Date of publication and mention of the grant of the patent: 02.01.2008 Bulletin 2008/01

Application number: 02256140.1

Date of filing: 04.09.2002

Cleaning and drying of industrial parts
Reinigen und Trocknen von industriellen Teilen
Nettoyer et sécher des pièces industrielles

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR
Designed Extension States:
RO

Priority: 29.11.2001 US 997739

Date of publication of application: 04.06.2003 Bulletin 2003/23

Proprietor: VALIANT CORPORATION
Windsor,
Ontario N8N 5A8 (CA)

Inventor: Noestheden, Andrew
Tecumseh,
Ontario (CA)

Representative: Shelley, Mark Raymond et al
K R Bryer & Co.,
7 Gay Street
Bath BA1 2PH (GB)

References cited:
WO-A-97/39839
DE-A- 4 341 020
DE-A- 19 546 602

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a method for cleaning and drying industrial parts.

[0002] In the manufacture of machinery, such as the manufacture of automotive engines, it is necessary to both clean and dry many of the parts which form the machine between various manufacturing steps and prior to assembly. Such parts may contain grease, machine shavings, core sand residue and the like which must be removed from the industrial part prior to its assembly. The failure to remove such debris from the industrial parts often results in damage to the machine after assembly of the part from the machine. It is to be understood that the term "industrial part" used herein means any metallic component that is subsequently assembled into a machine.

[0003] Previously, in order to clean an industrial part of debris, the industrial part was subjected to high pressure liquid sprayers which directed a cleaning solution toward the part. After the part was clean, the part was typically positioned in a dunnage container and allowed to dry.

[0004] DE19546602 discloses a bulk material centrifugal or vacuum cleaning system wherein bulk materials are washed and spun in a centrifuge, the centrifuge capable of having a negative pressure source connected to it.

[0005] WO97/39839 discloses a device for washing objects in a centrifuge which includes ventilators to aid their drying.

[0006] One disadvantage of this previously known method of cleaning and drying the parts, however, is that often the water or other cleaning solution used to clean the part pools in areas of the industrial part. This, in turn, results in long term drying of the industrial part such that the industrial part becomes damaged by oxidation where the industrial part is iron-based. Furthermore, it is necessary that the part be completely dry before many manufacturing operations and prior to assembly since any remaining water or cleaning solution remaining on the part may interfere with the proper machining or assembly of the industrial part into the final machine.

[0007] There is a requirement for a method for cleaning and drying an industrial part which overcomes all of the above-mentioned disadvantages of the previously known methods.

[0008] In one aspect, the invention provides a method according to claim 1.

[0009] The part is first washed in a cleaning solution which is preferably water based and may optionally contain degreasing agents. Any conventional means may be used to wash the part, such as subjecting the part to sprayers, submersing the part in a wash chamber, or the like.

[0010] After the part is washed, the part is mounted to a spinning fixture. Thereafter, the part is spun at a speed and for a time sufficient to eject most of the cleaning solution remaining on the part from the part by centripetal force. Preferably, the part is spun between ten and ninety seconds and at a speed of 150 to 500 revolutions per minute.

[0011] After the spinning operation, the part is then subjected to a vacuum which is sufficient to remove substantially all of any remaining solution on the part. Preferably, the vacuum is greater than 33.6 kPa (20 inches of mercury) and preferably greater than 3.1 kPa (29 inches of mercury).

[0012] An embodiment of the invention will now be more particularly described with reference to the drawing which is a flowchart depicting an aspect of one method of the present invention.

[0013] With reference to the drawing, a flowchart illustrating a method of the present invention is shown. At step 10, the part is washed in a cleaning solution which is preferably water based and optionally contains degreasing agents. Any conventional method may be utilized to wash the part such as subjecting the industrial part to high pressure spray of the cleaning solution, immersion of the part within the cleaning solution or the like.

[0014] After the washing step 10, the industrial part may contain small pools of the cleaning solution within and/or on the part.

[0015] After the part is washed at step 10, the part is then mounted to a spinning fixture at step 12. The actual spinning fixture will vary, of course, depending on the type of part being processed. Preferably, however, the spinning fixture is designed so that the part may be rotated substantially about its center of gravity.

[0016] After mounting the part on the spinning fixture at step 12, the part is then spun or rotatably driven at a speed and for a time sufficient to eject most of the cleaning solution remaining on the part by centripetal force at step 14. The amount of time will vary depending upon the type, complexity and structure of the industrial part. However, in practice, the part is spun between ten and ninety seconds.

