Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a receiver unit for a radio signal-based mail delivery unit comprising a transmitter unit for mounting on a mailbox or mail slot flap, and such receiver unit for being located at a distance from the transmitter unit, which receiver unit is provided with a receiver for receiving a radio signal and with means to indicate that such radio signal has been received.

[0002] Such receiver unit is known from US patent No. 4,872,210 that teaches a cordless mail delivery system for use in connection with a mailbox of American type. The mail delivery system comprises a transmitter unit that is mounted on the interior side of the mailbox flap and provided with a switch that registers when the flap is opened. As a consequence of that, a radio signal is transmitted to a receiver unit located elsewhere. The receiver unit shown in this disclosure is provided with a sound generator that is activated when the receiver unit receives a signal from the transmitter unit, and besides a light diode is switched on, thereby enabling the user to see that something has been delivered to the mailbox, even if he has not heard the sound. The receiver unit is also provided with a reset button that will, when pressed, cause the receiver unit to revert to its starting position.

[0003] Corresponding receiver units are known from the mail delivery systems taught in US patent No. 5,023,595 and US patent No. 6,046,675.

[0004] These prior art receiver units are configured for emitting a sound as well as a light signal when they receive a radio signal from a transmitter unit mounted in connection with the flap of the mailbox. Whether the user hears the sound signal will depend on his being in the vicinity when it is emitted. If the user is not around, he is not informed that something has been delivered to his mailbox until he sees the visual marking on the receiver unit, eg in the form of a lamp that is lit. Albeit this marking tells the user that the flap of the mailbox has been activated, it does not tell anything about the hour of the activation, ie the time when something was delivered to the mailbox.

[0005] It has been found, however, that the time when something was delivered to the mailbox is generally a point of much interest to the user. If, for instance, the user is walking-impaired, it is crucial to know when - on a daily basis - he can expect delivery to his mailbox to save him fruitless trips to the receiver unit for checking it. By the prior art mail delivery systems it is possible only to estimate the expected hour of delivery by checking the receiver unit during a period of several days and at short intervals and subsequently make a note of when the check was performed that revealed that something was delivered to the mailbox. Obviously this method is unsuitable for individuals with a walking-impairment.

[0006] There are also users that subscribe ia to a morning paper and where the subscription gives the customer the right to have the newspaper for free if it arrives later than a given time. If the user is not up and verifies whether the newspaper has arrived on time, he may - when later he gets up - merely ascertain that the newspaper has arrived. However, he cannot know whether he should be entitled to have precisely today’s newspaper for free, and the prior art receiver units give no indication to that effect.

[0007] These needs exist not only in the context of mailboxes that are located outside the house, but also in case of mail slots located eg in a front door or an outer wall.

[0008] It is the object of the present invention to provide a receiver unit for a mail delivery system as featured in the introductory part, said receiver unit drawing the attention of the user to the fact that mail has arrived and to the hour when a signal was received from a transmitter unit.

[0009] This is obtained by the receiver unit described above being provided with a clock; by configuring the receiver unit to register the hour of receipt of the radio signal; and by the means for indicating that a radio signal has been received comprising a visual and/or audible notice of the hour of receipt of the radio signal.

[0010] Hereby it is obtained that, in addition to being informed that the mailbox or the mail slot flap has been activated, information is also given about the time of that activation. Now the user can use this information eg to learn when delivery of mail, trade circulars, newspapers, etc, takes place, but also to use this information in support of a complaint, if any, of a newspaper being delivered too late.

[0011] The receiver unit can be provided with a display that will, in the starting position, show the current hour of the day, it being configured to display, upon receipt of a radio signal, the hour of receipt of the radio signal simultaneously with a symbol to indicate that a radio signal was received. Such symbol could be eg a depiction of an envelope or a text that says that the mail has been delivered.

[0012] Preferably the hour of receipt of the radio signal and the symbol that indicates that a radio signal was received alternates which contributes to capturing the users attention that something has been delivered to the mailbox or through the mail slot.

