 106-108 in the access network 102 through O&M commands that TMSI’s with CNNI’s that identify MSC/VLR 104 and UI-s with “the last bit equal to 0” are to be treated as invalid and redistributed to MSC/VLR 103 or 105. The MSC/VLR 104 stops to assign such TMSI’s as long as the redistribution procedure continues.

[0056] According to a step 302, the operator informs the control nodes 106-108 in the access network 102 through O&M commands that TMSI’s with CNNI’s that identify MSC/VLR 104 and UI-s with “the last bit equal to 0” are to be treated as invalid.

[0057] According to a step 303, the control node 107 receives a mobile originating request e.g. a location update, that includes a TMSI, e.g. a location update, from the mobile station 116.

[0058] According to steps 304a-b, the control node 107 analyses the CNNI in the TMSI. As the CNNI indicates MSC/VLR 104, which currently is affected by the redistribution, the control node continues with step 305 below. Otherwise, the control node would have continued as usual and forwarded the message to MSC/VLR 104.

[0059] According to steps 305a-b, the control node 107 analyses the UI in the TMSI. As the last bit in the UI is equal to 0, which indicates that this TMSI is to be treated as invalid and that the redistribution algorithm is to be used, the control node continues with step 306 below. Otherwise, the control node would have continued as usual and forwarded the message to MSC/VLR 104.

[0060] According to step 306, the control node 107 uses the redistribution algorithm to select a new MSC/VLR for the subscriber, in this case MSC/VLR 103 and forwards the message to MSC/VLR 103. It could also have been MSC/VLR 105. The MSC/VLR 104 is in this case excluded in the redistribution algorithm.

[0061] According to a step 307, the MSC/VLR 103 assigns a new (valid) TMSI to the subscriber, registers the subscriber and provides the mobile station 116 with the new TMSI. The new TMSI contains a CNNI that identifies MSC/VLR 103 and an unoccupied UI. The subscriber information that belongs to the subscriber is now redistributed from MSC/VLR 104 to MSC/VLR 103. The MSC/VLR 103 can detect that the subscriber has been registered in MSC/VLR 104. Hence it can get the IMSI of the subscriber from MSC/VLR 104 and other parts of the subscriber information from the HLR.
Steps 303-307 are repeated for each access as long as the redistribution is in progress. The redistribution is terminated when all or most of the subscribers that are registered in MSC/VLR 104 and with the last bit equal to '0' in their UI's, i.e. all or most subscribers with invalid TMSI's, have been moved. (When a subscriber can switch off its phone for a very long time it is advantageous in many cases to terminate the redistribution when most of the subscribers have been moved instead of all. A suitable termination point can be determined by monitoring load levels or by using different timing procedures, e.g. continue during a couple of periodic location update intervals or to use a timer).

The number of subscribers that are affected by the redistribution determines the number of bits in the UI that the control node has to inspect in the analysis in step 305. In general N bits are inspected, and in the embodiment above N=1 was used (the last bit) which allows nx50% (n=0,1,2) of all UI's to be used for invalidating TMSI's. A finer resolution can be obtained with a larger N, e.g. N=4. This allows nx6.25% (n=0,1,....,16) of all UI's to be used for invalidating TMSI's. This means that four bits in the UI must be inspected in the analysis in step 305. The CNNI could be used instead of the UI in cases where all or a large number of subscribers are affected, e.g. if an MSC/VLR has more than one CNNI.

The invalid TMSI's in the embodiments above are determined directly from their bit values. As an alternative, these invalid TMSI's can be determined indirectly from their bit values with the help of pseudo random numbers that have been calculated by a PRNG. PRNG-s are known to produce series of numbers that have random properties. A PRNG uses a start number called "the seed", which is used to compute a first PRNG number. The first PRNG number is then used to compute a second PRNG number and so on. The general form is \(R(M) = F(R(M-1)) \) where \(R(0) \) is the seed. As an example, the Lehmer generator suggests that \(R(M) = (c R(M-1) + a) \mod m \).

The use of PRNG's, with the UI as the seed, means that TMSI's with different and random bit patterns/numbers can be selected as the invalid ones, i.e. not only those with e.g. UI's that ends with a '0' or similar. This leads to a less "bit-biased" selection than if the invalidation is based directly on some special bits or patterns in the TMSI's. Any fraction of subscribers can be moved without keeping track of which UI's that are in use. It is noted that the PRNG's will give the same random number from a given UI each time it is run. Hence a subscriber will either be moved the first time it accesses the system or not at all. It is also noted that all control nodes 106-108 must use the same PRNG and run it the same number of times during each redistribution operation. Moreover, the MSC/VLR's should preferably not change the UI's of its subscribers while the redistribution operation is in progress and not assign UI's which will be treated a invalid.

A different PRNG is used or the generator formula is run a different number of rounds, for each load redistribution operation.

The first alternative typically means that one or two constants (e.g. c and a in the Lehmer generator) in the formula will take new values for each load redistribution operation but the basic formula will stay the same. The second alternative typically means that the recursive procedure described above will be run one more time for each load redistribution operation before the result is used for making a decision. This means that the M:th random number starting from the seed UI will be used during the M:th load redistribution operation. After a sufficiently long time has passed since the first operation will the memory fade such that the first generator can be reused or \(M \) can be resets to one.

Figure 4 illustrates a flowchart of a third embodiment of the method according to the present invention. The same prerequisites as in the second embodiment, according to figure 3, apply.

