INHIBITORS OF CYCLIN DEPENDENT KINASES AS ANTI-CANCER AGENT

HEMMER VON CYCLINABHÄNGIGEN KINASEN ALS MITTEL GEGEN KREBS

INHIBITEURS DE KINASES DEPENDANTES DES CYCLINES EN TANT QU’AGENT ANTICANCEREUX

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GE IT LU MC NL PT SE TR

Priority: 29.03.2001 GB 0107901

Date of filing: 26.03.2002

Application number: 02718319.3

Date of publication and mention of the grant of the patent:
20.06.2007 Bulletin 2007/25

Inventors:
- FISCHER, Peter, Martin
 Angus DD11 2EN (GB)
- WANG, Shudong
 Scotland DD8 2RZ (GB)
- WOOD, Gavin
 Scotland KY15 5DP (GB)

Proprietor: Cyclacel Limited
London N1 7JQ (GB)

Representative: Clyde-Watson, Zöe et al
D Young & Co
120 Holborn
London EC1N 2DY (GB)

References cited:
- WO-A-00/39101
- WO-A-97/19065
- EP-A-0 588 762
- WO-A-95/09852

Remarks:
The file contains technical information submitted after the application was filed and not included in this specification.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to 2-substituted 4-heteroaryl-pyrimidines, their preparation, pharmaceutical compositions containing them, and their use in the treatment of proliferative disorders such as cancer, leukemia, psoriasis and the like.

Certain 4,5,6-substituted-N-(substituted-phenyl)-2-pyrimidineamines having antiasthmatic properties are disclosed in EP-A-233,461. Certain 4-heteroaryl-N-(3-substituted-phenyl)-2-pyridineamines possessing anti-proliferative properties and inhibiting protein kinases C, epidermal growth factor receptor-associated tyrosine protein kinase (EGF-R-TPK), as well as CDK1/cyclin B have been disclosed in WO95/09847 wherein the exemplified heteroaryl are pyridyl and indolyl.

WO 95/09852 (Ciba Geigy AG) relates to N-(fluoroalkoxyphenyl)-2-pyrimidine-amine derivatives which are useful in the treatment of proliferative disorders. These compounds may bear 4-pyridyl, N-oxide, 4-pyridyl, 3-indolyl, isoquinolinyl, thiienyl or 1H-pyrrolyl substituents in the 4-position of the pyrimidine ring.

It is an aim of the present invention to provide a further class of N-phenyl-2-pyrimidine anti-proliferative compounds. The compounds of the present invention have surprisingly been found to not to be inhibitors of protein kinase C. As discussed hereinafter, their activity may be demonstrated by inhibition of cell proliferation in cell lines and/or inhibition of cyclin dependent kinase enzymes.

Summary of the invention

The first aspect of the present invention relates to compounds of general formula I:

![Chemical Structure](image)

wherein:

- one of X³ and X² is NR¹⁰ and the other of X¹ and X² is CR⁹, and wherein the pyrrol radical is mono-, di- or tri-substituted;
- Z is NH, NHCO, NHSO₂, NHCH₂, CH₂, CH₂CH₂, or CH=CH;
- R¹, R², R³, R⁹ and R¹⁰ are independently H, alkyl, aryl, aralkyl, heterocycle, halogeno, NO₂, CN, OH, alkoxy, aryloxy, (R")N₂H₂, (R")NH·R², (R")N·N-(R²)(R³), NH-aryl, N-(aryl)₂, COOH, COO-R¹, COO-aryl, CONH₂, CONH-R², CON-(R²)(R³), CONH-aryl, CON-(aryl)₂, SO₃H, SO₂NH₂, CF₃, CO-R², or CO-aryl, wherein alkyl, aryl, aralkyl and heterocycle groups may be further substituted with one or more groups selected from halogeno, NO₂, CN, OH, O-methyl, NH₂, COOH, CONH₂ and CF₃;
- R⁴, R⁵, R⁶, R⁷, and R⁸ are independently from each other H, substituted or unsubstituted lower alkyl, halogeno, NO₂, CN, OH, substituted or unsubstituted alkoxy, NH₂, NH-R², N-(R²)(R³), COOH, COO-R¹, CONH₂, CONH-R², CON-(R²)(R³), SO₃H, SO₂NH₂, or CF₃;
- wherein R² and R³ are each independently alkyl groups that may be the same or different, each R" is independently an alkylene group, and n is 0 or 1; and pharmaceutically acceptable salts thereof.
with the proviso that when X₁ is NMe, X₂ is CH, Z is NH, R³ is H or C₁₋₃ alkyl, R⁴ to R⁸ are independently from each other, unsubstituted C₁₋₄ alkyl, halogeno, OH, unsubstituted C₁₋₃alkoxy, NH₂, NH-(C₁₋₃ alkyl), N-(C₁₋₃ alky1)(C₁₋₃ alky1), COOH, COO(C₁₋₃ alkyl), CF₃, then R¹ and R² are not both H,

Description of the Preferred Embodiments

[0007] As used herein the term "alkyl" includes both straight chain and branched alkyl groups having from 1 to 8 carbon atoms, e.g. methyl, ethyl propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl etc and the term "lower alkyl" is similarly used for groups having from 1 to 4 carbon atoms.

[0006] The term "aryl" is used to include groups having from 6 to 10 carbon atoms, e.g. phenyl, naphthyl etc.

[0005] The term "aralkyl" is used as a conjunction of the terms alkyl and aryl as given above.

[0010] The compounds of formula I are those bearing a mono-, di- or trisubstituted pyrrol radical, attached to the pyrimidine ring through one of the ring carbon atoms. Preferably, the pyrrol radical is a pyrrol-3-yl group (i.e. X¹ is CR² and X² is NR³, preferably NH) and is di- or tri-substituted.

[0011] The pyrrol group may be substituted by R¹, R², R³ and R¹⁰. Preferably, R¹, R² and where appropriate R³ and R¹⁰ are independently H, alkyl, aryl, heterocycle, halogeno, NO₂, CN, OH, alkoxy, aryloxy, (R")nNH₂, (R")nNH-R, (R")nN-(R')(R") or COO-R, where R is alkyl, aryl and heterocyclic groups and R’ is hydrogen.

[0012] More preferably, R¹ is H or CN. Preferably, R² and R³ are both lower alkyl, preferably methyl.

[0013] Preferably, R¹ is H, CN, halogeno, nitro, alkylamino or a heterocyclic group. When R¹ is halogeno, it is preferably selected from chloro or broman. When R¹ is alkylamino, it is preferably diethylaminomethyl or dimethylaminomethyl.

[0014] Even more preferably, when R¹ is as preferably described, R² and R³ are both lower alkyl, preferably methyl.

[0015] The group Z is preferably NH, NHSO₂ or NHCH₂, most preferably NH.

[0016] The phenyl substituents R⁴-R⁸ are each independently selected from H, halogeno, nitro, amino, aminoalkyl, hydroxy, alkoxy, carbamoyl, sulfamyl, CN, (R")', COO-(R")', CONH-(R")', CON-(R")', SO₂H, SO₂N₂H₂, CF₃, CO-R, or CO-aryl, wherein alkyl, aryl and heterocyclic groups may be further substituted with one or more groups selected from halogeno, NO₂, CN, OH, O-methyl, NH₂, COOH, CONH₂ and CF₃.

[0017] More preferably, R⁴, R⁵, R⁶, R⁷ and R⁸ are independently from each other, unsubstituted lower alkyl, halogeno, NO₂, CN, OH, N-(R")', or CF₃; wherein R" and R' are each independently alkyl groups that may be the same or different and n is 0 or 1;

[0018] Even more preferably, R⁴ to R⁸ are selected independently from H, F, NH₂, NO₂, OH, Cl, Br, I, CN, CH₂OH, CF₃ and dimethylamino. Within the preferences for R⁴ to R⁸, R⁴ and R⁸ are most preferably hydrogen.

[0019] Thus, particularly preferred embodiments include 2-[N-(phenyl)]-4-(2,4-dimethyl[pyrroI]-3-yl)pyrimidinamines in which the phenyl group is 2-, 3- or 4-substituted by at least one of H, F, NH₂, NO₂, OH, Cl, Br, I, CN, CH₂OH, CF₃ and dimethylamino. Within the preferences for R⁴ to R⁸, R⁴ and R⁸ are most preferably hydrogen.

[0020] Within this particular embodiment, the phenyl group is preferably mono-substituted by F, NH₂, NO₂, OH, Cl, Br, I, CH₂OH, CN, CF₃ or OMe at any of the 2,3 or 4-positions, or di-substituted by 2,4-difluoro, 3,5-difluoro, 3,4-difluoro, 2,4-dichloro, 3,5-dichloro, 3,4-dichloro or 4-chloro-3-trifluoromethyl.

[0021] Further particularly preferred embodiments include 2-(N-(phenyl))-4-(3,5-dimethyl-1H-pyrrolo-2-carbonitrile)pyrimidinamines in which the phenyl group is 2-, 3- or 4-substituted by at least one of F, N(CH₃)₂, NO₂, OH, Cl, Br, I or CF₃.

[0022] Within this particular embodiment, the phenyl group is preferably mono-substituted by F, N(CH₃)₂, NO₂, OR, OR or CF₃ at any of the 3 or 4-positions, or di-substituted by 4-methyl-3-nitro, 3-iodo-4-methyl, 4-chloro-3-methyl, 3-hydroxy-4-methyl, 4-fluoro-3-methyl or 4-methyl-3-fluoro.

[0023] Further more particularly preferred embodiments include;

- 2-[N-(phenyl)]-4-(2,4-Dimethyl-5-nitro-1H-pyrroIl-3-yl)-pyrimidinamines wherein the phenyl group is preferably mono-substituted by F, N(CH₃)₂, NO₂, OH or CF₃ at the 4-position, preferably by a fluoro or N(CH₃)₂ group.

- 2-[N-(phenyl)-]4-(2,4-dimethyl-5-halogeno-1H-pyrroIl-3-yl)-Pyrimidinamines

wherein the phenyl group is preferably mono-substituted by F, N(CH₃)₂, NO₂, OH, I or CF₃ at the 3 or 4-positions, preferably by a 4-fluoro or 3-nitro groups the halogeno group preferably being chloro or broma.

- 2-[N-(phenyl)]-4-(2,4-dimethyl-5-dialkylaminoalkyl-1H-pyrroIl-3-yl)-pyrimidinamines wherein the phenyl group is preferably mono-substituted by F, N(CH₃)₂, NO₂, OH, I or CF₃ at the 4-position, preferably by fluoro, the dialkylaminoalkyl.
group preferably being diethylaminomethyl or dimethylaminomethyl.

- 2-[N-(phenyl)]-4-(2,4-dimethyl-5-(heterocycle)-1H-pyrrol-3-yl)-pyrimidinamines

wherein the phenyl group is preferably mono-substituted by F, N(CH₃)₂, NO₂, OH, I or CF₃ at the 4-position, preferably by fluoro, the heterocycle group preferably being 5-morpholin-4-ylmethyl or 4-methyl-piperazin-1-ylmethyl.

[0024] Most preferably, the compounds of the present invention are selected from;

[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-4-fluoro-phenyl)-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-3-nitro-phenyl)-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-4-iodo-phenyl)-amine
[4-(3-Difluoro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
[4-(Chloro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
[3,5-Difluoro-phenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-ylamo]-phenol
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-ylamo]-phenol
[2,4-Difluoro-phenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
[2,4-Dichloro-phenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
[4-Chloro-3-trifluoromethyl-phenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(trifluoromethyl-phenyl)]-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-trifluoromethyl-phenyl)]-amine
[3-Chloro-phenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
N-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-N,N-dimethyl-benzene-1,4-diamine
[3-Chloro-4-iodo-phenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-fluoro-4-iodo-phenyl)]-amine
[3,5-Dimethyl-4-[2-(3-nitro-phenylamino)]-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile
[4-[2-(4-Fluoro-phenylamino)]-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile
[4-[2-(4-Hydroxy-phenylamino)]-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile
[3,5-Dimethyl-4-[2-(4-trifluoromethyl-phenylamino)]-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile
[4-[2-(4-Iodo-phenylamino)]-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile
[4-[2-(3-Hydroxy-phenylamino)]-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile
[4-[2-(3-Iodo-phenylamino)]-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile
[4-[2-(3-Dimethyl-phenylamino)]-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile
[4-[2-(3-Iodo-phenylamino)]-pyrimidin-4-yl]-[3,5-dimethyl-1H-pyrrole-2-carboxylic acid amide
[4-(3,5-Dimethyl-1H-pyrrol-2-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl)-amine
[4-[Fluoro-phenyl]-[4-(1,2,4-trimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl)-amine
N-[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-N,N-dimethyl-benzene-1,4-diamine
[4-[5-Amino-2,4-dimethyl-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluoro-phenyl)-amine
[4-[5-Bromo-2,4-dimethyl-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluoro-phenyl)-amine
[4-[5-Bromo-2,4-dimethyl-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[3-nitro-phenyl]-amine
[4-[5-Chloro-2,4-dimethyl-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluoro-phenyl)-amine
[4-[5-Diethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluorophenyl)-amine
[4-[5-Dimethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluorophenyl)-amine
[4-[2,4-Dimethyl-5-morpholin-4-ylmethyl-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluorophenyl)-amine
[4-[2,4-Dimethyl-5-(4-methyl-piperazin-1-ylmethyl)-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluoro-phenyl)-amine

[0025] The structures of the above-mentioned compounds are illustrated in Figure 1.

[0026] Particularly preferred compounds observed are those to be CDK inhibitors having IC₅₀ for cdk2/cyclinE of less than 5µM (≤0.05), including;

[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl)-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitro-phenyl)-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-iodo-phenyl)-amine
[3,4-Difluoro-phenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
[4-Chloro-phenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-amine
(3,5-Difluoro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
4-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-ylamino]-phenol
3-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-ylamino]-phenol
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(trifluoromethyl-phenyl)-amine
5
(3-Chloro-4-iodo-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-fluoro-4-iodo-phenyl)-amine
3,5-Dimethyl-4-[2-(3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
[4-(Fluoro-phenylamino)-pyrimidin-4-yl]-[3,5-dimethyl-1H-pyrrrole-2-carbonitrile
(4-Hydroxy-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
3,5-Dimethyl-4-[2-(4-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
[4-(2,4-Dimethylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(3-Chloro-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
[4-(2,3-Chloro-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(3-Hydroxy-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(4-Fluoro-3-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
[4-(2,3-Dimethylaminophenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
[4-(2,4-Diethylamino-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
[4-(2-Fluoro-phenylamino)-pyrimidin-4-yl]-[3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide
(4-Fluoro-phenyl)-[4-(1,2,4-trimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluoro-phenyl)-amine
N-[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-N,N-dimethyl-benzene-1,4-diamine
[4-(5-Bromo-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluoro-phenyl)-amine
[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitro-phenyl)-amine
[4-(5-Chloro-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluoro-phenyl)-amine
[4-(5-Diethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluorophenyl)-amine
[4-(5-Dimethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluorophenyl)-amine
[4-(2,4-Dimethyl-5-morpholin-4-ylmethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluorophenyl)-amine, and
4-[2,5-Dimethyl-5-(4-methyl-piperazin-1-ylmethyl)-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-(fluoro-phenyl)-amine.

[0027] Of these compounds, more preferred are those to be CDK inhibitors having IC_{50} for cdk2/cyclinE of less than 1\muM(\pm0.05), including:
4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluoro-phenyl)-amine
4-[2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitro-phenyl)-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-iodo-phenyl)-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(trifluoromethyl-phenyl)-amine
3,5-Dimethyl-4-[2-(3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
[4-(2,4-Fluoro-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
[4-(2,4-Diethylphenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
3,5-Dimethyl-4-[2-(4-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
4-[2-(3-Hydroxy-phenylamino)-pyrimidin-4-yl]-[3,5-dimethyl-1H-pyrrrole-2-carbonitrile
3,5-Dimethyl-4-[2-(4-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
[4-(3-Hydroxy-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
3,5-Dimethyl-4-[2-(4-methyl-3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
4-[2-(3-Chloro-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(3-Hydroxy-4-methylphenylamino)-pyrimidin-4-yl]-[3,5-dimethyl-1H-pyrrrole-2-carbonitrile
3,5-Dimethyl-4-[2-(4-iodo-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
4-[2-(4-Fluoro-phenylamino)-pyrimidin-4-yl]-[3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(3-Chloro-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(3-Hydroxy-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-(2,4-Diethylphenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
4-[2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-(fluoro-phenyl)-amine
N-[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-N,N-dimethyl-benzene-1,4-diamine
[4-(5-Bromo-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluoro-phenyl)-amine
[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitro-phenyl)-amine
[4-(5-Chloro-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluoro-phenyl)-amine
[4-(5-Diethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluorophenyl)-amine
[4-(5-Dimethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluorophenyl)-amine, and
[4-(2,4-Dimethyl-5-morpholin-4-ylmethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(fluorophenyl)-amine.
[0028] Of these, even more preferred are compounds are those having IC\textsubscript{50} for cdk2/cyclinE of less than 0.5\mu M (+0.05), being:

- [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitro-phenyl]-amine
- [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-iodo-phenyl]-amine

3,5-Dimethyl-4-[2-(3-nitropheno lamino)-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile

4-[2-(4-Hydroxy-pheno lamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile

4-[2-(4-Trifluoromethyl-pheny lamino)pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile

4-[2-(4-Fluoro-pheno lamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carboxylic acid amide

4-[2-(4-Methyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine

4-[5-Bromo-2,4-dimethyl-1H-pyrrol-3-yl]-[3-nitro-phenyl]-amine, and

4-[5-Dimethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluorophenyl]-amine.

