EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 04.10.2006 Bulletin 2006/40

(21) Application number: 02737312.5

(22) Date of filing: 03.06.2002

(51) Int Cl.: B01F 17/00(2006.01) B01F 17/14(2006.01)

(86) International application number: PCT/US2002/017243

(54) PUMPABLE LIQUID SURFACTANT COMPOSITIONS COMPRISING ALKANOLAMINE SALTS OF ALKYL PHOSPHATE ESTERS

PUMPfähige, flüssige, Grenzflächenaktive Mittel enthaltende Zusammensetzungen, umfassend Alkanolaminsalze von Alkylphosphatestern

COMPOSITIONS LIQUIDES POMPABLES DE SURFACTANTS COMPRENANT DES SELS D’ALKANOLAMINE D’ESTERS ALKYLE DE PHOSPHATE

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 04.06.2001 US 295668 P

(43) Date of publication of application: 10.03.2004 Bulletin 2004/11

(73) Proprietor: Rhodia, Inc.
Cranbury, NJ 08512 (US)

(72) Inventors:
• REIERSON, Robert, Lee
Princeton Junction, NJ 08550 (US)

• HERVE, Pascal, Jean-Claude
West Windsor, NJ 08550 (US)

• SOMAN, Subhash
Charlotte, NC 28262 (US)

• ENG, Ronny, Jon
East Brunswick, NJ 08816 (US)

(74) Representative: Vossius & Partner
Siebertstrasse 4
81675 München (DE)

(56) References cited:
EP-A- 0 909 786
WO-A-00/31220
US-A- 4 139 485

EP-A- 1 221 474
DE-A- 1 567 232
US-A- 4 753 754

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to pumpable, surfactant compositions of alkanolamine salts of alkyl phosphate esters. More particularly, this invention relates to readily pumpable, concentrated compositions of high solids content of alkanolamine salts of alkyl phosphate esters.

Surfactants and mixtures of surfactants are employed in a variety of industrial, commercial and domestic applications. Often, there is a need for a surfactant to be in a pumpable or fluid form for addition to formulations. Such a form is convenient and affords cost savings in handling and storage as well as ease and convenience in formulating products therewith. It is desirable for the surfactant to be available in such form in as high a concentration or proportion of surfactant or active ingredient as possible.

There are difficulties in using alkyl phosphate ester compositions of high solids content. Such compositions can be rigid or immovable, non-flowable or non-pumpable gels rather than easily handled fluid solutions. Further, phase separation can occur during production or subsequent storage of such compositions. In most instances, it has been impossible to effectively produce fluid or pumpable phosphate ester salt compositions above about 30 to 40% by weight active ingredient in water without the use of organic solvents or other co-surfactants or above about 60 wt% with their use.

To address these difficulties, various approaches have been attempted. US Patents 4,753,754 and 5,139,781 disclose the use of a mixture of different surfactants. Another approach has been to formulate aqueous solutions of such surfactants with generally large amounts of alcohols or other solvents, such as propylene glycol, dipropylene glycol or ethanol, which act as thinners and solubilizing agents thereby lowering the viscosity of the solution and inhibiting the formation of a non-flowable gel. However, for preparation of many formulations, it is not desirable to employ surfactant mixtures; in fact, their use can unnecessarily complicate the formulation process. In cosmetic or personal care product formulations, there may be a need to avoid the use of alcohol or other organic solvents. Alternately, a water-free composition may be desired.

Moreover, the use of cosurfactant compounds such as alkyl sulfates or sulfonate salts is problematic since they impart undesirable and irritating side effects as disclosed in WO 01/10991 and diminish desirable properties of the phosphate surfactants.

It would be desirable to have surfactant compositions of high concentrations of alkyl phosphate ester salts in a stable, pumpable liquid form. It would further be desirable to have surfactant compositions that do not require the presence of co-surfactants or large amounts of organic solvents or water, adulterating additives, or performance reducing residual components.

An object of this invention is to provide such stable, pumpable or flowable surfactant compositions of high solids content, e.g. 60 wt% or more, that are pumpable at typical industrial use temperatures.

Alkyl phosphate ester alkanolamine salts useful in the compositions of the present invention include those of the monoalkyl salts of formula I and those of the dialkyl salts of formula II:

![Chemical Structure I](image1)

![Chemical Structure II](image2)
R₁ to R₃ are, individually, C₈-22 linear or branched alkyl, alkenyl, alkaryl or aralkyl hydrocarbon moieties, which optionally may contain carbocyclic rings. The subscripts a and b, individually, may be the same or different and are integers from 0 to 8 with the proviso that the sum of the a and b is less than or equal to 8. The subscripts n and m, individually, may be the same or different and are integers from 0 to 4. Z₁ and Z₂ are, individually, hydrogen, alkali metal, ammonia or an alkanolamine according to formula III below with the proviso that at least one of Z₁ and Z₂ must be an alkanolamine according to formula III below. Z₃ is an alkanolamine according to formula III below.

