Internal telescopic guide for an inflatable air cushion
Innere teleskopische Führung für ein aufblasbares Luftkissen
Guide interne téléscopique pour un coussin pneumatique gonflable

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

Priority: 02.08.2002 US 209974

Date of publication of application:
04.02.2004 Bulletin 2004/06

Proprietor: RADI MEDICAL SYSTEMS AB
754 50 Uppsala (SE)

Inventor: Akerfeldt, Dan
755 92 Uppsala (SE)

Representative: Lindgren, Anders et al
Dr. Ludwig Brann Patentbyra AB,
P.O. Box 1344
75143 Uppsala (SE)

References cited:
WO-A-01/85062
WO-A-98/34547
SU-A-1 386 172

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the invention

[0001] The present invention relates generally to air cushion units used in conjunction with compression devices for stopping bleeding from puncture wounds, and in particular to an inflatable air cushion unit being provided with a telescopic guide which ensures that the air cushion during pressurizing unfolds regularly, thereby preventing the contact area of the air cushion from moving away from the wound site.

Background of the invention

[0002] The present invention is an improvement of the air cushion units disclosed in the present applicant’s WO 94/05221, US 5,542,427 and WO 98/34547 publications, where the latter discloses air cushions provided with a reinforcement portion. The air cushion unit according to these publications includes a base plate, the upper side of which is attached to the arch of a femoral compression device, such as the femoral compressor disclosed in EP 0 462 088 and US 5,307,811, which are assigned to the present applicant. On the base plate there is an inflatable air cushion, which is mounted by gluing or fusing along the circumference of the base plate to provide an airtight sealing between the air cushion and the base plate. The cushion is made of a material that is folded such that the air cushion when not inflated, i.e. when it is packaged, occupies as little volume as possible.

[0003] A potential problem with these prior art air cushions is that during the pressurizing phase they have a tendency to unfold unevenly, i.e. the folds do not unfold continuously and regularly but stepwise in an irregular way. These irregular movements of the air cushion during pressurizing may move the entire compression device away from its correct position over the femoral or other artery, which may cause unnecessary bleeding. The irregular behaviour of a compression device provided with such an air cushion unit may also give an inexperienced user a feeling that something is wrong, which - besides being uncomfortable in itself — may call for frequent checks that everything is in order, which extends the pressurizing time and may cause extra bleeding. Another problem is that the air cushion when in a semi-inflated state has a tendency to behave like a ball joint in such a way that the centre of the cushion surface moves around the wound site. In the worst case, this ball-joint movement may cause the air cushion to roll off the wound site, which again gives rise to unnecessary bleeding.

The document SU-A-1,386,172 discloses a telescopic member within an envelope, but the device is actuated by magnets.

Summary of the invention

[0004] The object of the present invention is therefore to provide an improved air cushion unit that during pressurizing unfolds in a regular way without any undesired movements, which makes a compression device provided with such an air cushion unit more user-friendly and eliminates the risk that the air cushion moves away from the wound site.

[0005] This object is achieved by providing an improved air cushion unit, preferably of a single use type, for use together with a femoral (or other artery or vessel) compressor. The air cushion unit, which is to be attached to the arch (or other stiff or flexible member such as a strap) of the femoral compressor, comprises a base plate and an inflatable air cushion attached to the base plate. According to the present invention, the air cushion unit is provided with a telescopic guide, which is arranged inside the air cushion and extends from the base plate to the top of the air cushion.

Brief description of the drawings

[0006] Fig. 1 is a cross-sectional view of a prior art air cushion unit.

Fig. 2 is a cross-sectional view of the air cushion unit of Fig. 1 in a semi-inflated state, and illustrates the irregular unfolding of the air cushion.

Fig. 3 illustrates schematically the ball-joint movement of a semi-inflated air cushion according to prior art.

Fig. 4 is a cross-sectional view of an air cushion unit according to the present invention.

Fig. 5 is a cross-sectional view of the air cushion unit of Fig. 4 in an inflated state, and illustrates the regular unfolding of the air cushion.

Fig. 6 is a cross-sectional view of a second embodiment of an air cushion unit according to the present invention.

Fig. 7 is a cross-sectional view of the air cushion unit of Fig. 6 in an inflated state.

