EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 08.10.2008 Bulletin 2008/41

Application number: 03017647.3

Date of filing: 12.08.2003

Vehicle front-end body structure
Vorderwagenaufbau eines Fahrzeuges
Structure avant de carrosserie de véhicule

Designated Contracting States:
DE FR GB

Priority: 13.08.2002 JP 2002235432

Date of publication of application: 18.02.2004 Bulletin 2004/08

Proprietors:
• MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
 Tokyo 108-8410 (JP)
• MITSUBISHI JIDOSHA ENGINEERING KABUSHIKI KAISHA
 Kawasaki-shi, Kanagawa (JP)

Inventors:
• Awano, Masahiro,
 Mitsubishi Jidosha Kogyo Kabushiki Kaisha
 Minato-ku, Tokyo 108-8410 (JP)
• Takayanagi, Kazufumi,
 Mitsubishi Jidosha Kogyo Kabushiki Kaisha
 Minato-ku, Tokyo 108-8410 (JP)

Uchida, Takanobu,
Mitsubishi Jidosha Engineering Kabushiki Kaisha
Saiwai-ku, Kawasaki-shi, Kanagawa (JP)

Yokota, Yoshinori,
Mitsubishi Jidosha Engineering Kabushiki Kaisha
Saiwai-ku, Kawasaki-shi, Kanagawa (JP)

Kurokawa, Hiroyuki,
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Minato-ku, Tokyo 108-8410 (JP)

Vossius & Partner
Siebertstrasse 4
81675 München (DE)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a vehicle front-end body structure.

[0002] As recent demands for passenger vehicles, design for the passenger vehicles has been changed such that a deck is placed more forward or a “deck forward design” is adopted so as to expand a space within a passenger compartment. As a result, front side members of the vehicles tend to be shorter in length. Due to this, it is difficult to secure a sufficient impact absorption performance for a vehicle employing a crushable body for absorbing an impact at the time of crash.

[0003] For example, as shown in Fig. 3, front side members 100 are provided at a front end of a vehicle body on left and right sides thereof extending in a longitudinal direction of the vehicle. The front side members 100 are bent downwardly at positions directly below or in front of a front deck cross member 102 extending between left and right front pillars 101. The front side members 100 are then bent again to become horizontal so as to be level with a floor surface of the vehicle body.

[0004] The design for the front side members 100 allows the surface D of a toe board (or a dash panel) (refer to Fig. 4) to be set at a more forward position of the body thereby to attain an attempt to expand the space in the passenger compartment. On the other hand, the front side members 100 are designed not only to mainly carry input loads generated when the vehicle collides (frontal and offset collisions) but also to collapse in an accordion fashion at front ends thereof to thereby absorb impact energy.

[0005] With the front side members 100 constructed as has been described above, however, as shown in Figs. 4A-4C, there has been a risk that a substantially Z-shaped bending (a Z-bending) (a deformation of the front side member shown in Fig. 4B from a condition illustrated by broken lines to a condition illustrated by solid lines) is easy to be generated by virtue of an input (refer to an arrow in Fig. 4A) when the vehicle collides, whereby the receding distance of the toe board surface D becomes large. Furthermore, in the event that there is made an excessive input when the vehicle collides, there has been a risk that a portion 102 of the floor side member 100 which is disposed underneath a bottom side of the floor panel is buckled, as shown in Fig. 4C. In addition, as a result of the generation of the Z-bending in the front side member 100, there is caused a risk that the crushable length (the length of the portion of the front side member 100 which is designed to collapse in the accordion fashion so as to absorb the impact) of the front side member 100 is reduced, whereby the impact absorption amount is reduced, resulting in an increase in the deformation amount of the passenger compartment (cabin).

[0006] To cope with this, JP-A-4-262975 discloses a front-end body structure as follows: In the front-end body structure, in order to increase an impact repulsive force at a portion where the front side member is joined to a dash lower panel and to enhance the energy absorption amount through the plastic deformation of the front side member, an impact load inputted into a front bumper is transmitted from a primary reinforcement member of a radiator core support to a cowl box via a reinforcement portion of a hood ridge panel (the top of a wheel well panel) and a secondary reinforcement member. As a result, the moment around a supporting portion as a fulcrum acts on the secondary reinforcement member.