[0010] Alkanolamines useful in preparation of the alkyl phosphate ester salts of the present invention have the following formula III:

$$R_4(OC_pH_{2p})_a(OC_qH_{2q})_bN\underbrace{-(C_qH_{2q}O)_x(C_pH_{2p}O)_y}_{(III)}R_8$$

$$R_5(OC_pH_{2p})_a(OC_qH_{2q})_b$$

R₄ to R₆ are, individually, hydrogen or C₁-8, linear or branched alkyl, alkenyl, alkaryl or aralkyl hydrocarbon moieties, which optionally may contain carbocyclic rings. At least one of the three amine substituents is different from the other two. For at least one of the three substituents on the amine nitrogen, the sum of s and t (s + t) or v and w (v + w) or x and y (x + y) is equal to or greater than 1 and the corresponding R (R₄, R₅ or R₆) is hydrogen. The subscripts p and q, individually, may be the same or different and are integers from 2 to 4. The subscripts s, t, v, w, x, and y, individually, may be the same or different and are integers from 0 to 10, with the proviso that the sum of all six subscripts is less than or equal to 12.

[0012] The alkyl phosphate ester alkanolamine salts of the present invention permit the formulation of liquid surfactant compositions of unusually high solids content, i.e. 60 wt% or more.

[0013] Alkyl phosphate ester alkanolamine salts useful in the compositions of the present invention include those of the monoalkyl salts of formula I and those of the dialkyl salts of formula II:

[0014] R₁ to R₅ are, individually, C₈-22 linear or branched alkyl, alkenyl, alkaryl or aralkyl hydrocarbon moieties, which optionally may contain carbocyclic rings. The subscripts a and b, individually, may be the same or different and are integers from 0 to 8 with the proviso that the sum of the a and b is less than or equal to 8. The subscripts n and m,
individually, may be the same or different and are integers of from 2 to 4. Z₁ and Z₂ are, individually, hydrogen, alkali metal, ammonia or an alkanolamine according to formula III below with the proviso that at least one of Z₁ and Z₂ must be an alkanolamine according to formula III below. Z₃ is an alkanolamine according to formula III below.

[0015] Alkanolamines useful in the preparation of alkyl phosphate ester salts of the present invention have the following formula III:

\[
R_4(OCP_{H_2p})_s(OCP_{H_2q})_{2q-t}N^–(CP_{H_2q}O)_{x}(CP_{H_2p}O)_yR_6
\]

\[
R_5(OCP_{H_2p})_v(OCP_{H_2q})_{2q-w}
\]

(III)

[0016] R₄ to R₆ are, individually, hydrogen or C₁₋₈, linear or branched alkyl, alkenyl, alkaryl or aralkyl hydrocarbon moieties, which optionally may contain carbocyclic rings. At least one of the three amine substituents is different from the other two. For at least one of the three substituents on the amine nitrogen, the sum of s and t (s + t) or v and w (v + w) or x and y (x + y) is equal to or greater than 1 and the corresponding R (R₁, R₅ or R₆) is hydrogen. The subscripts p and q, individually, may be the same or different and are integers from 2 to 4. The subscripts s, t, v, w, x, and y, individually, may be the same or different and are integers of from 0 to 10, with the proviso that the sum of all six is less than or equal to 12.

[0017] It is understood, for purposes of representation of the salt, that Z₁, Z₂ and Z₃ may be bound, as shown, particularly when Z₁ or Z₂ is a hydrogen or dissociated as an ion pair in which the Z₁, Z₂ or Z₃ would be positively charged and the corresponding oxygen would be negatively charged with the negative charge (s) delocalized among the unbound (to Z₁, etc.,) oxygens through the phosphorus center. For the alkanolamine (and ammonia), the positive charge would result from protonation of the amine nitrogen by the hydrogen ion dissociated from the acid phosphate, as exemplified in formulae IV and V, below.

