A METHOD FOR THE IMPLEMENTATION OF ELECTRONIC COMPONENTS IN VIA-HOLES OF A MULTI-LAYER MULTI-CHIP MODULE

VERFAHREN ZUR DURCHFÜHRUNG VON ELEKTRONISCHEN BAUTEILEN IN DURCHGANGSLOCHERN EINES MEHRSCHICHTIGEN MULTICHIP-MODULS

PROCEDE D'IMPLANTATION DE COMPOSANTS ELECTRONIQUES DANS DES TROUS D'INTERCONNEXION D'UN MODULE MULTICOUCHE MULTIPUCES

References cited:

EP-A- 0 491 543
EP-A- 0 574 206
EP-A- 0 719 079
US-A- 3 303 078
US-A- 4 300 115
US-A- 6 068 782

- "POLYMER RESISTOR FORMATION IN PHOTO VIA" IBM TECHNICAL DISCLOSURE BULLETIN, IBM CORP. NEW YORK, US, vol. 36, no. 10, 1 October 1993 (1993-10-01), page 349 XP000412286 ISSN: 0018-8689

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] The present invention relates to the field of integrated multi-layer multi-chip modules (MCMs), to the manufacture of integrated multi-layer MCMs, and specifically to the manufacture of integrated multi-layer MCMs in which electrical components are produced in the via-holes that provide the electrical continuity between the layers.

BACKGROUND OF THE INVENTION

[0002] Many different types of substrate serve as the supporting and interconnecting substrate for electronic components. Resistors, capacitors, inductors, and many other types of electronic component are mounted on the substrate in a predetermined manner and electrically connected together by a metallic conducting pattern that is deposited on its surface to form the required electronic device.

[0003] Resistors, capacitors, and other passive components, such as inductors, typically occupy over 50% of the surface area of the substrate. In order to provide more room for active devices (e.g. diodes, transistors, ICs, power sources, etc.) on the surface, as well as to miniaturize the device, multi-layer devices have been constructed. In these devices, electrical circuits consisting of electronic components and conducting patterns are constructed on the substrates that makes up each layer. The layers are electrically connected by via-holes, which are vertical holes that are manufactured through the substrate at the appropriate places to provide conducting paths between the layers.

[0004] Many different methods of forming passive electronic circuit elements on substrates have been described. For example:

[0005] US patent 5,855,755 describes the production of passive electronic circuit elements from "electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams". The production of the electronic circuit elements requires several steps including periods of thermal treatment or of drying either at room temperature. "Because the photopolymerization process may form lines having sides that are not entirely uniform or smooth, it may be difficult to obtain resistors within narrow tolerances without further processing." In applications where precise resistance is necessary, the resistor lines are made wider than necessary and, after curing, each of the resistors is measured and trimmed with a laser to increase the resistance. It may be necessary to carry out the trimming process in several stages to achieve the required accuracy.

[0006] US 5,872,040 describes a method in which "thin film electronic components are deposited on a surface, parameter values are measured or estimated, a correction offset file is generated, and the components are trimmed using adaptive lithography." In this example also, many steps are required to produce the electronic components on the substrate and then in the lithography techniques used to trim the films to get the desired electrical values for the elements.

[0007] In the currently used methods of producing passive electronic elements, except in the case of parallel plate capacitors in which the substrate itself also serves as the dielectric layer of the capacitor, the elements are produced on one surface of the substrate layers. Thus, creating a multi-layer system results in conducting lines no shorter than the original single layer MCM with the attendant heating, energy loss, and reduced signal to noise ratio.

[0008] Most of the existing methods of producing passive elements on substrate surfaces require multi-step, relatively complex, manufacturing processes and relatively large volumes of expensive substrate material. Also, because of the difficulty in controlling the thickness and shape of thin films on the substrate, existing methods result in the production of elements whose electric characteristics vary from their expected values, thus reducing the performance of the device. The accuracy of the components can be improved by trimming them to change their dimensions and therefore their electrical characteristics. This trimming adds to the complexity, time required, and cost of manufacture and sometimes negative results arise such as burning, in the case of laser trimming, or from the harsh chemicals used in lithographic techniques.

