EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 23.04.2008 Bulletin 2008/17

Application number: 03075289.3

Date of filing: 30.01.2003

Substructure for height adjustable table
Unterkonstruktion für höhenverstellbaren Tisch
Sous-structure pour table réglable en hauteur

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

Priority: 30.01.2002 DK 200200147

Date of publication of application: 13.08.2003 Bulletin 2003/33

Proprietor: LINAK A/S
DK-6430 Nordborg (DK)

Inventors:
• Jorgen, Jens
6310 Broager (DK)
• Jacobsen, Nielsen Finn
6430 Nordborg (DK)
• Riis, Martin
6430 Nordborg (DK)

Representative: Pedersen, Soeren Skovgaard
Linak A/S
Patent Department
P.O. Box 238
9100 Aalborg (DK)

References cited:
WO-A-01/10269
DE-A- 2 142 537
DE-A- 4 315 649
DE-A- 10 019 292
FR-A- 2 629 697
US-A- 4 582 001

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to an underframe for height-adjustable tables and comprising at least a pair of lifting columns having a four-sided or substantially four-sided cross-section and a cross member, said cross member being connected with the lifting columns by a bracket comprising a column bracket secured to the lifting column.

Underframes having a single lifting column at each side, where the columns have a rectangular cross-section, are known, cf. e.g. EP 1 079 511 to Linak, in which a table with lifting columns DESKLINE®DL1 of the make Linak A/S is indicated. The lifting columns typically have a lower stationary member and one or two members telescoping in it. The columns may be adjusted manually, as the weight is typically balanced by gas/torsion springs, or electrically with an electric motor driving a spindle unit WO 01/78556 to Okin, DE 199 20 672 to Baumeister. Also known is a novel construction, where the drive unit comprises an endless chain driven by an electric motor PCT/DK02/00467 (=WO-A-03 003 876) to Linak. The lower end of the lifting columns is secured in an elongated foot, while a tabletop may be mounted on top of the columns. The stationary member of the lifting columns is connected at the top with a cross member, typically a profile of rectangular cross-section. The cross member is secured to a wide side of the column. A narrow plate member having two threaded holes is welded on the wide side, and a similar plate member is welded on the end of the cross member and extends vertically past the cross member. The two flaps, which thereby extend upwards and downwards, respectively, from the cross member, are formed with holes for securing the cross member with machine screws in the threaded holes in the column bracket. The construction has a good stability as far as it goes, but, on the other hand, there is a wish for a greater rigidity of the construction.

Another aspect in this connection is that if the side wall of the column is deformed by a local load because of the narrow bracket on the side wall, this may affect the function of the column, in particular when the wall curves inwards and gets into contact with the internal members.

The object of the invention is to provide a joint of greater rigidity between column and cross member, it being required at the same time that the construction is simple and easy to manufacture. In addition, it is an absolute requirement that columns and cross member may be transported separately. Since height-adjustable tables are now becoming increasingly popular also in dwellings, it is moreover desirable that the joint between column and cross member may be made easy to perform. The sale to private persons typically takes place as do it yourself furniture.

The object is achieved according to the invention in that the column bracket per se is rigid and constructed so as to extend out to two adjacent corner edges on the column so that the column bracket is supported by the rigid corner regions of the lifting column. This provides an extremely rigid joint between the cross member and the columns, as the joint utilizes the corner region rigidity in the columns. The bracket may be secured inwards on the side of the column, and the bracket is then supported by the rigid corner regions, but the rigidity is increased if the attachment is also performed in the corner region. The column bracket may be formed as an integrated part of the cross member, e.g. by construction and bending of flaps thereon, but it is preferred to use a separate and more rigid cross member bracket which is secured to the cross member.

In an embodiment where the lifting column has a rectangular or a substantially rectangular cross-section, the column bracket is secured on a narrow side of the column, which results in a bracket with smaller dimensions compared to securing on the wide side and also gives a greater rigidity.