[0018] Preferred alkanolamines include the following: diethanolisopropanolamine, (2-(2-hydroxypropoxy)ethyl)diethanolamine, dimethylisopropanolamine, dibutylisopropanolamine, methyldiethanolamine, ethyldiethanolamine, di(2-hydroxyethyl) toluidine, di(2-hydroxyethyl) benzylamine, and diethanolisopropylamine.
Pumpable liquid surfactant compositions of this invention are characterized by a low level of residual phosphoric acid and residual alcohol. Pumpable surfactant compositions of this invention are produced from alkyl phosphate ester compositions high in monoalkyl phosphates relative to dialkyl phosphates, i.e., a molar ratio of mono- to di-alkyl phosphate esters of equal to or greater than 60:40, preferably 80:20 or greater and more preferably greater than 90:10. The phosphorus residue compositions of low residual phosphoric acid and residual alcohol content and high monoalkyl phosphate content used to produce the pumpable surfactant composition of this invention may be produced by the processes disclosed US Patents 5,463,101, 5,550,274 and 5,554,781, as well as in EP Patent publication number EP 0 675,076 A2, especially as described in Example 18 of the EP publication.

The alkyl phosphate ester salts are prepared by mixing alkyl phosphate esters of high monoalkyl phosphate ester content with a suitable base. Suitable bases include sodium, potassium, lithium, and ammonium hydroxides and amines. Alkanolamines are preferred. Most preferred bases are diethanolisopropanolamine and diglycoldiisopropanolamine. The salts of the monoalkyl phosphate esters may be of any suitable base:acid molar ratios, such as those ranging from 0.7 to 1.7, as dictated by the properties of the salt.

Alkyl phosphate esters employed in forming the pumpable surfactant compositions of this invention are preferably produced from alcohols or mixtures of alcohols typically found in natural oils, for example, coconut or rapeseed oils, carbon chain length of about C8 to C22. Blends of linear and branched, saturated and unsaturated alcohols are possible. These alcohols are employed in the phosphation processes described in the aforementioned patents/patent applications. As examples of such alcohols, there may be mentioned octanol, decanol, dodecanol, tetradecanol, hexadecanol and octadecanol or mixtures of alcohols, such as a commercially available blend of a mixture of about 0.1% decanol, about 68.3% dodecanol, about 27.6% tetradecanol and about 4.9% hexadecanol. For cleaning applications, the alkyl phosphate ester ester preferably comprise salts of predominately C10 to C12 alcohols or C8 to C12 alcohols. For lubricant applications, longer chain lengths, C16 to C22, with a higher degree of unsaturation would be more desirable. The alcohol or mixtures of alcohols may optionally be reacted with ethylene or propylene oxide to produce polyalkoxylate derivatives of low degree of alkylation. This is particularly useful for the longer chain linear aliphatic alcohols, which otherwise would produce phosphate esters of high melting points.

Preferred compositions of this invention have a mono- to di- alkyl phosphate molar ratio equal to or greater than 60:40 and have a solids content of about 60% by weight or more and exhibit one or more pumpable regions over a range of pH values for the surfactant composition, especially over the pH range of from about pH 5 to about pH 10 (measured as a 10 wt% aqueous solution. The pumpable compositions could be, for example, in a molecular solution or in a lamellar or micellar phase.

The residual phosphoric acid or residual alcohol content of the pumpable surfactant compositions of this invention is less than 8% by weight, preferably less than 6% by weight, and more preferably less than 5% by weight of each residual component. Higher phosphoric acid content contributes to higher viscosity and non-ester salt content and the alcohols, having limited solubility in water, tend to separate or contribute haze to solutions which contain water.

Preferred compositions of this invention are pumpable or flowable at typical industrial use temperatures, e.g. about 45°C or less, especially about 5°C to about 40°C.

The total solids content of the pumpable aqueous surfactant composition is 60% or more, preferably about 70 wt% to about 95 wt% by weight alkyl phosphate ester salt based upon the total weight of the composition.

The surfactant composition optionally has a solvent added to enhance pumpability. Useful solvents include, but are not limited to, water, C1-6 alcohols, alkylene glycols, and polyalkylene glycols. Useful alcohols include ethanol, n-propanol, isopropanol, n-butanol, 2-butoxyethanol, n-pentanol, isopentanol, and neopentanol. Glycols include propylene glycol, diethylene glycol, 1,4-butanediol and 1,6-hexanediol. The solvent may be present at up to 40 wt%, more typically about 5 to about 40 wt%, and most typically at about 5 to about 30 wt% based upon the total weight of the composition.

The present compositions may be incorporated into a variety of products or formulations for applications common to phosphate ester salts. Such applications include agricultural adjuvants, cosmetic and personal hygiene products, laundry and dish detergents, hard surface cleaners, emulsion polymerization additives, boundary or extreme pressure lubricants, lubricant additives (aqueous and oil based), anti-corrosion and anti-wear additives, metal degreasing, cutting or grinding aids, textile processing aids and ink jet printing fluid additives. The compositions are particularly useful as cleansing or emulsifying agents in products and formulations that contact the hair, skin and eyes. The compositions can be incorporated into a variety of product forms such as creams, lotions, gels, aerosols, sprays, ointments, solutions, suspensions, solids and towelettes or other woven and non-woven fabrics. Product application include skin cleansing, conditioning, moisturizing and protecting; anti-wrinkling; anti-aging; make-up removal; body and hair shampooing; bathing; cleaning gels for institutional and industrial use; household cleaning (hard surface) and dishwashing.