[0009] Patent Numbers US 5,953,203 and US 6,055,151 disclose methods for producing capacitors on multi-layer ceramic circuit boards, using screen printing techniques, that overcome some of the above mentioned difficulties of the existing methods. In particular, they disclose methods of producing the capacitors that "greatly reduces the shrinkage of the green tapes during firing in the x and y directions, so that most of the shrinkage occurs only in the z, or thickness, dimension". This, presumably, reduces or eliminates the need for trimming of the capacitors. In addition a method of producing buried capacitors, "buried one or two tape layers below the top of the substrate" is disclosed, reducing somewhat the total surface area of substrate required.

[0010] The methods disclosed in these patents only partially alleviate the difficulties of the prior art. They are only applicable to multi-layer circuit boards, and not to other types of substrate. They apply only to the production of capacitors, with restrictions on the capacitance values that are achievable. The method of manufacture is complex requiring the build up of many layers, including barrier layers needed to prevent dilution effects caused by diffusion of material from neighboring layers during firing of the laminated stacks.

[0011] Other publications are known that describe methods of producing electrical elements in via holes of
substrates. Amongst these publications are the following:

[0015] EP-A-0 491 543 discloses conductive or resistive via fills, made either by low temperature co-firing processes or by filling through screen printing.

[0016] US 4,300,115 discloses resistive paths between conductive layers made by screening resistive paste onto a dielectric layer so that it fills the vias.

[0020] US 3,303,078 teaches the use of an electrophoretic deposition process to produce electrical components for printed circuit in unmasked areas of the surface of a dielectric layer which has a conductive layer laminated to its other surface. The laminated printed circuit boards described in this patent do not contain via-holes.

[0021] US 6,068,782 discloses a method of fabricating embedded capacitors by partially filling a pattern groove with capacitive dielectric and depositing a conductive material into the same pattern groove.

[0022] With the methods described above, it is not possible to produce complex electrical components consisting of more than one layer or even several different electrical components in a via-hole. There is therefore a need for providing an improved process for manufacturing electronic components for use on integrated multi-layer MCMs that overcomes the limitations of existing methods.

[0023] It is a purpose of this invention to provide a method of manufacturing active and passive electronic components for use on integrated multi-layer MCMs that overcomes the limitations of existing methods and allows for electrical components consisting of several different layers to be created in a via-hole.

[0024] It is an additional purpose of this invention to provide a method of manufacturing passive electronic components on integrated multi-layer MCMs that is less costly than existing methods. It is a further purpose of this invention to provide a device consisting of integrated multi-layer MCMs that results in reduced module size, shorter conducting lines, reduced power consumption, and improved signal to noise ratio.

[0025] Other purposes and advantages of this invention will appear as the description proceeds.

SUMMARY OF THE INVENTION

[0026] The present invention is directed to a method for the implementation of electrical components in via-holes of a substrate characterized by the steps:

(a) using an electrophoretic deposition (EPD) process to deposit a first layer comprised of a pre-determined quantity of chosen electrically charged conductive or non-conductive particles in a group of via-holes;

(b) repeating step (a) at least once and as many times as necessary to deposit subsequent layers of chosen electrically charged conductive or non-conductive particles until a complete electrical component has been implemented in each of the via-holes.

[0027] The method of the invention produces electrical components that may be selected from the group comprising:

- capacitors;
- resistors;
- piezoelectric elements;
- inductors;
- magnetoresistive sensors;
- magnetic actuators; and
- batteries.

[0028] Steps (a) and (b) of the method according to the invention may be repeated as many times as necessary to implement one or more additional electrical components in selected via-holes. This allows for very compact integrated multi-layer MCMs with shorter conducting lines between the electrical components.