The shape of the cross member, in cross-section as well as in longitudinal section, may be adapted as desired, of course, as long as its stability is in order. A cross member of four-sided or substantially four-sided cross-section is particularly simple and advantageous for securing. Thus, a cross member bracket which per se is rigid and constructed so as to extend out to or substantially out to two adjacent, horizontal corner edges of the cross member, gives a particularly good stability. When the cross member bracket is secured on the side of the cross member, it may be positioned such that it faces away from the user of the table, which increases the leg-room. In the traditional structures where the cross member is secured between the lifting column sides facing toward each other, it has been necessary to make a curve on the cross member in order to create sufficient leg-room.

The wish for an easy-to-mount joint may be met by a wedge bracket, allowing the cross member to be mounted without the use of tools. If locking of the cross member in the mounted state is desired, this may take place with a locking screw, e.g. a pointed screw which is screwed from the cross member into the column. A particular embodiment of the wedge bracket is defined in claim 10, said embodiment being attractive in that it is rigid and may be formed with a thickness of only three thicknesses of material, so that it is not very conspicuous in the end product.

The invention will be explained more fully below with reference to the embodiment shown in the accompanying drawing. In the drawing:

Fig. 1 shows an underframe for a height-adjustable table, said underframe being shown without feet,

Fig. 2 shows a perspective view of a column bracket, seen inwards toward the column,

Fig. 3 shows a perspective view of a cross member
The underframe shown in fig. 1 for a height-adjustable table comprises two electrically driven lifting columns 1a, 1b having an essentially rectangular cross-section with a pair of wide sides 2a, 2b and a pair of narrow sides 3a, 3b. The columns are interconnected by a cross member 4 consisting of a profile having a rectangular cross-section closed at both ends.

As will appear from fig. 4, the column bracket 8a is supported by the rigid corner regions of the lifting column, characterized in that the column bracket (8a) per se is rigid and constructed so as to extend out to two adjacent corner edges (10a, 10b) of the lifting column so that the column bracket (8a) is supported by the rigid corner regions of the lifting column.

An underframe according to claim 1, characterized in that the column bracket (8a) is secured to or at the two adjacent corner edges (10a, 10b) of the column.

An underframe according to claim 1 or 2, characterized in that the column bracket (8a) is an integrated part of the cross member (4).

An underframe according to claim 1, 2 or 3, characterized in that the columns have a rectangular cross-section, and that the column bracket (8a) is secured to a narrow side (3b) of the column.

An underframe according to claim 1, characterized in that the column bracket (8a) is an integrated part of the cross member (4).

The underframe shown in fig. 1 for a height-adjustable table comprises two electrically driven lifting columns 1a, 1b having an essentially rectangular cross-section with a pair of wide sides 2a, 2b and a pair of narrow sides 3a, 3b. The columns are interconnected by a cross member 4 consisting of a profile having a rectangular cross-section closed at both ends.

The lifting columns and the cross member are interconnected by a wedge bracket, where the column bracket 8a is shown in fig. 2, while the cross member bracket 8b is shown in fig. 3.

As will appear from fig. 4, the column bracket 8a is welded at its side edges 9a, 9b in two adjacent corner regions 10a, 10b of the outer profile 5 of the column. In fig. 4, the column is shown in its fully extended position.

As will appear from fig. 5, the cross member bracket 8b is formed by a plate member (15a, 15b) face toward each other, that the cross member whose side regions are bent so that edges (15a,15b) face toward each other, that the cross member bracket (8b) is formed by a plate member whose side regions (13a, 13b) are offset relative to a central portion so that the cross member bracket, seen inwards toward the cross member, is secured in a foot (not shown). This foot may be elongated and extend out from the narrow sides of the column.

It is noted for the sake of good order that the lifting columns are connected by cables 7a, 7b to a control box with control equipment and a power supply, which may optionally be separate. In addition, a control panel is provided, arranged expediently for the user for moving the table up and down.

The invention thus provides a rigid joint, as the rigidity at the corner regions is utilized, and at the same time the joint is easy to perform as it may take place without the use of tools.

A beam-shaped cross member is shown here, but it will be appreciated that the cross member may have other shapes, just as it may be provided with cover plates which close the opening between the two lifting columns.
Grundrahmen nach Anspruch 1, 2 oder 3, 4.

3. Grundrahmen nach Anspruch 1 oder 2, Grundrahmen nach Anspruch 1,

2. Grundrahmen nach Anspruch 1, Grundrahmen nach Anspruch 1,

1. Grundrahmen für einen höhenverstellbaren Tisch, Patentansprüche

Grundrahmen nach Anspruch 7, 8.