[0029] The following compounds are observed to be particularly effective anti-proliferative agents, as demonstrated by cell-based assays:

4-[2-(4-Methyl-3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile

3,5-Dimethyl-4-[2-(3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile

4-[2-(4-Hydroxy-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile

4-[2-(4-Iodo-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile

4-[2-(4-Fluoro-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carboxylic acid amide

4-[2-(4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine

4-[5-Bromo-2,4-dimethyl-1H-pyrrol-3-yl]-[3-nitro-phenyl]-amine, and

4-[5-Dimethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluorophenyl]-amine.

[0030] The compounds of formula I have been found to possess anti-proliferative activity and are therefore believed to be of use in the treatment of proliferative disorders such as cancers, leukemias and other disorders associated with uncontrolled cellular proliferation such as psoriasis and restenosis. As defined herein, an anti-proliferative effect within the scope of the present invention may be demonstrated by the ability to inhibit cell proliferation in an \textit{in vitro} whole cell assay, for example using any of the cell lines A549, HT29, Saos-2, HeLa or MCF-7, or by showing inhibition of a CDK enzyme (such as CDK2 or CDK4) in an appropriate assay. These assays, including methods for their performance, are described in more detail in Example 3. Using such cell line and enzymes assays it may be determined whether a compound is anti-proliferative in the context of the present invention.

[0031] Without wishing to be bound by theory, the compounds of the present invention are believed to exert their anti-proliferative effect in a non-protein kinase C (PKC) dependent manner. Many of the compounds inhibit cyclin-dependent kinase enzymes (CDKs) that have been shown to be involved in cell cycle control. These CDKs include CDK2 and CDK4 and particularly their respective interactions with cyclin E and cyclin D1. These compounds of the present invention are further believed to be advantageous in being selective for CDK enzymes implicated in proliferative diseases. By the
term "selective" it is meant that although possible having some inhibitory effect on another enzyme (such as PKC), the compound is preferentially effective against an enzyme implicated in proliferative diseases.

[0032] The compounds of the invention may inhibit any of the steps or stages in the cell cycle, for example, formation of the nuclear envelope, exit from the quiescent phase of the cell cycle (G0), G1 progression, chromosome decondensation, nuclear envelope breakdown, START, initiation of DNA replication, progression of DNA replication, termination of DNA replication, centrosome duplication, G2 progression, activation of mitotic or meiotic functions, chromosome condensation, centrosome separation, microtubule nucleation, spindle formation and function, interactions with microtubule motor proteins, chromatid separation and segregation, inactivation of mitotic functions, formation of contractile ring, and cytokinesis functions. In particular, the compounds of the invention may influence certain gene functions such as chromatin binding, formation of replication complexes, replication licensing, phosphorylation or other secondary modification activity, proteolytic degradation, microtubule binding, actin binding, septin binding, microtubule organising centre nucleation activity and binding to components of cell cycle signalling pathways.

[0033] A further embodiment of the present invention therefore relates to the use of one or more compounds of formula I in the preparation of a medicament for the treatment of proliferative disorders. Preferably, the proliferative disorder is a cancer or leukaemia. The term proliferative disorder is used herein in a broad sense to include any disorder that requires control of the cell cycle, for example cardiovascular disorders such as restenosis and cardiomyopathy, autoimmune disorders such as glomerulonephritis and rheumatoid arthritis, dermatological disorders such as psoriasis, anti-inflammatory, anti-fungal, antiparasitic disorders such as malaria, emphysema and alopecia. In these disorders, the compounds of the present invention may induce apoptosis or maintain stasis within the desired cells as required.

[0034] In a particularly preferred embodiment, the invention relates to the use of one or more compounds of formula I in the preparation of a medicament for the treatment of a CDK dependent or sensitive disorder. CDK dependent disorders are associated with an above normal level of activity of one or more CDK enzymes. Such disorders preferably associated with an abnormal level of activity of CDK2 and/or CDK4. A CDK sensitive disorder is a disorder in which an aberration in the CDK level is not the primary cause, but is downstream of the primary metabolic aberration. In such scenarios, CDK2 and/or CDK4 can be said to be part of the sensitive metabolic pathway and CDK inhibitors may therefore be active in treating such disorders. Such disorders are preferably cancer or leukaemic disorders.

[0035] A second aspect of the present invention relates to the use of a compound of formula

wherein:

one of \(X^1 \) and \(X^2 \) is NH and the other of \(X^1 \) and \(X^2 \) is CR\(^9\), and wherein the pyrrol radical is mono-, di- or tri-substituted;

\(Z \) is NH, NHCO, NHSO\(_2\), NHCH\(_2\), CH\(_2\), CH\(_2\)CH\(_2\), or CH=CH;

\(R^1, R^2, R^3 \) and \(R^8 \) are independently H, alkyl, aryl, aralkyl, heterocycle, halogeno, NO\(_2\), CN, OH, alkoxy, aryloxy, NH\(_2\), NH-\(R^\), N-(\(R^\))\((R^\prime) \), NH-aryl, N-(aryl), COOH, COO-\(R^\), COO-aryl, CONH\(_2\), CONH-\(R^\), CON-(\(R^\))\((R^\prime) \), CONH-aryl, CON-(aryl), SO\(_3\)H, SO\(_2\)NH\(_2\), CF\(_3\), CO-\(R^\), or CO-aryl, wherein alkyl, aryl, aralkyl and heterocycle groups may be further substituted with one or more groups selected from halogeno, NO\(_2\), CN, OH, O-methyl, NH\(_2\), COOH, CONH\(_2\) and CF\(_3\);

\(R^4, R^5, R^6, R^7 \), and \(R^8 \) are independently from each other H, substituted or unsubstituted lower alkyl, halogeno, NO\(_2\), CN, OH, substituted or unsubstituted alkoxy, NH\(_2\), NH-\(R^\), N-(\(R^\))\((R^\prime) \), COOH, COO-\(R^\), CONH\(_2\), CONH-\(R^\), CON-(\(R^\))\((R^\prime) \), SO\(_3\)H, SO\(_2\)NH\(_2\), or CF\(_3\);
The term "proliferative disorder" has been previously discussed and the same definition applies to the second aspect of the invention.

A further aspect of the present invention relates to the use of the compounds of formula II in the manufacture of a medicament for use in the treatment of antiviral infections. Such viral infections include VZV, HSV type 1 and 2 and HIV. Preferably, the compounds are of use in the treatment of HIV and HIV related disorders.

The preferred embodiments of these further aspects of the invention are identical to those described above in respect of the first aspect.

In a particularly preferred embodiment, the one or more compounds of the invention are administered in combination with one or more other anticancer agents. In such cases, the compounds of the invention may be administered consecutively, simultaneously or sequentially with the one or more other anticancer agents.

As used herein the phrase "manufacture of a medicament" includes the use of a compound of formula I directly or in combination with one or more other anticancer agents. In such cases, the compounds of the invention may be administered consecutively, simultaneously or sequentially with the one or more other anticancer agents.

The compounds of the present invention (first and seconds aspects) can be present as salts or esters, in particular pharmaceutically acceptable salts or esters.

Pharmaceutically acceptable salts of the compounds of the invention (first and seconds aspects) include suitable acid addition or base salts thereof. A review of suitable pharmaceutical salts may be found in Berge et al, J Pharm Sci, 66, 1-19 (1977). Salts are formed, for example with strong inorganic acids such as mineral acids, e.g. sulphuric acid, phosphoric acid or hydrohalic acids; with strong organic carboxylic acids, such as alkanecarboxylic acids of 1 to 4 carbon atoms which are unsubstituted or substituted (e.g., by halogen), such as acetic acid; with saturated or unsaturated dicarboxylic acids, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or tetraphthalic; with hydroxy carboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid; with aminoacids, for example aspartic or glutamic acid; with benzoic acid; or with organic sulfonic acids, such as C1-C4-alkyl- or aryl-sulfonic acids which are unsubstituted or substituted (for example, by a halogen) such as methane- or p-toluene sulfonic acid.

Esters are formed either using organic acids or alcohols/hydroxides, depending on the functional group being esterified. Organic acids include carboxylic acids, such as alkanecarboxylic acids of 1 to 12 carbon atoms which are unsubstituted or substituted (e.g., by halogen), such as acetic acid; with saturated or unsaturated dicarboxylic acid, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or tetraphthalic; with hydroxy carboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid; with aminoacids, for example aspartic or glutamic acid; with benzoic acid; or with organic sulfonic acids, such as C1-C4-alkyl- or aryl-sulfonic acids which are unsubstituted or substituted (for example, by a halogen) such as methane- or p-toluene sulfonic acid. Suitable hydroxides include inorganic hydroxides, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, aluminium hydroxide. Alcohols include alkanecohols of 1-12 carbon atoms which may be unsubstituted or substituted, e.g. by a halogen).

In all aspects of the present invention previously discussed, the invention includes, where appropriate all enantiomers and tautomers of compounds of formula I. The man skilled in the art will recognise compounds that possess an optical properties (one or more chiral carbon atoms) or tautomeric characteristics. The corresponding enantiomers and/or tautomers may be isolated/prepared by methods known in the art.

The invention furthermore relates to the compounds of or use of the present invention (first and seconds aspects) in their various crystalline forms, polymorphic forms and (an)hydrous forms. It is well established within the pharmaceutical industry that chemical compounds may be isolated in any of such forms by slightly varying the method of purification and or isolation form the solvents used in the synthetic preparation of such compounds.

The invention further includes the compounds (first and seconds aspects) of or of use in the present invention in prodrug form. Such prodrugs are generally compounds of formula I wherein one or more appropriate groups have been modified such that the modification may be reversed upon administration to a human or mammalian subject. Such reversion is usually performed by an enzyme naturally present in such subject, though it is possible for a second agent to be administered together with such a prodrug in order to perform the reversion in vivo. Examples of such modifications include ester (for example, any of those described above), wherein the reversion may be carried out be an esterase etc. Other such systems will be well known to those skilled in the art.

The present invention also encompasses pharmaceutical compositions comprising the compounds of the invention (first and seconds aspects). In this regard, and in particular for human therapy, even though the compounds of the present invention (including their pharmaceutically acceptable salts, esters and pharmaceutically acceptable solvates) can be administered alone, they will generally be administered in admixture with a pharmaceutical carrier, excipient or diluent selected with regard to the intended route of administration and standard pharmaceutical practice.

Thus, the present invention also relates to pharmaceutical compositions comprising one or more compounds
of formula I or II or pharmaceutically acceptable salts or esters thereof, together with at least one pharmaceutically acceptable excipient, diluent or carrier.

By way of example, in the pharmaceutical compositions of the present invention, the compounds of the invention may be admixed with any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), and/or solubilising agent(s). Examples of such suitable excipients for the various different forms of pharmaceutical compositions described herein may be found in the "Handbook of Pharmaceutical Excipients, 2nd Edition, (1994), Edited by A Wade and PJ Weller.

The pharmaceutical compositions of the present invention may be adapted for oral, rectal, vaginal, parenteral, intramuscular, intraperitoneal, intraarterial, intrabronchial, subcutaneous, intradermal, intravenous, nasal, buccal or sublingual routes of administration.

Numerous combinations are used in current treatments of cancer and leukemia. A more extensive review of medical practices may be found in "Oncologic Therapies" edited by E. E. Vokes and H. M. Golomb, published by Springer.

Beneficial combinations may be suggested by studying the growth inhibitory activity of the test compounds with agents known or suspected of being valuable in the treatment of a particular cancer initially or cell lines derived from that cancer. This procedure can also be used to determine the order of administration of the agents, i.e. before, simultaneously, or after delivery. Such scheduling may be a feature of all the cycle acting agents identified herein.

In an exemplary embodiment, one or more doses of 10 to 150 mg/day will be administered to the patient for

The compounds of this invention (I) can be synthesised, for example, by an adaptation of the Traube synthesis (A.R. Katritzky, I. Taher, Can. J. Chem. 1986, 64, 2087 and references cited therein), i.e. by condensation between 1,3-dicarbonyl compounds 1 or acrylates 2 or 3, and amidine 4, as shown in Scheme 1.
The dicarbonyl compounds I in turn can be prepared by many methods known in the art (J. March, In: Advanced Organic Chemistry: Reactions, Mechanism, and Structure, 4th Ed., John Wiley & Sons, Inc., New York, 1992, p. 1283). Acrylates 2 and 3, which are particularly suitable for the purposes of this invention, are obtained from heterocyclic methyl ketones 5 by condensation with tert-butoxybis(dimethylamino)methane 6 (Scheme 2).
The diamino compounds 4 will be amidines 4a or guanidines 4b, depending on the definition of Z in general structure I. Amidines (HN=CRNH₂) can be obtained from readily available amine precursors by condensation with e.g. ketenimines, or by addition of ammonia to suitable nitriles or imidates. Guanidines 4b (Scheme 3) can be elaborated by a number of methods known in the art. For the purposes of this invention, the most useful route is amination of cyanamide 8 with anilines 9.

In the case where 5 is a pyrrole, two systems can apply (refer Scheme 4), i.e. the acetyl group which is used to generate the pyrimidine precursors 2 and 3 is either in the pyrrole 3-position (5: X₁ = CR³, X₂ = NH; i.e. structure 5b) or in the pyrrole 2-position (X₁ = NH, X₂ = CR³; i.e. structure 5c).
In both cases the pyrrole rings can be assembled using methods known in the art. Particularly relevant is a modification of the Knorr synthesis (ref., e.g., J. A. Joule, G. F. Smith, Heterocyclic Chemistry, 2nd Ed., Van Nostrand Reinhold (UK) Co. Ltd., 1978, pp. 213-215). For the pyrrol-3-yl system, activated (i.e., R₁ = COOEt, CN, etc.) carbonyl compounds 10 are first nitrosylated. The resulting oximes 11 are condensed with dicarbonyl compounds 12 in the presence of e.g., zinc-acetic acid or aqueous dithionate, with formation of the reactive α-aminocarbonyl intermediate 13.

The R₁ substituent (e.g., COOEt, CN) in the resulting 3-acetylpyrroles 5b can be further manipulated, either directly, or in the context of intermediates 2 or 3, or in the pyrrolopyrimidine products I. Thus decarboxylation (R₁ = COOEt) will give products with R₁ = H, oxidation (R₁ = CN) will afford products with R₁ = CONH₂, etc.

Furthermore, products with R₁ = H can be transformed into various derivatives, particularly through electrophilic substitution. Thus derivatives where R₁ is, for example, a halogen, nitro, amino, alkyl, alkylamino, etc., group can be obtained readily. In the case of the pyrrol-2-yl system an analogous situation arises, here an activating group needs to be present in the carbonyl component 15 (e.g., R⁹ = COOEt, CN, etc.). This is condensed with oximes 16 (derived from dicarbonyl compounds 14), again with formation of the intermediate 17. The R⁹ substituent in products 5c or derivatives can be manipulated in the same way as the R₁ group in the pyrrol-3-yl system discussed above.

Alternatively, compounds of general structure I can be obtained from suitable pyrimidine precursors directly, e.g., from 2,4-disubstituted (halogen, amine, etc.) pyrimidines by successive substitution reactions.

The present invention will now be described by way of example and with reference to the following figure:

Figure 1 shows the chemical structure of compounds according to the invention.

Examples

Abbreviations

LC-MS, liquid chromatography-mass spectrometry; NMR, nuclear magnetic resonance spectroscopy; r.t. room temperature; PE, petroleum ether (40-60 °C boiling fraction); DMSO, dimethylsulfoxide.

General

NMR spectra were recorded using a Bruker DPX-300 instrument. Chemical shifts are reported in ppm (δ) from tetramethylsilane. EM Kieselgel 60 (0.040-0.063 mm) was used for flash column chromatography. Melting points were determined with a LEICA testo-720 electrothermometer and are uncorrected. Compound numbers are shown in brackets, where appropriate.
Example 1

3-Dimethylamino-1-(2,4-dimethyl-1H-pyrrol-3-yl)-propenone

[0072]

A mixture of 1-(2,4-dimethyl-1H-pyrrol-3-yl)-ethanone (2 g, 15 mmol) in 5 mL of 1,1-bis-dimethyloxino-3,3-dimethyl-butan-2-one was heated at 100°C for 22 h. The precipitates of the reaction mixture were slurred in ETOAc/PE with chilling. The crude product was filtered, washed with EtOAc/PE, and dried in vacuo to afford the title compound as a pale yellow solid (2.6 g). 1H-NMR (CDCl₃): δ: 2.23 (s, 3H, CH₃), 2.46 (s, 3H, CH₃), 6.42 (m, 1H, pyrrolyl-H), 6.77 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 7.11 (m, 1H, Ph-H), 7.41 (m, 1H, Ph-H), 7.78 (m, 2H, Ph-H), 8.05 (m, 1H, Ph-H), 8.29 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 9.21 (s, 1H, Ph-H), 10.46 (br. s, 1H, NH).