[0029] The electrical components may be formed from either non-conductive and/or conductive particles that are deposited in predetermined quantities within the via-holes of the substrate. The conductive particles are selected from metallic, ferro-magnetic or resistive particles and the non-conductive particles are selected from the group comprising:

- dielectric particles;
- ferromagnetic particles; and
[0030] According to an embodiment of the invention, the electrical components may be formed by using an electrophoretic deposition (EPD) process that may comprise the following steps:

- (a) inserting the substrate containing said via-hole(s) into an electrophoretic cell, placing an electrode (referred to as "first electrode") on top of a first orifice of each said via-hole(s), to be implemented with electrical components, so that said electrode totally covers said first orifice;

- (b) providing electrically charged either conductive and/or non-conductive particles by immersing the volume of said via-hole(s) in a conductive medium consisting of said electrically charged particles;

- (c) creating an electric field between said first electrode and a second electrode through said via-hole(s) and said conductive medium;

- (d) precipitating said electrically charged particles on the inner surface of said first electrode that is directed to the second orifice of said via-hole(s), until a desired portion of the volume of said via-hole(s) is filled with a first layer of said charged particles having a desired thickness, and optionally, if so desired

- (e) precipitating an additional electrically charged layer, composed of either conductive and/or non-conductive particles on top of the inner surface of said first layer, using a second electrophoretic cell; and, optionally if so desired

- (f) repeating the last step using additional electrophoretic cell(s) creating more layers, until the remaining portion of the volume of said via-hole(s) is filled with said additional charged particles.

[0031] The electrical components may be deposited within the via-holes as one layer composed of a single type of particle, or co-deposited as one layer composed of two or more types of particles, or deposited and/or co-deposited as two or more layers each composed of one or more types of particles.

[0032] The invention is also directed towards a module comprising via-holes containing electrical components, wherein the electrical components are created from two or more layers of particles according to the method of claim 1 as described above.

[0033] In such a module the electrical components may be deposited within the via-holes of a substrate and are selected from the group comprising:

- capacitors;
- conductors;
- resistors;
- piezoelectric elements;
- inductors;
- magnetoresistive sensors;
- magnetic actuators; and

- batteries.

[0034] The electrical components may be formed from either non-conductive and/or conductive particles that are deposited in predetermined quantities within the via-holes of the substrate. The conductive particles are selected from metallic, ferromagnetic or resistive articles and the non-conductive particles are selected from the group comprising:

- dielectric particles;
- ferromagnetic particles; and
- piezoelectric particles.

[0035] In the module according to the invention, which may be an integrated multi-layer module comprising at least two layers, and wherein preferably at least a portion of the electrical components of said integrated multi-layered module are located within the via-holes of said layers, said integrated module may further comprise conductive means to connect said electrical components located within the via-holes with other components of said multi-chip module which are either located within other via-holes or located on the surfaces of the same, or different, layers of said multi-layered module.

[0036] The electrical components may be deposited within the via-holes of the substrate for a multi-chip module of the invention as one layer composed of a single type of particle, or co-deposited as one layer composed of two or more types of particles, or consist of a first layer, deposited or co-deposited within the via-holes of the substrate in a first EPD cell, and of a second, or more additional layer, sequentially deposited or co-deposited within the via holes of the substrate in corresponding separate EPD cells, wherein each layer is composed of one or more types of non-conductive or conductive particles.

[0037] An embodiment of the invention also comprises a method for producing a multi-layered multi-chip module in which at least a portion of the electrical components are implemented within the via-holes of the substrates that comprise the layers of the module, further comprising conductive means to connect said electrical components with other components of said multi-chip module located within the via-holes or on the surface of the same, or different, layers of said multi-layered multi-chip module.

[0038] In the preferred embodiment of the present invention, EPD technology is used for producing the desired electronic components within the via-holes. In the EPD process the desired electronic components are produced by the deposition of charged particles onto an electrode immersed in either an aqueous or non-aqueous suspension containing said charged particles in a powder form.