[0017] Likewise, the rotational speed that the part is spun at step 14 will also vary depending upon the type, complexity and configuration of the part. In practice, however, the part is preferably spun at a rate of 150 to 500 revolutions per minute.

[0018] After the part has been spun dry at step 14, the part is removed from the spinning fixture at step 16. After removal of the part from the fixture at step 16, the part is then subjected to a vacuum at step 18 which is sufficient to remove substantially all of the remaining cleaning solution on the part. In practice, the vacuum at step 18 is preferably greater than 33.6 kPa (20 inches of mercury) and more preferably greater than 3.1 kPa (29 inches of mercury). The vacuum imposed on the part at step 18, of course, lowers the boiling point of the cleaning solution so that the cleaning solution boils from the part at room temperature.

[0019] From the foregoing, it can be seen that the present invention provides a simple and yet effective method of cleaning and drying industrial parts.
means for cleaning and drying industrial parts. Having described the invention, however, many modifications thereto will become apparent to those skilled in the art to which it pertains.

Claims

1. A method for cleaning and drying an industrial part comprising the steps of:

 washing the part in a cleaning solution (10);
 mounting (12) said part to a spinning fixture after said washing step and prior to said spinning step;
 thereafter spinning the part at a rotational speed between 150 and 500 revolutions per minute and for a period between 10 and 90 seconds to eject most of the cleaning solution remaining on the part from the part by centrifugal force (14);
 dismounting (16) said part from said spinning fixture after said spinning step (14) and prior to said vacuum step (18); and
 thereafter subjecting the part to a vacuum greater than 33.6 kPa (20 inches of mercury) to remove substantially all of any remaining cleaning solution on the part (18).

2. A method as claimed in Claim 1 wherein said vacuum is greater than 3.1 kPa (29 inches of mercury).

3. A method as claimed in any preceding claim wherein said cleaning solution is a water-based solution.

Patentansprüche

1. Verfahren zur Reinigung und Trocknung von industriellen Teilen, umfassend die Schritte:

 waschen der Teile in einer Reinigungslösung (10);
 anbringen (12) des besagten Teils an eine Schleuder Halteeinrichtung nach besagtem Waschvorgang und vor dem Schleudervorgang;
 danach Schleudern des Teils mit einer Umdrehungsgeschwindigkeit von 150 und 500 Umdrehungen pro Minute für die Dauer von 10 bis 90 Sekunden zum Entfernen des Großteils der auf dem Teil verbliebenen Reinigungslösung durch Zentrifugalkraft (14);
 abnehmen (16) des Teils von der Schleuder Halteeinrichtung nach dem beschriebenen Schleudervorgang (14) und vor einem Vakuum Absaugschritt (18); und
 danach das Teil einer Vakuum Absaugung, größer als 33,6 kPa zu unterziehen um die gesamte auf dem Teil (18) verbliebene Reinigungslösung zu entfernen.

2. Verfahren nach Anspruch 1, wobei das besagte Vakuum größer als 3,1 kPa ist.

3. Verfahren nach einem der vorgenannten Ansprüche, wobei die genannte Reinigungslösung eine wasserbasierte Lösung ist.

Revendications

1. Procédé de nettoyage et de séchage d’une pièce industrielle comprenant les étapes de :

 laver la pièce dans une solution de lavage (10) ;
 installer (12) ladite pièce sur un dispositif de rotation après ladite étape de lavage et avant ladite étape de rotation ;
 puis mettre en rotation la pièce à une vitesse de rotation dans l’intervalle de 150 à 500 tours par minute et pendant une durée de 10 à 90 secondes pour ejeter de la pièce la plus grande partie de la solution de lavage restant sur la pièce par la force centrifuge (14) ;
 désinstaller (16) ladite pièce dudit dispositif de rotation après ladite étape de rotation (14) et avant ladite étape de mise sous vide (18) ; et
 soumettre ensuite la pièce à un vide supérieur à 33,6 kPa (20 pouces de mercure) de sorte à éliminer pratiquement toute trace de solution de lavage restant sur la pièce (18).

2. Procédé selon la revendication 1, dans lequel ledit vide est supérieur à 3,1 kPa (29 pouces de mercure).

3. Procédé selon l’une quelconque des revendications précédentes, dans lequel ladite solution de lavage est une solution à base d’eau.
WASH PART

MOUNT PART TO FIXTURE

SPIN PART

DISMOUNT PART FROM FIXTURE

SUBJECT PART TO VACUUM

Fig-1
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 19546602 [0004]
- WO 9739839 A [0005]