Example 2

[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amine [1]

[0074] To a mixture of 3-dimethylamino-1-(2,4-dimethyl-1H-pyrrol-3-yl)-propenone (1 mmol, 0.19 g) and 4-fluorophenyl guanidine nitrate (2 mmol, 0.44 g) in 2-methoxyethanol (5 mL) was added NaOH (40 mg). The reaction mixture was heated at 100-120 °C under N₂ for 6 h. The solvent was evaporated to dryness and the residue was purified by flash chromatography (1:2 ETOAc/PE). Recrystallisation from ETOAc/PE afforded the title compound (174 mg, 62 %) as brown solid.

Example 3

[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyridazin-2-yl]-[4-chlorophenyl]-amine [5]

[0079] M.p. 153.3-156.8 °C. MS: [M+H]⁺ = 303.6 (C₁₆H₁₄F₂N₄ requires 300.3). 1H-NMR (CD₃OD) δ: 2.25 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 2.46 (s, 3H, CH₃), 6.44 (s, 1H, pyrrolyl-H), 6.82 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 7.24 (m, 1H, Ph-H), 7.31 (d, 2H, J = 8.7 Hz, Ph-H), 8.34 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 9.45 (s, 1H, Ph-H), 10.72 (br. s, 1H, NH).
2.47 (s, 3H, CH₃), 6.42-6.48 (m, 2H, pyrrolyl-H and Ph-H), 6.60 (d, 1H, J = 5.5 Hz, pyrimidinyl-H), 7.44-7.48 (m, 2H, Ph-H), 8.31 (d, 1H, J = 5.5 Hz, pyrimidinyl-H).

4-[(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-ylamino]-phenol[7]

[0081] M.p. 189.5-193.4 °C. MS: [M+H]* = 281.9 (C₁₂H₁₀N₂O requires 280.3). ¹H-NMR (CD₂OD) δ: 2.23 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 6.44 (s, 1H, pyrrolyl-H), 6.75-6.78 (m, 3H, pyrimidinyl-H and Ph-H), 7.39 (d, 2H, J = 8.8Hz, Ph-H), 8.17 (d, 1H, J = 5.3 Hz, pyrimidinyl-H).

3-[(2,4-Dimethyl-1H-pyrrol-3-yl)-primidin-2-ylamino]-phenol[8]

[0082] M.p. 169.0-174.6 °C. MS: [M+H]* = 281.3 (C₁₂H₁₀N₂O requires 280.3). ¹H-NMR (CD₂OD) δ: 2.26 (s, 3H, CH₃), 2.47 (s, 3H, CH₃), 6.44-6.48 (m, 2H, pyrrolyl-H, Ph-H), 6.84 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 7.05-7.10 (m, 2H, Ph-H), 7.32 (m, 1H, Ph-H), 8.25 (d, 1H, J = 5.3 Hz, pyrimidinyl-H).

(2, 4-Difluoro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine[9]

[0088] M.p. 219-220 °C. MS: [M+H]* = 302.6 (C₁₆H₁₄F₂N₂ requires 300.3). ¹H-NMR (DMSO-d₆) δ: 2.10 (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 6.43 (s, 1H, pyrrolyl-H), 6.77 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 7.06 (m, 1H, Ph-H), 7.27 (m, 1H, Ph-H), 7.66 (m, 1H, Ph-H), 8.25 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 8.71 (s, 1H, Ph-H), 10.70 (br. s, 1H, NH).

(2,4-Dichloro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine[10].

[0084] M.p. 158.5-159.7 °C. MS: [M+H]* = 335.4 (C₁₆H₁₄Cl₂N₂ requires 333.2). ¹H-NMR (DMSO-d₆) δ: 2.18 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 6.51 (s, 1H, pyrrolyl-H), 6.90 (d, 1H, J = 5.5 Hz, pyrimidinyl-H), 7.46 (m, 1H, Ph-H), 7.71 (m, 1H, Ph-H), 8.05 (m, 1H, Ph-H), 8.36 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 8.49 (s, 1H, Ph-H), 10.80 (br. s, 1H, NH).

(4-Chloro-3-trifluoromethyl-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine[11]

[0085] M.p. 187.7-190.7 °C. MS: [M+H]* = 368.6 (C₁₆H₁₄ClF₃N₂ requires 366.8). ¹H-NMR (DMSO-d₆) δ: 2.19 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 6.50 (s, 1H, pyrrolyl-H), 6.89 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 7.61 (m, 1H, Ph-H), 8.08 (m, 1H, Ph-H), 8.39-8.42 (m, 2H, Ph-H and pyrimidinyl-H), 9.79 (s, 1H), 10.80 (br. s, 1H, NH).

(4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl)-(4-trifluoromethyl-phenyl)-amine[12]

[0086] M.p. 165.6-167.9 °C. MS: [M+H]* = 332.9 (C₁₇H₁₅F₃N₄ requires 332.3). ¹H-NMR (DMSO-d₆) δ: 2.26 (s, 3H, CH₃), 2.49 (s, 3H, CH₃), 6.56 (s, 1H, pyrrolyl-H), 6.94 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 7.67 (m, 2H, Ph-H), 8.09 (d, 2H, J = 8.5Hz, Ph-H), 8.45 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 9.82 (s, 1H, NH).

(4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl)-(3-trifluoromethyl-phenyl)-amine[13]

[0087] M.p. 152.7-154.3 °C. MS: [M+H]* = 326.6 (C₁₇H₁₅F₃N₄ requires 325.3). ¹H-NMR (DMSO-d₆) δ: 2.26 (s, 3H, CH₃), 2.48 (s, 3H, CH₃), 6.56 (s, 1H, pyrrolyl-H), 6.92 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 7.29 (m, 1H, Ph-H), 7.55 (m, 1H, Ph-H), 8.03 (m, 1H, Ph-H), 8.42-7.45 (m, 2H, pyrimidinyl-H and Ph-H), 9.73 (s, 1H, NH), 10.83 (br. s, 1H, NH).

(3-Chloro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine[14]

[0088] M.p. 140.4-144.2 °C. MS: [M+H]* = 299.5 (C₁₈H₁₅ClN₄ requires 298.8). ¹H-NMR (DMSO-d₆) δ: 2.21 (s, 3H, CH₃), 2.44 (s, 3H, CH₃), 6.51 (s, 1H, pyrrolyl-H), 6.85 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 6.94 (d, 1H, J = 7.6Hz, Ph-H), 7.28 (t, 1H, J = 8.1Hz, Ph-H), 7.61 (d, 1H, J = 8.2Hz, Ph-H), 8.19 (s, 1H, Ph-H), 8.37 (d, 1H, J = 5.3 Hz, pyrimidinyl-H), 9.55 (s, 1H, NH), 10.78 (br. s, 1H, NH).

N-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-N',N'-dimethyl benzene-1,4-diamine[15]

[0089] M.p. 179.9-182.1 °C. MS: [M+H]* = 307.3 (C₁₈H₂₁N₄ requires 307.4). ¹H-NMR (CDCl₃) δ: 2.25 (s, 3H, CH₃), 2.46 (s, 3H, CH₃), 2.91 (s, 6H, CH₃), 6.46 (s, 1H, pyrrolyl-H), 6.70 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 6.78 (dd, 2H, J = 6.8, 2.2 Hz, Ph-H), 6.79 (br. s, 1H; NH), 7.45 (dd, 2H, J = 6.8, 2.2 Hz, Ph-H), 7.80 (br. s, 1H, NH), 8.28 (d, 1H, J = 5.1Hz, pyrimidinyl-H).
(3-Chloro-4-iodo-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine [16]

[0090] M.p. 185.0-187.4 °C. MS: [M+H]+ = 423.9 (C16H14ClIN2 requires 424.7). 1H-NMR (DMSO-d6) δ: 2.18 (s, 3H, CH3), 2.41 (s, 3H, CH3), 6.48 (s, 1H, pyrrolyl-H), 6.84 (d, 1H, J = 5.4Hz, pyrimidinyl-H), 7.40 (dd, 1H, J = 8.8, 2.4 Hz, Ph-H), 7.75 (d, 1H, J = 8.8Hz, Ph-H), 8.34 (m, 1H, Ph-H), 8.36 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 9.61 (s, 1H, NH), 10.75 (s, 1H, NH).

[4-(2,4-Dimethyl-1H-pyrrolyl-3-yl)-primidin-2-yl]-[3-fluoro-4-iodo-phenyl]-amine [17]

[0091] M.p. 200-202 °C. MS: [M+H]+ = 407.4 (C16H12F2IN2 requires 408.2). 1H-NMR (DMSO-d6) δ: 2.18 (s, 3H, CH3), 2.40 (s, 3H, CH3), 6.48 (s, 1H, pyrrolyl-H), 6.84 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 7.35 (m, 1H, Ph-H), 7.64, (t, 1H, J = 8.0 Hz, Ph-H), 8.02 (dd, 1H, J = 12.0, 2.2 Hz, Ph-H), 8.36 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 9.65 (s, 1H, NH), 10.75 (s, 1H, NH).

Example 3

4-(3-Dimethylamino-acryloyl)-3,5-dimethyl-1H-pyrrole-2-carbonitrile

[0092]

[0093] Ethyl cyanoacetate (10 mL, 94 mmol) was diluted with AcOH (20 mL) and the solution was cooled to -10 °C (ice-MeOH bath). NaNO2 (6.5 g, 94 mmol) was dissolved in H2O (10 mL) and the solution was added dropwise over a period of 40 min, keeping the internal temperature < 0° C. After completion of the addition, the reaction mixture was stirred at 20°C for 1h with cooling. It was then warmed to room temperature and stirred for a further 3 h. The mixture was diluted with acetic acid (50 mL) and H2O (50 mL). Pentane-2,4-dione (10.6 mL, 103 mmol) was added and the mixture heated to ~75 °C. To this reaction mixture Zn powder (6.9 g, 105 mmol) was added in portions over a period of 30 min at such a rate as to maintain the internal temperature < 90°C. The reaction mixture was then heated for a further 30 min before pouring into H2O (1 mL). From the reaction mixture 3,5-dimethyl-1H-pyrrole-2-carbonitrile (3.67 g) was filtered as an off-white solid. The filtrate was extracted with EtOAc (3 x 500 mL). The combined organic extracts were washed (brine) and dried (MgSO4). The solvent was evaporated to a brown oil, which was purified by chromatography (100 g SiO2; eluted with 4:1 heptane / EtOAc) to afford a further crop (4.41 g) of this product as a pale yellow solid (total yield 72 %).

[0094] 3,5-Dimethyl-1H-pyrrole-2-carbonitrile (1.2 g, 10 mmol) was dissolved in anhydrous 1,2-dichloroethane (15 mL) and AlCl3 (2.93 g, 22 mmol) was added proportion-wise. The reaction vessel was purged with N2 and was cooled in an ice-water bath. AcCl (0.71 mL, 10 mmol) was added dropwise and the mixture was stirred for 1 h with cooling and for a further 3 h at room temperature. The reaction mixture was quenched by careful addition of 2 M eq HCl. The acidity of the mixture was adjusted to approximately pH 6 by addition of NaHCO3. After separation of the organic phase, the aqueous phase was extracted with EtOAc (3 x 100mL). The combined organic phases were washed (H2O, then brine), dried (MgSO4), and filtered.

[0095] The solvent was evaporated to afford of 4-acetyl-3,5-dimethyl-1H-pyrrole-2-carbonitrile (1.42 g, 88 %) as a pale tan solid. 1H-NMR (CDCl3) δ: 2.44 (s, 3H, CH3), 2.45 (s, 3H, CH3), 8.75 (br. s, 1H, NH).

[0096] 4-Acetyl-3,5-dimethyl-1H-pyrrole-2-carbonitrile (1.38 g, 8.51 mmol) was suspended in 1,1-bis-dimethylamino-3,3-dimethyl-butan-2-one (1.3 mL) and heated at 75 °C for 42 h. The reaction mixture was evaporated to dryness and the residue was purified by SiO2 chromatography (heptane / EtOAc) to afford the title compound (1.2 g, 65 %) as a pale tan solid. 1H-NMR (DMSO-d6) δ: 2.21 (s, 3H, CH3), 2.31 (s, 3H, CH3), 3.32 (s, 6H, CH3), 5.22 (d, 1H, J = 12.4 Hz, CH), 7.47 (d, 1H, J = 12.4 Hz; CH3); 11.96 (br. s, 1H, NH).

Example 4

3,5-Dimethyl-4-[2-(3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile [31]

[0097] To a mixture of 4-(3-dimethylamino-acryloyl)-3,5-dimethyl-1H-pyrrole-2-carbonitrile (1.0 mmol, 0.22 g) and 3-
nitrophenyl guanidine nitrate (1.5 mmol, 0.36 g) in 2-methoxyethanol (5 mL) was added K₂CO₃ (138 mg, 1.0 mmol). The reaction mixture was heated at 120 °C under N₂ for 18 h. The solvent was evaporated to dryness and the residue was purified by flash chromatography (1:2 EtOAc / heptane) to afford the title compound as a light-yellow solid. M.p. 258-259 °C. MS: [M+H]⁺ = 336.1 (C₁₇H₁₄N₂O₂ requires 334.3).¹H-NMR (CD₂OD) δ: 2.39 (s, 3H, CH₃), 2.49 (s, 3H, CH₃), 6.94 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 7.50 (t, 1H, J = 8.3 Hz, Ph-H), 7.81 (m, 1H, Ph-H), 7.94 (m, 1H, Ph-H), 8.45 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 8.94 (t, 1H, J = 2.2 Hz, Ph-H).

The following compounds were prepared in a manner analogous to that described above:

4-[2-(4-Fluoro-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile [32]

4-[2-(4-Hydroxy-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile [33]

3,5-Dimethyl-4-[2-(4-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile [34]

4-[2-(4-Iodo-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile [35]

4-[2-(3-Hydroxy-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile [36]

3,5-Dimethyl-4-[2-(4-methyl-3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile [37]

4-[2-(3-Iodo-4-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile [38]

4-[2-(4-Chloro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile [39]
4-[2-(3-Hydroxy-4-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H pyrrole-2-carbonitrile \[40\]

[0107] M.p. 221-225 °C. MS: \[M+H]^+ = 320.9 (C\textsubscript{18}H\textsubscript{17}N\textsubscript{8}O requires 319.4). \[^1\text{H-NMR}\) (DMSO-\textsubscript{d}6) \(\delta\): 2.03 (s, 3H, CH\textsubscript{3}), 2.29 (s, 3H, CH\textsubscript{3}), 2.40 (s, 3H, CH\textsubscript{3}), 6.78 (d, 1H, \(J = 5.1\) Hz, pyrimidinyl-H), 6.89 (d, 1H, \(J = 8.1\) Hz, Ph-H), 7.02 (dd, 1H, \(J = 8.3, 1.7\) Hz, Ph-H), 7.29 (d, 1H, \(J = 0.7\) Hz, Ph-H), 8.37 (d, 1H, \(J = 4.9\) Hz, pyrimidinyl-H), 9.08 (s, 1H), 9.20 (s, 1H), 12.17 (br. s, 1H, NH).

4-[2-(4-Fluoro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile \[41\]

[0108] M.p. 161.3-164.1 °C. MS: \[M+H]^+ = 321.6 (C\textsubscript{18}H\textsubscript{16}FN\textsubscript{5} requires 321.4). \[^1\text{H-NMR}\) (DMSO-\textsubscript{d}6) \(\delta\): 2.19 (s, 3H, CH\textsubscript{3}), 2.30 (s, 3H, CH\textsubscript{3}), 2.42 (s, 3H, CH\textsubscript{3}), 6.82 (d, 1H, \(J = 5.1\) Hz, pyrimidinyl-H), 7.03 (t, 1H, \(J = 9.3\) Hz, Ph-H), 7.53 (m, 1H, Ph-H), 7.61 (dd, 1H, \(J = 7.1, 2.4\) Hz, Ph-H), 8.39 (d, 1H, \(J = 5.1\) Hz, pyrimidinyl-H), 9.36 (s, 1H, NH), 12.20 (br. s, 1H, NH).

4-[2-(3-Fluoro-4-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile \[42\]

[0109] M.p. 177.7-179.9 °C. MS: \[M+H]^+ = 322.5 (C\textsubscript{18}H\textsubscript{16}FN\textsubscript{5} requires 321.3). \[^1\text{H-NMR}\) (DMSO-\textsubscript{d}6) \(\delta\): 2.15 (s, 3H, CH\textsubscript{3}), 2.30 (s, 3H, CH\textsubscript{3}), 2.43 (s, 3H, CH\textsubscript{3}), 6.86 (d, 1H, \(J = 5.1\) Hz, pyrimidinyl-H), 7.13 (t, 1H, \(J = 9.0\) Hz, Ph-H), 7.36 (dd, 1H, \(J = 8.1, 1.7\) Hz, Ph-H), 7.75 (dd, 1H, \(J = 12.9, 1.5\) Hz, Ph-H), 8.43 (d, 1H, \(J = 5.4\) Hz, pyrimidinyl-H), 9.56 (s, 1H, NH), 12.21 (br. s, 1H, NH).