[0039] The success of the EPD process depends primarily on the electric charge carried by the particles, which can be controlled through pretreatment of the powder and by addition of surface active agents to the dispersion.
According to one aspect of the invention, the EPD technology may be applied by completely covering the one orifice of the via-hole with one electrode of the EPD cell. The volume of the via-hole is immersed in the suspension, a second electrode is provided, and an electric field is applied between the electrodes through the via-hole and the suspension. This field causes charged particles that were in the suspension to be deposited by EPD onto the inner surface of the electrode, filling the via-hole until a required deposit thickness is obtained. Since the electrical value of the resulting component electrode depends on the known electric constants of the suspended particles (resistance, dielectric constant, etc.) and the dimensions of the component, good agreement between the calculated and manufactured values are achieved. This follows from the fact that the diameters of the via-holes are accurately controlled during their production by methods that are well known to the man skilled in the art (see for example, US 5,841,075). When the charged particles have been deposited to the required thickness, the field is turned off and the substrate is then removed from the EPD cell. The thickness of the deposited layer is a function of the concentration of particles in the suspension, current, and time and consequently it is easily monitored, controllable and reproducible.

If so desired, the process of manufacturing the electrical component is completed by immersing the via-hole into a second EPD cell and depositing conductive particles until the via-hole is completely full.

Alternatively, different particles can be precipitated in the via-hole in any desired order. For example, one or more different electronic components can be formed in the same via-hole. Thus, a part of a circuit consisting of, for example, a resistor and capacitor connected in series can be produced in a single via-hole. Similarly, any other combination of two or more components is possible. The only limitation being the physical capacity of the via-hole. It should be noted that in the case of some of the electrical components, such as batteries, holes of diameters larger than those associated with conventional via-holes are required in order to deposit a sufficient quantity of material to create the component. In this manner, a component, or components, possessing predetermined electrical characteristics has been created in the via-hole. This reduces the overall length of conducting lines in the final circuit; since the depth of the via-holes, which in the existing technology contained only conductors, now contain passive elements and conductors to provide electrical continuity between the layers of the multi-layer system. Since many of the components are now embedded in a vertical direction instead of all of the components being dispersed horizontally on the surface of the layers as in the prior art, the overall volume of the multi-layer system and amount of substrate material required to support the components is reduced.

All of the above and other characteristics and advantages of the invention will be further demonstrated by means of the following illustrative and non-limitative description of preferred embodiments thereof, with reference to the appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 schematically illustrates a device for carrying out an EPD process;

Fig. 2A is a cross-sectional view schematically showing the substrate; Fig. 2B is a cross-sectional view schematically showing the addition of a via hole to the substrate;

Fig. 2C is a cross-sectional view schematically showing the placement of the electrodes;

Fig. 2D is a cross-sectional view schematically showing the situation after the deposition of a first layer;

Fig. 2E is a cross-sectional view schematically showing the situation after the deposition of a second layer;

Fig. 2F is a cross-sectional view schematically showing the situation after the deposition of a third layer; and,

Fig. 2G is a cross-sectional view schematically showing the situation after completion of the deposition process.

Fig. 3A schematically shows a MCM with the electronic components arranged in a single layer on the surface according to prior art;

Fig. 3B shows the device of Fig. 3A with passive elements distributed on the surfaces of the different dielectric layers in order to miniaturize the device according to prior art; and

Fig. 3C shows the device of Fig. 3A with passive elements created in the via-holes according to the method of the invention.

DETAILED DESCRIPTION OF THE INVENTION

An electrophoretic deposition (EPD) cell 1 is shown schematically in Fig. 1. The cell 1 consists of a container with an electric circuit consisting of an "upper" positive electrode 4 connected through a DC power supply 5 to a "lower" negative electrode 6. The substrate and electrodes are suspended in a liquid suspension 7.

The suspension consists of particles of the material that has been chosen for the manufacture of the electrical component to which positive electrical charges have been attached by adsorption of ions. The particles...
are suspended in either water or any other suitable liquid, such as alcohol, depending upon the properties of the powder to be placed in suspension and the type of substrate.

[0048] As mentioned above, the particles of the suspension are chosen according to the type of passive component that should be formed and the desired values of the electrical properties of said component. Conductors are produced from metals, including gold, silver, copper, aluminum, nickel, platinum, and palladium. Capacitors are made from high dielectric constant materials such as BaTiO₃, Ta₂O₅, or PZT. Inductor cores are made from ferromagnetic materials, and resistors from controlled combinations of insulating materials such as glass, ceramics, or polymers with conducting materials such as ruthenium or any of the metals that are used to create conductors.