According to a step 401 in figure 4, the operator of the cellular system generates the conditions for the redistribution by deciding from which MSC/VLR subscriber information is to be moved, the number (or fraction) of subscribers to be affected by the redistribution and how the corresponding subscriber information should be redistributed between the MSC/VLR's. In this case it is determined that 50% of the subscribers in MSC/VLR 104 are to be affected. To achieve this, TMSI's that includes CNNI's that identifies MSC/VLR 104 and with UI's that generates PRNG numbers that ends with a bit equal to zero are to be treated as invalid and the corresponding subscriber information is to be redistributed to MSC/VLR 103 or 105.

According to a step 402, the operator of the cellular system informs the control nodes 106-108 and MSC/VLR 104 through O&M commands that the MSC/VLR 104 is affected by a redistribution, the PRNG numbers that indicates invalid TMSI's and that the redistribution will be to MSC/VLR 103 or 105. The control nodes 106-108 configure their PRNG's, i.e. selects which generator to use by downloading the right constants or determine the right iteration limit, and their (re)distribution tables. The MSC/VLR 104 stops to assign TMSI's with UI's that generates PRNG numbers that ends with a bit equal to zero.

According to a step 403, the control node 107 receives a mobile originating request, e.g. a location update, that includes a TMSI from the mobile station 116. According to steps 404a-b, the control node 107 analyses the CNNI in the TMSI. As the CNNI indicates MSC/VLR 104, which currently is affected by the redistribution, the control node continues with step 405 below. Otherwise, the control node would have continued as usual and forwarded the message to MSC/VLR 104.

According steps 405a-b, the control node 107 calculates a PRNG number with the UI as a seed. If the last bit in the PRNG number is equal to 0, which indicates that the subscriber information of this subscriber is to be
 redistributed and that the redistribution algorithm is to be used, the control node will treat this TMSI as invalid and continue with step 406 below. Otherwise, the control node will continue as usual and forward the message to MSC/VLR 104.

[0075] The following steps 406 and 407 are identical to steps 306 and 307 according to figure 3.

[0076] Steps 403-407 are repeated for each access as long as the redistribution is in progress. The redistribution is terminated when all or most of the subscribers with an UI that generates a PRNG number that ends with a bit equal to zero, i.e. all or most subscribers with invalid TMSI’s, have been moved from MSC/VLR 104 to MSC/VLR 103 or 105. (When a subscriber can switch off its phone for a very long time it is advantageous in many cases to terminate the redistribution when most of the subscribers have been moved instead of all. A suitable termination point can be determined by monitoring load levels or by using different timing procedures, e.g. continue during a couple of periodic location update intervals or to use a timer).

[0077] The PRNG’s can, as previously stated, also be used in the first embodiment according to figure 2, if less than 100% of the subscribers are to be affected by the redistribution, i.e. to randomly select a certain fraction of the subscribers in MSC/VLR 104. The PRNG is run for all present users in MSC/VLR 104, one by one, during e.g. step 202. The result is then stored in MSC/VLR 104 by, e.g., setting an invalidation bit in the record of the selected subscriber. When a subscriber accesses the system in step 203 will the MSC/VLR 104 check this invalidation bit in step 204b, and if it is marked as invalid, continue with step 205-209 as previously described. An alternative to this is to run the PRNG each time a user accesses the MSC/VLR 104 and make the selection then. In the latter case is the TMSI used as seed to ensure the same outcome for each mobile originating access, in the former case can any seed be used as the outcome is only decided once and then stored.

[0078] The PRNG’s can also be used to select subscribers in cases where one or more pre-defined UI’s are used by the core network nodes to indicate TMSI’s that are to be treated as invalid by the control nodes in the access network. Such a pre-defined UI is taken out of the normal use of UI’s in the system (or CNN-pool) and all control nodes are programmed to treat TMSI’s with such a pre-defined UI as invalid TMSI’s. If more than one pre-defined invalid UI is used, can each one of these UI’s indicate both an invalid TMSI and the use of a specific distribution algorithm in the control nodes.

[0079] By using pre-defined invalid UI’s and maintaining the original CNNI it is easy for the system, e.g. the control nodes, to determine when a mobile originating access concerns a redistribution of an already registered subscriber and not a distribution of a new unregistered subscriber. This enables the control nodes to select a specific redistribution algorithm, which is different from the normal distribution algorithm, and avoid selecting the previous MSC/VLR again (if it is required). It is further possible for the system to use different special invalid UI’s to indicate different redistribution actions (e.g. invalid TMSI Y_n means that the control nodes shall select MSC/VLR n) to further enhance the control of the redistribution.

[0080] If PRNG-s are used, the core network node (e.g. a MSC/VLR) that is the subject of the redistribution will run PRNG’s and for each user determine if it should be moved and given the pre-defined “invalidating” UI, or not. The PRNG can be run with the TMSI as seed and use different constants (or different iteration limits) for each operation. It is also possible to use just one generator all the time. In this case is any seed chosen, typically a constant value chosen once and for all. The PRNG is then just run one more time for each “occupied” TMSI when redistribution should be applied. In other words, a new PRNG numbers are generated successively as required such that the M:th PRNG number is used for making a decision of the M:th UI ever examined and also for computing the M+1:st number and so on.

[0081] Figure 5 illustrates a flowchart of a fourth embodiment of the method according to the present invention. The same prerequisites as in the second embodiment, according to figure 3, applies.

[0082] According to a step 501a, the operator of the cellular system generates the conditions for the redistribution by deciding from which MSC/VLR subscriber information is to be moved, the number (or fraction) of subscribers to be affected and to which MSC/VLR’s the corresponding subscriber information should be redistributed. In this case it is determined that 38% of the subscribers in MSC/VLR 104 (e.g. corresponding to PRNG numbers with a last octal number of 0, 1, or 2, i.e. with the last three bits equal to 000, 001 or 010) is to be affected and that the subscriber information is to be moved to MSC/VLR 103 or 105.