4-[2-(4-Dimethylamino-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carbonitrile \[43\]

[0110] M.p. 190.6-193.7 °C. MS: \[M+H]^+ = 334.7 (C\textsubscript{18}H\textsubscript{20}N\textsubscript{6} requires 332.4). \[^1\text{H-NMR}\) (CDCl\textsubscript{3}) \(\delta\): 2.36 (s, 3H, CH\textsubscript{3}), 2.46 (s, 3H, CH\textsubscript{3}), 2.94 (br. s, 6H, CH\textsubscript{3}), 6.66 (d, 1H, \(J = 5.6\) Hz, pyrimidinyl-H), 6.79-6.80 (m, 2H, Ph-H), 7.05 (br. s, 1H, NH), 7.40-7.43 (m, 1H, Ph-H), 8.34 (d, 1H, \(J = 5.1\) Hz, pyrimidinyl-H), 8.52 (br. s, 1H, NH).

Example 5

4-(3-Dimethylamino-acryloyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid amide \[0111\]

![Diagram](image)

[0112] 1-(2,4-Dimethyl-1H-pyrrol-3-yl)-ethanone (1.1 g, 10 mmol) was partially dissolved in 2 M solution of ammonia in MeOH and H\textsubscript{2}O\textsubscript{2} (10 mL of a 27 % w/w solution in H\textsubscript{2}O) was added dropwise over a period of 40 min at such a rate as to maintain the internal temperature ≤ 30 °C. The mixture was stirred for 18 h at room temperature. The resulting suspended white solid was filtered and recrystallised from EtOAc to afford 4-acetyl-3,5-dimethyl-1H-pyrrole-2-carboxylic acid amide (1.06 g). An aliquot (720 mg, 4 mmol) was suspended in 1,1-bis-dimethylamino-3,3-dimethyl-butan-2-one (2mL, 9.6mmol) in a N\textsubscript{2}-flushed flask and heated at 75°C for 48 h. The crude mixture was cooled and purified by SiO\textsubscript{2} chromatography (EtOAc / MeOH gradient elution). The title compound (449 mg) was obtained as a buff solid. \[^1\text{H-NMR}\) (DMSO-\textsubscript{d}6) \(\delta\): 2.30 (s, 3H, CH\textsubscript{3}), 2.46 (s, 3H, CH\textsubscript{3}), 2.90 (br. s, 2H, NH), 3.09 (s, 3H, CH\textsubscript{3}), 3.13 (s, 3H, CH\textsubscript{3}), 5.23 (d, 1H, \(J = 12.4\) Hz, CH), 7.38 (d, 1H, \(J = 12.7\) Hz, CH), 10.97 (br. s, 1H, NH).

Example 6

4-[2-(4-Fluoro-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrole-2-carboxylic acid amide \[44\].

[0113] 4-(3-Dimethylamino-acryloyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid amide (100 mg, 0.43 mmol), 4-fluorophenyliquinidine nitrate (139 mg, 0.65 mmol) and K\textsubscript{2}CO\textsubscript{3} (94 mg, 0.68 mmol) were partially dissolved in 2-methoxyethanol (5 mL) and heated at 120 °C for 18 h. The mixture was concentrated in vacuo and purified by SiO\textsubscript{2} chromatography (EtOAc / MeOH gradient elution). The crude product was triturated in iPr\textsubscript{2}O to afford the title compound (31 mg) as a
Example 7

3-Dimethylamino-1-(3,5-dimethyl-1H-pyrrol-2-yl)-propenone

[0114]

Example 8

[4-(3,5-Dimethyl-1H-pyrrol-2-yl)-pyrimidin-2-yl]-4-fluoro-phenyl-amine [45]

[0117] 3-Dimethylamino-1-(3,5-dimethyl-1H-pyrrol-2-yl)-propenone (125 mg, 0.65 mmol), 4-fluorophenyl guanidine nitrate (211 mg, 0.98 mmol), and K₂CO₃ (149 mg, 1.08 mmol) were partially dissolved in 2-methoxyethanol and heated at 120 °C for 18 h. The mixture was concentrated in vacuo and purified by SiO₂ chromatography (5-g Isolute SI™ cartridge eluted with an heptane / EtOAc gradient). The crude product was triturated in iPr₂O to afford the title compound (158 mg) as a buff solid. M.p. 168.4-171.5 °C. MS: [M+H]⁺ = 283.9 (C₁₆H₁₅FN₄ requires 282.3). ¹H-NMR (CDCl₃) δ: 1.41 (s, 3H, CH₃), 2.30 (s, 3H, CH₃), 5.85 (s, 1H, pyrrolyl-H), 6.83 (d, 1H, J = 5.6 Hz, pyrimidinyl-H), 6.87 (br. s, 1H, pyrrolyl-H), 7.05 (t, 2H, J = 8.5 Hz, Ph-H), 7.51-7.54 (m, 2H, Ph-H), 8.26 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 9.08 (br. s, 1H, NH).
Example 10

3-Dimethylamino-1-(1,2,4-trimethyl-1H-pyrrol-3-yl)-pyridin-2-yl]-amine [46]

KOH (818 mg, 14.6 mmol) was partially dissolved in DMSO (15 mL) and stirred for 5 min. 1-(2,4-dimethyl-1H-pyrrol-3-yl)-ethanone (1 g, 7.3 mmol) was added in small portions and the mixture was stirred for 45 min. Iodomethane (0.54 mL, 8.75 mmol) was added dropwise at such a rate as to maintain the internal temperature ≤ 30 °C. The mixture was stirred for a further 45 min then poured into H₂O (50 mL) and extracted with Et₂O (3 × 60 mL). The combined organic extracts were washed (brine), dried (MgSO₄), filtered, and evaporated in vacuo to afford 1-(2,4-trimethyl-1H-pyrrol-3-yl)-ethanone (1.06 g) as a pink solid. This was suspended in 1,1-bis(dimethylamino)-3,3-dimethyl-butan-2-one (3.6 mL, 17.5 mmol) in a N₂-flushed flask and heated at 70 °C for 18 h. The mixture was triturated in EtOAc to afford the title compound (119 mg) as a brownish solid. 1-(2,4-dimethyl-1H-pyrrol-3-yl)-propenone (500 mg, 3.64 mmol) was dissolved in Ac₂O (5 mL) at room temperature, keeping the internal temperature ≤ 40 °C. 1-(2,4-dimethyl-1H-pyrrol-3-yl)-ethanone (500 mg, 3.64 mmol) was dissolved in Ac₂O (6 mL) and added dropwise, keeping the internal temperature ≤ 30 °C. The mixture was stirred at -40 °C for 30 min then at -10 °C for a further 30 min. The mixture was poured into ice-water (50 mL) and was extracted with Et₂O (3 × 60 mL). The combined organic extracts were washed (brine), dried (Na₂SO₄), filtered, and evaporated in vacuo to give a dark brown solid. This was recrystallised from MeOH to afford 1-(2,4-dimethyl-1H-pyrrol-3-yl)-ethanone (158 mg). An aliquot (150 mg, 0.82 mmol) was suspended in 1,1-bis(dimethylamino)-3,3-dimethyl-butan-2-one (0.42 mL, 2.02 mmol) in a N₂-flushed flask and was heated at 70 °C for 18 h. The mixture was triturated in EtOAc to afford the title compound (119 mg) as a brown solid. 1H-NMR (DMSO-d₆): δ: 1.30 (s, 3H, CH₃), 1.51 (s, 3H, CH₃), 2.20 (br. s, 6H, CH₂), 2.66 (s, 3H, CH₃), 4.57 (d, 1H, J=12.5 Hz, CH), 5.53 (s, 1H, pyrrolyl-H), 6.72 (d, 1H, J= 12.7 Hz, CH).

Example 11

3-Dimethylamino-1-(2,4-dimethyl-5-nitro-1H-pyrrol-3-yl)-propenone [0121]

HNO₃ (0.28 mL of a 69 % w/v aq solution, 4.37 mmol) was added dropwise to Ac₂O (5 mL) at room temperature, keeping the internal temperature ≤ 25 °C. The nitrating mixture was stirred at room temperature for 15 min before cooling to -40 °C. 1-(2,4-dimethyl-1H-pyrrol-3-yl)-ethanone (500 mg, 3.64 mmol) was dissolved in Ac₂O (6 mL) and added dropwise, keeping the internal temperature ≤ -30 °C. The mixture was stirred at -40 °C for 30 min then at -10 °C for a further 30 min. The mixture was poured into ice-water (50 mL) and was extracted with Et₂O (3 × 60 mL). The combined organic extracts were washed (brine), dried (Na₂SO₄), filtered, and evaporated in vacuo to give a dark brown solid. This was recrystallised from MeOH to afford 1-(2,4-dimethyl-5-nitro-1H-pyrrol-3-yl)-ethanone (158 mg). An aliquot (150 mg, 0.82 mmol) was suspended in 1,1-bis(dimethylamino)-3,3-dimethyl-butan-2-one (0.42 mL, 2.02 mmol) in a N₂-flushed flask and was heated at 70 °C for 18 h. The mixture was triturated in EtOAc to afford the title compound (119 mg) as a brown solid. 1H-NMR (DMSO-d₆): δ: 2.30 (s, 3H, CH₃), 2.40 (s, 3H, CH₃), 2.80 (br. s, 3H, CH₃), 3.07 (br. s, 3H, CH₃), 5.19 (d, 1H, J= 12.7 Hz, CH), 7.45 (d, 1H, J= 12.4 Hz, CH), 12.76 (br. 1H, NH).

Example 12

[4-(2,4-Dimethyl-5-nitro-1H pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine [47]

3-Dimethylamino-1-(2,4-dimethyl-5-nitro-1H-pyrrol-3-yl)-propenone (110 mg, 0.46 mmol), 4-fluorophenyl guanidine nitrate (150 mg, 0.7 mmol), and K₂CO₃ (193 mg, 1.4 mmol) were partially dissolved in 2-methoxyethanol and heated at 120°C for 18 h. The mixture was concentrated in vacuo and purified by SiO₂ chromatography (heptane / EtOAc gradient elution). The crude product was triturated in iPr₂O to afford the title compound (22 mg) as a pale orange solid.
M.p. 166.3-170.1 °C. MS: [M+H]+ = 329.3 (C_{18}H_{14}F_{2}N_{2}O_{2} requires 327.3). 1H-NMR (DMSO-d6) δ: 2.49 (s, 3H, CH_{3}), 2.59 (s, 3H, CH_{3}), 6.73 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 7.04 (t, 2H, J = 8.8 Hz, Ph-H), 7.07 (br. s, 1H, NH), 7.55-7.58 (m, 2H, Ph-H), 8.44 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 9.40 (br. s, 1H, NH).

0124] The following compound was prepared in analogous manner:

N-[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]N,N-dimethyl-benzene-1,4-diamine [48]

0125] M.p. 265-268 °C. MS: [M+H]+ = 353.0 (C_{18}H_{17}N_{2}O_{2} requires 352.4). 1H-NMR (DMSO-d6) δ: 2.39 (s, 3H, CH_{3}), 2.48 (br. s, 6H, CH_{2}), 2.82 (s, 3H, CH_{3}), 6.69 (d, 2H, J = 9.0 Hz, Ph-H), 6.74 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 7.50 (d, 2H, J = 9.0 Hz, Ph-H), 8.38 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 9.18 (s, 1H, NH), 13.00 (br. s, 1H, NH).

Example 13

[4-(5-Amino-2,4-dimethyl-1H-pyrro-3-yl)-pyrimidin-2-yl]-(4-fluoro-phenyl)-amine [49]

[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-pyrimidin-2-yl]-(4-fluoro-phenyl)-amine (45 mg, 0.14 mmol) was dissolved in EtOH (3 mL) and 10 % Pd(C) catalyst (10 mg) was added, followed by hydrazine hydrate (48 μL of a 55 % w/w aq solution, 0.84 mmol). The mixture was heated at reflux for 18 h. The cooled mixture was filtered through a pad of Celite filter aid and the filtrate was evaporated in vacuo. The residue was purified by SiO₂ chromatography (heptane / EtOAc gradient elution) to afford the title compound (37 mg) as an orange solid after recrystallisation from methanol.

M.p. 265-268 °C. MS: [M+H]+ = 397.8 (C_{18}H_{16}FN_{2} requires 397.3). 1H-NMR (CDCl₃) δ: 1.98 (s, 3H, CH_{3}), 2.37 (s, 3H, CH_{3}), 4.86 (br. s, 2H, NH₂), 6.65 (d, 1H, J = 4.9 Hz, pyrimidinyl-H), 7.03 (t, 2H, J = 8.3 Hz, Ph-H), 7.49 (br. s, 2H, NH), 7.58-7.61 (m, 2H, Ph-H), 8.53 (d, 1H, J = 4.9 Hz, pyrimidinyl-H).

Example 14

[4-(5-Bromo-2,4-dimethyl-1H-pyrro-3-yl)-pyrimidin-2-yl]-(4-fluoro-phenyl)-amine [50]

[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-(4-fluoro-phenyl)-amine (80 mg, 0.28 mmol) was dissolved in THF (4 mL) and cooled to -50 °C. N-Bromosuccinimide (55 mg, 0.31 mmol) was dissolved in THF (2 mL) and added dropwise, keeping the internal temperature ≤ -40 °C. The mixture was stirred for 1h with cooling then evaporated in vacuo. The residue was washed with H₂O (10 mL) and extracted with EtOAc (3 x 10mL). The combined organic extractss were washed (brine), dried (MgSO₄), filtered, and evaporated in vacuo. The crude product was purified by SiO₂ chromatography (heptane / EtOAc gradient elution) to afford the title compound (19 mg) as an orange solid after recrystallisation from iP₂O. M.p. 181.4-183.3 °C. MS: [M+H]+ = 362.9 (C_{18}H_{14}BrFN_{2} requires 361.2). 1H-NMR (CDCl₃) δ: 2.10 (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 6.56 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 6.97 (t, 2H, J = 8.3Hz, Ph-H), 7.00 (br. s, 1H, NH), 7.79-7.82 (m, 2H, Ph-H), 8.85 (br. s, 1H, NH), 8.26 (d, 1H, J = 5.1 Hz, pyrimidinyl-H).

0128] The following compound was prepared in analogous manner:

[4-(5-Bromo-2,4-dimethyl-1H-pyrro-3-yl)-pyrimidin-2-yl]-(3-nitro-phenyl)-amine [51]

[4-(2,4-Dimethyl-5-nitro-1H-pyrro-3-yl)-pyrimidin-2-yl]-(3-nitro-phenyl)-amine (80 mg, 0.28 mmol) was dissolved in THF (4 mL) and cooled to -50 °C. N-Chlorosuccinimide (41 mg, 0.31 mmol) was dissolved in THF (2 mL) and added dropwise, keeping the internal temperature ≤ -50 °C. The mixture was stirred for 30min with cooling then evaporated in vacuo. The residue was treated with H₂O (10 mL) and extracted with EtOAc (3 x 10mL). The combined organic extractss were washed (brine), dried (MgSO₄), filtered, and evaporated in vacuo. The crude product was purified by SiO₂ chromatography (heptane / EtOAc gradient elution) to afford the title compound (37 mg) as an orange solid after recrystallisation from iP₂O. M.p. 198.1-203 °C. MS: [M+H]+ = 389.3 (C_{18}H_{14}ClFN_{2} requires 387.3). 1H-NMR (CDCl₃) δ: 2.49 (s, 3H, CH₃), 2.59 (s, 3H, CH₃), 6.73 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 7.04 (t, 2H, J = 8.8 Hz, Ph-H), 7.57 (m, 2H, Ph-H), 7.90 (br. s, 1H, NH), 8.44 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 9.40 (br. s, 1H, NH).

Example 15

[4-(5-Chloro-2,4-dimethyl-1H-pyrro-3-yl)-pyrimidin-2-yl]-(4-fluoro-phenyl)-amine [52]

[4-(2,4-Dimethyl-1H-pyrro-3-yl)-pyrimidin-2-yl]-(4-fluoro-phenyl)-amine (80 mg, 0.28 mmol) was dissolved in THF (4 mL) and cooled to -60 °C. N-Chlorosuccinimide (41 mg, 0.31 mmol) was dissolved in THF (2 mL) and added dropwise, keeping the internal temperature ≤ -50 °C. The mixture was stirred for 30min with cooling then evaporated in vacuo. The residue was treated with H₂O (10 mL) and extracted with EtOAc (3 x 10mL). The combined organic extractss were washed (brine), dried (MgSO₄), filtered, and evaporated in vacuo. The crude product was purified by SiO₂ chromatography (heptane / EtOAc gradient elution) to afford the title compound (37 mg) as an orange solid after recrystallisation from iP₂O. M.p. 200-203 °C. MS: [M+H]+ = 317.7 (C_{18}H_{14}ClFN_{2} requires 316.8). 1H-NMR (CDCl₃) δ: 2.17 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 6.77 (d, 1H, J = 5.9 Hz, pyrimidinyl-H), 7.02-7.06 (m, 3H, Ph-h, NH), 7.54-7.56 (m, 2H, Ph-H), 7.95 (br. s, 1H, NH), 8.25 (d, 1H, J = 5.4 Hz, pyrimidinyl-H).
Example 16

[4-(5-Diethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (4-fluorophenyl)-amine [53]

[0131] Diethylamine (40 μL, 0.31 mmol) was diluted with methanol (0.5 mL) and formaldehyde (30 μL of a 37 % w/waq solution, 0.37 mmol) was added. [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (4-fluorophenyl)-amine (87 mg, 0.31 mmol) was added in small portions and the mixture was heated to reflux. After 1.5 h the mixture was diluted with H2O (10 mL). The resulting precipitate was filtered and triturated in 2 M aq HCl. The mixture was filtered and the filtrate was washed with 2 M aq NaOH. The filtrate was extracted with EtOAc (3 × 15 mL). The combined organic extracts were washed (brine), dried (MgSO4), filtered, and evaporated in vacuo. The crude product was purified by SiO2 chromatography (heptane / EtOAc gradient elution) to afford the title compound (36 mg) as an orange solid after recrystallisation from heptane.

