EUROPEAN PATENT SPECIFICATION

(54) STEEL CORD AND METHOD FOR PRODUCING A STEEL CORD
STAHLITZE UND VERFAHREN ZUR HERSTELLUNG EINER STAHLITZE
CABLE METALLIQUE ET PROCEDE DE PRODUCTION DE CABLE METALLIQUE

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(43) Date of publication of application: 09.07.2003 Bulletin 2003/28

(73) Proprietor: DRAHTCORD SAAR GMBH & Co.KG
66663 Merzig (DE)

(72) Inventor: DOUJAK, Siegfried
66679 Losheim am See - Hausbach (DE)

(74) Representative: Preissner, Nicolaus et al
Flügel Preissner Kastel Schober,
Patentanwälte
Postfach 31 02 03
80102 München (DE)

(56) References cited:
EP-A- 0 502 729
US-A- 3 018 610
US-A- 4 606 392

• DATABASE WPI Section Ch, Week 198821
Derwent Publications Ltd., London, GB; Class
A88, AN 1988-143768 XP002162419 & JP 63

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
In its first aspect, the present invention relates to a steel cord, especially for reinforcing rubber articles, comprising two filaments combined in order to form said steel cord. A second aspect of the present invention relates to a method of producing such a steel cord. In a third aspect, the present invention relates to a pneumatic tyre comprising a tread member, a carcass, two side walls and at least one belt.

A steel cord of the above mentioned kind is known from US 4,606,392 and used for reinforcing vehicle tyres. Said known steel cord comprises several metal wires having each a substantially rectangular cross-section defining opposite broad and narrow sides. The metal wires in the steel cord contact one another along their broad sides to provide a strand of a substantially rectangular cross-section. Other known steel cords comprise two circular filaments with a diameter of around 0.30 mm. Usually, the steel cord is provided with a rubber coating prior to embedding in the material of a tyre. The known steel cord features a rather rough, uneven outer surface. Consequently, the thickness of the rubber coating applied must be at least 0.4 mm higher than the largest dimension of the steel cords. For example a steel cord comprising two filaments with a diameter of 0.30 mm will require a rubber coating with a thickness of 1.10 mm.

Accordingly, the known steel cord requires a rather thick coating and is quite heavy.

A steel cord which comprises two filaments is disclosed in JP 63-85190 A. Each of the filaments has an elliptical cross-section and a continuous surface.

In addition, US 3,018,610 discloses a cord which comprises two filaments made of plastic material. The filaments have a flat contact surface and a semi-circular outer surface. The transition between the contact surface and the outer surface comprises a radius. The cross-section of the filaments is identical. The cord is produced by combining the filaments and subsequently pulling them through a profiling plate which has a window of appropriate size.

It is an object of the invention to provide a steel cord allowing a reduction in rubber coating thickness. It is another object of the invention to provide a method of producing such a steel cord. A third object of the invention is to enhance tyre properties by using relatively small and lightweight steel cords.

Said objects are achieved by a steel cord as defined by claim 1, a method as defined by claim 9 and a pneumatic tyre as defined by claim 11.

Advantageous embodiments of the invention read from the dependent claims.

The cross-section of the filaments with a contact surface and an arcuate shaped outer surface and the arrangement of the contact surfaces adjacent to each other provide a smooth outer contour of the steel cord. Therefore, the largest dimension of the steel cord may be reduced so that the thickness of the rubber coating may be reduced, too. Reduction of rubber coating thickness leads to a number of advantages. First, the expenses for coating are significantly reduced. Second, the steel cord may be arranged closer to each other, e.g. in the carcass ply or belt of a tyre. Therefore, the weight, stiffness and handling of the tyre may be improved compared to the prior art steel cords.

It is advantageous to pre-shape the filaments and combine them subsequently in order to form said steel cord. The filaments may be independently pre-shaped from each other. It is possible to obtain any desired form for the contact surface and the outer surface. Additionally, configuration of both the contact surface and the outer surface may be easily assessed. Combining the pre-shaped filaments is to advantage effected with a double twister as disclosed in EP 396 068 B1 issued to the applicant of the present application.

The contact surface is configured flat or slightly curved. The ideal form of the contact surface is a perfect plane. However, slight deviations from said ideal form are not detrimental.

The outer surface may be configured semi-circular or semi-elliptical. As alternative, it may be configured polygonal. With said aspect the outer surface to advantage comprises more than three sides. In order to minimize the maximum dimension of the steel cord, a semi-circular outer surface is used. However, even with a semi-elliptical or polygonal outer surface of the filament the steel cord in accordance with the invention still features a smooth outer contour and a reduced maximum dimension. Again, rubber coating thickness may be considerably reduced.