The novel stable, pumpable surfactant compositions of alkyl phosphate ester salts high in monoalkyl phosphate content of this invention are especially useful in cosmetic and personal care products because of their foaming abundance, detergency and non-irritating properties, as well as their desirable foam density, stability and skin feel properties.

The invention is illustrated by the following nonlimiting examples.
EXAMPLES

[0030] Alkanolamine salts of alkyl phosphate esters of the present invention were prepared.

[0031] All phosphate esters were prepared by phosophation of the selected alcohol or blend of alcohols in accordance with the processes described in European Patent publication EP 0 675,076 A2, particularly Example 18 thereof, with adjustment of reagent charges as appropriate for different alcohol molecular weights or intended ester product distributions. Preparation of phosphate esters is set forth below.

Preparation of Dodecyl Phosphate (Phosphate A)

[0032] A pre-dried reactor was charged, under essentially anhydrous conditions of a dry nitrogen blanket, with 343.5 lb. dodecanol which was heated to 35°C to melt and provide an easily stirrable liquid. Polyphosphoric acid, (115%), 111.3 lb., was then added to the stirred liquor with cooling to maintain the temperature below 45°C. Stirring was continued for 30 min. to assure a homogenous solution. Phosphoric anhydride powder, 40.0 lb., was then added with cooling to maintain the temperature under 55°C and the rapidly stirred mixture was heated to 80°C and held at that temperature. Reaction progress was followed by the change in the second acid value and, after it had stabilized, 2.5 lb. water was added and stirring was continued at 80°C for two hours. The batch was then cooled to 65°C, 1.0 lb. 35% hydrogen peroxide was added, the solution stirred for 30 minutes and readied for transfer. The product composition, determined by P, C and H nuclear magnetic resonance spectroscopy, was, by weight, 6.2% phosphoric acid, 76.0% mono(dodecyl) phosphate, 12.4% di(dodecyl) phosphate, 4.8% nonionics (residual alcohol) and 0.6% water (Karl-Fischer titration). Acid value 1 (first titration inflection point, pH ~ 5.6) was 210.7 mg KOH/g sample.

Preparation of Dodecyl OE 1 Ethoxylate Phosphate (Phosphate B)

[0033] Using the same procedure as for phosphate A, 726 parts of dodecyl ethoxylate, hydroxyl no. 249.2, were combined with 187 parts 115% polyphosphoric acid and 80 parts phosphoric anhydride. The rapidly stirred mixture was cooked at 81°C until the Acid Value 2 stabilized, then 5 parts water were added and the cook period continued for an additional two hours. The liquor was cooled to 65°C, 2 parts 35% hydrogen peroxide were added and stirring continued for 30 minutes. The batch was then cooled and transferred. The product composition was 6.6% phosphoric acid, 70.6% monoalkyl phosphates, 16.6% dialkyl phosphates, 5.7% nonionics, and 0.5% water. Acid value 1 was 181.6 mg KOH/g sample.

Preparation of Cocoalkyl OE 1 Ethoxylate Phosphate (Phosphate C)

[0034] Using the same procedure as in phosphate A above, 778 parts of a natural blend, comprising C₈ to C₁₆ alcohols ethoxylated with an average of one mole of ethylene oxide (OE 1), was combined with 153 parts 115% polyphosphoric acid and 62 parts phosphoric anhydride. The rapidly stirred mixture was cooked at 81°C until the Acid Value 2 stabilized, then 5 parts water were added and the cook period continued for an additional two hours. The liquor was cooled to 65°C, 2 parts 35% hydrogen peroxide were added and stirring was continued for 30 minutes. The batch was then cooled and transferred. The product composition was 4.6% phosphoric acid, 71.6% monoalkyl phosphates, 17.0% dialkyl phosphates, 5.9% nonionics, and 0.9% water. The acid value 1 was 172.5 mg KOH/g sample.

Example 1

Preparation of an Anhydrous Solution of the Diethanolisopropanolamine Salt of Dodecyl Phosphate

[0035] A clean 100 ml jar was charged with 12.10 g diethanolisopropanolamine, 8.00 g propylene glycol, and 13.76 g of Phosphate A. The mixture was capped and put into a 70°C oven for 1 hr to melt the phosphate and provide a low viscosity, easily mixed liquid. It was then removed and placed on a shaker to mix for 1 hour to produce a homogenous, liquid salt composition, free from lumps. The product was then allowed to cool to room temperature. The resulting easily pourable, 70% solids salt solution, with an amine/phosphate molar ratio of 1.0, had a pH of 5.8 (as a 10% solution in water).