[0132] The following compounds was prepared in analogous manner:

[4-(5-Diethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (4-fluorophenyl)-amine [54]

[0133] M.p. 88.4-91.6 °C. MS: [M+H]+ = 340.6 (C21H22FN5 requires 339.4). 1H-NMR (CDCl3) δ: 2.18 (s, 3H, CH3), 2.56 (s, 6H, CH2), 2.42 (s, 3H, CH3), 3.38 (s, 2H, CH2), 6.75 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 7.00 (t, 2H, J = 8.6 Hz, Ph-H), 7.13 (br. s, 1H, NH), 7.56-7.59 (m, 2H, Ph-H), 8.31 (d, 1H, J = 5.1 Hz, pyrimidinyl-H), 8.55 (br. s, 1H, NH).

[4-(2,4-Dimethyl-5-morpholin-4-ylmethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (4-fluorophenyl)-amine [55]

[0134] M.p. 94.7-97.6 °C. MS: [M+H]+ = 382.1 (C22H24FN5O requires 381.5). 1H-NMR (DMSO-d6) δ: 2.12 (s, 3H, CH3), 2.33-2.35 (m, 7H, CH2, CH3), 3.55 (m, 4H, CH2), 4.03 (s, 2H, CH2), 6.73 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 7.08 (t, 2H, J = 9.0 Hz, Ph-H), 7.74-7.78 (m, 2H, Ph-H), 8.28 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 9.27 (s, 1H, NH), 10.76 (s, 1H, NH).

[4-(2,4-Dimethyl-5-(4-methyl-piperazin-1-ylmethyl)-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (4-fluorophenyl)-amine [56]

[0135] M.p. 120.4-123.1 °C. MS: [M+H]+ = 396.4 (C22H24FN5O requires 394.5). 1H-NMR (CDCl3) δ: 1.62 (br. s, 4H, CH2), 2.10 (s, 3H, CH3), 2.34 (s, 3H, CH3), 2.37 (s, 3H, CH3), 2.43 (br. s, 4H, CH2), 3.42 (s, 2H, CH2), 6.67 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 6.91-6.96 (m, 3H, Ph-H, NH), 7.50-7.52 (m, 2H, Ph-H), 8.24 (d, 1H, J = 5.4 Hz, pyrimidinyl-H), 8.30 (br. s, 1H, NH).

Example 17

Kinase specificity of selected compound

[0136] Selected compounds from the above examples were investigated for their kinase selectivity. A panel of protein kinases, including the CDKs relevant to the present invention, as well as a representative number of functionally unrelated kinases, were used.

[0137] Assays for CDK4/Cyclin D1, CDK2/Cyclin E, CDIK1/Cyclin B kinase may be carried out by monitoring phosphorylation of GST-Rb in an appropriate system. Thus, GST-Rb phosphorylation, induced by CDK4/Cyclin D1, CDK2/Cyclin E or CDK1/Cyclin B is determined by incorporation of radio-labeled phosphate in GST-Rb (772-928) using radiolabelled ATP in 96-well format in vitro kinase assay. The phosphorylation reaction mixture (total volume 40 μl) consisted of 50 mM HEPES pH 7.4, 20 mM MgCl2, 5 mM EGTA, 2 mM DTT, 20 mM β-glycerophosphate, 2 mM NaF, 1 mM Na2VO3, Protease Inhibitors Cocktail (Sigma, see above), BSA 0.5mg/ml, 1 μg purified enzyme complex, 10 μl of GST-Rb-Sepharose beads, 100 μM ATP, 0.2μCi 32P-ATP. The reaction is carried out for 30 min at 30°C at constant shaking. At the end of this period 100 μl of 50 mM HEPES, pH 7.4 and 1 mM ATP is added to each well and the total volume transferred onto GFC filtered plate. The plate is washed 5 times with 200 μl of 50 mM HEPES, pH 7.4 and 1 mM ATP. To well each were added 50 μl scintillant liquid and the radioactivity of the samples is measured on Scintillation counter (Topcount, HP). The IC50 values of different peptides were calculated using GraFit software.

[0138] Alternatively, CDK2/cyclin A kinase assays may be performed in 96-well plates using recombinant CDK2/cyclin A. Assay buffer consisted of 25 mM β-glycerophosphate, 20 mM MOPS, 5 mM EGTA, 1 mM DTT, 1mM Na2VO3, pH 7.4, into which is added 2-4 μg of CDK2/cyclin A with substrate pRb (773-928). The reaction is initiated by addition of Mg/ATP mix (15mM MgCl2, 100 μM ATP with 30-50 kBP per well of [γ32P]-ATP) and mixtures incubated for 10 - 30 min, as required, at 30°C. Reactions were stopped on ice, followed by filtration through p81 filterplates (Whatman Polyfiltronics,
After washing 3 times with 75 mM orthophosphoric acid, plates were dried, scintillant added and incorporated radioactivity measured in a scintillation counter (TopCount, Packard Instruments, Pangbourne, Berks, UK).

PKC\(\alpha\) kinase activity may be measured by the incorporation of radio-labeled phosphate in Histone 3, as described. The reaction mixture (total volume 65 \(\mu\)l) consist of 50 mM Tris-HCl, 1 mM Calcium acetate; 3 mM DTT, 0.03 mg/ml Phosphatidylserine, 2.4 \(\mu\)g/ml PMA, 0.04% NP40, 12 mM Mg/Cl, purified PKC\(\alpha\)-100 ng, Histone 3, 0.2mg/ml, 100 \(\mu\)M ATP, 0.2 \(\mu\)Ci [\(\gamma\)-32P]-ATP. The reaction is carried over 15 min at 37°C in microplate shaker and is stopped by adding 10 \(\mu\)l 75 mM orthophosphoric acid and placing the plate on ice. 50 \(\mu\)l of the reaction mixture is transferred onto P81 filterplate and after washing off the free radioactive phosphate (3 times with 200 \(\mu\)l 75 mM orthophosphoric acid per well) 50 \(\mu\)l of scintillation liquid (Microscint 40) were added to each well and the radioactivity is measured on Scintillation counter (Topcount, HP).

For use in said assays CDK2 and/or PKC may be obtained from available sources or produced by recombinant methods as described. His-tagged CDK2/Cyclin E and CDK1/Cyclin B may be co-expressed and PKC\(\alpha\) singularly expressed in Sf 9 insect cells infected with the appropriate baculovirus constructs. The cells are harvested two days after infection by low speed centrifugation and the proteins purified from the insect cell pellets by Metal-chelate chromatography. Briefly, the insect cell pellet is lysed in Buffer A (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.02% NP40 and 5 mM \(\beta\)-mercaptoethanol, 1 mM NaF, 1 mM Na\(_3\)VO\(_4\) and Protease Inhibitors Coctail (Sigma) containing AEBSF, pepstatin A, E 64, bestatin, leupeptin) by sonication. The soluble fraction is cleared by centrifugation and loaded onto Ni-NTA-Agarose (Quiagen). Non bound proteins were washed off with 300 mM NaCl, 5-15 mM Imidazole in Buffer A and the bound proteins eluted with 250 mM Imidazole in Buffer A. The purified proteins are extensively dialyzed against Storage buffer (20 mM HEPES pH 7.4, 50 mM NaCl, 2 mM DTT, 1 mM EDTA, 1 mM EGTA, 0.02% NP40, 10% v/v Glycerol) and stored at -70°C. PKC-\(\alpha\)- 6 x His may be purified the same way but using different buffers- 50 mM NaH2PO4, pH 8.0 and 0.05% Triton X-100 instead of Tris and NP40 respectively.

The results in the Table 1 below show that the compounds in question exhibit a high degree of selectivity for inhibition of CDKs.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CDK2/cyclin E (IC(_{50}), (\mu)M)</th>
<th>Compound</th>
<th>CDK2/cyclin E (IC(_{50}), (\mu)M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0 ± 0.7</td>
<td>38</td>
<td>0.86</td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>39</td>
<td>1.02</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>40</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>1.3 ± 0.4</td>
<td>41</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>1.7</td>
<td>42</td>
<td>0.76</td>
</tr>
<tr>
<td>6</td>
<td>1.3</td>
<td>43</td>
<td>0.54</td>
</tr>
<tr>
<td>7</td>
<td>2.9</td>
<td>44</td>
<td>0.22</td>
</tr>
<tr>
<td>8</td>
<td>1.4</td>
<td>46</td>
<td>1.79</td>
</tr>
<tr>
<td>12</td>
<td>0.90</td>
<td>47</td>
<td>0.06</td>
</tr>
<tr>
<td>16</td>
<td>1.52</td>
<td>48</td>
<td>0.96</td>
</tr>
<tr>
<td>17</td>
<td>1.73</td>
<td>50</td>
<td>0.55</td>
</tr>
<tr>
<td>31</td>
<td>0.03</td>
<td>51</td>
<td>0.37</td>
</tr>
<tr>
<td>32</td>
<td>0.09</td>
<td>52</td>
<td>0.73</td>
</tr>
<tr>
<td>33</td>
<td>0.09</td>
<td>53</td>
<td>0.87</td>
</tr>
<tr>
<td>34</td>
<td>0.18</td>
<td>54</td>
<td>0.14</td>
</tr>
<tr>
<td>35</td>
<td>0.55</td>
<td>55</td>
<td>0.87</td>
</tr>
<tr>
<td>36</td>
<td>0.04</td>
<td>56</td>
<td>1.51</td>
</tr>
<tr>
<td>37</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 18

Anti-proliferative effect of selected compounds

Selected compounds from the above examples were subjected to a standard cellular proliferation assay using a range of different human tumour cell lines. Standard 72-h MTT (thiazolyl blue; 3-[(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays were performed (Haselsberger, K.; Peterson, D. C.; Thomas, D. G.; Darling, J. L. Anti Cancer Drugs 1996, 7, 331-8; Loveland, B. E.; Johns, T. G.; Mackay, I. R.; Vaillant, F.; Wang, Z. X.; Hertzog, P. J. Biochemistry International 1992, 27, 501-10). Human tumour cell lines were obtained from the ATCC (American Type Culture Collection, 10801 University Boulevard, Manessas, VA 20110-2209, USA).

The results in Table 2 below illustrate the anti-proliferative effect of compounds described in this application.

<table>
<thead>
<tr>
<th>Compound</th>
<th>A549</th>
<th>HeLa</th>
<th>HT29</th>
<th>MCF7</th>
<th>Saos-2</th>
<th>Hs27</th>
<th>IMR90</th>
<th>W138</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.30</td>
<td>3.30</td>
<td>6.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15.00</td>
<td>3.10</td>
<td>17.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.40</td>
<td>0.26</td>
<td>0.31</td>
<td>0.26</td>
<td>0.74</td>
<td>18.9</td>
<td>14.1</td>
<td>9.7</td>
</tr>
<tr>
<td>32</td>
<td>2.47</td>
<td>1.38</td>
<td>2.41</td>
<td>1.93</td>
<td>2.89</td>
<td>15.1</td>
<td>20.8</td>
<td>9.6</td>
</tr>
<tr>
<td>33</td>
<td>0.88</td>
<td>0.76</td>
<td>1.83</td>
<td>1.03</td>
<td>0.89</td>
<td>4.2</td>
<td>14.1</td>
<td>9.9</td>
</tr>
<tr>
<td>34</td>
<td>3.64</td>
<td>0.95</td>
<td>3.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.51</td>
<td>0.09</td>
<td>0.11</td>
<td>0.45</td>
<td>0.75</td>
<td>35.1</td>
<td>37.3</td>
<td>21.3</td>
</tr>
<tr>
<td>36</td>
<td>1.12</td>
<td>2.56</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0.47</td>
<td>0.28</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3.60</td>
<td>0.72</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>4.37</td>
<td>3.27</td>
<td>5.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.86</td>
<td>1.47</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>2.95</td>
<td>2.11</td>
<td>5.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1.49</td>
<td>0.28</td>
<td>2.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>1.41</td>
<td>0.17</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1.36</td>
<td>1.92</td>
<td>2.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>3.13</td>
<td>3.11</td>
<td>3.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.05</td>
<td>0.61</td>
<td>2.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>7.56</td>
<td>2.92</td>
<td>12.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.97</td>
<td>1.31</td>
<td>1.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>2.76</td>
<td>3.20</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>13.80</td>
<td>5.09</td>
<td>14.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Claims

1. A compound of general formula I:
wherein:

one of X¹ and X² is NR¹⁰ and the other of X¹ and X² is CR⁹, and wherein the pyrrol radical is mono-, di- or tri-
substituted;

- Z is NH, NHCO, NHSO₂, NHCH₂, CH₂, CH₂CH₂, or CH=CH;
- R¹, R², R³ and R¹⁰ are independently H, alkyl, aryl, aralkyl, heterocycle, halogeno, NO₂, CN, OH, alkoxy,
 aryloxy, (R")nNH₂, (R")nNH-R¹, (R")nN-(R')(R")', NH-aryl, N-(aryl)₂, COOH, COO-R', COO-aryl, CONH₂,
 CONH-R', CON-(R')(R''), CON-aryl, CON-(aryl)₂, SO₂H, SO₂NH₂, CF₃, CO-R', or CO-aryl, wherein alkyl, aryl,
aralkyl and heterocycle groups may be further substituted with one or more groups selected from halogeno,
NO₂, CN, OH, O-methyl, NH₂, COOH, CONH₂ and CF₃;
- R⁴, R⁵, R⁶, R⁷, and R⁸ are independently from each other H, substituted or unsubstituted C₁-₄ alkyl, halogeno,
NO₂, CN, OH, substituted or unsubstituted alkoxy, NH₂, NH-R'-(C₁-₃ alkyl), N-(C₁-₃ alkyl)-(C₁-₃ alkyl), COOH,
COO-(C₁-₃ alkyl), CF₃; then R¹ and R² are not both H.

2. A compound according to claim 1, wherein;

- X¹ and X² are CR⁹ and NH respectively;
- R¹, R², R³ and R⁹ are each independently selected from H, alkyl, aryl, aralkyl, heterocycle, halogeno, NO₂,
 CN, OH, alkoxy, aryloxy, (R")nNH₂, (R")nNH-R¹, (R")nN-(R')(R")', NH-aryl, N-(aryl)₂, COOH, COO-R',
 COO-aryl, CONH₂, CONH-R', CON-(R')(R''), CON-aryl, CON-(aryl)₂, SO₂H, SO₂NH₂, CF₃, and CO-R' wherein alkyl,
arly and aralkyl groups may be further substituted with one or more groups selected from halogeno, NO₂, CN,
OH, O-methyl, NH₂, COOH, CONH₂ and CF₃;
- Z is selected from NH, NHSO₂ and NHCH₂;
- R⁴-R⁸ are each independently selected from H, halogeno, nitro, amino, aminoalkyl, hydroxy, alkoxy, carbamoyl,
sulfanyl, N(R')(R''), C₁-₄ alkyl and substituted C₁-₄ alkyl.

3. A compound according to any preceding Claim, wherein Z is NH and R⁹ is H.

4. A compound according to claim 3, wherein R¹, R² and R⁹ are each independently H, halogeno, CN, NO₂, CO(NH₂),
(R")N(R')(R") a C₁-₄ alkyl group or a heterocyclic group.

5. A compound according to claim 4, wherein when R¹ is halogeno, it is selected from chloro or bromo; when R¹ is
alkylamino, it is diethylaminomethyl or dimethylaminomethyl; when R¹ is a heterocyclic group it is morpholin-4-
ylmethyl or 4-methyl-piperazin-1-ylmethyl.

6. A compound according to any of claims 1-5, wherein R¹ is H or CN, and R² and R⁹ are both methyl.

7. A compound according to claim 6, wherein R¹ is H.
8. A compound according to claim 6, wherein R¹ is CN.

9. A compound according to any preceding claim, wherein;

R⁴, R⁵, R⁶, R⁷, and R⁸ are independently from each other H, unsubstituted C₁₋₄ alkyl, haloeno, NO₂, CN, OH, N-(R')(R")ₙ, or CF₃;

wherein R' and R" are each independently alkyl groups that may be the same or different and n is 0 or 1;

10. A compound according to claim 9, wherein R⁴ to R⁸ are selected independently from H, F, NH₂, NO₂, OH, Cl, Br, I, CN, CH₂OH, CF₃ and dimethy lamino.

11. A compound according to claim 9 or 10, wherein R⁴ and R⁸ are both hydrogen.

12. A compound according to any preceding claim selected from 2-[N-(phenyl)]-4-(2,4-dimethylpyrrol-3-yl)pyrimidinamines in which the phenyl group is 2-, 3-, 4- or 5-substituted by at least one of F, NH₂, NO₂, OH, Cl, Br, I, CN, CH₂OH, CF₃ or OMe.