Using the technology of this invention, it is also possible to manufacture piezoelectric devices having an electrode component consisting of PZT, magnetoresistive sensors from cobalt/copper compositions, and magnetic actuators from materials such as Tb₀.₃₀Dy₀.₇₀Fe₁.₉₂. Using EPD it is also possible to create Li and Ni/Cd batteries.

[0049] The substrate 2 (Fig. 1) is placed in the EPD cell 1 such that the via-hole 3 is completely immersed in the suspension. The via-holes are created by techniques that are well known in the art. Much care is taken to maintain a uniform cross section of the hole throughout the entire thickness of the substrates in order to allow production of high quality electrical components. The lower electrode 6 is positioned such that it completely covers the orifice of the via-hole and an electric field is created in the EPD cell. Said electric field causes the electrically charged particles of the suspension to be deposited on the inner surface of electrode 6 that is directed towards the upper orifice of the via-hole.

[0050] According to one aspect of the invention, the lower electrode can be part of the conductive pattern deposited on the surface of the substrate. As will be obvious to a man skilled in the art, several identical component electrodes, namely, same electrical component types can be formed in different via-holes at the same time.

[0051] Figs. 2A through 2G show the EPD process in more detail. The process begins, in Fig 2A, with a substrate layer generally indicated by the reference numeral 2. In Fig. 2B, the via-hole by the numeral 3 is created. In Fig.2C, the lower electrode designated by numeral 6 and the upper electrode designated by numeral 4 are placed in position. Fig 2D shows the situation after the deposition of the first layer designated by numeral 7. In most embodiments, 7 is a conducting layer that serves as a contact point for the element to be created in the via-hole. It is not, however, necessary to begin the process by depositing a conductive layer for example if the electrode 6, is part of the conducting pattern on the surface of the substrate.

[0052] The substrate and electrodes are now removed from the cell containing the conductive material and moved to an EPD cell containing a suspension of particles suitable to form the desired component. It should be noted that, for simplicity, the invention is described in terms of the deposition of a single type of particle, it is possible to co-deposit two or more types of charged particles from the same suspension in order to form electronic components with certain characteristics. Fig. 2E shows the situation at the end of the deposition of the particles that constitute the electronic component 8. The thickness t is easily determined from the desired electric value of the component. For example in the case of a capacitor, the capacitance depends on the cross-sectional area of the via-hole, the dielectric constant of the particles deposited in the EPD process, and the thickness t. Since the via-hole is precisely created, its diameter is known. It is easy to calibrate the EPD cell in order to accurately produce a desired thickness of deposited material, since the dielectric constant of the particles in the suspension is also known.

[0053] The substrate and electrodes are now removed from the second EPD cell and returned to the first cell containing the conductive material (Fig. 2F). In this step of the process, the remainder of the via-hole is filled with conductive material forming the second contact point of the electronic element. Finally, in Fig. 2G, the electrodes are removed and the substrate, with the electronic element created in the via-hole, is removed from the suspension and dried and treated according to the application, employing techniques well known in the art.

[0054] To create an inductor, a spiral conducting pattern is created on the substrate above the upper orifice of the via-hole by techniques well known in the art, for example by screen printing or as disclosed in US 6,040,226. The electrode of the EPD cell is placed over said spiral and orifice and ferromagnetic particles are deposited in the via-hole to produce a ferromagnetic “core” for the inductor. This ferromagnetic layer increases the Q factor of the inductor and allows the use of smaller components to achieve the desired inductance.

[0055] In other embodiments of the invention, the substrate and electrodes can be moved to a third EPD cell containing a suspension of different electrically charged non-conductive particles and another or a more complex electrical component can be formed in the same via-hole. This process can be repeated several times forming via-holes with any desired combination of non-conductive and conductive particles forming the electrical components described above.

[0056] Deposition of more than one layer in the via-holes is possible using the EPD process because the substrate is moved from one cell to another before the previously deposited layers have had a chance to cure. The layers in the via-hole constitute what is known in the art as a “green body”, i.e. they have no mechanical strength and contain cavities filled with solvent that allow for continuation of the electric field necessary for the deposition of subsequent layers. However, the green body is impermeable to the suspended powder material in-
tended for deposition within the via-hole on a previously deposited layer. Although the strength of the electric field in the via-hole will be decreased after the deposition of each layer, it is possible to compensate for this effect by increasing the electrical potential between the EPD electrodes.