Example 2

Preparation of an Anhydrous Solution of the Diethanolisopropanolamine Salt of Dodecyl OE 1 Ethoxylate Phosphate

[0036] In the same manner as for Example 1, 10.15 g diethanolisopropanolamine, 7.54 g propylene glycol, and 20.00 g of the dodecyl OE 1 ethoxylate phosphate (Phosphate B) were combined to prepare a homogeneous, easily pourable
solution. The pH of the resulting 80% solids salt solution, with an amine/phosphate molar ratio of 1.00, was 5.6.

Example 3

Preparation of an Anhydrous Solution of the Diethanolisopropanolamine Salt of a Mixed Alcohol OE 1 Ethoxylate Phosphate

[0037] In the same manner as for Example 1, 17.24 g diethanolisopropanolamine, 7.51 g propylene glycol, and 20.00 g of the mixed alcohol OE 1 ethoxylate phosphate (Phosphate C) were combined to prepare a homogeneous, easily pourable solution. The pH of the resulting 80% solids salt solution, with an amine/phosphate molar ratio of 1.00, was 6.0

Examples 4-6

Preparation of Anhydrous Phosphate Ester Salt Solutions with Higher Diethanolisopropanolamine Ratios

[0038] In the same manner as for Examples 1-3, diethanolisopropanolamine was combined in propylene glycol with each phosphate ester to produce 80 - 100% solids clear, homogenous solutions. Results are shown in Tables 1 and 2.

Comparative Examples 1-3

Preparation of Anhydrous Phosphate Ester Salt Solutions from Symmetric Alkanolamines

[0039] To clearly demonstrate the advantages of the invention, preparation of amine salt solutions of the most preferred phosphate ester, Phosphate B, using the symmetric alkanolamines (all three alkyl groups are the same), triethanolamine, triisopropanolamine and a 2:1 molar blend of TEA to TIPA to emulate the diethanolisopropanolamine (derived from 2 moles ethylene oxide, 1 mole propylene oxide) were attempted. The results, summarized in Tables 1 and 2, show that even under the more favorable, higher ratio of amine to phosphate ester and lower salt concentration, the salts recrystallized from the viscous solutions upon cooling to room temperature, hence were inferior and unsuitable for convenient handling and transfer.

Table 1. Compositions of Phosphate Ester Alkanolamine Salt Solutions

<table>
<thead>
<tr>
<th>Example</th>
<th>Reactants</th>
<th>Amine Weight Ratio (g)</th>
<th>Molar Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEIPA A</td>
<td>12.10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>DEIPA B</td>
<td>10.15</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>DEIPA C</td>
<td>17.24</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>DEIPA A</td>
<td>17.24</td>
<td>1.9</td>
</tr>
<tr>
<td>5</td>
<td>DEIPA B</td>
<td>43.97</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>DEIPA C</td>
<td>42.96</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Comparative Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Reactants</th>
<th>pH (aq.)</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TEA B</td>
<td>5.70/3.65</td>
<td>Clear, Flowable</td>
</tr>
<tr>
<td>2</td>
<td>TIPA B</td>
<td>10.96</td>
<td>1.8</td>
</tr>
<tr>
<td>3</td>
<td>TEA/TIPA B</td>
<td>4.84</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table 2. Properties of Phosphate Ester Alkanolamine Salt Solutions

<table>
<thead>
<tr>
<th>Example</th>
<th>Amine</th>
<th>Phosphate</th>
<th>pH (aq.)</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEIPA A</td>
<td>5.8</td>
<td>70</td>
<td>Clear, Flowable</td>
</tr>
<tr>
<td>2</td>
<td>DEIPA B</td>
<td>5.6</td>
<td>80</td>
<td>Clear, Flowable</td>
</tr>
<tr>
<td>3</td>
<td>DEIPA C</td>
<td>6</td>
<td>80</td>
<td>Clear, Flowable</td>
</tr>
</tbody>
</table>
Ross-Miles foam height tests were conducted on representative alkanolamine salts of alkyl phosphate esters to confirm that those of the present invention do not reduce foam formation or affect stability.

Solutions were prepared in deionized water at 1 wt% solids of the various salts of the phosphate ester A. Foam heights were determined at 23°C. Potassium salts with a potassium/phosphate molar ratio of both 0.9 (corresponding to pH 5.5) and 1.4 (corresponding to pH 7.6) were selected as target references because of the high degree of foam formation and stability they exhibit. The potassium salts gave initial and final foam heights of 175 mm.