13. A compound according to claim 12, wherein the phenyl group is mono-substituted by F, NH₂, NO₂, OH, Cl, Br, I, CH₂OH, CN, CF₃ or OMe at any of the 2, 3, 4 or 5-positions, or di-substituted by 2,4-difluoro, 3,5-difluoro, 3,4-difluoro, 2,4-dichloro, 3,5-dichloro, 3,4-dichloro or 4-chloro-3-trifluoromethyl.

14. A compound according to any of claims 1-11 selected from 2-[N-(phenyl)]-4-(3,5-dimethyl-1H-pyrrole-2-carbonitrile) pyrimidinamines in which the phenyl group is 2-, 3- or 4-substituted by at least one of F, N(CH₃)₂, NO₂, OH, Cl, Br, I or CF₃.

15. A compound according to claim 14, wherein the phenyl group is mono-substituted by F, N(CH₃)₂, NO₂, OH, I or CF₃ at any of the 3 or 4-positions, or di-substituted by 4-methyl-3-nitro, 3-iodo-4-methyl, 4-chloro-3-methyl, 3-hydroxy-4-methyl, 4-fluoro-3-methyl or 4-methyl-3-fluoro.

16. A compound according to any of claims 1-5 selected from 2-[N-(phenyl)]-4-(2,4-dimethyl-5-nitro-1H-pyrrol-3-yl)pyrimidinamines wherein the phenyl group is mono-substituted by F, N(CH₃)₂, NO₂, OH, I or CF₃ at the 4-position.

17. A compound according to claim 16, wherein the phenyl group is substituted by a fluoro or N(CH₃)₂ group.

18. A compound according to any of claims 1-5 selected from 2-[N-(phenyl)]-4-(2,4-dimethyl-5-haloeno-1H-pyrrol-3-yl)pyrimidinamines wherein the phenyl group is mono-substituted by F, N(CH₃)₂, NO₂, OH, I or CF₃ at the 3 or 4-positions.

19. A compound according to claim 18, wherein the phenyl group is substituted by a 4-fluoro or 3-nitro group, the haloeno group being chloro or bromo.

20. A compound according to any of claims 1-5 selected from 2-[N-(phenyl)]-4-(2,4-dimethyl-5-dialkylaminoalkyl-1H-pyrrol-3-yl)pyrimidinamines wherein the phenyl group is mono-substituted by F, N(CH₃)₂, NO₂, OH, I or CF₃ at the 4-position.

21. A compound according to claim 20, wherein the phenyl group is substituted by fluoro, the dialkylaminoalkyl group preferably being diethylaminomethyl or dimethylaminomethyl.

22. A compound according to any of claims 1-5 selected from 2-[N-(phenyl)]-4-(2,4-dimethyl-5-(heterocycle)-1H-pyrrol-3-yl)-pyrimidinamines wherein the phenyl group is preferably mono-substituted by F, N(CH₃)₂, NO₂, OMe or CF₃ at the 4-position.

23. A compound according to claim 22, wherein the phenyl group is substituted by fluoro, the heterocycle group being 5-morpholin-4-ylmethyl or 4-methyl-piperazin-1-ylmethyl.

24. A compound according to claim 1 selected from;

- 4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl)-[4-fluoro-phenyl]-amine
- 4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitro-phenyl]-amine
- 4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-iodo-phenyl]-amine
(3,4-Difluoro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
(4-Chloro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
(3,5-Difluoro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3yl)-pyrimidin-2-yl]-amine
4-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-phenol
3-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-phenol
(2,4-Difluoro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
(2,4-Dichloro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
(4-Chloro-3-trifluoromethyl-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
(2-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-trifluoromethyl-phenyl]-amine
(2-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-trifluoromethyl-phenyl]-amine
(3-Chloro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
N-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-N,N’-dimethyl-benzene-1,4-diamine
(3-Chloro-4-iodo-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
(2-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-fluoro-4-iodo-phenyl]-amine
3,5-Dimethyl-4-[2-(3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
4-[2-(4,Fluoro-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(4-Hydroxy-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
3,5-Dimethyl-4-[2-(4-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
4-[2-(4-Iodo-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(3-Hydroxy-phenylamino)-pyrimidin4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
3,5-Dimethyl-4-[2-(4-methyl-3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
4-[2-(3-Iodo-4-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(4-Chloro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(3-Hydroxy-4-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(4-Fluoro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(4-Fluoro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(4-Fluoro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(3-Dimethylaminophenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(4-Fluoro-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide
4-[3-(5-Dimethyl-1H-pyrrol-2-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine
(4-Fluoro-phenyl)-[4-(1,2,4-trimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
N-[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine
N-[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-N’-N’-dimethyl-benzene-1,4-diamine
[4-(4-Amino-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine
[4-(5-Bromo-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine
[4-(5-Bromo-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitro-phenyl]-amine
[4-(5-Chloro-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine
[4-(5-Diethylaminomethyl-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amine
[4-(2,4-Dimethyl-5-morpholin-4-ylmethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amine
[4-(2,4-Dimethyl-5-(4-methyl-piperazin-1-ylmethyl)-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amine.

25. A compound according to claim 24 selected from;
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitro-phenyl]-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-iodo-phenyl]-amine
(3,4-Difluoro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
(4-Chloro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
(3,5-Difluoro-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3yl)-pyrimidin-2-yl]-amine
4-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-phenol
3-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-phenol
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-trifluoromethyl-phenyl]-amine
(3-Chloro-4-iodo-phenyl)-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-fluoro-4-iodo-phenyl]-amine
3,5-Dimethyl-4-[2-(3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
4-[2-(4-Fluoro-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
4-[2-(4-Hydroxy-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile
3,5-Dimethyl-4-[2-(4-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carbonitrile
4-[2-(4-Iodo-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carbonitrile

26
A compound according to claim 26 selected from:

1. 4-[2-(3-Hydroxy-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide
2. 3,5-Dimethyl-4-[2-(4-methyl-3-nitro-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carboxylic acid amide
3. 4-[2-(3-Iodo-4-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide
4. 4-[2-(4-Chloro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

5. 4-[2-(3-Hydroxy-4-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide
6. 4-[2-(4-Fluoro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide
7. 4-[2-(3-Iodo-4-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide
8. 4-[2-(4-Chloro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

9. 4-[2-(4-Fluoro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

10. 4-[2-(4-Fluoro-phenylamino)-pyrimidin-4-yl]-1H-pyrrrole-2-carboxylic acid amide

11. N-[4-(2,4-Dimethyl-5-nitro-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-N',N'-dimethyl-benzene 1,4-diamine

12. 4-[2-(4-Chloro-2,4-dimethyl-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

13. 4-[2-(4-Chloro-2,4-dimethyl-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-4-fluoro-phenyl-amine

14. 4-[2-(4-Chloro-2,4-dimethyl-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-[3-nitro-phenyl]-amine

15. 4-[2-(4-Chloro-2,4-dimethyl-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-4-fluoro-phenyl-amine

16. 4-[2-(5-Bromo-2,4-dimethyl-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

17. 4-[2-(5-Diethylaminomethyl-2,4-dimethyl-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-4-fluoro-phenyl-amine

18. 4-[2-(5-Diethylaminomethyl-2,4-dimethyl-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amine, and

19. 4-[2-(4-Dimethyl-5-(4-methyl-piperazin-1-ylmethyl)-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-[4-fluoro-phenyl]-amine.

20. A compound according to claim 25 selected from;

21. 4-[2-(4-Chloro-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

22. 4-[2-(4-Chloro-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

23. 4-[2-(3-Iodo-1H-pyrrrole-3-yl)-pyrimidin-2-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

24. 4-[2-(4-Chloro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

25. 4-[2-(4-Chloro-3-methyl-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1H-pyrrrole-2-carboxylic acid amide

26. A compound according to claim 26 selected from;

27. A compound according to claim 26 selected from;
28. A compound according to claim 1, wherein;

- X^1 and X^2 are NH and CR0 respectively;
- R^1, R^2, R^3 and R^9 are each independently selected from H, alkyl, aryl, aralkyl, heterocycle, halogeno, NO$_2$, CN, OH, alkoxy, arloxy, (R*)NH$_2$, (R*)NH-R', (R*)N-N-(R')(R$''$), COOH, COO-R', CONH-R', CON-(R')(R$''$), SO$_3$H, SO$_2$NH$_2$, CF$_3$, and CO-R' wherein alkyl, aryl and aralkyl groups may be further substituted with one or more groups selected from halogeno, NO$_2$, CN, OH, O-methyl, NH$_2$, COOH, CONH$_2$ and CF$_3$;
- Z is selected from NH, NH$_2$ and NHCH$_3$;
- R^4, R^5 and R^8 are each independently selected from H, halogeno, nitro, amino, aminoalkyl, hydroxy, alkoxy, carbamoyl, sulfamyl, N(R')(R$''$), C$_{1-4}$ alkyl and substituted C$_{1-4}$ alkyl;
- R^6 is selected from H, halogeno, nitro, amino, aminoalkyl, hydroxy, alkoxy, carbamoyl, sulfamyl, N(R')(R$''$), methyl, propyl, butyl and substituted C$_{1-4}$ alkyl;
- R^7 is selected from H, halogeno, nitro, amino, aminoalkyl, hydroxy, carbamoyl, sulfamyl, N(R')(R$''$)C$_{2-4}$ alkyl and substituted C$_{1-4}$ alkyl

29. Pharmaceutical compositions comprising a compound as defined in any of claims 1 to 28 or a pharmacaceutically acceptable salt thereof together with a pharmaceutically acceptable excipient.

30. Use of a compound as defined in any of claims 1 to 28 or a pharmaceutically acceptable salt thereof in the preparation of a medicament for the treatment of a proliferative disorder.

31. Use according to claim 30, wherein the proliferative disorder is cancer or leukaemia.

32. Use according to claim 30 or 31, wherein the disorder is a CDK dependent or sensitive disorder.

33. Use according to claim 32, wherein the CDK enzyme is CDK2 and/or CDK4.

34. Use of a compound of formula

![Chemical Structure](image-url)

wherein:

one of X^1 and X^2 is NR10 and the other of X^1 and X^2 is CR9, and wherein the pyrrol radical is mono-, di- or tri-substituted;
- Z is NH, NHCO, NH$_2$CO, NH$_2$H$_2$, CH$_2$, CH$_2$CH$_2$, or CH=CH;
- R^1, R^2, R^3 and R^9 are independently selected from H, alkyl, aryl, aralkyl, heterocycle, halogeno, NO$_2$, CN, OH, alkoxy, arloxy, (R*)NH$_2$, (R*)NH-R', (R*)N-N-(R')(R$''$), NH-aryl, N-(aryl)$_2$, COOH, COO-R', COO-aryl, CONH$_2$, CONH-aryl, CON-(aryl)$_2$, SO$_2$H, SO$_2$NH$_2$, CF$_3$, CO-R', or CO-aryl, wherein alkyl, aryl,
aralkyl and heterocycle groups may be further substituted with one or more groups selected from halogeno, NO₂, CN, OH, O-methyl, NH₂, COOH, CONH₂ and CF₃; R₄, R₅, R₆, R₇, and R₈ are independently from each other H, substituted or unsubstituted C₁-₄ alkyl halogeno, NO₂, CN, OH, substituted or unsubstituted alkoxy, NH₂, NH-R', N-(R')(R''), COOH; COO-R', CONH₂; CONH-R', CON-(R'XR''), SO₂H, SO₂NH₂, or CF₃;

wherein R' and R'' are each independently alkyl groups that may be the same or different each R''' is independently an alkenylene group, and n is 0 or 1;
and pharmaceutically acceptable salts thereof;
in the manufacture of a medicament for use in the treatment of a proliferative disease.

35. Use according to claim 34, wherein the compound is as defined in any of claims 2 to 13.

Patentansprüche

1. Verbindung der allgemeinen Formel I:

![Chemical Structure](image)

wobei:

- einer von X₁ und X² NR₁₀ ist und der andere von X¹ und X² CR₈ ist und wobei die Pyrrolgruppe mono-, di- oder trisubstituiert ist,
- Z NH, NHCO, NHSO₂, NHCH₂, CH₂, CH₂CH₂ oder CH=CH ist,
- R¹, R², R³, R₅ und R₁₀ unabhängig voneinander H, Alkyl, Aryl, Aralkyl, Heterozyklus, Halogen, NO₂, CN, OH, Alkoxy, Aralkoxy, (R'')nNH₂, (R'')nNH-R', (R'')nN-(R')(R''), NH-Aryl, N-(Aryl)₂, COOH, COO-R', COO-Aryl, CONH₂, CONH-R', CON-(R')(R''), CONH-Aryl, CON-(Aryl)₂, SO₂H, SO₂NH₂, CF₃, CO-R' oder CO-Aryl sind,
- wobei Alkyl-, Aryl-, Aralkyl- und Heterozyklusgruppen mit einer oder mehreren Gruppen, ausgewählt unter Halogen, NO₂, CN, OH, O-Methyl, NH₂, COOH, CONH₂ und CF₃, weiter substituiert sein können,
- R₄, R₅, R₆, R₇ und R₈ unabhängig voneinander H, substituiertes oder unsubstituiertes C₁-₄-Alkyl, Halogen, NO₂, CN, OH, substituiertes oder unsubstituiertes Alkoxy, NH₂, NH-R', N-(R')(R''), COOH, COO-R', CONH₂, CONH-R', CON-(R')(R''), SO₂H, SO₂NH₂ oder CF₃ sind,
- wobei R' und R'' jeweils unabhängig voneinander Alkygruppen sind, die identisch oder verschieden sein können, jeder R''' unabhängig eine Alkygruppe ist und n 0 oder 1 ist, und pharmazeutisch verträgliche Salze davon, mit der Maßgabe, daß, wenn X¹ NMe ist, X² CH ist, Z NH ist, R₃ H oder C₁-₃-Alkyl ist, R₄ bis R₈ unabhängig voneinander H, unsubstituiertes C₁-₄-Alkyl, Halogen, OH, unsubstituiertes C₁-₃-Alkoxy, NH₂, NH-(C₁-₃-Alkyl), N-(C₁-₃-Alkyl)(C₁-₃-Alkyl), COOH, COO(C₁-₃-Alkyl), CF₃ sind, dann R¹ und R₂ nicht beide H sind.

2. Verbindung nach Anspruch 1, wobei
Verbindung nach einem der vorangegangenen Ansprüche, wobei Z NH ist und R³ H ist.

Verbindung nach Anspruch 3, wobei R¹, R² und R⁸ jeweils unabhängig voneinander H, Halogen, CN, NO₂, CO(H₂), (R°)(R')(R°') eine C₁₄₋₄-Alkylgruppe oder eine heterozyklische Gruppe sind.

Verbindung nach Anspruch 4, wobei, wenn R¹ Halogen ist, dieses unter Chlor oder Brom ausgewählt ist, wenn R¹ Alkylamin ist, dieses Diethylaminomethyl oder Dimethylaminomethyl ist, wenn R¹ eine heterozyklische Gruppe ist, diese Morpholin-4-ylmethyl oder 4-Methylpiperazin-1-ylmethyl ist.

Verbindung nach einem der Ansprüche 1 bis 5, wobei R¹ H oder CN ist und R² und R⁸ beide Methyl sind.

Verbindung nach Anspruch 6, wobei R¹ H ist.

Verbindung nach Anspruch 6, wobei R¹ CN ist.

Verbindung nach einem der vorangegangenen Ansprüche, wobei:

R⁴, R⁵, R⁶, R⁷ und R⁸ unabhängig voneinander H, unsubstituiertes C₁₄₋₄-Alkyl, Halogen, NO₂, CN, OH, N-(R°) (R°°) oder CF₃ sind,

wobei R° und R°° jeweils unabhängig voneinander Alkylgruppen sind, die identisch oder verschieden sein können, und n 0 oder 1 ist.

Verbindung nach Anspruch 9, wobei R⁴ bis R⁸ unabhängig voneinander unter H, F, NH₂, NO₂, OH, Cl, Br, I, CN, CH₂OH, CF₃ und Dimethylamino ausgewählt sind.

Verbindung nach Anspruch 9 oder 10, wobei R⁴ und R⁸ beide Wasserstoff sind.

Verbindung nach einem der vorangegangenen Ansprüche, ausgewählt unter 2-[N-(Phenyl)]-4-(2,4-dimethylpyrrol-3-yl)-pyrimidinaminen, wobei die Phenylgruppe mit wenigstens einem von F, NH₂, NO₂, OH, Cl, Br, I, CN, CH₂OH, CF₃ oder OMe 2- bis 4- oder 5-substituiert ist.

Verbindung nach Anspruch 12, wobei die Phenylgruppe an irgendeiner der 2-, 3-, 4- oder 5-Positionen mit F, NH₂, NO₂, OH, Cl, Br, I, CH₂OH, CN, CF₃ oder OMe monosubstituiert ist oder mit 2,4-Difluor, 3,5-Difluor, 3,4-Difluor, 2,4-Dichlor, 3,5-Dichlor, 3,4-Dichlor oder 4-Chlor-3-trifluormethyl disubstituiert ist.

Verbindung nach einer der Ansprüche 1 bis 11, ausgewählt unter 2-[N-(Phenyl)]-4-(3,5-dimethyl-1H-pyrrol-2-carbonitril)-pyrimidinaminen, wobei die Phenylgruppe mit wenigstens einem von F, N(CH₃)₂, NO₂, OH, Cl, Br, I oder CF₃ 2-, 3- oder 4-substituiert ist.