According to a further aspect of the invention the transition between the contact surface and the outer surface features a radius. None of the filaments is provided with sharp edges which may damage the rubber coating during use. Accordingly, the life time of the steel cord provided with their rubber coating is increased.

The steel cord uses a gap between the contact surfaces of said two filaments. Said gap may be penetrated by the rubber coating in order to avoid corrosion. Moreover, direct contact between the filaments which is likely to damage a protective coating of the filaments is avoided.

To advantage, the two filaments feature the same cross-section. It will not be necessary to manufacture and stock different filaments in order to produce the steel cord in accordance with the invention. Additionally, both filaments exhibit the same physical properties.

In accordance with another embodiment the two filaments may feature different cross-sections. One filament may be configured semi-circular while the other one is configured semi-elliptical. It is possible to create a huge variety of different steel cords which are suited for a number of different applications.

It is preferred, if the tyre in accordance with the invention comprises two belts which are arranged between the...
tread member and the carcass. To advantage, the tyre features are radial-ply concept. The use of two belts provides higher safety and reliability, while the radial-ply concept enhances the properties of the tyre.

[0018] The invention will now be detailed by way of example embodiments illustrated schematically in the drawings. Like reference signs have been used for parts identical or identical in function.

Figure 1 shows a cross-section of a prior art steel cord provided with a coating;
Figure 2 shows a cross-section of a steel cord in accordance with the invention provided with a coating;
Figures 3 to Figure 11 show a cross-section of nine different embodiments of a steel cord in accordance with the invention;
Figure 12 shows an enlarged view of detail X in Figure 7; and
Figure 13 shows a partial cross-section of a tyre.

[0019] Figure 1 shows a cross-section of a prior art steel cord A with two circular filaments B separated by a gap E. The steel cord A is provided with a coating C. The largest dimension of said steel cord A is indicated at D. The thickness of said coating C is determined by said largest dimension D. In Figure 1, the steel cord A is shown enlarged with a scale of approximately 10:1, the filaments B having a diameter of 0.30 mm (a radius of 0.15 mm) and the coating C having a thickness of 1.10 mm. It is obvious that said coating C is unnecessarily thick at the upper and lower side as shown in Figure 1.

[0020] Figure 2 shows a cross-section of a steel cord 10 in accordance with the invention. Said steel cord 10 comprises two filaments 11, 12 which are approximately semi-circular and is provided with a coating 18. The filaments 11, 12 are separated by a gap 16. The cross-sectional area of said filaments 11, 12 is identical to that of the prior art filaments B. The largest dimension is indicated at d. Again, the steel cord 10 is shown enlarged with scale of 10:1. A comparison of Figures 1 and 2 clearly shows that the steel cord 10 in accordance with the invention features a reduced largest dimension d. Accordingly, thickness of the coating 18 may be reduced.

[0021] In both the prior art steel cord A and in the steel cord 10 in accordance with the invention the gap E or 16, respectively, is filled with the coating. Direct contact between the filaments and corrosion thereof is avoided.

[0022] In the embodiment shown, the filaments 11, 12 are semi-circular. Their respective radius may be calculated as follows:

[0023] Cross-sectional area of prior art filaments B (radius r_1):

\[A = r_1^2 \pi \]

[0024] Cross-sectional area of filaments 11, 12 (radius r_2):

\[A = \frac{1}{2} r_2^2 \pi \]

[0025] The calculated cross-sectional areas shall be identical:

\[\frac{1}{2} r_2^2 \pi = r_1^2 \pi \]

\[\Rightarrow r_2 = \sqrt{2} r_1 \approx 1.41 r_1 \]

[0026] Largest dimension D of prior art steel cord A:

\[D = 4 * r_1 + \text{gap} \]

[0027] Largest dimension d of steel cord 10 in accordance with the invention:
\[d = 2 \times r_2 + \text{gap} = 2 \times \sqrt{2} \times r_1 + \text{gap} \approx 2.82 \times r_1 + \text{gap} \]

[0028] The gap \(E \) is approximately equal to the gap \(16 \). Therefore, the change \(\Delta \) in the largest dimension \(d \) or \(D \), respectively, amounts to:

\[\Delta = D - d \approx 1.18 \times r_1 \]

[0029] The absolute change \(\Delta \) with \(r_1 = 0.15 \text{ mm} \) equals to 0.177 mm. The relative change \(\Delta/D \) equals to 0.1609 or a reduction of about 16%. Accordingly, the thickness of the coating may be reduced, too.