[0057] An example of an electrical component formed by a multi-layer deposition process is a lithium polymer battery. As discussed previously, to produce a battery, it might be necessary to prepare a hole in the substrate with a diameter larger than that associated with conventional via-holes. The substrate, with the hole of the required diameter is placed in a first EPD cell containing lithium cobalt dioxide powder in suspension. The electrodes are supplied and a layer that serves as the cathode of the battery is deposited. The substrate is then moved to a second EPD cell containing powders of a polymer composite and a lithium salt which are co-deposited to form the solid polymer electrolyte layer. Finally, the substrate is moved to a third EPD cell, where a graphite layer, that serves as the anode of the battery is deposited.

[0058] When all of the component electrodes in all of the layers are formed in the manner described above; external components, conducting lines, and additional passive components are attached to the various substrates and the final integrated multi-layer electronic device is assembled using conventional techniques. The techniques of the final assembly of integrated multi-layer MCMs are well known, and therefore they are not discussed here.

[0059] Figs. 3A to 3C show the assembled integrated multi-layer device in which the components are designated as follows: dielectric substrate layers 2, via-holes 3, conducting lines 9, an integrated circuit chip 10, passive components 11, and the component electrodes of the invention 12.

[0060] Figs. 3A and 3B show the assembly according to the methods of the prior art. In Fig. 3B, some of the passive components that are located on the upper surface only of the substrate of Fig. 3A have been relocated on the surfaces of the internal substrates of the multi-layer structure. All of the methods of depositing the film layers that make up the passive electronic components on the surfaces of the substrates suffer from difficulties in accurately controlling the width and thickness of the films. In applications where strict tolerances for the electrical parameters of the components are necessary, considerable time, and therefore expense, must be invested in trimming the films; or, expensive thin-film technology must be employed.

[0061] Fig. 3C shows the device of Figs 3A and 3B, manufactured according to the method of the invention. It will be recognized by the experienced observer that the method of the invention leads to the construction of a device containing a greatly reduced overall length of conducting lines connecting the electrical components and also to a completed multi-layer structure occupying significantly smaller volume than the equivalent device constructed according to the existing methods.

Claims

1. A method for the implementation of electrical components (8,12) in via-holes (3) of a substrate (2) characterized by the steps:

 (a) using an electrophoretic deposition (EPD) process to deposit a first layer (7) comprised of a pre-determined quantity of chosen electrically charged conductive or non-conductive particles in a group of via-holes (3);
 (b) repeating step (a) at least once and as many times as necessary to deposit subsequent layers (7) of chosen electrically charged conductive or non-conductive particles until a complete electrical component (8,12) has been implemented in each of the via-holes (3).

2. A method according to claim 1, wherein the electrical components (8,12) are selected from the group comprising:

 - capacitors;
 - resistors;
 - piezoelectric elements;
 - inductors;
 - magnetoresistive sensors;
 - magnetic actuators; and
 - batteries.

3. A method according to claim 1, wherein steps (a) and (b) are repeated as many times as necessary to implement one or more additional electrical components (8,12) in selected via-holes (3).

4. A method according to claim 1, wherein the non-conductive particles are selected from the group comprising:

 - dielectric particles;
 - ferromagnetic particles; and
 - piezoelectric particles.

5. A method according to claim 1, wherein the conductive particles are selected from the group comprising:

 - metallic particles
 - ferro-magnetic particles
 - resistive particles.

6. A method according to claim 1, wherein the electrical components (8,12) deposited and/or co-deposited within the via-holes (3) consist of two or more layers (7) each composed of one or more types of particles.
7. A module comprising via-holes (3) containing electrical components (8,12), wherein said electrical components (8,12) are created from two or more layers of particles according to the method of claim 1.