Verbindung nach Anspruch 14, wobei die Phenylgruppe an irgendeiner der 3- oder 4-Positionen mit F, N(CH₃)₂, NO₂, OH, I oder CF₃ monosubstituiert ist oder mit 4-Methyl-3-nitro, 3-Iod-4-methyl, 4-Chlor-3-methyl, 3-Hydroxy-4-methyl, 4-Fluor-3-methyl oder 4-Methyl-3-fluor disubstituiert ist.

Verbindung nach einer der Ansprüche 1 bis 5, ausgewählt unter 2-[N-(Phenyl)]-4-(2,4-dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidinaminen, wobei die Phenylgruppe an der 4-Position mit F, N(CH₃)₂, NO₂, OH, I oder CF₃ monosubstituiert ist.

Verbindung nach Anspruch 16, wobei die Phenylgruppe mit einer Fluor- oder N(CH₃)₂-Gruppe substituiert ist.
18. Verbindung nach einem der Ansprüche 1 bis 5, ausgewählt unter 2-[N-(Phenyl)]-4-(2,4-dimethyl-5-halogen-1H-pyrrol-3-yl)-pyrimidinaminen, wobei die Phenylgruppe an der 3- oder 4-Position mit F, N(CH$_3$)$_2$, NO$_2$, OH, I oder CF$_3$ monosubstituiert ist.

19. Verbindung nach Anspruch 18, wobei die Phenylgruppe mit einer 4-Fluor- oder 3-NitroGruppe substituiert ist, wobei die Halogengruppe Chlor oder Brom ist.

20. Verbindung nach einem der Ansprüche 1 bis 5, ausgewählt unter 2-[N-(Phenyl)]-4-(2,4-dimethyl-5-dialkylaminoalkyl-1H-pyrrol-3-yl)-pyrimidinaminen, wobei die Phenylgruppe an der 4-Position mit F, N(CH$_3$)$_2$, NO$_2$, OH, I oder CF$_3$ monosubstituiert ist.

21. Verbindung nach Anspruch 20, wobei die Phenylgruppe mit Fluor substituiert ist und die Dialkylaminoalkylgruppe vorzugsweise Diethylaminomethyl oder Dimethylaminomethyl ist.

22. Verbindung nach einem der Ansprüche 1 bis 5, ausgewählt unter 2-[N-(Phenyl)]-4-(2,4-dimethyl-5-(heterozyklus)-1H-pyrrol-3-yl)-pyrimidinaminen, wobei die Phenylgruppe vorzugsweise an der 4-Position mit F, N(CH$_3$)$_2$, NO$_2$, OH, I oder CF$_3$ monosubstituiert ist.

23. Verbindung nach Anspruch 22, wobei die Phenylgruppe mit Fluor substituiert ist und die heterozyklische Gruppe 5-Morpholin-4-ylmethyl oder 4-Methylpiperazin-1-ylmethyl ist.

24. Verbindung nach Anspruch 1, ausgewählt unter:

- [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorphenyl]-amin
- [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitrophenyl]-amin
- [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-iodphenyl]-amin
- [3,4-Difluorphenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
- [4-Chlorphenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
- [3,5-Difluorphenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
- [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amino-phenol
- 3-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-ylamino]-phenol
- [4-(2,4-Difluorphenyl)]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
- [2,4-Dichlorphenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
- [4-(4-Chlor-3-trifluormethylphenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
- [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-trifluormethylphenyl]-amin
- [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-trifluormethylphenyl]-amin
- [3-Chlorphenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
- N-[4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-N'N'-dimethylbenzen-1,4-diamin
- [3-Chlor-4-iodophenyl]-[4-(2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
- [4-(2,4-Dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-fluor-4-iodophenyl]-amin
- 3,5-Dimethyl-[4-(2-[3-nitrophenylamino]-pyrimidin-4-yl)]-1 H-pyrrol-2-carbonitril
- 4-[2-(4-Fluorphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 4-[2-(4-Hydroxyphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 3,5-Dimethyl-4-[2-(4-trifluormethylphenylamino)-pyrimidin-4-yl]-1 H-pyrrol-2-carbonitril
- 4-[2-(4-Iodophenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 4-[2-(3-Hydroxyphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 3,5-Dimethyl-[4-(2-[4-methyl-3-nitrophenylamino]-pyrimidin-4-yl)]-1 H-pyrrol-2-carbonitril
- 4-[2-(4-Iodophenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 3,5-Dimethyl-[4-(2-[4-methyl-3-nitrophenylamino]-pyrimidin-4-yl)]-1 H-pyrrol-2-carbonitril
- 4-[2-(3-Iod-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 4-[2-(4-Chlor-3-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 4-[2-(3-Hydro-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 4-[2-(4-Fluor-3-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 4-[2-(3-Fluor-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 4-[2-(4-Dimethylamino-phenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 4-[2-(4-Fluorphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
- 4-[2-(3,5-Dimethyl-1H-pyrrol-2-yl)-pyrimidin-2-yl]-[4-fluorphenyl]-amin
- [4-(4-Fluorphenyl)]-[4-(1,2,4-trimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
- [4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorphenyl]-amin
- N-[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl], N',N'-dimethylbenzen-1,4-diamin
- [4-(5-Amino-2,4-dimethyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorphenyl]-amin
[4-(5-Brom-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(5-Brom-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitrophenyl]-amin
[4-(5-Chlor-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(5-Diethylaminomethyl-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(5-Dimethylaminoethyl-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(2,4-Dimethyl-5-(4-methylpiperazin-1-ylmethyl)-1 H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluorophenyl]-amin.

25. Verbindung nach Anspruch 24, ausgewählt unter:
[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitrophenyl]-amin
[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-iodphenyl]-amin
(3,4-Difluorphenyl)-[4-(2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
(4-Chlorphenyl)-[4-(2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
(3,5-Difluorphenyl)-[4-(2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
3-[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-ylamino]-phenol
3-[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-ylamino]-phenol
[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-(trifluormethylphenyl)]-amin
(3-Chlor-4-iodphenyl)-[4-(2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-fluor-4-iodphenyl]-amin
3,5-Dimethyl-4-[2-(3-nitrophenylamino)-pyrimidin-4-yl]-1 H-pyrrol-2-carbonitril
4-[2-(4-Fluorphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
4-[2-(4-Hydroxyphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
3,5-Dimethyl-4-[2-(4-trifluormethylphenylamino)-pyrimidin-4-yl]-1 H-pyrrol-2-carbonitril
4-[2-(4-Iodphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
3,5-Dimethyl-4-[2-(3-Hydroxyphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
3,5-Dimethyl-4-[2-(4-methyl-3-nitrophenylamino)-pyrimidin-4-yl]-1 H-pyrrol-2-carbonitril
4-[2-(3-Iod-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
4-[2-(4-Chlor-3-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
4-[2-(4-Hydroxy-3-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
4-[2-(4-Fluor-3-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
4-[2-(4-Fluor-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
4-[2-(4-Dimethylaminophenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
2-(4-Fluorphenylamino)-pyrimidin-4-yl]-[3,5-dimethyl-1 H-pyrrol-2-carbonsäureamid](4-Fluorphenyl)-[4-(1,2,4-trimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-amin
4-[2-(4,Dimethyl-5-nitro-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
N-[4-(2,4-Dimethyl-5-nitro-1 H-pyrrol-3-yl)pyrimidin-2-yl]-N,N'-dimethylbenzol-1,4-diamin
[4-(5-Brom-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(5-Brom-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitrophenyl]-amin
[4-(5-Chlor-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(5-Diethylaminomethyl-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(5-Dimethylaminomethyl-2,4-dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(2,4-Dimethyl-5-morpholin-4-ylmethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin und
[4-(2,4-Dimethyl-5-(4-methylpiperazin-1-ylmethyl)-1 H-pyrrol-3-yl]-pyrimidin-2-yl]-[4-fluorophenyl]-amin.

26. Verbindung nach Anspruch 25, ausgewählt unter:
[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitrophenyl]-amin
[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-iodphenyl]-amin
[4-(2,4-Dimethyl-1 H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophenyl]-amin
3,5-Dimethyl-4-[2-(3-nitrophenylamino)-pyrimidin-4-yl]-1 H-pyrrol-2-carbonitril
4-[2-(4-Fluorphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
3,5-Dimethyl-4-[2-(4-trifluormethylphenylamino)-pyrimidin-4-yl]-1 H-pyrrol-2-carbonitril
3,5-Dimethyl-4-[2-(4-Iodphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
2-(3-Hydroxyphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril
3,5-Dimethyl-4-[2-(4-methyl-3-nitrophenylamino)-pyrimidin-4-yl]-1 H-pyrrol-2-carbonitril
4-[2-(3-Iod-4-methylphenylamino)-pyrimidin-4-yl]-3,5-dimethyl-1 H-pyrrol-2-carbonitril

32
Verwendung nach Anspruch 30 oder 31, wobei die Störung eine CDK-
verträgliche Salze davon bei der Herstellung eines Medikaments zur Behandlung einer proliferativen Störung.

[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorphenyl]-amin
N-[4-(2,4-Dimethyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-N,N'-dimethylbenzen-1,4-diamin

27. Verbindung nach Anspruch 26, ausgewählt unter:
[4-(2,4-Dimethyl-1H-pyrrolo[3,4-d]pyrimidin-2-yl)-(3-nitrophenyl)-amin
[4-(2,4-Dimethyl-1H-pyrrolo[3,4-d]pyrimidin-2-yl)-(4-idophenyl)-amin
3,5-Dimethyl-[2-(3-nitrophenylamino)-pyrimidin-4-yl]-1H-pyrrolo[2,3-d]carbazol

28. Verbindung nach Anspruch 1, wobei
- X₁ und X₂ NH bzw. CR³ sind,
- R¹, R², R³ und R⁴ jeweils unabhängig voneinander ausgewählt sind unter H, Alkyl, Aryl, Aralkyl, Heterozyklus, Halogen, NO₂, CN, OH, Alkoxyl, Aryloxy, (R"⁻)₂N⁺H₂, (R"⁻)₂N⁺H⁻R', (R"⁻)₂N⁺H⁻(R)'(R"'), COOH, COO⁻R', CONH₂, CONH⁻R', CONN⁺(R')(R"'), SO₂H, SO₂NH₂, CF₃ und CO⁻R', wobei die Alkyl-, Aryl- und Aralkylgruppen mit einer oder mehreren Gruppen, ausgewählt unter Halogen, NO₂, CN, OH, O-Methyl, NH₂, COOH, CONH₂ und CF₃, weiter substituiert sein können,
- Z unter NH, NHSO₂ und NHCH₂ ausgewählt ist,
- R⁴, R⁵ und R⁶ jeweils unabhängig voneinander unter H, Halogen, Nitro, Amino, Aminoalkyl, Hydroxy, Alkoxyl, Carbamoyl, Sulfamyl, N(R')(R")⁺, C₁₋₄-Alkyl und substituiertem C₁₋₄-Alkyl ausgewählt sind,
- R⁸ unter H, Halogen, Nitro, Amino, Aminoalkyl, Hydroxy, Alkoxyl, Carbamoyl, Sulfamyl, N(R')(R")⁺, Methyl, Propyl, Butyl und substituiertem C₁₋₄-Alkyl ausgewählt ist,
- R⁹ unter H, Halogen, Nitro, Amino, Aminoalkyl, Hydroxy, Carbamoyl, Sulfamyl, N(R')(R")⁺, C₂₋₄-Alkyl und substituiertem C₁₋₄-Alkyl ausgewählt ist.

29. Pharmazeutische Zusammensetzungen, umfassend eine Verbindung, wie sie in einem der Ansprüche 1 bis 28 definiert ist, oder ein pharmazeutisch verträgliches Salz davon zusammen mit einem pharmazeutisch verträglichen Hilfsstoff.

30. Verwendung einer Verbindung, wie sie in einem der Ansprüche 1 bis 28 definiert ist, oder eines pharmazeutisch verträglichen Salzes davon bei der Herstellung eines Medikaments zur Behandlung einer proliferativen Störung.

31. Verwendung nach Anspruch 30, wobei die proliferative Störung Krebs oder Leukämie ist.

32. Verwendung nach Anspruch 30 oder 31, wobei die Störung eine CDK-abhängige oder -empfindliche Störung ist.
33. Verwendung nach Anspruch 32, wobei das CDK-Enzym CDK2 und/oder CDK4 ist.

34. Verwendung einer Verbindung der Formel

\[
\text{Verwendung einer Verbindung der Formel}
\]

\[
\begin{align*}
R^1, R^2, R^3, R^8 & \text{ unabhängig voneinander H, Alkyl, Aryl, Aralkyl, Heterozyklus, Halogen, NO}_2, \text{CN, OH, Alkoxy, Aryloxy, } (R''')nNH_2, (R''')nNHR, \text{ (R''')nN-(R')}(R'''), \text{ NH-Aryl, N-(Aryl)}_2, \text{COOH, COO-R', COO-Aryl, CONH}_2, \text{CONH-R', CON-(R')(R''), CONH-Aryl, CON-(Aryl)}_2, \text{SO}_3H, \text{SO}_2NH_2, \text{CF}_3, \text{CO-R' oder CO-Aryl sind, wobei Alkyl-, Aryl-, Aralkyl- und Heterozyklusgruppen mit einer oder mehreren Gruppen, ausgewählt unter Halogen, NO}_2, \text{CN, OH, O-Methyl, NH}_2, \text{COOH, CONH}_2 \text{ und CF}_3, \text{weiter substituiert sein können, R}^4, R^5, R^6, R^7 \text{ und R}^8 \text{ unabhängig voneinander H, substituiertes oder unsubstituiertes C}_{1,4}-\text{Alkyl, Halogen, NO}_2, \text{CN, OH, substituiertes oder unsubstituiertes Alkoxy, NH}_2, \text{NH-R', N-(R')(R''), COOH, COO-R', CONH}_2, \text{CONH-R', CON-(R')(R''), SO}_3H, \text{SO}_2NH_2 \text{ oder CF}_3 \text{ sind, wobei R' und R'' jeweils unabhängig voneinander Alkylgruppen sind, die identisch oder verschieden sein können, jeder R'' unabhängig eine Allylengruppe ist und n 0 oder 1 ist, und pharmazeutisch verträglicher Salze davon bei der Herstellung eines Medikaments zur Verwendung bei der Behandlung einer proliferativen Erkrankung.}
\end{align*}
\]

35. Verwendung nach Anspruch 34, wobei die Verbindung wie in einem der Ansprüche 2 bis 13 definiert ist.

Revalidications

1. Composé de formule générale I:
Composé selon l'une quelconque des revendications 1 à 5, dans lequel R

Composé selon la revendication 4, dans lequel lorsque R

Composé selon la revendication 1, dans lequel :

Composé selon la revendication 3, dans lequel R

Composé selon l'une quelconque des revendications précédentes, dans lequel Z est NH et R

méthyl-

diméthylaminométhyle ; lorsque R

l'un de X

et l'autre de X

est CR

et dans laquelle le radical pyrrole est mono-, di- ou trisubstitué :

Z est NH, NHCO, NHSO

2

R

2

R

3

R

10 sont indépendamment H, des groupes alkyle, aryle, hétérocyclique, halogéno,

NO

2

CN, OH, alkoxy, arloxy, (R"n)NH

2

(R"n)NH-R', (R"n)NH-(R") (R")nN- (R') (R")COOH, COOH-CO-'

hétérocyclique peuvent en outre être substitués par un ou plusieurs groupes choisis parmi les groupes halogéno, NO

2

CN, OH, 0-méthyle, NH

2

COOH, CONH

2

et CF

3

; R

4

R

5

R

6

R

7

et R

8

sont, indépendamment les uns des autres, H, des groupes alkyle en C

1 à C

4 substitué ou non substitué, halogéno, NO

2

CN, OH, alkoxy substitué ou non substitué, NH

2

NH-R', N- (R') (R")COOH, COO-R', CONH

2

CONH-R', CON- (R') (R")SO

2

SO

2

NH

2

CF

3

; où R'

et R'' sont chacun indépendamment des groupes alkyle qui peuvent être identiques ou différents, chaque R"

est indépendamment un groupe alkyle ou ; et n vaut 0 ou 1 ; et leurs sels pharmaceutiquement acceptables à condition que lorsque X

1 est NMe, X

2 est CH, Z est NH, R

3 est H ou un groupe alkyle en C

1 à C

3, R

4 à R

8

sont indépendamment les uns des autres, H, des groupes alkyle en C

1 à C

4 non substitué, halogéno, OH, alkoxy en C

1 à C

3 non substitué, NH

2

NH-(alkyle en C

1 à C

3), N-(alkyle en C

1 à C

3) (alkyle en C

1 à C

3), COOH, COO- (alkyle en C

1 à C

3), CF

3, alors R

1 et R

2 ne sont pas tous deux H.