[0083] According to a step 501b, the MSC/VLR 104 runs PRNG’s for all stored subscribers in MSC/VLR 104, one by one, and stores the result by, e.g., setting an invalidation bit in the subscriber records if their UI’s generates PRNG numbers with a last octal number of 0, 1, or 2. The MSC/VLR 104 also stops to assign new TMSI’s with such UI’s.

[0084] According to a step 502, the MSC/VLR 104 receives a first mobile originating request e.g. a location update, via control node 107, that includes a TMSI from the mobile station 116.

[0085] According to steps 503a-b, the MSC/VLR 104 checks the invalidation bit in the subscriber records, and if it is marked as invalid, which indicates that this subscriber is to be affected by the redistribution, the MSC/VLR 104 continues with step 504 below. Otherwise, the MSC/VLR 104 would have continued as usual.

[0086] According to a step 504, the MSC/VLR 104 provides the mobile station 116, via the access network 102, with a new TMSI that includes the previous CNNI and the invalid UI Y (with all bits equal to ‘0’) through a TMSI-
reallocation procedure. The mobile station 116 stores the new TMSI without checking the validity of the UI. Hence, the mobile station is forced to change its TMSI by the MSC/VLR 104. It is also possible to provide the mobile station with a false LAI in this step to speed up the redistribution, i.e. to make the mobile station 116 to transmit a new message according to step 505 below immediately.

According to step 505, the control node 107 receives a second mobile originating request, e.g. a location update, that includes the new TMSI with UI Y1 from the mobile station 116.

According to steps 506a-b, the control node 107 analyses the CNNI. As the CNNI indicates MSC/VLR 104, which is the subject of this subscriber redistribution, the control node continues with step 507 below. Otherwise, the control node would have continued as usual and forwarded the message to MSC/VLR 104.

According to steps 507a-b, the control node 107 analyses the UI. As the current UI is the invalid UI Y1, the control node treats the TMSI as invalid and continues with step 508 below. Otherwise, the control node would have continued as usual and forwarded the message to MSC/VLR 104.

According to step 508, the control node 107 uses a redistribution algorithm to select a new MSC/VLR for the subscriber, in this case MSC/VLR 103 and forwards the message to MSC/VLR 103. The invalid UI Y1 indicates that the control node shall use a specific redistribution algorithm that, in this case, excludes MSC/VLR 104. It is also possible to use the knowledge about MSC/VLR 104, i.e. the current MSC/VLR, and skip that MSC/VLR. As stated before, different invalid UI’s can point out different algorithms and actions for the control node.

According to a step 509, the MSC/VLR 103 assigns a new (valid) TMSI to the subscriber, register the subscriber and provides the mobile station 116 with the new TMSI. The new TMSI contains a CNNI that identifies MSC/VLR 103 and an unoccupied UI. The subscriber information that belongs to the subscriber is now redistributed from MSC/VLR 104 to MSC/VLR 103.

Steps 502-509 are repeated for each access as long as the redistribution is in progress. The redistribution is terminated when all or most of the subscribers with an UI equal to UI Y1, i.e. all or most subscribers with invalid TMSI’s, have been moved from MSC/VLR 104 to MSC/VLR 103 or 105.

As stated in step 508 above, the control node 107 uses a redistribution algorithm (i.e. a specific distribution algorithm that is only used during a redistribution within the MSC-pool) instead of the distribution algorithm (i.e. the normal distribution algorithm that is used for new subscribers in the MSC-pool). This is because the control node can recognise that this second mobile originating request is from a mobile station with a subscriber that is to be affected by the redistribution.

As an alternative to use the previous CNNI in step 504 above, the MSC/VLR 104 can provide the mobile station 116 with the CNNI of the new MSC/VLR 103 and a specific or normal UI through the TMSI-reallocation procedure. The mobile subscriber will now be routed to the MSC/VLR at once at the next network access. The MSC/VLR 104 can avoid to give TMSI’s with the same numbers as those used in MSC/VLR 103 if a specific UI is used (i.e. a UI only used for subscribers affected by a redistribution). If not, two TMSI’s with identical numbers might occur at MSC/VLR 103. This is can be solved by asking for the IMSI during these rare cases.

The subscribers to be affected by the redistribution can be selected by using PRNG’s in the above described embodiments. This can as an alternative be made on other criteria, e.g. technical criteria, to hit particular subscribers (e.g. with special payment conditions or service subscriptions).

In the embodiments above, the CNNI’s and/or UI’s in the TMSI’s (the CNNI may also be separated from the TMSI) are analysed by the access network nodes to detect if they are part of an invalid TMSI etc. This can be made in a number of ways. In a first example, by comparing e.g. the UI against a stored "template" of an invalid UI or against a list of invalid UI’s in an invalid-table (e.g. in step 507a in the fourth embodiment). This list of invalid UI’s may contain different UI’s associated with different actions, e.g. different invalid UI’s may indicate different MSC/VLR-s to which control nodes should forward the corresponding messages (and to which the subscriber information will be redistributed etc.)

In a second example, similar to the first one above, the network node that makes the analysis will compare each TMSI (or a specific part of it) with a certain bit pattern or patterns that are determined to indicate the invalid TMSI’s (applicable in e.g. the second embodiment).

In the example above the bit patterns of the TMSI’s, UI’s and/or CNNI’s are compared straight away but if PRNG’s are used the bit patterns resulting from PRNG-s are compared to the list(s) of invalid bit patterns or templates (applicable in the third embodiment).