[0013] According to an alternative embodiment the receiver unit is provided with a display that will, in the starting position, show the current hour of the day, it being configured for displaying, upon receipt of a radio signal and by use of flashing digits, the time of receipt of the radio signal.

[0014] According to a third embodiment the receiver unit is provided with a first display that will, in the starting position, show the current hour of the day, it being configured, upon receipt of a radio signal, to show a textual notice whereas a second display is configured to show the hour of receipt of the radio signal.

[0015] By these various embodiments, different ways are thus provided of visually displaying that the mailbox or mail slot flap has been activated as well as the hour when the activation took place.
[0016] Preferably the receiver unit is provided with a reset button that is configured such that activation thereof causes the functions of the receiver unit to revert to their starting positions. Alternatively or as a supplement, the transmitter unit used in combination with the receiver unit could be provided with a reset button that will, via radio signals, see to it that the functions of the receiver unit revert to the starting position.

[0017] According to a preferred embodiment, the receiver unit is provided with a sound generator that is configured for emitting a sound signal upon receipt of a radio signal, and means are preferably configured for adjusting the volume of the sound generator and a display is arranged that is able to show the volume set. The volume can be adapted individually and the sound can optionally be switched off altogether.

[0018] In a particularly sophisticated version the receiver unit is configured with means that enable program- ming of special sound effects. Besides, a sophisticated version of the receiver unit can be configured with means that enable that statistical data about hours of receipt of radio signals can be transmitted to an external unit, such as a personal computer. These means comprise electronics in the receiver unit that are capable, on the one hand, of recording and storing sound effects and statistical data and, on the other, are capable of communicating with external units. A receiver unit configured with such means provide the user with further options for adapting the receiver unit in accordance with his wishes and also enables extraction and further processing of statistical data concerning the delivery of mail, trade circulars, newspapers, etc.

[0019] According to a particularly preferred embodiment, the integral clock is radio controlled, whereby the hour is always correct, at least in the areas where this service is available.

[0020] In the preferred embodiment the receiver unit is provided with an internal antenna for receiving a radio signal from a transmitter unit. In particular cases where the transmitter/receiver conditions are poor, however, it may be provided with an external antenna for receiving the radio signals.

[0021] This external antenna can be located at a distance from the receiver unit as such, and the two can be connected to each other by means of an antenna cord or cordlessly. This embodiment is of particular interest, if there is a very long distance between the transmitter unit and the receiver unit; or in case the transmitter unit is configured for transmitting with very little output.

[0022] The invention will now be explained in further detail with reference to the drawing, wherein

Figure 1 shows an explanatory sketch of a mail delivery system and a first embodiment of a receiver unit according to the invention;

Figure 2 shows a second embodiment of a receiver unit according to the invention;

Figure 3 shows a third embodiment of a receiver unit according to the invention;

Figure 4 is an explanatory sketch of a mail delivery system according to the invention featuring a receiver unit that is provided with an external antenna.

[0023] Figure 1 shows a radio signal-based mail delivery system according to the invention. The mail delivery system comprises a transmitter unit 1 and a receiver unit 2 that are able to communicate with each other via radio signals in a manner known per se. In the case shown the mail delivery system is used in connection with a mailbox 3 with a relatively narrow mailbox flap 4 that can be flipped outwards or inwards for delivery of mail, newspapers, trade circulars, etc. The mailbox 3 is also provided with a larger wicket 5 that can be opened by means of a key in the lock 6 when the mailbox 3 is emptied. The transmitter unit 1 is mounted on the mailbox flap 4 and is provided with a movement sensor and a transmitter that transmits radio signals when the movement sensor registers a movement of the mailbox flap 4. The transmitter unit 1 can, in connection with the present invention, be configured in a manner known per se, but in the preferred embodiment it is configured as a relatively flat and narrow unit that can be mounted on any known kind of mailbox or mail slot flap.

[0024] A receiver unit 2 that is located at a distance from the transmitter unit 1 captures the emitted radio signals, it being - for instance - shown arranged within a house 7. According to the invention the receiver unit 2 is configured with a clock, whereby the hour of receipt of a radio signal from the transmitter unit 1 can be registered and shown on a display 8.