The triethanolamine salt of Phosphate A of Comparative Example 1 and diethanolisopropanolamine salt of Phosphate A of the present invention (both had an amine/phosphate ratio of 1.0 and a pH of 5.8) both exhibited initial and final foam heights of 175 mm. Thus, the diethanolisopropanolamine salt of Phosphate A did not negatively impact foam formation or stability compared to phosphate esters of conventional salts. Diethanolisopropanolamine salts of phosphate esters are advantageous compared to those of conventional salts because they can be employed at high solids levels, which is preferred in skin cleansing applications.

Claims

1. A pumpable liquid surfactant composition comprising as surfactant an alkanolamine salt of an alkyl phosphate ester, said alkyl phosphate ester alkanolamine salt being selected from monoalkyl salts according to formula I, dialkyl salts according to formula II and mixtures thereof:
wherein R₁ to R₃ are, individually, selected from the group consisting of C₈⁻₂₂ linear or branched alkyl, alkenyl, alkyaryl and aralkyl hydrocarbon moieties, which optionally may have carbocyclic rings; wherein the subscripts a and b, individually, may be the same or different and are integers from 0 to 8 with the proviso that the sum of the a and b is less than or equal to 8; wherein the subscripts n and m, individually, may be the same or different and are integers of from 2 to 4; wherein Z₁ and Z₂ are, individually, selected from the group consisting of hydrogen, alkali metal, ammonia and an alkanolamine according to the following formula III with the proviso that at least one of Z₁ and Z₂ must be an alkanolamine according to formula III; wherein Z₃ is an alkanolamine according to formula III; wherein Z₁ or Z₂ is bound, when Z₁ or Z₂ is hydrogen, and wherein OZ₁, OZ₂ or OZ₃ is dissociated as an ion pair in which the Z₁, Z₂ or Z₃ is positively charged and the corresponding oxygen is negatively charged due to protonation of the amine nitrogen by the hydrogen ion dissociated from the acid phosphate, when Z₁, Z₂ or Z₃ is ammonia or alkanolamine according to formula III; wherein formula III is according to the following:

wherein R₄ to R₆ are, individually, selected from the group consisting of hydrogen and C₁⁻₈ linear and branched alkyl, alkenyl, alkaryl and aralkyl hydrocarbon moieties, which optionally may have carbocyclic rings; wherein at least one of the three amine substituents is different from the other two and that, for at least one of the three amine substituents, the sum of s and t or v and w or x and y is equal to or greater than 1 and the corresponding R is hydrogen; wherein the subscripts p and q, individually, may be the same or different and are integers from 2 to 4; wherein the subscripts s, t, v, w, x, and y, individually, may be the same or different and are integers from 0 to 10 with the proviso that the sum of all the subscripts is less than or equal to 12; wherein the composition has a solids content of 60% by weight or more and wherein the residual phosphoric acid or residual alcohol content of the pumpable surfactant composition is less than 8% by weight of each residual component.

2. The composition of claim 1, wherein the molar ratio of mono-alkyl phosphate ester according to formula (I) to dialkyl phosphate ester according to formula (II) is equal to or greater than 60:40.

3. The composition of claim 1, wherein in the salt of the mono-alkyl phosphate ester the molar ratio of base to phosphate ranges from 0.7 to 1.7, wherein the base is said alkali metal, ammonia or alkanolamine according to formula III.

4. The composition of claim 1, which is flowable at a temperature between about 5°C to 40°C.

5. The composition of claim 1, wherein the alkanolamine is selected from the group consisting of diethanolisopropylamine, (2-(2-hydroxypropoxy)ethyl)diethanolamine, dimethylisopropanolamine, dibutylisopropanolamine, methyldiethanolamine, ethyldiethanolamine, (di-2-hydroxyethyl)toluidine, di(2-hydroxyethyl)benzylamine, and diethanol-isopropyamine.