[0030] The prior art coating thickness \(T \) amounts to

\[T = D + 0.4 \text{ mm} = 4 \times r_1 + \text{gap} + 0.4 \text{ mm} \approx 1.10 \text{ mm} \]

while the coating thickness \(t \) in accordance with the invention is

\[t = d + 0.4 \text{ mm} = 2.82 \times r_1 + \text{gap} + 0.4 \text{ mm} \approx 0.823 \text{ mm} \]

[0031] Cross-sectional area \(A_1 \) of prior art coating \(C \):

\[A_1 = \frac{1}{4} T^2 \times \pi \approx 0.325 \times \pi \approx 0.9503 \text{ mm}^2 \]

[0032] Cross-sectional area \(A_2 \) of coating 18 in accordance with the invention:

\[A_2 = \frac{1}{4} t^2 \times \pi \approx 0.169 \times \pi \approx 0.5320 \text{ mm}^2 \]

[0033] Reduction \(\Delta \) of cross-sectional area:

\[\Delta = A_1 - A_2 = 0.4183 \text{ mm}^2 \]

[0034] Reduction \(\Delta\% \) of cross-sectional area in percent:

\[\Delta\% = (A_1 - A_2)/A_1 \approx 44\% \]

[0035] Accordingly, the steel cord 10 in accordance with the invention allows for a significant reduction in coating thickness.

[0036] Figures 3 to 11 show cross-sections of nine different embodiments of a steel cord 10 in accordance with the invention. As already shown in Figure 2, the steel cord 10 comprises two filaments 11, 12, each featuring an outer surface 13 and a contact surface 14. The contact surfaces 14 are arranged adjacent to each other so that the outer surfaces 13
provide a smooth outer contour 15 of the steel cord 10. The contact surfaces 14 are separated by the gap 16.

[0037] Figures 3 and 4 show a steel cord 10 comprising two substantially semi-circular filaments 11, 12. In the embodiment shown in Figure 3, the contact surfaces 14 are configured flat. Figure 4 shows filaments 11, 12 with contact surfaces 14 which are slightly curved. It should be noted that curvature of the contact surfaces 14 is exaggerated in the figures for better understanding.

[0038] Figures 5 and 6 show a steel cord comprising filaments 11, 12 which are configured semi-elliptical. Again, the contact surfaces 14 may be flat or slightly curved.

[0039] Figures 3 to 6 show different embodiments of a steel cord 10 the filaments 11, 12 of which feature the same cross-sectional area and cross-section. It is, however, possible to combine filaments 11, 12 of different cross-sections and cross-sectional areas as shown in Figures 7 and 8. Figure 7 depicts schematically a semi-circular filament 11 together with a semi-elliptical filament 12. Figure 8 shows a filament 11 configured slightly bigger than a semi-circle. Corresponding filament 12, accordingly, is configured smaller than a semi-circle. The gap 16 is formed by curved contact surfaces 14 arranged in parallel.

[0040] In all embodiments shown the outer surface 13 is configured arcuate, especially semi-circular or semi-elliptical. It is possible to use a polygonal outer surface 13, too. It is, however, important that the outer contour 15 formed by the two outer surfaces 13 be smooth.

[0041] Figures 9 to 11 show steel cords 10 comprising one or two filaments 11, 12 with a polygonal outer surface 13. Said steel cords 10 do still feature a smooth outer contour 15. Figure 9 shows an embodiment with two filaments 11, 12 featuring the same cross-section. The outer contour comprises six sides 1 9.

[0042] Figure 10 shows a combination of a semi-elliptical filament 11 and a polygonal filament 12. The outer contour 13 of filament 12 comprises seven sides. Figure 11 shows two filaments 11, 12 which are basically semi-elliptical, but provided with a polygonal outer surface 13. Both filaments 11, 12 feature seven sides.

[0043] It is important that the outer surface 13 of filaments 11, 12 features at least three sides. Otherwise, the steel cord 10 would feature a nearly rectangular outer contour 15 which would not allow the desired reduction in rubber coating thickness.

[0044] Figure 12 shows an enlarged view of detail X in Figure 7. The transition between the contact surface 14 and the outer surface 13 features a radius 17. Said radius 17 ensures that no sharp edges are present which might damage the rubber coating during use.

[0045] Preferably, the above described filaments are wound together according to a winding pitch comprised between 5 mm and 30 mm.