[0025] The receiver unit 2 is preferably configured such that the display 8 usually shows the current time of the day; but when mail, newspapers, trade circulars, etc., are delivered to the mailbox 3 via the mailbox flap 4, whereby a radio signal is emitted from the transmitter unit 1, the receiver unit 2 registers the hour of receipt of this signal; and this point in time is shown in the display 8 while simultaneously one or more symbols is/are displayed, such as an envelope 9. This is shown in Figure 1, from which it will thus appear that the mailbox flap 4 was activated at 9:28 am. Of course, the option may be provided that the receiver unit 2 shows the hour either as a 24-hour clock or as a 12-hour clock (am, pm).

[0026] In order to further capture the attention of the user, the hour of receipt of the radio signal and the envelope 9 will, in the preferred embodiment, be displayed alternately such that the hour and the envelope alternate, eg in a flashing frequency of 1-2 Hz.

[0027] Thus, in normal conditions the user will be able to see the current time on the display 8 of the receiver unit 2, but if something has been delivered to the mailbox 3 the user will be able to know partly by display of the envelope 9 and partly by being able to see the hour when something was delivered to the mailbox 3. The re-
receiver unit 2 is also provided with a reset-button 10 that is activated after the mailbox 3 has been emptied, whereby the receiver unit 2 is zeroed and again displays the current hour of the day, and the envelope 9 disappears.

Figure 2 shows an alternative embodiment of a receiver unit according to the invention. Like the receiver unit 2 shown in Figure 1, this receiver unit 12 comprises a clock, whereby the hour of receipt of a radio signal from a transmitter unit 1 can be registered and shown. In the receiver unit 12, a display 18 will normally show the current hour of the day with still digits, but when a signal is received from a transmitter unit 1, the display 18 changes from displaying the current hour to showing the hour of receipt of the radio signal with flashing digits. In this manner it is clearly indicated that the display 18 does not show the current hour of the day, but rather the hour of receipt of mail.

Additionally the receiver unit 12 is provided with a sound generator that can be of a type that is known per se and that will, via openings 13 in the receiver unit 12, emit a sound signal, when it receives a radio signal from a transmitter unit 1. The volume of the sound signal can be adjusted via a push button 14, and an indication of the volume is displayed by means of one or more lit fields 15.

Preferably one more field 15 is lit each time the push button 14 is activated, corresponding to an increase in the volume. When the last field 15 is lit, the subsequent push on the push button 14 turn off all the fields 15 again to indicate that the sound is off.

This receiver unit 12 is also provided with a reset-button 10 for zeroing the display 18 when the mailbox 3 has been emptied.

Figure 3 shows a third embodiment of a receiver unit according to the invention. This receiver unit 22 also comprises a display 28 that is configured to display, in the starting position, the current hour of the day. Upon receipt of a radio signal from a transmitter unit 1, however, the display switches from showing the current hour of the day to showing a message that the mailbox flap has been activated. This message could be in the form of e.g. a symbol or a word such as "POST" or "MAIL" or any other word in a language of choice. Simultaneously with the display switching from showing the current hour of the day to showing the text message, another display 29 will show the time, when the mailbox flap was activated.

This receiver unit 22 is also provided with a sound generator, and it is also provided with means that are known per se for receiving and saving external sounds. Such sounds could be transmitted to the receiver unit 22 via an input port 23 for an external unit, such as e.g. a microphone or a personal computer. The receiver unit 22 can also be provided with a built-in microphone whereby a desired sound can be recorded directly.

The receiver unit 22 is also provided with an output port 24 for connection of external equipment, such as a personal computer. Preferably the receiver unit 22 is provided with storage means that allow storage of data eg concerning hours when radio signals were received from a transmitter unit 1. These data and/or statistical data may then be transmitted to a personal computer, thereby enabling the user to perform additional statistical analyses on the data. It should be emphasized that the input and output ports 23, 24 are merely shown schematically in Figure 3; it being possible that they are configured in many other ways and are optionally assembled in one plug.