Patentansprüche

1. Pumpbare flüssige Tensidzusammensetzung, umfassend als Tensid ein Alkanolaminsalz eines Alkylphosphatesters, wobei das Alkylphosphatesteralkanolaminsalz aus Monoalkylsalzen der Formel I, Dialkylsalzen der Formel II und Gemischen davon ausgewählt ist:
wobei R_1 bis R_3 einzeln aus der Gruppe ausgewählt sind, die aus geraden oder verzweigten C_{8-22}-Alkyl-, Alkenyl-, Alkaryl- und Aralkylkohlenwasserstoffeinheiten besteht, die gegebenenfalls carbocyclische Ringe besitzen können; wobei die Indices a und b einzeln gleich oder verschieden sein können und ganze Zahlen von 0 bis 8 sind, mit der Maßgabe, dass die Summe von a und b kleiner als oder gleich 8 ist; wobei die Indices n und m einzeln gleich oder verschieden sein können und ganze Zahlen von 2 bis 4 sind;

wobei Z_1 und Z_2 einzeln aus der Gruppe ausgewählt sind, die aus Wasserstoff, Alkalimetall, Ammoniak und einem Alkanolamin der folgenden Formel III besteht, mit der Maßgabe, dass mindestens eines von Z_1 und Z_2 ein Alkanolamin der Formel III sein muss; wobei Z_3 ein Alkanolamin der Formel III ist;

wobei Z_1 oder Z_2 gebunden ist, wenn Z_1 oder Z_2 Wasserstoff ist, und wobei OZ_1, OZ_2 oder OZ_3 als Ionenpaar dissoziiert werden, in dem aufgrund von Protonierung des Amin-Stickstoffs durch das von dem sauren Phosphat abdissoziierte Wasserstoffion Z_1, Z_2 oder Z_3 positiv geladen ist und der zugehöri ge Sauerstoff negativ geladen ist, wenn Z_1, Z_2 oder Z_3 Ammoniak oder Alkanolamin der Formel III ist; wobei Formel III Folgendes ist:

wobei R_4 bis R_6 einzeln aus der Gruppe ausgewählt sind, die aus Wasserstoff und geraden und verzweigten C_{1-8}-Alkyl-, Alkenyl-, Alkaryl- und Aralkylkohlenwasserstoffeinheiten besteht, die gegebenenfalls carbocyclischen Ringe besitzen können; wobei mindestens einer der drei Aminsubstituenten sich von den anderen beiden unterscheidet und für mindestens einen der drei Aminsubstituenten die Summe von s und t oder v und w oder x und y gleich oder größer als 1 ist und der entsprechende Rest R_9 Wasserstoff ist; wobei die Indices p und q einzeln gleich oder verschieden sein können und ganze Zahlen von 2 bis 4 sind; wobei die Indices s, t, v, w, x und y einzeln gleich oder verschieden sein können und ganze Zahlen von 0 bis 10 sind, mit der Maßgabe, dass die Summe von allen Indices kleiner als oder gleich 12 ist;

wobei die Zusammensetzung einen Feststoffgehalt von 60 Gew.-% oder mehr hat und wobei der restliche Phosphorsäure- oder restliche Alkoholgehalt der pumpbaren Tensidzusammensetzung kleiner als 8 Gew.-% von jedem restlichen Bestandteil ist.

2. Zusammensetzung nach Anspruch 1, wobei das Molverhältnis von Monoalkylphosphatester der Formel (I) zu Dialkyolphosphatester der Formel (II) gleich oder größer als 60:40 ist.
3. Zusammensetzung nach Anspruch 1, wobei in dem Salz des Monoalkylphosphatesters das Molverhältnis von Base zu Phosphat im Bereich von 0,7 bis 1,7 liegt, wobei die Base das Alkalimetall, der Ammoniak oder das Alkanolamin der Formel III ist.

4. Zusammensetzung nach Anspruch 1, die bei einer Temperatur zwischen etwa 5°C bis 40°C fließfähig ist.

5. Zusammensetzung nach Anspruch 1, wobei das Alkanolamin aus der Gruppe ausgewählt ist, die aus Diethanolisopropanolamin, (2-(2-Hydroxypropoxy)ethyl)diethanolamin, Dimethylisopropanolamin, Dimethylisopropanolamin, Methyldiethanolamin, Ethyldiethanolamin, (Di-2-hydroxyethyl)toluidin, Di-(2-hydroxyethyl)benzylamin und Diethanolisopropylamin besteht.

Revendications

1. Composition liquide d'agents tensioactifs pouvant être pompée et comprenant comme agent tensioactif un sel d'alcanolamine d'un ester de phosphate d'alkyle, ledit sel d'alcanolamine d'un ester de phosphate d'alkyle étant choisi parmi des sels de monoalkyle selon la formule I, des sels de dialkylen selon la formule II, et des mélanges de ceux-ci :

\[
\begin{align*}
&\text{R}_1\text{O(CH}_2\text{H}_2\text{O)}_a\text{(CH}_2\text{H}_2\text{O)}_b\text{PO}_2\text{OZ}_1 \\
&\text{OZ}_2
\end{align*}
\]