In a third example, the CNNI’s of the invalid TMSI’s (e.g. "ffff") are included in the CNNI-address tables (where the CNNI’s are mapped on the "real" core network node addresses). These "invalid" CNNI’s will not indicate any core network node address at all. An invalid TMSI is detected when a control node can not find a core network node address for the corresponding CNNI in the CNNI-address table.

If the cellular system uses a CNNI that is not included in the TMSI, approximately the same steps as in the above described embodiments can be performed, although the CNNI is transmitted separately together with the TMSI from the mobile station, e.g. in a location update.

If all subscribers that are registered in e.g. an MSC/VLR are to be affected by the redistribution, these subscribers can (as previously stated) be found by only
analysing the CNNI part of the TMSI’s (or the separate CNNI’s). This means that any step(s) where the UI’s are analysed or controlled in the above mentioned embodiments can be omitted. It is also possible to divide the redistribution into several steps to reduce the peak load (and any congestion risk) caused by the redistribution operation in the MSC-pool, specifically if a large number of subscribers are affected by the redistribution. Hence, the load is spread out over time as some of the affected subscribers proceed as normal until the subscriber information of some other of the affected subscribers have been moved. One example is to first select TMSI’s with a UI that ends with ‘00’, then also add those that ends with ‘01’, then those that ends with ‘10’ and at last those that ends with ‘11’ (a four step redistribution operation). This step-wise redistribution can be used in all embodiments described above.

[0102] In the above described embodiments, the operator has performed a number of actions, e.g. generated the conditions for the redistribution (which MSC’s and the number or fraction of subscribers to be affected by the redistribution) and informed control nodes and MSC/VLR’s about the redistribution. These actions or parts of them can be made automatically in the system, e.g. with the help of the load supervision programme or by O&M functions in the cellular system, after the redistribution has been activated. The MSC/VLR 104 can, as an example, generate the redistribution conditions and inform the control nodes.

[0103] The load-unbalance that has been detected in the MSC-pool 101 can be detected by statistics like VLR-occupancy and CPU load that are regularly monitored by the operators in every node or, in a more advanced way, by a control function that automatically monitors all members of the MSC-pool.

[0104] It is possible to distribute the subscriber information unequally between the MSC/VLR’s, e.g. 30% to MSC/VLR 103 and 70% to MSC/VLR 105 in the embodiments above where the control node can decide that it should use a redistribution algorithm (or even choose one out of several redistribution algorithms) instead of the distribution algorithm.

[0105] All the above embodiments concerns the case when subscribers are to be moved from a core network node in the CNN-pool, e.g. an MSC/VLR, due to a load-unbalance between the members in the pool. As previously stated there are other cases when the inventive method can be applied, e.g. when a core network node is to be shut down or removed or when a new core network node is to be inserted in the CNN-pool. The same embodiments as stated above can be used in these cases too but they are not started by detecting an unbalance.

[0106] As previously stated, the invention also includes means, arranged in the cellular radio communication system, for performing the steps described in the embodiments above. The inventive means can be completely or partially implemented as software in microprocessors, ASICS etc arranged in the cellular system.

[0107] As an example, the control nodes 106-108 include means for selecting a new MSC/VLR to a subscriber that is affected by a redistribution and means for determining which redistribution algorithm to use. The control nodes also includes means for determining if a subscriber is to be affected by the redistribution, e.g. by detecting if a TMSI or UI is invalid, and means for generating PRNG numbers.

[0108] As a further example, the MSC/VLR’s-103-104 include means for selecting subscribers that are to be affected by the redistribution and means for preparing and controlling the redistribution of the selected subscribers. The MSC/VLR’s also includes means for generating PRNG numbers and means for providing information regarding invalid TMSI’s or specific PRNG numbers to the control nodes 106-108 and/or the mobile station 116.

Claims

1. A method for redistribution of subscriber information within a pool of core network nodes (101) in a cellular radio communication system (100), where said pool (101) is arranged to communicate with at least one control node (106-108) in an access network (102), characterised in that said method comprises the following steps:

 - selecting (201,301,401,501a) at least a first subscriber, which subscriber information shall be redistributed, and where said at least first subscriber is registered in a first core network node (103-105) in said pool (101);
 - preparing (202-206,302,402,501b-504) said system to perform said redistribution after a mobile originating request transmitted (207,303,403,505) from a first mobile station that is used by said at least first subscriber; and

2. The method as claimed in claim 1, wherein said step of preparing said system includes the step of:

 - providing (205) said first mobile station with specific information that forces said mobile station to submit the IMSI to said system during said mobile originating request move (207) here instead of a first TMSI, that is stored in said first mobile station (116), and which entails that said at least one control node will select (208) a new core network node, in which said at least first subscriber will be registered, when said redistribution is concluded.

3. The method as claimed in claim 2, wherein said specific information includes a second TMSI, equal to
FFFFFFFF in hexadecimal, that replaces said first TMSI in said first mobile station (116).

4. The method as claimed in claim 2, wherein said specific information includes an IMSI and a LAI.

5. The method as claimed in claim 1, wherein said step of preparing said system includes the step of:

 providing (504) said first mobile station with at least a second TMSI that is arranged to be treated as invalid (506a-507b) by said at least one control node; that replaces a first TMSI in said first mobile station (116), and which is used (505) during said mobile originating request.

6. The method as claimed in claim 1, wherein said step of preparing said system includes the step of:

 providing (302,402) at least said first control node with specific information that entails that said at least one control node will select (306,406) a new core network node, in which said at least first subscriber will be registered, to conclude said redistribution when said first mobile station has submitted a first TMSI during said mobile originating request (303,403).