8. A module according to claim 7, wherein the electrical components (8,12) created within the via-holes (3) are selected from the group comprising:

- capacitors;
- piezoelectric elements;
- inductors;
- magnetoresistive sensors;
- magnetic actuators; and
- batteries.

9. A module according to claim 7, wherein said module is an integrated multi-layer module comprising at least two layers (2), and wherein at least a portion of the electrical components (8,12) of said integrated multi-layered module are located within the via-holes (3) of said layers (2), said integrated module further comprising conductive means (9) to connect said electrical components (8,12) located within the via-holes (3) with other components (8,10,11,12) of said multi-chip module which are either located within other via-holes (3) or located on the surfaces of the same, or different, layers (2) of said multi-layered module.

Patentansprüche

1. Verfahren zum Implementieren elektrischer Bauteile (8, 12) in Durchgangslöchern (3) eines Substrats (2), gekennzeichnet durch die Schritte:

(a) Verwenden eines Elektrophoreseabscheidungs-(EPD)-Prozesses, um eine erste Schicht (7), bestehend aus einer vorgegebenen Menge an ausgewählten, elektrisch geladenen, leitenden oder nichtleitenden Partikeln, in einer Gruppe von Durchgangslöchern (3) abzuscheiden;
(b) Wiederholen von Schritt (a) wenigstens einmal und so oft wie nötig, um aufeinanderfolgende Schichten (7) von ausgewählten, elektrisch geladenen, leitenden oder nichtleitenden Partikeln abzuscheiden, bis ein komplettes elektrisches Bauteil (8, 12) in jedem der Durchgangslöcher (3) implementiert worden ist.

2. Verfahren nach Anspruch 1, bei dem die elektrischen Bauteile (8, 12) aus einer Gruppe ausgewählt werden, die umfasst:

Kondensatoren;
Widerstände;
piezoelektrische Elemente;
Induktivitäten;
magnetoresistive Sensoren;
magnetische Betätigungselemente; und
Batterien.

3. Verfahren nach Anspruch 1, bei dem die Schritte (a) und (b) so oft wie nötig wiederholt werden, um ein oder mehrere zusätzliche elektrische Bauteile (8, 12) in ausgewählten Durchgangslöchern (3) zu implementieren.

4. Verfahren nach Anspruch 1, bei dem die nichtleitenden Partikel aus einer Gruppe ausgewählt werden, die umfasst:

dielektrische Partikel;
ferromagnetische Partikel; und
piezoelektrische Partikel.

5. Verfahren nach Anspruch 1, wobei die leitenden Partikel aus einer Gruppe ausgewählt werden, die umfasst:

magnetische Partikel,
ferromagnetische Partikel,
Widerstandsartikel.

6. Verfahren nach Anspruch 1, wobei die elektrischen Bauteile (8, 12), die innerhalb der Durchgangslöcher (3) abgeschieden sind, abgeschrieben, und/oder gemeinsam abgeschrieben werden, aus zwei oder mehr Schichten (7) bestehen, die jeweils aus einem oder mehreren Typen von Partikeln bestehen.

7. Modul, das Durchgangslöcher (3) umfasst, die elektrischen Bauteile (8, 12) enthalten, wobei die elektrischen Bauteile (8, 12) aus zwei oder mehr Schichten von Partikeln gemäß dem Verfahren nach Anspruch 1 erzeugt worden sind.

8. Modul nach Anspruch 7, wobei die elektrischen Bauteile (8, 12), die innerhalb der Durchgangslöcher (3) erzeugt werden, aus einer Gruppe ausgewählt werden, die umfasst:

Kondensatoren;
piezoelektrische Elemente;
Induktivitäten;
magnetoresistive Sensoren;
magnetische Betätigungselemente; und
Batterien.

9. Modul nach Anspruch 7, wobei das Modul ein integriertes Mehrschichtmodul ist, das wenigstens zwei Schichten (2) umfasst, und wobei wenigstens ein Teil der elektronischen Bauteile (8, 12) des integrierten Mehrschichtmoduls innerhalb der Durchgangslöcher (3) der Schichten (2) angeordnet sind, wobei
das integrierte Modul ferner leitende Mittel (9) umfasst, um die elektrischen Bauteile (8, 12), die innerhalb der Durchgangslöcher (3) angeordnet sind, mit anderen Bauteilen (8, 10, 11, 12) des Mehrchipsmoduls zu verbinden, die innerhalb anderer Durchgangslöcher (3) angeordnet sind oder auf den Oberflächen der gleichen oder anderer Schichten (2) des Mehrschichtmoduls angeordnet sind.