\[
\begin{align*}
&\text{R}_2\text{O(})\text{CH}_2\text{H}_2\text{O)}_a\text{(CH}_2\text{H}_2\text{O)}_b\text{PO}(\text{OC}_m\text{H}_2\text{O})_b(\text{OC}_m\text{H}_2\text{O})_a\text{OR}_3 \\
&\text{OZ}_3
\end{align*}
\]

dans laquelle \(R_1\) à \(R_3\) sont individuellement choisis parmi le groupe constitué de groupements d'hydrocarbures d'alkyle, d'alcényle, d'alkylaryle et d'aryalkyle linéaires ou ramifiés en C8 à C22, qui peuvent comprendre éventuellement des cycles carbocycliques ; dans laquelle les indices inférieurs \(a\) et \(b\) peuvent être individuellement égaux ou différents et sont des nombres entiers dans la plage allant de 0 à 8 à condition que la somme de \(a\) et de \(b\) soit inférieure ou égale à 8 ; dans laquelle les indices inférieurs \(n\) et \(m\) peuvent être individuellement égaux ou différents et sont des nombres entiers dans la plage allant de 2 à 4 ; dans laquelle \(Z_1\) et \(Z_2\) sont choisis individuellement parmi le groupe constitué d'un atome d'hydrogène, d'un métal alcalin, de l'ammoniaque et d'une alcanolamine selon la formule III suivante à condition qu'au moins un parmi \(Z_1\) et \(Z_2\) doit représenter une alcanolamine selon la formule III ; dans laquelle \(Z_3\) représente une alcanolamine selon la formule III ; dans laquelle \(Z_4\) ou \(Z_5\) est lié, lorsque \(Z_1\) ou \(Z_2\) représente un atome d'hydrogène, et dans laquelle \(OZ_1\), \(OZ_2\) ou \(OZ_3\) est dissocié comme une paire d'ions dans laquelle \(Z_1\), \(Z_2\) ou \(Z_3\) est chargé positivement et l'atome d'oxygène correspondant est chargé négativement à la suite de la protonation de l'atome d'azote d'ammoniaque par l'ion d'hydrogène dissocié du phosphate acide, lorsque \(Z_1\), \(Z_2\) ou \(Z_3\) représente un ammoniaque ou une alcanolamine selon la formule III ;
dans laquelle la formule III est la suivante :
dans laquelle R₄ à R₆ sont individuellement choisis parmi le groupe constitué d'un atome d'hydrogène et de groupements d'hydrocarbures d'alkyle, d'alcényle, d'alkylylaryle et d'arylalkyle linéaires ou ramifiés en C₁ à C₈, qui peuvent comprendre éventuellement des cycles carbocycliques ; dans laquelle au moins un des trois substituants amines est différent des deux autres et qui, pour au moins un des trois substituants amines, la somme de s et de t ou de v et de w ou de x et de y est égale ou supérieure à 1 et le R correspondant représente un atome d'hydrogène ; dans laquelle les indices inférieurs p et q, individuellement, peuvent être égaux ou différents et sont des nombres entiers dans la plage allant de 2 à 4 ; dans laquelle les indices inférieurs s, t, v, w, x et y, individuellement, peuvent être égaux ou différents et sont des nombres entiers dans la plage allant de 0 à 10 à condition que la somme de tous les indices inférieurs soit inférieure ou égale à 12 ; dans laquelle la composition a une teneur en solides de 60 % en poids ou plus et dans laquelle la teneur en acide phosphorique résiduel ou en alcool résiduel de la composition d'agents tensioactifs pouvant être pompée est inférieure à 8 % en poids de chaque composant résiduel.

2. Composition selon la revendication 1, dans laquelle le rapport molaire de l'ester de phosphate de monoalkyle selon la formule (I) à l'ester de phosphate de dialkyle selon la formule (II) est égal ou supérieur à 60 : 40.

3. Composition selon la revendication 1, dans laquelle, dans le sel de l'ester de phosphate de monoalkyle, le rapport molaire de la base au phosphate se situe dans la plage allant de 0,7 à 1,7, dans laquelle la base est ledit métal alcalin, ledit ammoniaque ou ladite alcanolamine selon la formule III.

4. Composition selon la revendication 1, laquelle est fluide à une température dans la plage allant d'environ 5 °C à 40 °C.

5. Composition selon la revendication 1, dans laquelle l' alcanolamine est sélectionnée parmi le groupe constitué d'une diéthanolisopropanolamine, d'une (2-(2-hydroxypropoxy)éthyl)diéthanolamine, d'une diméthylisopropanolamine, d'une dibutylisopropanolamine, d'une méthyldiéthanolamine, d'une éthylédithanolamine, d'une (di-2-hydroxyéthyl)toluidine, d'une di(2-hydroxyéthyl)benzylamine et d'une diéthanolisopropylamine.