Figure 4 shows an embodiment of a mail delivery system according to the invention, which mail delivery system corresponds essentially to the mail delivery system shown in Figure 1, as it comprises a transmitter unit 1 mounted on a mailbox flap 4 on a mailbox 3 and a receiver unit 2 located at a distance from the transmitter unit 1. The receiver unit 2 is provided with an external antenna 30 that is located at such distance from the transmitter unit 1 that it is able to register a radio signal emitted therefrom. This embodiment is of particular interest in case the receiver unit 2 is located so far away from the transmitter unit 1 that the radio signals from the transmitter unit 1 are not able to reach the receiver unit 2 directly. This can be due to for instance the transmitter unit 1 transmitting with very little output, eg to save current, or that obstacles exist between the transmitter unit 1 and the receiver unit 2.

In the shown case the external antenna 30 is connected to the receiver unit 2 via an antenna cord 31. Alternatively the external antenna could be configured in an amplifier unit that is cordlessly connected to the receiver unit 2, whereby the amplifier unit amplifies and transmits the radio signal from the transmitter unit 1 to the receiver unit.

The invention has been described with reference to preferred embodiments, but of course modifications can be made relative thereto. The essential aspect of the invention is, however, that the receiver unit for the mail delivery system comprises a clock and is capable of registering the hour of receipt of a radio signal from a transmitter unit mounted on a mailbox or mail slot flap.

Such clock can be conventional, in which case the receiver unit should be provided with setting buttons for setting the time, or it can be radio controlled in the areas where this service is available. The display(s) can be combined as desired and it they may be of any known type, preferably however electronic ones, such as eg an LCD.

Claims

1. A receiver unit (2; 12; 22) adapted for a radio signal-based mail delivery system comprising a transmitter unit (1) for being mounted on a mailbox or mail slot flap (4) and such receiver unit (2; 12; 22) for being located at a distance from the transmitter unit (1), said receiver unit (2; 12; 22) being provided with a receiver for receiving a radio signal and with means
for indicating that such radio signal has been received, characterised in that the receiver unit (2; 12; 22) is provided with a clock; that the receiver unit (2; 12; 22) is configured for registering the hour when the radio signal is received; and that the means for indicating when a radio signal was received comprise a visual and/or audible message about the hour when the radio signal was received.

2. A receiver unit according to claim 1, characterised in that it is provided with a display (8) that will, in the starting position, show the current hour of the day, it being configured for displaying, upon receipt of a radio signal, the time when the radio signal was received simultaneously with a symbol (9) that indicates that a radio signal was received.

3. A receiver unit according to claim 2, characterised in that the hour when the radio signal was received and the symbol (9) that indicates that a radio signal was received are shown alternately.

4. A receiver unit according to claim 1, characterised in being provided with a display (18) that displays, in the starting position, the current hour of the day, it being configured for displaying, upon receipt of a radio signal and by means of flashing digits, the hour when the radio signal was received.

5. A receiver unit according to claim 1, characterised in that it is provided with a first display (28) that displays, in the starting position, the current hour of the day, it being configured for displaying, upon receipt of a radio signal, a message, eg in the form of text, whereas a second display (29) is configured for displaying the hour when the radio signal was received.

6. A receiver unit according to any one of claims 2-5, characterised in being provided with a reset button configured such that activation thereof causes the display (8; 18; 28, 29) to revert to the starting position.

7. A receiver unit according to any one of claims 1-6, characterised in being provided with a sound generator configured for emitting a sound signal upon receipt of a radio signal.

8. A receiver unit according to claim 7, characterised in being configured with means (14) for adjusting the volume of the sound generator; and provided with a display (15) to show the setting of the volume.

9. A receiver unit according to any one of claims 7-8, characterised in being configured with means that enable programming of special sound effects.

10. A receiver unit according to any one of claims 1-9, characterised in being provided with means that enable statistical data about hours when radio signals were received to be transmitted to an external unit, such as a personal computer.

11. A receiver unit according to any one of claims 1-10, characterised in its clock being radio controlled.

12. A receiver unit according to any one of claims 1-11, characterised in being provided with an external antenna (30) for receiving radio signals.