Revendications

1. Procédé d’implantation de composants électriques (8, 12) dans des trous d’interconnexion (3) d’un substrat (2) caractérisé par les étapes consistant à :

 (a) utiliser un processus de dépôt électrophorétique (EPD) afin de déposer une première couche (7) constituée d’une quantité prédéterminée de particules conductrices ou non conductrices électriquement chargées dans un groupe de trous d’interconnexion (3) ;

 (b) répéter l’étape (a) au moins une fois et autant de fois que nécessaire afin de déposer des couches suivantes (7) de particules conductrices ou non conductrices électriquement chargées jusqu’à ce qu’un composant électrique choisi (8, 12) ait été implanté dans chacun des trous d’interconnexion (3).

2. Procédé selon la revendication 1, dans lequel les composants électriques (8, 12) sont choisis parmi le groupe comprenant :

 - des condensateurs ;
 - des résistances ;
 - des éléments piézoélectriques ;
 - des inducteurs ;
 - des capteurs magnétorésistifs ;
 - des actionneurs magnétiques ;
 - des batteries.

3. Procédé selon la revendication 1, dans lequel les étapes (a) et (b) sont répétées autant de fois que nécessaire afin d’implanter un ou plusieurs composant(s) électrique(s) supplémentaire(s) (8, 12) dans des trous d’interconnexion sélectionnés (3).

4. Procédé selon la revendication 1, dans lequel les particules non conductrices sont choisies parmi le groupe comprenant :

 - des particules diélectriques ;
 - des particules ferromagnétiques ;
 - des particules piézoélectriques.

5. Procédé selon la revendication 1, dans lequel les particules conductrices sont choisies parmi le groupe comprenant :

 - des particules métalliques ;
 - des particules ferromagnétiques ;
 - des particules résistives.

6. Procédé selon la revendication 1, dans lequel les composants électriques (8, 12) déposés et/ou co-déposés dans les trous d’interconnexion (3) se composent de deux couches ou plus (7) chacune composées d’un ou plusieurs type(s) de particules.

7. Module comprenant des trous d’interconnexion (3) contenant des composants électriques (8, 12), dans lequel lesdits composants électriques (8, 12) sont créés à partir de deux couches de particules ou plus selon le procédé de la revendication 1.

8. Module selon la revendication 7, dans lequel les composants électriques (8, 12) créés dans les trous d’interconnexion (3) sont choisis parmi le groupe comprenant :

 - des condensateurs ;
 - des éléments piézoélectriques ;
 - des inducteurs ;
 - des capteurs magnétorésistifs ;
 - des actionneurs magnétiques ;
 - des batteries.

9. Module selon la revendication 7, dans lequel ledit module est un module intégré à plusieurs couches comprenant au moins deux couches (2), et dans lequel au moins une partie des composants électriques (8, 12) dudit module intégré à plusieurs couches est située dans les trous d’interconnexion (3) desdites couches (2), ledit module intégré comprenant en outre un moyen conducteur (9) permettant de relier lesdits composants électriques (8, 12) situés dans les trous d’interconnexion (3) à d’autres composants (8, 10, 11, 12) dudit module à plusieurs puces qui sont situés dans d’autres trous d’interconnexion (3) ou sur les surfaces des mêmes couches (2), ou de couches différentes, dudit module à plusieurs couches.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5855755 A [0005]
- US 5872040 A [0006]
- US 5853203 A [0009]
- US 6055151 A [0009]
- EP 0719079 A [0012]
- US 5354599 A [0013]
- EP 0491543 A [0015]
- US 4300115 A [0016]
- US 3303078 A [0020]
- US 6068782 A [0021]
- US 5841075 A [0041]
- US 6040226 A [0054]

Non-patent literature cited in the description