7. The method as claimed in claim 6, wherein said specific information includes information about at least one bit value, which is present in said first TMSI and which points out that the subscriber information of said at least first subscriber shall be redistributed.

8. The method as claimed in claim 6, wherein said specific information includes information about at least one number: that identifies said first TMSI; that has been generated by a Pseudo Random Number Generator, PRNG; and which points out that the subscriber information of said at least first subscriber shall be redistributed.

9. The method as claimed in one of claims 2-4,6-8, wherein said specific information also includes an LAI.

10. The method as claimed in one of claims 2-4,6-9, wherein said specific information includes information which indicate that said at least one control node shall select one out of at least two different algorithms for performing said selection (306,406,508) of a new core network node.

11. The method as claimed in one of claims 1-10, wherein said at least first subscriber is selected (201,301,401,501) dependent on at least one bit value in a first identifier that is assigned to said at least first subscriber.

12. The method as claimed in one of claims 1-10, wherein said at least first subscriber is selected (201,301,401,501) dependent on the result of a mathematical function.

13. The method as claimed in claim 12, wherein at least one part of a first identifier assigned to said at least first subscriber is used as an input to said mathematical function.

14. The method as claimed in one of claims 1-10, wherein said at least first subscriber is selected (201, 301, 401, 501) by random.

15. The method as claimed in one of claims 1-10, wherein said at least first subscriber is selected (201,301,401,501) due to the fact that all subscribers that are registered in said first core network node are to be affected by said redistribution.

16. The method as claimed in one of claims 11-15, wherein said selection (201,301,401,501) is restricted to a selection between subscribers from a specific subset of subscribers in said pool.

17. The method as claimed in claim 16, wherein said specific subset of subscribers in said pool is subscribers that are registered in a specific core network node in said pool.

18. The method as claimed in one of claims 11,13-17, wherein said first identifier is said first TMSI.

19. The method as claimed in one of claims 1-18, wherein said redistribution is performed in steps, by preparing one group of subscribers at the time for said redistribution, in those cases where a number of subscribers are selected for said redistribution.

20. The method as claimed in one of claims 2-4, 6-19, wherein said specific information includes a specific LAI or a specific TMSI that are used as an action indicator, which makes said at least one control node to perform a specific action with said at least first subscriber after said mobile originating request.

21. A core network node arranged in a pool of core network nodes (101) in a cellular radio communication system (100), and where said core network node is arranged to communicate with at least one control node (106-108) in an access network (102), characterised in that said core network node (103-105) includes means for selecting at least one subscriber to be affected by a redistribution within said pool (101); and preparing said system (100) to perform said redistribution after a mobile originating request from a first of the mobile stations (116) used by said selected
subscribers.

22. The core network node as claimed in claim 21, wherein said means for selecting is arranged to select said subscribers dependent on at least one bit value in a first TMSI that is assigned to each one of said subscribers.

23. The core network node as claimed in claim 21, wherein said means for selecting is arranged to select said subscribers dependent on the result of a mathematical function, and where at least one part of a first TMSI is used as an input to said mathematical function.

24. The core network node as claimed in one of claims 21-23, wherein said means for preparing is arranged to provide said mobile stations with a second TMSI, equal to FFFFFFFF in hexadecimal, that replaces said first TMSIs that are stored in said mobile stations.

25. The core network node as claimed in one of claims 21-23, wherein said means for preparing is arranged to provide said mobile stations with new TMSIs that are treated as invalid by said at least one control node, and that replaces said first TMSIs that are stored in said mobile stations.

26. A control node arranged to communicate with a pool of core network nodes (101) in a cellular radio communication system (100), characterised in that said control node (106-108) includes means for:

- determining if a subscriber, in communication with said control node, is to be affected by a redistribution within said pool; and
- selecting a new core network node within said pool to said subscriber if he is determined to be affected by said redistribution.

27. The control node as claimed in claim 26, wherein said means of determining is adapted to analyse at least one bit value in a received TMSI to detect if said subscriber is to be affected by said redistribution.

28. The control node as claimed in claim 26, wherein said means of determining is adapted to calculate a PRNG number, based on at least a part of said received TMSI, to detect if said subscriber is to be affected by said redistribution.

29. A radio communication system, characterised in that said system includes at least one core network node (103-105) as claimed in claim 21-25 and at least one control node (106-108) as claimed in one of claims 26-28.

Patentansprüche

1. Verfahren zur Neuverteilung von Teilnehmerinformationen innerhalb eines Pools von Kernnetzknoten (101) in einem zellularen Funkkommunikationssystem (100), wobei der Pool (101) so ausgelegt ist, dass er mit mindestens einem Steuerknoten (106 - 108) in einem Zugangsnetz (102) kommuniziert, dadurch gekennzeichnet, dass das Verfahren die folgenden Schritte umfasst:

 - Auswählen (201, 301, 401, 501a) mindestens eines ersten Teilnehmers, dessen Teilnehmerinformationen neu verteilt werden sollen, und wobei der mindestens erste Teilnehmer in einem ersten Kernnetzknoten (103 - 105) im Pool (101) registriert ist;
 - Vorbereiten (202 - 206, 302, 402, 501b - 504) des Systems um die Neuverteilung nach einer von einer ersten Mobilstation, die von dem mindestens ersten Teilnehmer verwendet wird, übertragenen (207, 303, 403, 505) vom Mobiltelefon abgehenden Anforderung (mobile originating request) durchzuführen; und

2. Verfahren nach Anspruch 1, wobei der Schritt des Vorbereitens des Systems die folgenden Schritte umfasst:

 - Versehen (205) der ersten Mobilstation mit spezifischer Information, welche die Mobilstation zwingt, während der vom Mobiltelefon abgehenden Anforderung die IMSI an das System anstelle einer ersten TMSI, die in der ersten Mobilstation (116) gespeichert ist, zu senden (207), und welche zur Folge hat, dass der mindestens eine Steuerknoten einen neuen Kernnetzknoten auswählt (208), in dem der mindestens erste Teilnehmer registriert wird, wenn die Neuverteilung abgeschlossen ist.