13. A receiver unit according to claim 12, characterised in that the external antenna (30) is provided with the receiver unit via an antenna cord (31).

14. A receiver unit according to claim 12, characterised in that the external antenna (30) is connected cordlessly to the receiver unit.

15. A radio signal-based mail delivery system comprising a transmitter unit (1) for being mounted on a mailbox or mail slot flap (4) and a receiver unit (2; 12; 22) for being located at a distance from the transmitter unit (1), said transmitter unit (1) being provided with a movement sensor for detecting movement of the mailbox or mail slot flap (4), and a transmitter with power supply for emitting a radio signal depending on movement of the mailbox or mail slot flap (4), and said receiver unit (2; 12; 22) being provided with a receiver for receiving the radio signal emitted by the transmitter unit (1), and with means for indicating that such radio signal has been received, characterised in that the receiver unit (2; 12; 22) is a receiver unit as defined in any one of claims 1-14.

Patentansprüche

1. Empfangseinheit (2, 12, 22) vorgesehen für ein funksignalbasiertes Posteingangssystem mit einer Übertragungseinheit (1) zur Anbringung an einer Briefkasten- oder Postschlitzzklappe (4), und einer solchen Empfangseinheit (2, 12, 22) zur Anordnung in einem Abstand von der Übertragungseinheit (1), wobei die Empfangseinheit (2, 12, 22) mit einem Empfänger zum Empfang eines Funksignals und mit Mitteln zum Anzeigen, dass ein solches Funksignal empfangen wurde, ausgestattet ist, dadurch gekennzeichnet, dass die Empfangseinheit (2, 12, 22) mit einer Uhr versehen ist, die Empfangseinheit (2, 12, 22) eingerichtet ist, die Stunde zu registrieren, wann das Funksignal empfangen wird, und dass die Mittel zum Anzeigen, wann das Funksignal empfangen wurde, eine visuelle und/oder hörbare Benachrichtigung über die Stunde umfassen, in der das Funksignal empfangen wurde.
2. Empfangseinheit nach Anspruch 1, 
dadurch gekennzeichnet, 
dass sie mit einer Anzeige (8) versehen ist, die im 
Startzustand die gegenwärtige Tagesstunde anzeigt 
dazu eingerichtet ist, auf den Empfang eines 
Funksignal hin die Zeit, wann das Funksignal emp- 
fangen wurde, und zugleich ein Symbol (9) anzuzei-
gen, das den erfolgten Empfang eines Funksignals 
anzeigt.

3. Empfangseinheit nach Anspruch 2, 
dadurch gekennzeichnet, 
dass die Stunde, wann das Funksignal empfangen 
war, und das Symbol (9), das den erfolgten Emp-
fang eines Funksignals anzeigt, abwechselnd ange-
zeigt werden.

4. Empfangseinheit nach Anspruch 1, 
dadurch gekennzeichnet, 
dass sie mit einer Anzeige (18) versehen ist, die im 
Startzustand die gegenwärtige Tagesstunde anzeigt 
dazu eingerichtet ist, auf den Empfang eines 
Funksignal hin und mittels blinkender Ziffern die 
Stunde anzuzeigen, wann das Funksignal empfan-
gen wurde.

5. Empfangseinheit nach Anspruch 1, 
dadurch gekennzeichnet, 
dass sie mit einer ersten Anzeige (28) versehen ist, die im 
Startzustand die gegenwärtige Tagesstunde anzeigt, 
dazu eingerichtet ist, auf den Empfang eines 
Funksignal hin und mittels einer externen Antenne 
die Stunde anzuzeigen, wann das Funksignal empfan-
gen wurde.

6. Empfangseinheit nach einem der Ansprüche 2 bis 5, 
dadurch gekennzeichnet, 
dass sie mit einem Rückstellknopf versehen ist, der 
so eingerichtet ist, dass seine Betätigung die Anzeige 
(8, 18, 28, 29) zur Rückkehr in den Startzustand 
bringt.