[0007] In the front-end body structure disclosed in the Japanese patent publication, however, the impact input transmission path becomes long (roundabout), and the number of components involved is increased. Accordingly, this calls for a drawback that the front-end body structure becomes complex, whereby the production costs become high.

[0008] EP-A-0 987 169, according to the preamble features of claim 1, discloses a front portion structure of an automobile vehicle body in which the end portions of the pillar braces are joined to the instrument panel reinforcement perpendicularly to each other.

[0009] An object of the invention is to provide an improved automobile front-end body structure.

[0010] The object is achieved with the subject-matter according to the claims. The invention has the advantage to increase the energy absorbing amount by suppressing the Z-bending of the front side members when the vehicle collides with a simple structural modification while attaining an attempt to create a more favorable design image by creating more space in the passenger compartment and placing the deck more forward.

[0011] According to the present invention, an input into the front side members when the vehicle collides is dissipated to the front pillars of the vehicle body via a dash cross member.

[0012] A quadrangular frame-like framework may be formed by the dash cross member in cooperation with the front deck cross member. In addition, the dash cross member may be made up of a single member.

[0013] Preferably, the dash cross member includes a pipe material. Accordingly, the strength of the vehicle front-end structure can be further increased, while the costs can be reduced.

[0014] The invention may provide a vehicle front-end body structure, including front side members provided along a left side and a right side of a front portion of a vehicle body; a front deck cross member provided between front pillars of the vehicle body, including joint portions for joining the front deck cross member to the front pillars; and a connecting member made up of a pipe material including end portions and a middle portion disposed between the end portions. The end portions are joined to the vicinities of the joint portions respectively. The middle portion is joined to the front side members respectively. Accordingly, an input into the front side members when the vehicle collides is dissipated to the front pillars of the body via the dash cross member. In addition, a quadrangular frame-like framework may be
formed by the dash cross member in cooperation with the front deck cross member. Furthermore, the dash cross member may be made up of a pipe material, whereby attempts to increase the strength further and to reduce the costs more can be attained.

Preferably, the front side members are provided with bent portions each bent downwardly as the front side members extend from side portions of an engine compartment of the vehicle body toward a floor surface of the vehicle body. The dash cross member is joined to the bent portions. Accordingly, an input into the front side members when the vehicle collides is effectively dissipated to the front pillars of the body via the dash cross.

Preferably, the dash cross member is formed as substantially a U-like shape opening upwardly and having a bottom side, the bottom side including corner portions at both ends thereof. The corner portions are joined to the bent portions. Accordingly, a quadrangular frame-like framework may be formed by the dash cross member in cooperation with the front deck cross member. Furthermore, the bent portions of the front side members and the vicinities of the joints between the front deck cross member and the front pillars of the body may be connected to each other by a side of the quadrangular frame-like framework.

The present invention may be more readily described with reference to the accompanying drawings which exemplify preferred embodiments:

Fig. 1 is a schematic perspective view of a front-end body structure according to an embodiment of the invention.

Figs. 2A and 2B are explanatory views explaining the function of the front-end body structure according to the same embodiment of the invention.

Fig. 3 is a schematic perspective view of a conventional front-end body structure.

Figs. 4A-4C are explanatory views showing a drawback inherent in the conventional front-end body structure.

An vehicle front-end body structure according to the invention will be described below based on an embodiment using the accompanying drawings.

Fig. 1 is a schematic perspective view of a front-end body structure according to an embodiment of the invention, and Figs. 2A and 2B are explanatory views explaining the function of the front-end body structure according to the same embodiment.

As shown in Fig. 1, front side members 1 each having a closed cross-sectional structure are provided at a front part of a body of a vehicle on left and right sides thereof in such a manner as to extend in a longitudinal direction of the vehicle. A front deck cross member 3 made up of a pipe material is provided between left and right front pillars 2 which act as side walls of the body in such a manner as to extend therebetween.

The side members 1 are bent to incline downwardly from a forward position which is apart a predetermined distance from a position directly below the front deck cross member 3 and are then bent again from the position directly below the front deck cross member 3 so as to become horizontal to thereby be substantially level with a floor surface of the body. This design allows a toe board surface D (refer to Fig. 4A) to be set at a more forward position of the body so as to attain an attempt to expand a space in a passenger compartment of the vehicle.