3. Verfahren nach Anspruch 2, wobei die spezifischen Informationen eine zweite TMSI enthalten, welche FFFFFFFF in Hexadezimaldarstellung entspricht und welche die erste TMSI in der ersten Mobilstation (116) ersetzt (116).

4. Verfahren nach Anspruch 2, wobei die spezifischen Informationen eine IMSI und eine LAI enthalten.

5. Verfahren nach Anspruch 1, wobei der Schritt des Vorbereitens des Systems die folgenden Schritte
umfasst:

Versehen (504) der ersten Mobilstation mit mindestens einer zweiten TMSI, die so ausgelegt ist, dass sie durch den mindestens einen Steuerknoten als ungültig zu behandeln ist (506a - 507b); die eine erste TMSI in der ersten Mobilstation (116) ersetzt; und die während der vom Mobiltelefon abgehenden Anforderung verwendet wird (505).

6. Verfahren nach Anspruch 1, wobei der Schritt des Vorbereitens des Systems die folgenden Schritte umfasst:

Versehen (302, 402) mindestens des ersten Steuerknotens mit spezifischer Information, die zur Folge hat, dass der mindestens eine Steuerknoten einen neuen Kernnetzknoten auswählt (306, 406), in dem der mindestens erste Teilnehmer registriert wird, um die Neuverteilung abzuschließen, wenn die erste Mobilstation während der vom Mobiltelefon abgehenden Anforderung eine erste TMSI gesendet hat (303, 403).

7. Verfahren nach Anspruch 6, wobei die spezifische Information über mindestens einen Bitwert enthält, welcher in der ersten TMSI vorhanden ist und welcher darauf hinweist, dass die Teilnehmerinformation des mindestens ersten Teilnehmers neu verteilt werden sollen.

8. Verfahren nach Anspruch 6, wobei die spezifische Information über mindestens eine Nummer enthält, welche die erste TMSI identifiziert; welche durch einen Pseudozufallsnummerngenerator PRNG erzeugt wurde und welche darauf hinweist, dass die Teilnehmerinformation des mindestens ersten Teilnehmers neu verteilt werden sollen.

9. Verfahren nach einem der Ansprüche 2 bis 4 und 6 bis 8, wobei die spezifische Information außerdem eine LAI enthält.

10. Verfahren nach einem der Ansprüche 2 bis 4 und 6 bis 9, wobei die spezifische Information Information enthält, die anzeigt, dass der mindestens eine Steuerknoten einen von mindestens zwei verschiedenen Algorithmen zur Durchführung der Auswahl (306, 406, 508) eines neuen Kernnetzknotens auswählen soll.

11. Verfahren nach einem der Ansprüche 1 bis 10, wobei der mindestens erste Teilnehmer in Abhängigkeit von mindestens einem Bitwert in einer ersten Kennung ausgewählt wird (201, 301, 401, 501), die dem mindestens ersten Teilnehmer zugeordnet ist.

22. Kernnetzknoten nach Anspruch 21, wobei das Mittel zum Auswählen so ausgelegt ist, dass es die Teilnehmer in Abhängigkeit von mindestens einem Bitwert in einer ersten TMSI auswählt, die jedem einzelnen der Teilnehmer zugeordnet ist.

23. Kernnetzknoten nach Anspruch 21, wobei das Mittel zum Auswählen so ausgelegt ist, dass es die Teilnehmer in Abhängigkeit von mindestens einem Bitwert in einer ersten TMSI als eine Eingabe in die mathematische Funktion verwendet wird.

24. Kernnetzknoten nach einem der Ansprüche 21 bis 23, wobei das Mittel zum Vorbereiten so ausgelegt ist, dass es die Mobilstationen mit einer zweiten TMSI versieht, welche FFFFFFFF in Hexadezimaldarstellung entspricht und welche die ersten TMSIsersetzt, die in den Mobilstationen gespeichert sind.

25. Kernnetzknoten nach einem der Ansprüche 21 bis 23, wobei das Mittel zum Vorbereiten so ausgelegt ist, dass es die Mobilstationen mit neuen TMSI versieht, welche durch den mindestens einen Kernnetzknoten als ungültig behandelt werden und welche die ersten TMSIsersetzen, die in den Mobilstationen gespeichert sind.

26. Steuerknoten, der so ausgelegt ist, dass er mit einem Pool von Kernnetzknoten (101) in einem zellulären Funkkommunikationssystem (100) kommuniziert, dadurch gekennzeichnet, dass der Steuerknoten (106 - 108) Mittel umfasst zum:

27. Steuerknoten nach Anspruch 26, wobei das Mittel zum Bestimmen so ausgelegt ist, dass es eine PRNG-Nummer auf der Basis mindestens eines Teils der empfangenen TMSI berechnet, um festzustellen, ob der Teilnehmer von der Neuverteilung betroffen ist.

28. Steuerknoten nach Anspruch 26, wobei das Mittel zum Bestimmen so ausgelegt ist, dass es eine PRNG-Nummer auf der Basis mindestens eines Teils der empfangenen TMSI berechnet, um festzustellen, ob der Teilnehmer von der Neuverteilung betroffen ist.