7. Empfangseinheit nach einem der Ansprüche 1 bis 6, 
dadurch gekennzeichnet, 
dass das sie mit einem Tonerzeuger versehen ist, der 
zum Aussenden eines Schallsignals auf den 
Empfang eines Funksignals hin eingerichtet ist.

8. Empfangseinheit nach Anspruch 7, 
dadurch gekennzeichnet, 
dass sie mit Mitteln (14) zum Einstellen der Laut-
stärke des Tonerzeugers ausgestattet ist und mit ei-
er Anzeige (15) zum Anzeigen der Lautstärkeein-
stellung versehen ist.

9. Empfangseinheit nach einem der Ansprüche 7 bis 8, 
dadurch gekennzeichnet, 
dass sie mit Mitteln ausgestattet ist, die das Pro-
grammieren spezieller Toneffekte ermöglichen.

10. Empfangseinheit nach einem der Ansprüche 1 bis 9, 
dadurch gekennzeichnet, 
dass sie mit Mitteln ausgestattet ist die statistische 
Daten über die Stunde, wann die Funksignale emp-
fangen wurde, bilden, um diese an eine externe Ein-
heit, wie etwa einen Personalcomputer, zu übertra-
gen.

11. Empfangseinheit nach einem der Ansprüche 1 bis 10, 
dadurch gekennzeichnet, 
dass seine Uhr funkgesteuert ist.

12. Empfangseinheit nach einem der Ansprüche 1 bis 11, 
dadurch gekennzeichnet, 
dass sie mit einer externen Antenne (30) für den 
Empfang von Funksignalen versehen ist.

13. Empfangseinheit nach Anspruch 12, 
dadurch gekennzeichnet, 
dass das die externe Antenne (30) mit der Emp-
fangseinheit über ein Antennenkabel (31) verbun-
den ist.

14. Empfangseinheit nach Anspruch 12, 
dadurch gekennzeichnet, 
dass die externe Antenne (30) mit der Emp-
fangseinheit drahtlos (31) verbunden ist.

15. Funksignalbasiertes Posteingangsystem mit einer 
Übertragungseinheit (1) zur Anbringung an einer 
Briefkasten- oder Postschlitzklappe (4), und einer 
Empfangseinheit (2, 12, 22) zur Anordnung in einem 
Abstand von der Übertragungseinheit (1), wobei die 
Übertragungseinheit (1) mit einem Bewegungssen-
sor zum Erfassen der Bewegung der Briefkasten-
der Postschlitzklappe (4) versehen ist, und einem 
Übertrager mit Spannungsversorgung zum Senden 
eines Funksignals abhängig von einer Bewegung 
der Briefkasten- oder Briefschlitzklappe (4), und wo-
bei die Empfangseinheit (2,12, 22) mit einem Emp-
fänger zum Empfang des durch die Übertragungs-
einheit (1) ausgesandten Funksignals versehen ist, 
und mit Mitteln zum Anzeigen, dass ein solches 
Funksignal empfangen wurde, 
dadurch gekennzeichnet, 
dass die Empfangseinheit (2, 12, 22) eine Emp-
fangseinheit ist, wie sie in einem der Ansprüche 1 bis 
14 definiert ist.

Revendications

1. Unité de réception (2 ; 12 ; 22) adaptée pour un sys-
tème de distribution de courrier basé sur des signaux radio comprenant une unité d’émission (1) à installer sur une boîte aux lettres ou un volet de passe-lettres (4) et une telle unité de réception (2 ; 12 ; 22) étant située à une certaine distance de l’unité d’émission (1), ladite unité de réception (2 ; 12 ; 22) étant équipée d’un récepteur pour recevoir un signal radio et d’un moyen pour indiquer qu’un tel signal radio a été reçu, caractérisée en ce que l’unité de réception (2 ; 12 ; 22) est équipée d’une horloge : en ce que l’unité de réception (2 ; 12 ; 22) est conçue pour enregistrer l’heure à laquelle le signal radio est reçu ; et en ce que le moyen pour indiquer quand un signal radio a été reçu en même temps qu’un symbole (9) indiquant qu’un signal radio a été reçu.