On the other hand, the front side members 1 are designed not only to mainly carry input loads generated when the vehicle collides (frontal collision, ODB (offset deformable barrier) collision) but also to absorb crash energy also generated then through accordion-like collapse of portions of the front side members which are forward of the bent portions A which are bent to incline downwardly.

Then, according to the embodiment, a dash cross member 4 is provided as a member for rigidly connecting the bent portions A of the front side members 1 which are bent to incline downwardly and vicinities of joints B between the front deck cross member 3 and the front pillars 2.

The dash cross member 4 is made up of a single pipe material (a single ember). A middle portion 4a thereof is disposed so as to extend horizontally between the left and right front side members 1 via welding brackets 5a, 5b, and left and right end portions 4b, 4c of the dash cross member 4 are bent upwardly so as to be welded to left and right end portions of the front deck cross member 3, respectively, whereby the dash cross member 4 and the front deck cross member 3 cooperate with each other to form a trapezoidal (quadrangular) frame-like framework.

Since the front-end body structure is constructed as described above, an input into the front side members 1 when the vehicle collides (frontal collision, ODB collision) is, as shown in Fig. 2, dissipated also to the left and right front pillars 2 via the dash cross member 4 (refer to Fig. 2A). A ratio of the load carried by rear portions of the front side members 1 and the front pillars 2 is preferably designed so as to become about 50 to 50.

In addition, the front deck cross member 3 and the dash cross member 4 which are made up of the pipe material effectively function to deal with various types of inputs with their axial forces and tensions. Namely, a large rearward force generated when the vehicle collides is borne by the axial force of the dash cross member 4 at the left and right end portions 4b, 4c thereof, and a lateral force such as an inward bending of the front side frame 1 is effectively borne through tensions (or contractive forces) of the middle portion 4a of the dash cross member 4 and the front deck cross member 3 (refer to Fig. 2B). In addition, since the dash cross member 4 and the front deck cross member 3 cooperate with each other so as to form the trapezoidal (quadrangular) frame-like framework, a more rigid body construction can be pro-
As a result, the energy absorbing amount can be increased by suppressing the Z-bending of the front side members when the vehicle collides with a simple structural modification in which the dash cross member 4 is newly provided while attaining an attempt to create a more favorable design image by creating more space in the passenger compartment and placing the deck more forward. Incidentally, it has been confirmed that the vehicle weight can be reduced by about 10 kilograms when compared with a case where an equivalent energy absorbing performance is tried to be secured using another reinforcement structure which uses no such member as the dash cross member 4 of the invention. Note that the invention is not limited to the embodiment, and it goes without saying that the invention may be modified variously without departing from the scope of the invention. For example, the material for the dash cross member 4 is not limited to the pipe material, and other steel materials may be used. In addition, the portion (the middle portion 4a) that is provided to extend between the left and right front side members may not be provided. Furthermore, the dash cross member 4 may be joined with bolts instead of through welding.

As has been described heretofore, according to the invention, since there is provided the automobile front-end body structure, characterized in that the member is provided which connects the front side members provided along the front side parts of the body of an automobile with the vicinities of the joints between the front deck cross member provided so as to extend between the front pillars of the body, whereby an input into the front side members when the vehicle collides is dissipated to the front pillars of the body via the member so provided, the energy absorbing amount can be enhanced by suppressing the Z-bending of the front side members when the vehicle collides with the simple structural modification while attaining an attempt to create a more favorable design image by creating more space in the passenger compartment and placing the deck more forward. In addition, since the member is made up of the single pipe member, the frame-like framework is constructed by the member in cooperation with the front deck cross member, whereby attempts to increase further the strength of the body structure and to reduce the costs more can both be attained.

According to the invention, since there is provided the automobile front-end body structure, wherein the front side members are bent downwardly as the front side members extend from the side portions of the engine compartment of the body toward the floor surface of the body so as to provide the bent portions, and wherein the member is connected to the bent portions, whereby an input into the front side members when the vehicle collides is effectively dissipated to the front pillars of the body via the member so provided, the body structure can be made more rigid.