Revendications

1. Procédé de redistribution d’information d’abonné à l’intérieur d’un groupe de noeuds de réseau central (101) dans un système de communication radiocellulaire (100), où ledit groupe (101) est agencé pour communiquer avec au moins un noeud de commande (106-108) dans un réseau d’accès (102), caractérisé en ce que ledit procédé comprend les étapes suivantes consistant à :

- sélectionner (201, 301, 401, 501a) au moins un premier abonné, auquel l’information d’abonné doit être redistribuée, et où ledit au moins un premier abonné est enregistré dans un premier noeud de réseau central (103-105) ;
- préparer (202-206, 302, 402, 501b-504) ledit système à effectuer ladite redistribution après une demande d’origine mobile transmise (207, 303, 403, 503) depuis une première station mobile qui est utilisée par ledit au moins un premier abonné ; et

2. Procédé selon la revendication 1, dans lequel ladite étape de préparation dudit système inclut l’étape consistant à :

fournir (205) à ladite première station mobile une information spécifique qui force ladite station mobile à soumettre l’IMSI audit système pendant ladite demande d’origine mobile (207) au lieu d’une première TMSI, qui est mémorisée dans ladite première station mobile (116), et qui nécessite que ledit au moins un noeud de commande sélectionnera (208) un nouveau noeud de réseau central, dans lequel ledit au moins un premier abonné sera enregistré, quand ladite redistribution prend fin.

3. Procédé selon la revendication 2, dans lequel ladite information spécifique inclut une seconde TMSI,
égalé à FFFFFFF en hexadécimal, qui remplace la-
de première TMSI dans ladite première station mo-
bile (116).

4. Procédé selon la revendication 2, dans lequel ladite information spécifique inclut une IMSI et une LAI.

5. Procédé selon la revendication 1, dans lequel ladite étape de préparation dudit système inclut l’étape consistant à :

fournir (504) à ladite première station mobile au
moins une seconde TMSI qui est agencée pour être traitée comme invalide (506a-507b) par le-
dit au moins un noeud de commande ; qui rem-
place une première TMSI dans ladite première station mobile (116) ; et qui est utilisée (505)
pendant ladite demande d’origine mobile.

6. Procédé selon la revendication 1, dans lequel ladite étape de préparation dudit système inclut l’étape consistant à

fournir (302, 402) au moins audit premier noeud de commande une information spécifique qui nécessite que ledit au moins un noeud de commande sélectionnera (306, 406) un nouveau noeud de réseau central, dans lequel ledit au moins premier abonné sera enregistré, pour mettre fin à ladite redistribution quand ladite première station mobile a soumis une première TMSI pendant ladite demande d’origine mobile (303, 403).

7. Procédé selon la revendication 6, dans lequel ladite information spécifique inclut une information relative à au moins une valeur binaire, qui est présente dans ladite première TMSI et qui indique que l’information d’abonné dudit au moins premier abonné doit être redistribuée.

8. Procédé selon la revendication 6, dans lequel ladite information spécifique inclut une information relative à au moins un numéro ; qui identifie ladite première TMSI ; qui a été généré par un générateur de numéro pseudo aléatoire PRNG, et qui indique que l’information d’abonné dudit au moins premier abonné doit être redistribuée.

9. Procédé selon une des revendications 2-4, 6-8, dans lequel ladite information spécifique inclut aussi une LAI.

10. Procédé selon une des revendications 2-4, 6-7, dans lequel ladite information spécifique inclut une information qui indique que ledit au moins un noeud de commande doit sélectionner un parmi au moins deux algorithmes différentes pour effectuer ladite sélection (306, 406, 508) d’un nouveau noeud de réseau central.

11. Procédé selon une des revendications 1 à 10, dans lequel ladite au moins un premier abonné est sélectionné (201, 301, 401, 501) en fonction d’au moins une valeur binaire dans un premier identifiant qui est assigné audit au moins un premier abonné.

12. Procédé selon une des revendications 1 à 10, dans lequel ledit au moins un premier abonné est sélectionné (201, 301, 401, 501) en fonction du résultat d’une fonction mathématique.

13. Procédé selon la revendication 12, dans lequel au moins une partie d’un premier identifiant assigné audit au moins premier abonné est utilisée comme une entrée dans ladite fonction mathématique.

14. Procédé selon une des revendications 1 à 10, dans lequel ledit au moins premier abonné est sélectionné (201, 301, 401, 501) de manière aléatoire.

15. Procédé selon une des revendications 1 à 10, dans lequel ledit au moins un premier abonné est sélectionné (201, 301, 401, 501) en raison du fait que tous les abonnés qui sont enregistrés dans ledit premier réseau central doivent être affectés par ladite redistribution.

16. Procédé selon une des revendications 11 à 15, dans lequel ladite sélection (201, 301, 401, 501) est restreinte à une sélection entre les abonnés d’un sous-ensembles spécifique d’abonnés dans ledit groupe.

17. Procédé selon la revendication 16, dans lequel ledit sous-ensemble spécifique d’abonnés dans ledit groupe sont les abonnés qui sont enregistrés dans un noeud de réseau central spécifique dans ledit groupe.

18. Procédé selon une des revendications 11, 13-17, dans lequel ledit premier identifiant est ladite première TMSI.

19. Procédé selon une des revendications 1 à 18, dans lequel ladite redistribution est effectuée par étapes, en préparant un groupe d’abonnés à la fois pour ladite redistribution, dans les cas où un nombre d’abonnés sont sélectionnés pour ladite redistribution.