Description of the invention

[0007] The air cushion unit according to the present invention has the same basic design as the ones disclosed in the above referenced WO 94/05221 or WO 98/34547, the main difference being that the air cushion disclosed in WO 98/34547 is provided with a reinforcement portion integral with the cushion surface. For the sake of simplicity, the air cushion according to the present invention as well as the air cushion according to prior art are described and illustrated without this reinforcement...
portion, but it should be understood that such a reinforce-
ment portion could be provided also for the present air
cushion.

[0008] A prior art air cushion unit 1 is illustrated in
cross-section in Fig. 1 and comprises a base plate 2, on
which an inflatable air cushion 3 is mounted by gluing or
fusing along the periphery of the base plate 2. In use, the
base plate 2 is attached to the arch (or other portion) of
a femoral (or other vessel) compressor, such as the one
disclosed in EP 0 462 088 and US 5,307,811. The at-
tachment of the cushion unit 1 to the femoral compressor
is done by a snap attachment, which is fully disclosed in
the above mentioned application WO 94/05221, and will
therefore not be described herein. Fig. 1 shows the air
cushion unit 1, which preferably is a replaceable and sin-
gle use unit, in a state before use, wherein the material
from which the air cushion 3 is made is folded at A, A'
and B, B', so that the air cushion unit 1 occupies as little
volume as possible.

[0009] Fig. 2 shows the air cushion 3 in a semi-inflated
state, and illustrates the above-mentioned problem that
the prior art air cushion 3 during pressurizing unfolds ir-
regularly, which - in this particular case - makes the air
cushion 3 to adapt the deformed shape shown in the
figure, where the folds at A, B have been unfolded while
the folds at A', B' still are intact. The irregular behaviour
of the air cushion 3 is also transmitted to a femoral com-
pressor on which the air cushion unit 1 is attached, which
in the worst case may cause the femoral compressor to
move away from its correct positioning over the femoral
artery, thereby causing unnecessary bleeding. Even
though the risk that the femoral compressor actually
moves during inflation in practice has proven to be very
small, a non-negligible disadvantage with the irregular
and stepwise expansion of the air cushion 3 is that it may
give an inexperienced user (e.g. a nurse or a doctor) the
impression that something is going wrong during the in-
flation procedure, which, in turn, calls for frequent (and
mostly unnecessary) checks that everything is in order.

[0010] Fig. 3 is a schematic top view of the prior art air
cushion unit 1 in a semi-inflated state, and illustrates schematically the above-mentioned problem that the air
cushion 3 when in a semi-inflated state can move like a
ball joint in that the top surface of the air cushion 3 moves
around the centre of the air cushion 3. This ball joint
movement, which may be in the clockwise or coun-
ter-clockwise direction, is indicated by dashed lines and
by the double-arrow C. In the worst case, this undesired
movement may cause the air cushion 3 to slip away from
its correct positioning at the puncture site, which again
leads to unnecessary bleeding or at least to additional
checks that the femoral compressor, on which the air
cushion unit 1 is attached, is correctly positioned at the
femoral artery.

[0011] In general terms, the invention resides in con-
necting the air cushion and the base plate with a tele-
oscopic guide structure, having sufficient rigidity, such that
when inflated, the drawback with the prior art devices of
being subject to a risk of uneven unfolding, or of the ten-
dency of moving around the wound site is reduced or
even eliminated.

[0012] In Fig. 4 is illustrated an air cushion unit 4 ac-
cording to the present invention. The air cushion unit 4
comprises a base plate 5 and an air cushion 6, which -
as in the prior art design - may be and preferably is at-
tached to the base plate 5 by gluing or fusing along the
periphery of the base plate 5. As before, the air cushion
unit 4 is designed for attachment to the arch (or other
portion) of a femoral (or other vessel) compressor, such
as the compressor disclosed in EP 0 462 088 and US
5,307,811. However, it is also possible and within the
scope of the invention to provide an integrated device
where arch and cushion are made in one piece.

[0013] In contrast to the prior art air cushion unit 1 de-
scribed above, the air cushion unit 4 comprises also an
internal telescopic guide 7. The telescopic guide 7, which
is inside the air cushion 6 and extends from the base
plate 5 to the top of the air cushion 6, comprises a first
rod 8 and a second rod 9 arranged in a sliding relation
to each other, said second rod acting as a guiding mem-
ber for said first rod. In the embodiment shown in Fig. 4,
the first rod 8, which extends from the base plate 5, is
hollow and is made integrally with the base plate 5, while
the second rod 9, which extends from the top of the air
cushion 6 and into the hollow first rod 8, is attached to
the air cushion 6 by a pin 10, which projects a short dis-
tance into the otherwise solid second rod 9. The inner
diameter of the first rod 8 is approximately equal to the
diameter of the second rod 9.