According to the invention, since there is provided the automobile front-end body structure, wherein the member is provided in such a manner as to form substantially the U-like shape which opens upwardly, and wherein the corner portions at both the ends of the bottom side of the U-like shape are connected to the bent portions, whereby the quadrangular frame-like framework is constructed by the member in cooperation with the front deck cross member, the body structure can be made more rigid by the quadrangular frame-like framework. Furthermore, since the bent portions of the front side members and the vicinities of the joints between the front deck cross member and the front pillars of the body are connected to each other by the side of the quadrangular frame-like framework, an input into the front side members when the vehicle collides can be transmitted properly.

Claims

1. A vehicle front-end body structure, comprising:
 a pair of front side members (1) provided along
a left front side part and a right front side part of a vehicle body, respectively;
a front deck cross member (3) provided between front pillars (2) of the vehicle body, and connected with the front pillars (2) respectively at joint portions (B); and
a dash cross member (4) that connects the front side members (1) with the front deck cross member (3), wherein:

- end portions (4b, 4c) of the dash cross member (4) are respectively connected with the front deck cross member (3) at positions that are inward from the joint portions (B);
- characterized in that
 the dash cross member (4) and the front deck cross member (3) form a framework having a substantially trapezoidal shape, with a longer base portion thereof positioned above a shorter base portion thereof.

5. The vehicle front-end body structure as claimed in claim 1, wherein the dash cross member (4) includes a pipe material.

6. The vehicle front-end body structure as claimed in claim 1, wherein each of the front side members (1) is bent to provide an inclined portion (A) to which the dash cross member (4) is connected.

7. The vehicle front-end body structure as claimed in claim 3, wherein:

- the dash cross member (4) has a substantially U-like shape opened upwardly and having a middle portion (4a) which constitutes the shorter base portion of the trapezoidal framework; and
- each of ends of the middle portion (4a) which constitutes corners of the trapezoidal framework is joined to the inclined portion.

8. The vehicle front-end body structure as claimed in claim 1, wherein the dash cross member (4) has a middle portion (4a) is connected with the front side members (1) so as to bridge between the front side members (1).

Patentansprüche

1. Vorderwagenaufbau eines Fahrzeugs, aufweisend:

- ein Paar vorderer Längsträger (1), die entlang einem linken Vorderseitenabschnitt bzw. einem rechten Vorderseitenabschnitt einer Fahrzeugkarosserie angeordnet sind;
- einen Fronthaubenquerträger (3), der zwischen Vordersäulen (2) der Fahrzeugkarosserie angeordnet ist und mit den Vordersäulen (2) jeweils an Verbindungspunkten (B) verbunden ist; und
- einen Stirnwandquerträger (4), der die vorderen Längsträger (1) mit dem Fronthaubenquerträger (3) verbindet, wobei:

 Endabschnitte (4b, 4c) des Stirnwandquerträgers (4) jeweils mit dem Fronthaubenquerträger (3) an Positionen verbunden sind, die sich innerhalb der Verbindungsaabschnitte (B) befinden; dadurch gekennzeichnet, dass
 der Stirnwandquerträger (4) und der Fronthaubenquerträger (3) einen Rahmen mit einem im Wesentlichen trapezartigen Form ausbilden, wobei sein längerer Basisabschnitt über seinen kürzeren Basisabschnitt positioniert ist.

2. Vorderwagenaufbau eines Fahrzeugs nach Anspruch 1, wobei der Stirnwandquerträger (4) ein Rohrmaterial aufweist.

3. Vorderwagenaufbau eines Fahrzeugs nach Anspruch 1, wobei jeder von den vorderen Längsträgern (1) gebogen ist, um einen schrägen Abschnitt (A) bereitzustellen, mit welchem der Stirnwandquerträger (4) verbunden ist.

5. Vorderwagenaufbau eines Fahrzeugs nach Anspruch 3, wobei:
der Stirnwendquerträger (4) im Wesentlichen eine U-ähnliche Form besitzt, die nach oben hin geöffnet ist und einen mittleren Abschnitt (4a) besitzt, welcher den kürzeren Basisabschnitt des trapezförmigen Rahmens bildet; und jedes von den Enden des mittleren Abschnittes (4a), welches Eckens des trapezförmigen Rahmens bildet, mit dem schrägen Abschnitt verbunden ist.