20. Procédé selon une des revendications 2-4, 6-19, dans lequel ladite information spécifique inclut une LAI spécifique ou une TMSI spécifique qui sont utilisées comme indicateur d’action, qui amène ledit au moins un noeud de commande à effectuer une action spécifique avec ledit au moins premier abonné après ladite demande d’origine mobile.

21. Noeud de réseau central agencé dans un groupe de
nœuds de réseau central (101) dans un système de communication radio cellulaire (100), et où ledit nœud de réseau central est agencé pour communiquer avec au moins un nœud de commande (106-108) dans un réseau d’accès (102). **caractérisé en ce que** ledit nœud de réseau central (103-105) inclut un moyen pour sélectionner au moins un abonné à affecter par une redistribution à l’intérieur dudit groupe (101) ; et préparer ledit système (100) pour effectuer ladite redistribution après une demande d’origine mobile émanant d’une première des stations mobiles (116) utilisées par lesdits abonnés sélectionnés.

22. **Noeud de réseau central selon la revendication 21,** dans lequel ledit moyen de sélection est agencé pour sélectionner lesdits abonnés en fonction d’au moins une valeur binaire dans une première TMSI qui est assignée chacun desdits abonnés.

23. **Noeud de réseau central selon la revendication 21,** dans lequel ledit moyen de sélection est agencé pour sélectionner lesdits abonnés en fonction du résultat d’une fonction mathématique, et dans lequel au moins une partie d’une première TMSI est utilisée comme une entrée dans ladite fonction mathématique.

24. **Noeud de réseau central selon une des revendications 21 à 23,** dans lequel ledit moyen de préparation est agencé pour fournir auxdites stations mobiles une seconde TMSI, égale à FFFFFFFF en hexadécimale, qui remplace lesdites premières TMSI qui sont mémorisées dans lesdites stations mobiles.

25. **Noeud de réseau central selon une des revendications 21 à 23,** dans lequel ledit moyen de préparation est agencé pour fournir auxdites stations mobiles des nouvelles TMSI qui sont traitées comme invalides par ledit au moins un nœud de commande, et qui remplacent lesdites premières TMSI qui sont mémorisées dans lesdites stations mobiles.

26. **Noeud de commande agencé pour communique** avec un groupe de nœuds de réseau central (101) dans un système de communication radio cellulaire (100), **caractérisé en ce que** ledit nœud de commande (106-108) inclut des moyens pour :

 déterminer si un abonné, en communication avec ledit nœud de commande, doit être affecté par une redistribution à l’intérieur dudit groupe ;

 et sélectionner un nouveau nœud de réseau central à l’intérieur dudit groupe audit abonné si il est déterminé être affecté par ladite redistribution.

27. **Noeud de commande selon la revendication 26,** dans lequel ledit moyen de détermination est adapté pour analyser au moins une valeur binaire dans une TMSI reçue pour détecter si ledit abonné doit être affecté par ladite redistribution.

28. **Noeud de commande selon la revendication 26,** dans lequel ledit moyen de détermination est adapté pour calculer un numéro PRNG, sur la base d’au moins une partie de ladite TMSI reçue, pour détecter si ledit abonné doit être affecté par ladite redistribution.

29. **Système de communication radio,** **caractérisé en ce que** ledit système inclut au moins un nœud de réseau central (103-105) selon la revendication 21-25 et au moins un nœud de commande (106-108) selon une des revendications 26 à 28.
201 Generate conditions for the redistribution

202 Inform ctrl nodes about the redistribution

203 Receive request from MS at MSC/VLR

204a Analyse TMSI in MSC/VLR

204b Subscriber to be redistributed? No

205 Provide MS with an invalid TMSI

206 Confirm TMSI change

207 Transmit request with IMSI from MS to ctrl node

208 Select new MSC/VLR in ctrl node

209 Assign new TMSI to subscriber in new MSC/VLR

Fig. 2
301 Generate conditions for the redistribution

302 Inform ctrl nodes about the redistribution e.g. provide info about invalid TMSIs

303 Receive message from MS at ctrl node

304a Analyse CNNI-part of TMSI in ctrl node

304b MSC/VLR affected by redistribution? No No redistribution performed

305a Analyse UI-part of TMSI in ctrl node

305b UI = invalid? No

306 Select new MSC/VLR in ctrl node

307 Assign new TMSI to subscriber in new MSC/VLR

Fig.3
Generate conditions for the redistribution that includes specific PRNG numbers (sPRNG's)

Inform ctrl nodes about the redistribution e.g. provide info about sPRNG's indicating invalid TMSI's

Receive message from MS at ctrl node

Analyze CNNI—part of TMSI in ctrl node

MSC/VLR affected by redistribution?

Calculate a PRNG number X in ctrl node

x = one of the sPRNG's?

Select new MSC/VLR in ctrl node

Assign new TMSI to subscriber in new MSC/VLR

Fig. 4
501a Generate conditions for the redistribution that includes specific PRNG numbers (sPRNGs)

501b Run PRNGs and set invalidation bit

502 Receive message from MS at MSC/VLR

503a Check invalidation bit

503b invalid bit set?

No redistribution performed

Yes

504 Provide MS with new TMSI that includes an invalid UI

505 Receive new message from MS at ctrl node

506a Analyse CNNI-part of TMSI

506b MSC/VLR affected by redistribution?

No

Yes

507a Analyse UI-part of TMSI

507b UI = invalid?

No

Yes

508 Select new MSC/VLR in ctrl node

509 Assign new TMSI to subscriber in new MSC/VLR

Fig. 5
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 0115463 A2 [0008]
- US 6148201 A [0009]