[0014] Fig. 5 shows the air cushion 6 in an inflated
state, and illustrates that the air cushion 6 during pres-
surizing unfolds in a continuous and regular way. As can
be seen from Fig. 4 and Fig. 5, the second rod 9 can
telecope into and out from the first rod 8, thereby pro-
viding the telescopic guide 7 with a variable length that
corresponds to the degree of expansion of the air cushion
6. Thus, when the air cushion 6 is not inflated, such as
when the air cushion unit 4 is packaged, the second rod
9 of the telescopic guide 7 is completely, or almost com-
pletely, telescoped into the first rod 8, and when the air
cushion 6 is inflated, the second rod 9 projects out from
the first rod 8, i.e. the guide 7 is telescoped. Due to the
variable length of the internal telescopic guide 7, the air
cushion 6 is provided with a support that acts throughout
the pressurizing of the air cushion 6. Providing the air
cushion unit 4 with the internal telescopic guide 7 there-
fore prevents the irregular unfolding of the air cushion
6 and eliminates the possibility of any ball joint movements
of the air cushion 6.

[0015] Fig. 6 and Fig. 7 illustrate a second embodiment
of an air cushion 14 unit according to the present inven-
tion. In Fig. 6, the air cushion unit 16 is shown in a col-
lapsed state, while Fig. 7 illustrates the air cushion unit
14 in an expanded state. The air cushion unit 14 com-
prises a base plate 15 and an air cushion 16, which is
attached to the base plate 15 by gluing or fusing along
the periphery of the base plate 15. As before, the air cushion unit 14 is designed to be attached to the arch (or other portion) of a femoral (or other vessel) compressor, such as the compressor disclosed in EP 0 462 088 and US 5,307,811. As can be seen from a comparison of Fig. 4 and Fig. 6, the air cushion 16 of Fig. 6 differs from the air cushion 6 of Fig. 4 in that the former has a more conventional bellows-like shape. The air cushion unit 14 further comprises a telescopic guide 17, which comprises a first rod 18 and a second rod 19. In this embodiment, the first rod 18 is hollow and is made integrally with the base plate 15 in such a way that the first rod 18 protrudes from both sides of the base plate 15. The second rod 19 is attached a small distance from the top of the air cushion 16 and can telescope into and out from the first hollow rod 18. Because of the extension of the first rod 18 on the backside of the base plate 15, i.e. on the side opposite to the air cushion 16, the first rod 18 can be made longer than the cross-sectional height of the air cushion 16 when in a collapsed state, which, in turn, means that the effective length of stroke for the telescopic guide 17 is increased. Notwithstanding the fact that the first rod 18 extends also from the backside of the base plate 15, the actual guidance of the air cushion 16 is performed from the inside of the air cushion 16, and herein also the telescopic guide 17 is referred to as an internal telescopic guide 17.

[0016] The embodiments illustrated in the drawings both comprise cylindrical rods making up the telescopic guide means. However, it is within the inventive concept to design the guide means in many other ways, such as with rods having other cross-sections, e.g. square, rectangular, cross-shaped, etc. Also, it is not strictly necessary that the hollow rod member entirely encloses the first rod that runs inside the hollow rod. Instead, e.g. for a square rod, it is possible to make a guiding structure consisting of e.g. plane parallel walls in sliding contact with the first rod. These walls can be provided with edges that would prevent the sliding rod member to deflect laterally.

[0017] For the purpose of the present invention, the most important feature of the embodiment illustrated in Fig. 6 and Fig. 7 is, however, the attachment of the second rod 19 near the top of the air cushion 16. At the top end of the second rod 19, i.e. at the end that faces the air cushion 16, the second rod 19 is provided with a ring-shaped member 20, which is attached to the inner wall of the air cushion 16, such that a small distance is provided between the top of the air cushion 16 and the top end of the second rod 19. The advantage of the radially enlarged attachment area that is provided by means of the ring-shaped member 20 is an enhanced stability for the air cushion unit 14 as well as further increased resistance against the ball joint movements that could occur with an air cushion unit according to the prior art. Further, because of the distance between the top end of the second rod 19 and the top of the air cushion 16, the top portion of the air cushion 16 is still soft and pliable, which is comfortable for a patient and counteracts any tendency of the air cushion unit 16 to roll off its correct position at a puncture site.