Composé selon la revendication 1, dans lequel :

- X

1 et X

2 sont CR

9 et NH, respectivement ;

- R

1, R

2, R

3 et R

9 sont chacun indépendamment choisis parmi H, les groupes alkyle, aryle, aralkyle, hétérocyclique, halogéno,

NO

2

CN, OH, alkoxy, arloxy, (R"n)NH

2

(R"n)NH-R', (R"n)NH-(R") (R")nN- (R') (R")COOH, COOH-CO-'

hétérocyclique peuvent en outre être substitués par un ou plusieurs groupes choisis parmi les groupes halogéno, NO

2

CN, OH, 0-méthyle, NH

2

COOH, CONH

2

et CF

3

; Z est choisi parmi NH, NHSO

2

et NHCH

2

; - R

4 à R

8 sont chacun indépendamment choisis parmi H, les groupes halogéno, nitro, amino, aminoalkyle, hydroxy, alkoxy, carboxamyle, sulfamyle, N((R") (R")COOH, alkyle en C

1 à C

4 et alkyle en C

1 à C

4 substitué.

Composé selon l'une quelconque des revendications précédentes, dans lequel Z est NH et R

3 est H.

Composé selon la revendication 3, dans lequel R

1, R

2 et R

9 sont chacun indépendamment H, un groupe halogéno,

CN, NO

2

CO(NH

2

), (R"n)NH-(R") (R")nN-, un groupe alkyle en C

1 à C

4 ou un groupe hétérocyclique.

Composé selon la revendication 4, dans lequel lorsque R

1 est un groupe halogéno, il est choisi parmi le groupe chloro ou bromo ; lorsque R

1 est un groupe alkylamino, il est un groupe diéthylaminométhyle ou diméthylaminométhyle ; lorsque R

1 est un groupe hétérocyclique, il est un groupe morpholin-4-ylméthyle ou 4-méthyl-pipérazin-1-ylméthyle.

Composé selon l'une quelconque des revendications 1 à 5, dans lequel R

1 est H ou CN, et R

2 et R

9 sont tous deux un groupe méthyle.
7. Composé selon la revendication 6, dans lequel R1 est H.

8. Composé selon la revendication 6, dans lequel R1 est CN.

9. Composé selon l’une quelconque des revendications précédentes, dans lequel :

R4, R5, R6, R7 et R8 sont indépendamment les uns des autres H, des groupes alkyle en C1 à C4 non substitué, halogéno, NO2, CN, OH, N- (R1) (R2) ou CF3 :
dans lequel R4 et R8 sont chacun indépendamment des groupes alkyle qui peuvent être identiques ou différents et n vaut 0 ou 1.

10. Composé selon la revendication 9, dans lequel R4 à R8 sont indépendamment choisis parmi H, F, NH2, NO2, OH, Cl, Br, I, CN, CH2OH, CF3 et le groupe diméthylamino.

11. Composé selon la revendication 9 ou 10, dans lequel R4 et R8 sont tous deux de l’hydrogène.

12. Composé selon l’une quelconque des revendications précédentes, choisi parmi les 2-[N-(phényl)]-4-(2,4-diméthylpyrrol-3-yl)pyrimidineamines dans lequel le groupe phényle est 2-, 3-, 4- ou 5-substitué par au moins l’un de F, NH2, NO2, OH, Cl, Br, I, CN, CH2OH, CF3 ou OMe.

13. Composé selon la revendication 12, dans lequel le groupe phényle est monosubstitué par F, NH2, NO2, OH, Cl, Br, I, CH2OH, CN, CF3 ou OMe au niveau de l’une quelconque des positions 2, 3, 4 ou 5, ou disubstitué par des groupes 2,4-difluoro, 3,5-difluoro, 3,4-difluoro, 2,4-dichloro, 3,5-dichloro, 3,4-dichloro ou 4-chloro-3-trifluorométhyle.

14. Composé selon l’une quelconque des revendications 1 à 11, choisi parmi les 2-[N-(phényl)]-4-(3,5-diméthyl-1H-pyrrole-2-carbonitrile)pyrimidineamines dans lequel le groupe phényle est 2-, 3- ou 4-substitué par au moins l’un de F, N(CH3)2, NO2, OH, Cl, Br, I ou CF3.

15. Composé selon la revendication 14, dans lequel le groupe phényle est monosubstitué par F, N(CH3)2, NO2, OH, I ou CF3 au niveau de l’une quelconque des positions 3 et 4, ou disubstitué par des groupes 4-méthyl-3-nitro, 3-iode-4-méthyle, 4-chloro-3-méthyle, 3-hydroxy-4-méthyle, 4-fluoro-3-méthyle ou 4-méthyl-3-fluoro.

16. Composé selon l’une quelconque des revendications 1 à 5, choisi parmi les 2-[N-(phényl)]-4-(2,4-diméthyl-5-nitro-1H-pyrrol-3-yl)pyrimidineamines dans lequel le groupe phényle est monosubstitué par l’un de F, N(CH3)2, NO2, OH, I ou CF3 en position 4.

17. Composé selon la revendication 16, dans lequel le groupe phényle est substitué par un groupe fluoro ou N(CH3)2.

18. Composé selon l’une quelconque des revendications 1 à 5, choisi parmi les 2-[N-(phényl)]-4-(2,4-diméthyl-5-halogéno-1H-pyrrol-3-yl)pyrimidineamines dans lequel le groupe phényle est monosubstitué par F, N(CH3)2, NO2, OH, I ou CF3 en position 3 ou 4.

19. Composé selon la revendication 18, dans lequel le groupe phényle est substitué par un groupe 4-fluoro ou 3-nitro, le groupe halogéno étant un groupe chloro ou bromo.

20. Composé selon l’une quelconque des revendications 1 à 5, choisi parmi les 2-[N-(phényl)]-4-(2,4-diméthyl-5-dialkylaminoalkyl-1H-pyrrol-3-yl)pyrimidine-amines dans lequel le groupe phényle est monosubstitué par F, N(CH3)2, NO2, OH, I ou CF3 en position 4.

21. Composé selon la revendication 20, dans lequel le groupe phényle est substitué par un groupe fluoro, le groupe dialkylaminoalkyle étant de préférence un groupe diéthylaminométhyle ou diméthylaminométhyle.

22. Composé selon l’une quelconque des revendications 1 à 5, choisi parmi les 2-[N-(phényl)]-4-(2,4-diméthyl-5-(hétérocycle)-1H-pyrrol-3-yl)pyrimidineamines dans lequel le groupe phényle est de préférence monosubstitué par F, N(CH3)2, NO2, OH, I ou CF3 en position 4.

23. Composé selon la revendication 22, dans lequel le groupe phényle est substitué par un groupe fluoro, le groupe hétérocyclique étant de préférence un groupe 5-morpholin-4-yléthyle ou 4-méthyl-pipérazin-1-yléthyle.
24. Composé selon la revendication 1, choisi parmi :

la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (4-fluorophényl) -amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (3-nitrophényl) -amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (4-i dodophényl) -amine
la [3-(4-difluorophényl)]- [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl] -amine
la [4-(chlorophényl)]-[4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl] -amine
la [3-(5-difluorophényl)]- [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl] -amine
le 4-[4-(2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-y lamino]- phénol
le 3-[4-(2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-y lamino]- phénol
la [2,4-difluorophényl]- [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl] -amine
la [2,4-dichlorophényl]- [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl] -amine
la [4-(chloro-3-trifluorométhylphényl)]- [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl] -amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (4-trifluorométhylphényl) -amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (3-trifluorométhylphényl) -amine
la [3-(chlorophényl)]-[4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
la N-[4-(2,4-diméthyl-1H-pyrrol-3-yl)]-2, N’- diméthylbenzène-1,4-diamine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]- (3-fluoro-4-iodophényl) -amine
le 3,5-diméthyl-4-[2-(3-nitrophénylamino)]-pyrro lidin-4-yl] -1H-pyrrole-2-carbonitrile
le 4-[2-(4-fluorophényl)aminol]- pyridin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 4-[2-(4-hydroxyphényl)aminol]- pyridin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 3,5-diméthyl-4-[2-(4-trifluorométhylphényl)aminol]- pyridin-4-yl] -1H-pyrrole-2-carbonitrile
le 4-[2-(4-iodophényl)aminol]- pyridin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 4-[2-(3-hydroxyphényl)aminol]- pyridin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 3,5-diméthyl-4-[2-(4- méthyl-3-nitrophényl)aminol]- pyridin-4-yl]-1H-pyrrole-2-carbonitrile
le 4-[2-(3-iodo-4-méthylphényl)aminol]- pyrimidin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 4-[2-(4-chloro-3-méthylphényl)aminol]- pyrimidin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 4-[2-(3-hydroxy-4-méthylphényl)aminol]- pyrimidin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 4-[2-(4-fluorométhylphényl)aminol]- pyrimidin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 4-[2-(3-fluorophényl)aminol]- pyrimidin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 4-[2-(4-diméthylaminophényl)aminol]- pyrimidin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carbonitrile
l’amide d’acide 4-[2-(4-fluorophényl)aminol]- pyrimidin-4-yl]- 3,5-diméthyl-1H-pyrrole-2-carboxylate
la [4-(3,5-diméthyl-1H-pyrrol-2-yl)]-pyrimidin-2-yl]- (4-fluorophényl) -amine
la [4-(fluorophényl)]-[4-(1,2,4-triméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
la [4-(2,4-diméthyl-5-nitro-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (4-fluorophényl) -amine
la N-[4-(2,4-diméthyl-5-nitro-1H-pyrrol-3-yl)]-pyrimidin-2-yl]-N’, N’- diméthylbenzène-1,4-diamine
la [4-(5-aminol-2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (4-fluorophényl) -amine
la [4-(5-bromo-2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (4-fluorophényl) -amine
la [4-(5-bromo-2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (3-nitrophényl) -amine
la [4-(5-chloro-2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (4-fluorophényl) -amine
la [4-(5-diéthylaminométhyl-2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (4-fluorophényl) -amine
la [4-(5-diméthylaminométhyl-2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (4-fluorophényl) -amine
la [4-(2,4-diméthyl-5-morpholin-4-y lamino-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (4-fluorophényl) -amine
la [4-(2,4-diméthyl-5-(4-méthylpipérazin-1-ylm éthyl)]-1H-pyrrol-3-yl]-pyrimidin-2-yl]- (4-fluorophényl) -amine.

25. Composé selon la revendication 24, choisi parmi :

la [4-(2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (4-fluorophényl) -amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (3-nitrophényl) -amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-yl]- (4-i dodophényl) -amine
la [3-(4-difluorophényl)]- [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl] -amine
la [4-(chlorophényl)]-[4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
la [3-(5-difluorophényl)]- [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl] -amine
le 4-[4-(2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-y lamino]- phénol
le 3-[4-(2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-y lamino]- phénol
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)]-pyrimidin-2-y lamino]- (4-trifluorométhylphényl) -amine
la [3-(chloro-4-iodophényl)]-[4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-amine
26. Composé selon la revendication 25, choisi parmi :

la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-diamine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-(3-fluoro-4-iodophényl)-amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-(4-fluorophényl)-amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitrophényl]-amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophényl]-amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-trifluorométhylphényl]-amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[3-nitrophényl]-amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophényl]-amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-[4-fluorophényl]-amine

27. Composé selon la revendication 26, choisi parmi :

la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-(3-fluoro-4-iodophényl)-amine
la [4-(2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-(4-iodophényl)-amine
le 3,5-diméthyl-4-[2-(3-nitrophénylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile
le 4-[2-(4-fluoro-phenylamino)pyrimidin-4-yl]-3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 4-[2-(4-hydroxy-phenylamino)pyrimidin-4-yl]-3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 3,5-diméthyl-4-[2-(4-trifluorométhylphénylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile
le 4-[2-(4-iodophénylamino)-pyrimidin-4-yl]-3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 3,5-diméthyl-4-[2-(4-méthyl-3-nitrophénylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carbonitrile
le 4-[2-(3-hydroxy-4-méthylphénylamino)-pyrimidin-4-yl]-3,5-diméthyl-1H-pyrrole-2-carbonitrile
le 4-[2-(4-fluoro-3-méthylphénylamino)-pyrimidin-4-yl]-3,5-diméthyl-1H-pyrrole-2-carbonitrile
l'amide d'acide 4-[2-(4-fluoro-phenylamino)pyrimidin-4-yl]-3,5-diméthyl-1H-pyrrole-2-carboxylique
la [4-(2,4-diméthyl-5-nitro-1H-pyrrol-3-yl)-pyrimidin-2-yl]-(4-fluorophényl)-amine
la [4-(5-bromo-2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-3-nitrophényl)-amine
et
la [4-(5-diméthylaminométhyl-2,4-diméthyl-1H-pyrrol-3-yl)-pyrimidin-2-yl]-(4-fluorophényl)-amine.

28. Composé selon la revendication 1, dans lequel :
 - X¹ et X² sont NH et CR³, respectivement ;
 - R¹, R², R³ et R⁶ sont chacun indépendamment choisis parmi H, les groupes alkyle, aryle, aralkyle, hétérocyclique, halogéno, NO₂, CN, OH, alkoxy, aryloxy, (R²) nNH₂, (R²) nNH-R¹, (R²) nN- (R¹) (R²), COOH, COO-R¹, CONH₂, CONH-R¹, CON- (R¹) (R²), SO₂H, SO₂NH₂, CF₃ et CO-R¹, où les groupes alkyle, aryle et aralkyle peuvent en outre être substitués par un ou plusieurs groupes choisis parmi les groupes halogéno, NO₂, CN, OH, 2-méthyle, NH₂, COOH, CONH₂ et CF₃ :
 - Z est choisi parmi NH, NHSO₂ et NHCH₂ ;
 - R⁴, R⁵ et R⁷ sont chacun indépendamment choisis parmi H, les groupes halogéno, nitro, amino, aminoalkyle, hydroxy, alkoxy, carbamoyle, sulfamyle, N(R¹)(R⁷), alkyle en C₁ à C₄ et alkyle en C₁ à C₄ substitué ;
 - R⁶ est choisi parmi H, les groupes halogéno, nitro, amino, aminoalkyle, hydroxy, alkoxy, carbamoyle, sulfamyle, N(R¹)(R⁷), méthyle, propyle, butyle et alkyle en C₁ à C₄ substitué ;
 - R⁷ est choisi parmi H, les groupes halogéno, nitro, amino, aminoalkyle, hydroxy, carbamoyle, sulfamyle, N (R¹)(R⁷), alkyle en C₂ à C₄ et alkyle en C₁ à C₄ substitué.

29. Compositions pharmaceutiques comprenant un composé tel que défini dans l’une quelconque des revendications 1 à 28 ou un sel pharmaceutiquement acceptable de celui-ci conjointement avec un excipient pharmaceutiquement acceptable.

30. Utilisation d’un composé tel que défini dans l’une quelconque des revendications 1 à 28 ou d’un sel pharmaceutiquement acceptable de celui-ci dans la préparation d’un médicament pour le traitement d’un trouble prolifératif.

31. Utilisation selon la revendication 30, dans laquelle le trouble prolifératif est le cancer ou la leucémie.

32. Utilisation selon la revendication 30 ou 31, dans laquelle le trouble est un trouble sensitif ou dépendant de la CDK.

33. Utilisation selon la revendication 32, dans laquelle l’enzyme CDK est CDK2 et/ou CDK4.

34. Utilisation d’un composé de formule
l'un de X^1 et X^2 est NR10 et l'autre de X^1 et X^2 est CR9, et dans laquelle le radical pyrrole est mono-, di- ou trisubstitué ;

Z est NH, NHCO, NHSO$_2$, NHCH$_2$, CH$_2$, CH$_2$CH$_2$ ou CH=CH ;

R^1, R^2, R^3 et R^{10} sont indépendamment H, des groupes alkyle, aryle, aralkyle, hétérocyclique, halogéno, NO$_2$, CN, OH, alk oxy, aryloxy, (R$'''$)nNH$_2$, (R$'''$)nNH-R', (R$'''$)nN-(R$'$)(R$''$), NH-aryl, N-(aryl)$_2$, COOH, COO-R', COO-aryl, CONH$_2$, CONH-aryl, CONH-aryl, CON- (aryl) $_2$, SO$_2$H, SO$_2$NH$_2$, CF$_3$, COO-$'$ ou CO-aryl, où les groupes alkyle, aryle et hétérocyclique peuvent en outre être substitués par un ou plusieurs groupes choisis parmi les groupes halogéno, NO$_2$, CN, OH, O-méthyle, NH$_2$, COOH, CONH$_2$ et CF$_3$;

R^4, R^5, R^6, R^7 et R^8 sont, indépendamment les uns des autres, H, des groupes alkyle en C$_1$ à C$_4$ substitué ou non substitué, halogéno, NO$_2$, CN, OH, alk oxy substitué ou non substitué, NH$_2$, NH-R', N-(R$'$) (R$''$), COOH, COO-R', CONH$_2$, CONH-aryl, CONH-aryl, SO$_2$H, SO$_2$NH$_2$ ou CF$_3$;

où R' et R'' sont chacun indépendamment des groupes alkyle qui peuvent être identiques ou différents, chaque R$'''$ est indépendamment un groupe alkylène ; et n vaut 0 ou 1 ;

dans la fabrication d'un médicament destiné à être utilisé dans le traitement d'une maladie proliférative.

35. Utilisation selon la revendication 34, dans laquelle le composé est tel que défini dans l'une quelconque des revendications 2 à 13.
<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 233461 A [0002]
• WO 9509847 A [0002]
• WO 9509852 A, Ciba Geigy AG [0004]

Non-patent literature cited in the description

• Handbook of Pharmaceutical Excipients. 1994 [0049]