[0046] Figure 1 3 shows a partial cross-section of a tyre 20 comprising a tread member 21, at least a carcass ply 22 and two side walls 23 provided with beads 24 to which the extremities of the carcass ply are associated. Each bead portion 24 comprises a reinforcing bead core 50 provided, in a radially external position, with a filler 60. Arranged between the tread member 21 and the carcass ply 22 are at least two belts 25, 26. Said belts 25, 26 comprise steel cords 10 as described above, parallel to each other in each belt and crossed with the cords of the adjacent belt.

[0047] In the embodiment shown, the tread member 21 comprises a base 27 and a cap 28, the base 27 being provided with shoulders 29 extending up to the tread member surface. Arranged between the right-hand shoulder 29 and the cap 28 is a groove 30.

[0048] Profile blocks 31, 32 of the base 27 and the cap 28 are obtained by grooves 33.

[0049] Due to the reduction of the largest dimension of the steel cords 10 the thickness of their rubber coating 18 may be reduced. Therefore, the steel cords 10 may be arranged closer to each other in the belts 25, 26. At the same time, the radial dimension of belts 25, 26 may be reduced, so that the distance between the tread member 21 and the carcass ply 22 may be reduced, too. As alternative additional safety means may be inserted.

[0050] The steel cord 10 in accordance with the invention allows a significant reduction of the largest dimension. At the same time, a smooth outer contour 15 of the steel cord 10 is provided. Consequently, the thickness of the coating 18 may be considerably reduced, leading to significant cost savings. Additionally, weight, stiffness and handling of a tyre 20 provided with a steel cord 10 in accordance with the invention may be improved.

Claims

1. A steel cord, especially for reinforcing rubber articles, comprising:

 two filaments (11, 12) made of steel and having a pre-shaped cross-section;
 each of the filaments (11; 12) has a contact surface (14) configured flat or slightly curved and an outer surface (13) configured arcuately shaped;
 the contact surfaces (14) are arranged adjacent to each other, thereby providing a smooth outer contour (15) of the steel cord (10); and
2. The steel cord according to claim 1, characterized in that the outer surface (13) is configured semi-circular or semi-elliptical.

3. The steel cord according to claim 1, characterized in that the outer surface (13) is configured polygonal.

4. The steel cord according to claim 3, characterized in that the outer surface (13) comprises more than three sides.

5. The steel cord according to any of the claims 1 to 4, characterized by a transition between the contact surface (14) and the outer surface (13) which defines a radius (17).

6. The steel cord according to any of the claims 1 to 5, characterized in that the two filaments (11, 12) have the same cross-section.

7. The steel cord according to any of the claims 1 to 5, characterized in that the two filaments (11, 12) have different cross-sections.

8. The steel cord according to any of the claims 1 to 7, characterized in that the two filaments (11, 12) are embedded in a coating (18) such that the gap (16) is filled with the coating (18).

9. A method for producing a steel cord (10) according to any of claims 1 to 8, characterized in that the two filaments (11, 12) are at first pre-shaped and subsequently combined in order to form the steel cord (10).

10. The method according to claim 9, characterized in that the two filaments (11, 12) are embedded in a coating (18), thereby filling the gap (16) with the coating (18).

11. A pneumatic tyre comprising:
 a tread member (21);
 a carcass ply (22);
 two side walls (23); and
 at least one belt (25; 26),
 characterized in that the carcass ply (22) or the belt (25; 26) include a steel cord (10) according to any of claims 1 to 8.

Patentansprüche

1. Stahlcord, insbesondere zur Verstärkung von Gummiartikeln, umfassend:
 zwei Filamente (11, 12), die aus Stahl hergestellt sind und einen vorgeformten Querschnitt aufweisen;

wobei jedes der Filamente (11, 12) eine Kontaktfläche (14), die flach oder leicht gewölbt ausgebildet ist, und eine Außenfläche (13) aufweist, die bogenförmig ausgebildet ist;

wobei die Kontaktflächen (14) nebeneinander angeordnet sind, wodurch eine glatte äußere Kontur (15) des Stahlcords (10) bereitgestellt wird; und

wobei die Kontaktflächen (14) durch einen Spalt (16) voneinander getrennt sind.

2. Stahlcord nach Anspruch 1, dadurch gekennzeichnet, dass die Außenfläche (13) halbkreisförmig oder halbelliptisch ausgebildet ist.