[0018] Before finishing the description of the operation of the telescopic guide, a few comments can be made. It should be understood that other ways of attaching the rods to the base plate and air cushion, respectively, could be employed. For example, the second rod could be inserted in a recess formed in the inner surface of the air cushion, or the second rod as well as the first rod could be attached to the air cushion and base plate, respectively, by gluing. It is also possible to let the rod that extends from the air cushion to be hollow, so that the other rod, which extends from the base plate, can be inserted therein. The important feature is that the air cushion unit according to the present invention is provided with an internal telescopic guide having a variable length that corresponds to the degree of expansion of the air cushion. For this purpose, it is also conceivable that the telescopic guide, as an alternative, comprises more than two rods that can telescope into and out from each other. Whether two or more rods are used for the telescopic guide, the number of rods as well as the length of each rod should preferably be chosen in such a way that when the telescopic guide is in its completely compressed state, the length of the telescopic guide should correspond to the cross-sectional height of the folded (padded) air cushion. On the other hand, the maximum length of the telescopic guide should well cover the cross-sectional height of the completely inflated air cushion, so that a small overlap exists between the ends of the rods, thereby providing a stable and inflexible construction for the internal telescopic guide.

[0019] Although the present invention has been described with reference to a specific embodiment, also shown in the appended drawings, it will be apparent for those skilled in the art that many variations and modifications can be done within the scope of the invention as described in the specification and defined with reference to the following claims. For example, the guide may include at least three rods, the rods having increasing diameters, wherein at least two of the rods are hollow, and a rod having a smaller diameter is slidably positioned inside a rod having a larger diameter, so that telescopic action is achieved. As another example, the cushion may be inflated or filled with gases other than air, or with liquid(s).

Claims

1. A femoral compression air cushion unit (4; 14) comprising a base plate (5; 15) and an inflatable air cushion (6; 16) attached to the base plate (5; 15), wherein the air cushion unit (4; 14) comprises a connector member provided in the base plate (5; 15) for connecting a pressurizing means to inflate the air cushion (6; 16);
characterized in that it comprises an internal telescopic guide (7; 17) connecting base plate (5; 15) with the air cushion (6; 16); the telescopic guide (7; 17) comprising a first rod (8; 18) arranged in a sliding relation to a guiding member (9; 19), said rod (8; 18) and said guiding member being telescopically connected to each other.

2. A femoral compression air cushion unit (4; 14) according to claim 1, characterized in that the first rod (8; 18) is hollow and that the guiding member is a second rod (9, 19), slidably positioned inside the first rod (8; 18), so that telescopic action of the telescopic guide (7; 17) is achieved.

3. A femoral compression air cushion according to claim 1, characterized in that the telescopic guide comprises at least three rods, which are telescopically connected to each other.

4. A femoral compression air cushion unit according to claim 3, characterized in that the rods have increasing diameters and at least two rods are hollow, and wherein a rod having a smaller diameter is slidably positioned inside a rod having a larger diameter, so that telescopic action of the telescopic guide is achieved.

5. A femoral compression air cushion unit (4) according to any of claims 1 to 4, characterized in that the second end of the telescopic guide (7) is connected to the top of the air cushion (6).

6. A femoral compression air cushion unit (14) according to any of claims 1 to 5, characterized in that the second end or the telescopic guide (17) is provided with a ring-shaped member (20), which is attached to an inner wall of the air cushion (16) such that a distance is provided between the second end of the telescopic guide (17) and the top of the air cushion (16).

7. A femoral compression air cushion unit (4) according to any of claims 1 to 6, characterized in that the shortest length of the telescopic guide (7) corresponds to the cross-sectional height of the air cushion (6) in a folded state, and that the longest length of the telescopic guide (7) at least is as long as the cross-sectional height of the air cushion (6) in a completely inflated state.

8. A femoral compression air cushion unit (14) according to any of claims to 8, characterized in that a first rod (18) is hollow and extends a distance away from the base plate (15), on the side of the base plate (15) that is opposite to the air cushion (16).