7. Grundrahmen nach Anspruch 5, grundhergegeben, dass der Säulenhalter (8a) ein integrales Teil des Querelements (4) ist. die Säulen rechteckigen gekennzeichnet, dass der Säulenhalter (8a) ein inte-

Säulenhalter (8a) umfasst, der (seinerseits) an der Hubsäule befestigt ist, dadurch gekennzeichnet, dass der Säulenhalter (8a) für sich starr und so aufgebaut ist, dass er sich zu zwei benachbarten Eckrändern (10a, 10b) der Hubsäule hin derart nach außen erstreckt, dass der Säulenhalter (8a) von den starren Eckbe-

ren der Hubsäule getragen ist.

6. Grundrahmen nach Anspruch 1, dadurch gekennzeichnet, dass der Querelementhalter (8b) umfasst, der an dem Querelement (4), den zwei benachbarten Eckrändern (10a, 10b) der Hubsäule ein derart versetzt sind, dass der Querelementhalter (8b) mit den versetzten Seitenbereichen (13a, 13b) unterhalb der gekrümmten Seitenbereiche des Säulenhalter eingeführt werden kann, während der zentrale Abschnitt des Querelementhalter zwis-

chen den Rändern (15a, 15b) davon aufgenommen werden kann.

Revendications

1. Sous-structure pour table réglable en hauteur, com-

prenant au moins une paire de colonnes de levage (1 a, 1 b) ayant une coupe transversale à quatre côtés ou sensiblement à quatre côtés et une traverse (4), ladite traverse (4) étant reliée aux colonnes de levage (1a,1b) par un support comprenant un sup-
port de colonne (8a) fixé à la colonne de levage, caractérisée en ce que le support de colonne (8a) en soi est rigide et construit de façon à s’étendre jusqu’à deux bords d’angle adjacents (10a, 10b) de la colonne de levage, de sorte que le support de levage (8a) est supporté par les régions d’angle rigides de la colonne de levage.

2. Sous-structure selon la revendication 1, caractéri-
sée en ce que le support de colonne (8a) est fixé aux ou au niveau des deux bords d’angle adjacents (10a, 10b) de la colonne.

3. Sous-structure selon la revendication 1 ou 2, carac-
térisée en ce que le support de colonne (8a) est une partie intégrante de la traverse (4).

4. Sous-structure selon la revendication 1, 2 ou 3, ca-
ractérisée en ce que les colonnes ont une coupe transversale rectangulaire, et en ce que le support de colonne (8a) est fixé à un petit côté (3b) de la colonne.

5. Sous-structure selon la revendication 1, caractéri-
sée en ce que le support comprend de plus un sup-
port de traverse (8b) fixé à la traverse (4).

6. Sous-structure selon la revendication 1, caractéri-
sée en ce que la traverse (4) présente une coupe transversale à quatre côtés ou sensiblement à qua-

tre côtés.
7. Sous-structure selon la revendication 5, caractérisée en ce que le support de traverse (8b) est en soi rigide et construit de façon à s’étendre jusqu’à ou sensiblement jusqu’à deux bords d’angle horizontaux adjacents (1 2a, 1 2b) de la traverse (4).

8. Sous-structure selon la revendication 7, caractérisée en ce que le support de traverse (8b) est fixé au côté de la traverse (4).

9. Sous-structure selon la revendication 1, caractérisée en ce que le support est un support en coin.

10. Sous-structure selon la revendication 9, caractérisée en ce que le support de colonne (8a) est réalisé à partir d’un élément en plaque dont des régions latérales sont pliées de sorte que les bords (15a, 15b) font face l’un vers l’autre, en ce que le support de traverse (8b) est réalisé à partir d’un élément en plaque dont des régions latérales (13a, 13b) sont décalées par rapport à une partie centrale de sorte que le support de traverse (8b) avec les régions latérales décalées (13a, 13b) peuvent être introduits sous les régions latérales pliées du support de colonne, tandis que la partie centrale du support de traverse peut être reçue entre les bords (1 5a, 1 5b) de celui-ci.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 0178556 A [0002]
- DE 19920672 [0002]
- DK 0200467 W [0002]
- WO 03003876 A [0002]