2. Unité de réception selon la revendication 1, caractérisée en ce qu’elle est équipée d’un écran (8) qui, en position initiale, affiche l’heure actuelle du jour, celui-ci étant conçu pour afficher, à la réception d’un signal radio, l’heure à laquelle le signal radio a été reçu en même temps qu’un symbole (9) indiquant qu’un signal radio a été reçu.

3. Unité de réception selon la revendication 2, caractérisée en ce que l’heure à laquelle le signal radio a été reçu et le symbole (9) indiquant qu’un signal radio a été reçu s’affichent en alternance.

4. Unité de réception selon la revendication 1, caractérisée en ce qu’elle est équipée d’un écran (18) qui affiche, en position initiale, l’heure actuelle du jour, celui-ci étant conçu pour afficher, à la réception d’un signal radio et au moyen de chiffres clignotants, l’heure à laquelle le signal radio a été reçu.

5. Unité de réception selon la revendication 1, caractérisée en ce qu’elle est équipée d’un premier écran (28) qui affiche, en position initiale, l’heure actuelle du jour, celui-ci étant conçu pour afficher, à la réception d’un signal radio, un message, sous forme de texte par exemple, tandis qu’un autre écran (29) est conçu pour afficher l’heure à laquelle le signal radio a été reçu.

6. Unité de réception selon l’une quelconque des revendications 2 à 5, caractérisée en ce qu’elle est équipée d’un bouton de réinitialisation conçu pour que son activation entraîne le retour de l’écran (8 ; 18 ; 28 ; 29) en position initiale.

7. Unité de réception selon l’une quelconque des revendications 1 à 6, caractérisée en ce qu’elle est équipée d’un générateur sonore conçu pour émettre un signal sonore à la réception d’un signal radio.

8. Unité de réception selon la revendication 7, caractérisée en ce qu’elle est conçue avec un moyen pour régler le volume du générateur sonore ; et en ce qu’elle est équipée d’un écran (15) pour afficher le réglage du volume.

9. Unité de réception selon l’une quelconque des revendications 7 et 8, caractérisée en ce qu’elle est conçue avec un moyen pour programmer des effets sonores spéciaux.

10. Unité de réception selon l’une quelconque des revendications 1 à 9, caractérisée en ce qu’elle est équipée d’un moyen pour transmettre des données statistiques concernant les heures auxquelles des signaux radio ont été reçus, à une unité externe, tel qu’un ordinateur personnel.

11. Unité de réception selon l’une quelconque des revendications 1 à 10, caractérisée en ce que son horloge peut être radio-commandée.

12. Unité de réception selon l’une quelconque des revendications 1 à 11, caractérisée en ce qu’elle est équipée d’une antenne externe (30) pour recevoir des signaux radio.

13. Unité de réception selon la revendication 12, caractérisée en ce que l’antenne externe (30) est reliée à l’unité de réception par l’intermédiaire d’un cordon d’antenne (31).

14. Unité de réception selon la revendication 12, caractérisée en ce qu’elle est équipée d’une antenne externe (30) qui est relie à l’unité de réception sans cordon.

15. Système de distribution de courrier basé sur des signaux radio comprenant une unité d’émission (1) à installer sur une boîte aux lettres ou un volet de passe-lettres (4) et une unité de réception (2 ; 12 ; 22) étant située à une certaine distance de l’unité d’émission (1), ladite unité d’émission (1) étant équipée d’un capteur de mouvement afin de détecter le mouvement de la boîte aux lettres ou du volet du passe-lettres (4), et d’un émetteur à alimentation électrique afin d’émettre un signal radio en fonction du mouvement de la boîte aux lettres ou du volet du passe-lettres (4), et ladite unité de réception (2 ; 12 ; 22) est équipée d’un récepteur afin de recevoir le signal radio émis par l’unité d’émission (1), et d’un moyen pour indiquer qu’un tel signal radio a été reçu, caractérisé en ce que l’unité de réception (2 ; 12 ; 22) est une unité de réception selon l’une quelconque des revendications 1 à 14.