6. Vorderwagenaufbau eines Fahrzeugs nach Anspruch 1, wobei der Stirnwendquerträger dafür konfiguriert ist, eine Zugkraft auf den Fronthaubenquerträger (3) auszuüben, wenn eine große axiale Kraft auf die vorderen Längsträger (1) aufgebracht wird.

7. Vorderwagenaufbau eines Fahrzeugs nach Anspruch 1, wobei der Stirnwendquerträger (4) ein einziges Element ist.

8. Vorderwagenaufbau eines Fahrzeugs nach Anspruch 1, wobei der Stirnwendquerträger (4) einen mittleren Abschnitt (4a) besitzt, der mit den vorderen Längsträgern (1) so verbunden ist, dass er eine Brücke zwischen den vorderen Längsträgern (1) erzeugt.

Revendications

1. Structure avant de carrosserie pour véhicule, comprenant :

 une paire d’éléments latéraux avant (1) prévus le long d’une partie latérale avant gauche et d’une partie latérale avant droite d’une carrosserie de véhicule, respectivement ;

 un élément transversal de tablier avant (3) prévu entre des montants avant (2) de la carrosserie de véhicule, et connecté aux montants avant (2) respectivement au niveau de portions de jonction (B) ; et

 un élément transversal de tableau (4) qui connecte les éléments latéraux avant (1) avec l’élément transversal de tablier avant (3), dans lequel :

 des portions terminales (4b, 4c) de l’élément transversal de tableau (4) sont respectivement connectées à l’élément transversal de tablier avant (3) à des positions qui sont à l’intérieur des portions de jonction (B) ;

 caractérisée en ce que

 l’élément transversal de tableau (4) et l’élément transversal de tablier avant (3) forment une ossature ayant une forme sensiblement trapézoïdale, dont la grande base est positionnée au-dessus de sa petite base.

2. Structure avant de carrosserie pour véhicule, selon la revendication 1, dans laquelle l’élément transversal de tableau (4) inclut un matériau en forme de tube.

3. Structure avant de carrosserie pour véhicule, selon la revendication 1, dans laquelle chacun des éléments latéraux avant (1) est cintré pour constituer une portion inclinée (A) à laquelle est connecté l’élément transversal de tableau (4).

4. Structure avant de carrosserie pour véhicule, selon la revendication 3, dans lequel chacun des éléments latéraux avant possède une première portion horizontale qui s’étend vers l’avant depuis la portion inclinée (A) et une seconde portion horizontale qui s’étend vers l’arrière depuis la position inclinée (A) le long d’un côté d’un plancher de la carrosserie de véhicule.

5. Structure avant de carrosserie pour véhicule, selon la revendication 3, dans laquelle :

 l’élément transversal de tableau (4) possède une forme sensiblement analogue à un U ouvert vers le haut et possédant une portion médiane (4a) qui constitue la portion de la petite base de l’ossature trapézoïdale ; et

 chacune des extrémités de la portion médiane (4a) qui constitue les coins de l’ossature trapézoïdale est jointe à la portion inclinée.

6. Structure avant de carrosserie pour véhicule, selon la revendication 1, dans laquelle l’élément transversal de tableau est configuré pour appliquer une force de traction à l’élément transversal de tablier avant (3) lorsqu’une force axiale importante est appliquée aux éléments latéraux avant (1).

7. Structure avant de carrosserie pour véhicule, selon la revendication 1, dans laquelle l’élément transversal de tableau (4) est un élément unique.

8. Structure avant de carrosserie pour véhicule, selon la revendication 1, dans laquelle l’élément transversal de tableau (4) comprend une portion médiane (4a) qui est connectée aux éléments latéraux avant (1) de manière à réaliser un pontage entre les éléments latéraux avant (1).
Fig. 2A

INPUT WHEN VEHICLE COLLIDES

Fig. 2B

TENSION TENSION

AXIAL FORCE AXIAL FORCE

COMPRESSIVE FORCE
Fig. 4A

INPUT WHEN VEHICLE COLLIDES

Fig. 4B

Fig. 4C
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 4262975 A [0006]
- EP 0987169 A [0008]