3. Stahlcord nach Anspruch 1, dadurch gekennzeichnet, dass die Außenfläche (13) polygonal ausgebildet ist.

4. Stahlcord nach Anspruch 3, dadurch gekennzeichnet, dass die Außenfläche (13) mehr als drei Seiten umfasst.

5. Stahlcord nach einem der Ansprüche 1 bis 4, gekennzeichnet durch einen Übergang zwischen der Kontaktfläche
6. Stahlcord nach einem der Ansprüche 1 bis 5, **dadurch gekennzeichnet**, dass die beiden Filamente (11, 12) den gleichen Querschnitt aufweisen.

7. Stahlcord nach einem der Ansprüche 1 bis 5, **dadurch gekennzeichnet**, dass die beiden Filamente (11, 12) unterschiedliche Querschnitte aufweisen.

8. Stahlcord nach einem der Ansprüche 1 bis 7, **dadurch gekennzeichnet**, dass die beiden Filamente (11, 12) derart in einen Überzug (18) eingebettet sind, dass der Spalt (16) mit dem Überzug (18) ausgefüllt ist.

9. Verfahren zur Herstellung eines Stahl cords (10) gemäß einem der Ansprüche 1 bis 8, **dadurch gekennzeichnet**, dass die beiden Filamente (11, 12) zuerst vorgeformt und danach kombiniert werden, um den Stahl cord (10) zu bilden.

10. Verfahren nach Anspruch 9, **dadurch gekennzeichnet**, dass die beiden Filamente (11, 12) in einen Überzug (18) eingebettet werden, wodurch der Spalt (16) mit dem Überzug (18) ausgefüllt wird.

11. Luftreifen, umfassend:

 - ein Laufflächenelement (21);
 - eine Karkassenlage (22);
 - zwei Seitenwände (23) und
 - wenigstens einen Gürtel (25; 26),

 dadurch gekennzeichnet, dass die Karkassenlage (22) oder der Gürtel (25; 26) einen Stahl cord (10) gemäß einem der Ansprüche 1 bis 8 umfassen.

Revendications

1. **Câblé d'acier**, spécialement pour renforcer des articles en caoutchouc, comprenant :

 - deux filaments (11, 12) réalisés en acier et ayant une section transversale préformée ;
 - chacun des filaments (11; 12) possède une surface de contact (14) configurée plane ou légèrement incurvée, et une surface extérieure (13) configurée avec une forme arquée ;
 - les surfaces de contact (14) sont agencées adjacentes l’une de l’autre, réalisant ainsi un contour extérieur lisse (15) pour le câblé d’acier (10) ; et
 - les surfaces de contact (14) sont séparées par un espace (16).

2. **Câblé d’acier** selon la revendication 1, **caractérisé en ce que** la surface extérieure (13) est configurée sous forme semi-circulaire ou semi-elliptique.

3. **Câblé d’acier** selon la revendication 1, **caractérisé en ce que** la surface extérieure (13) est configurée sous forme polygonale.

4. **Câblé d’acier** selon la revendication 3, **caractérisé en ce que** la surface extérieure (13) comprend plus de trois côtés.

5. **Câblé d’acier** selon l’une quelconque des revendications 1 à 4, **caractérisé par** une transition entre la surface de contact (14) et la surface extérieure (13) qui définit un rayon (17).

6. **Câblé d’acier** selon l’une quelconque des revendications 1 à 5, **caractérisé en ce que** les deux filaments (11, 12) ont la même section transversale.

7. **Câblé d’acier** selon l’une quelconque des revendications 1 à 5, **caractérisé en ce que** les deux filaments (11, 12) ont des sections transversales différentes.

8. **Câblé d’acier** selon l’une quelconque des revendications 1 à 7, **caractérisé en ce que** les deux filaments (11, 12)
sont noyés dans un revêtement (18) tel que l’espace (16) est rempli avec le revêtement (18).

9. Procédé pour produire un câblé d’acier (10) selon l’une quelconque des revendications 1 à 8, caractérisé en ce que les deux filaments (11, 12) sont tout d’abord préformés et ultérieurement combinés afin de former le câblé d’acier (10).

10. Procédé selon la revendication 9, caractérisé en ce que les deux filaments (11, 12) sont noyés dans un revêtement (18), remplissant ainsi l’espace (16) avec le revêtement (18).

11. Bandage pneumatique, comprenant :
 un élément de bande de roulement (21) ; une couche de carcasse (22) ; deux parois latérales (23) ; et au moins une ceinture (25 ; 26),
 caractérisé en ce que la couche de carcasse (22) ou la ceinture (25 ; 26) inclut un câblé d’acier (10) selon l’une quelconque des revendications 1 à 8.