9. A femoral compression air cushion unit according to any preceding claim, characterized in that the internal telescopic guide (7; 17) has a first end and a second end, the first end being connected to the base plate (5; 15) and the second end being connected to the air cushion (6; 16).

Patentansprüche

1. Femorale Kompressions-Luftkisseneinheit (4, 14), umfassend eine Basisplatte (5, 15) und ein aufblasbares Luftkissen (6, 16), das an der Basisplatte (5, 15) angebracht ist, wobei die Luftkisseneinheit (4, 14) ein Verbindungselement umfasst, das in der Basisplatte (5, 15) zur Verbindung einer Druckvorrichtung zum Aufblasen des Luftkissens (6, 16) vorgesehen ist; dadurch gekennzeichnet, dass es eine interne teleskopische Führung (7, 17) umfasst, die die Basisplatte (5, 15) mit dem Luftkissen (6, 16) verbindet, wobei die teleskopische Führung (7, 17) einen ersten Stab (8, 18) umfasst, der in einer verschiebbaren Beziehung mit einem Führungselement (9, 19) angeordnet ist, wobei der Stab (8, 18) und das Führungselement miteinander teleskopisch verbunden sind.

2. Femorale Kompressions-Luftkisseneinheit (4, 14) nach Anspruch 1, dadurch gekennzeichnet, dass der erste Stab (8, 18) hohlt und dass das Führungselement ein zweiter Stab (9, 19) ist, der verschleißbar innerhalb des ersten Stabs (8, 18) positioniert ist, sodass eine teleskopische Wirkung der teleskopischen Führung (7, 17) erreicht wird.

3. Femorale Kompressions-Luftkisseneinheit nach Anspruch 1, dadurch gekennzeichnet, dass die teleskopische Führung mindestens drei Stäbe umfasst, die teleskopisch miteinander verbunden sind.

4. Femorale Kompressions-Luftkisseneinheit nach Anspruch 3, dadurch gekennzeichnet, dass die Stäbe zunehmende Durchmesser aufweisen und mindestens zwei Stäbe hohlt sind, wobei ein Stab mit einem kleineren Durchmesser gleitend innerhalb eines Stabs mit einem größeren Durchmesser positioniert ist, sodass eine teleskopische Wirkung der teleskopischen Führung erreicht wird.

5. Femorale Kompressions-Luftkisseneinheit (4) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das zweite Ende der teleskopischen Führung (7) mit der Oberseite des Luftkissens (6) verbunden ist.

6. Femorale Kompressions-Luftkisseneinheit (14) nach einem der Ansprüche 1 bis 5, dadurch ge-
5. Unité de coussin d’air pour compression fémorale selon la revendication 4, caractérisée en ce que les tiges ont des diamètres croissants et au moins deux tiges sont creuses, et dans laquelle une tige ayant un plus petit diamètre est disposée avec possibilité de coulissage à l’intérieur d’une tige ayant un plus grand diamètre, de telle sorte qu’un effet télescopique du guide télescopique soit obtenu.

6. Unité de coussin d’air (4) pour compression fémorale selon l’une quelconque des revendications 1 à 5, caractérisée en ce que la deuxième extrémité du guide télescopique (17) est reliée au sommet du coussin d’air (6).

7. Unité de coussin d’air (4) pour compression fémorale selon l’une quelconque des revendications 1 à 6, caractérisée en ce que la longueur la plus courte du guide télescopique (7) correspond à la hauteur en section transversale du coussin d’air (6) à l’état plié, et en ce que la longueur la plus longue du guide télescopique (7) est au moins aussi grande que la hauteur en section transversale du coussin d’air (6) à l’état complètement gonflé.

8. Unité de coussin d’air (4) pour compression fémorale selon l’une quelconque des revendications 1 à 8, caractérisée en ce que l’épaisseur de l’élément de guidage (9 ; 19) est telle que l’élément de guidage est une deuxième tige (9 ; 19), positionnée de manière à couliser à l’intérieur de la première tige (8 ; 18), de telle sorte qu’un effet télescopique du guide télescopique (7 ; 17) soit obtenu.

9. Unité de coussin d’air pour compression fémorale selon l’une quelconque des revendications précédentes, caractérisée en ce que le guide télescopique interne (7 ; 17) comporte une première extrémité et une deuxième extrémité, la première extrémité étant reliée à la plaque de base (5 ; 15) et la deuxié-
me extrémité étant reliée au coussin d'air (6 ; 16).