Fluid resistant silicone encapsulant
Gegen Flüssigkeiten beständige Silikoneinkapselungsmasse
Compositions d’encapsulations en silicones résistantes aux fluides

Designated Contracting States:
BE DE FR GB NL

Priority: 06.11.2001 US 993589

Date of publication of application: 07.05.2003 Bulletin 2003/19

Divisional application: 06003011.1 / 1 655 345

Proprietor: National Starch and Chemical Investment Holding
Corporation
New Castle,
Delaware 19720 (US)

Inventors:
• Walker, Elizabeth M. Nashua,
New Hampshire 03060 (US)
• Luo, Jiazhong Waltham,
Massachusetts 02451 (US)
• Schultz, Rose Ann Westford,
Massachusetts 01886 (US)
• Pearce, Katharine Louise Andover,
Massachusetts 01810 (US)

Representative: Held, Stephan et al Meissner, Bolte & Partner GbR
Postfach 86 03 29
81630 München (DE)

References cited:
US-A- 5 349 037

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] The present invention relates to a fluid resistant silicone encapsulant in the form of a cross-linked and cross-linkable organosilicon polymer.

BACKGROUND OF THE INVENTION

[0002] It is known in the art to prepare cross-linked and cross-linkable silicone elastomers which are mainly comprised of two types of liquid polysiloxanes; one having vinyl (or general C=C) attached to the main chain and the other having hydrogen directly attached to silicone atoms. The addition curing (or crosslinking) reaction to form elastomeric materials occurs through hydrosilation in the presence of platinum or other metal-containing catalysts under room temperature or heating conditions. The substitution groups attached to the silicone chain can be methyl, phenyl, or fluoroalkyl (mostly trifluoropropyl). The fluoroalkyl substituted silicone (fluorosilicone) generally displays good chemical resistance and is commonly used as coating, potting or encapsulation material to protect electric/electronic components and assemblies.

[0003] The preparation of curable organosilicon prepolymers or cross-linked thermosetting polymers through a hydrosilation reaction of polycyclic polyene (providing an active C=C) and reactive cyclic polysiloxane or tetrahedral siloxysilane (providing SiH) in the presence of platinum-containing catalysts under heating is also known in the art. The resulting fully cross-linked materials display high rigidity and brittleness, a relatively high Tg, very high temperature resistance, water insensitivity and oxidation resistance. Examples of these types of polymers are found in U.S. Patent Numbers 4,902,731 and 4,877,820.

[0004] Attempts have been made to reduce the brittleness and rigidity and increase the toughness of such polymers. U.S. Patent No. 5,171,817 discloses such an organosilicone polymer in which reactive siloxane elastomers having carbon-carbon double bonds are added to the composition to form discontinuous phases in the rigid continuous polymer matrix after curing. For example, unsaturated diphenyl dimethyl siloxane elastomers are utilized to increase toughness and adhesion without reducing any of the other properties of the polymer. U.S. Patent No. 5,196,498 discloses the use of a second silicone as a modifier to reduce the viscosity and brittleness of the crosslinked polymers. The second silicone compound, which has reactive hydrocarbyl group, is a cyclic siloxane and most preferably tetravinyltetramethyl cycloketasiloxane or pentavinlypentamethyl cyclopentasiloxane.

[0005] US-Patent No. 5,349,037 discloses a cross-linked and cross-linkable organosilicon polymer gel comprising vinyl terminated fluorine-containing polysiloxane and a reactive polysiloxane resin having both reactive carbon-carbon double bond and silicone hydrogen groups.

[0006] Accordingly, it would be advantageous for a polymer to have certain properties of known polymers without the brittleness and high rigidity that are usually associated therewith. It would be further advantageous for the polymer to have high acid and fuel resistance such that it would be suitable for use in fields which require polymers having more flexibility.

[0007] One potential use of such polymers is in the automotive industry as an encapsulant for items such as sensors, and especially as an encapsulant for pressure sensors. Such encapsulants must have an extremely high resistance to acids and fuels. For example, two fuels commonly utilized for material evaluation by the automobile industry, Fuel C and Fuel CM85, both cause polymer degradation to many known polymers, Fuel C is a hydrocarbon fuel which is approximately 50% by volume isooctane and 50% by volume toluene. Fuel CM85 comprises Fuel C containing 85% by volume methanol. In addition many materials are tested by the automotive industry for their resistance to used synthetic oil, which also causes polymer degradation. For the purpose of this patent, this is defined as Mobile 1 Oil, which has been used to lubricate an automotive engine for a minimum of 3,000 miles.

SUMMARY OF THE INVENTION

[0008] The present invention discloses a cross-linkable and cross-linked organosilicon polymer which is prepared from a mixture of a reactive polysiloxane resin having both reactive carbon-carbon double bonds and silicone-hydrogen groups, where in the reactive polysiloxane resin is comprised of alternating structures of polycyclic polyene residue and cyclic polysiloxane (or tetrahedral siloxysilane) residue, hereafter referred to as a silicon hydrocarbon crosslinking agent, and either a vinyl terminated fluorine-containing polysiloxane or a vinyl terminated phenyl-substituted polysiloxane. In an alternative embodiment, the polymer comprises a mixture of vinyl terminated phenyl-substituted polysiloxane and vinyl terminated fluorine containing polysiloxane and reactive polysiloxane resin having both reactive carbon-carbon double bonds and silicone hydrogen groups, wherein the reactive polysiloxane resin comprises a silicon hydrocarbon crosslinking agent comprising alternating structures of polycyclic polyene residue and cyclic (or tetrahedral) siloxysilane residue.
DETAILED DESCRIPTION OF THE INVENTION

[0009] Upon exposure to harsh environments, such as those associated with fuels and/or acids and/or extreme temperatures, fluorosilicone and phenyl silicone polymers can breakdown and degrade. Consequently, elastomers comprising either material only provide moderate resistance to degradation upon exposure to fuels and/or acids and/or extreme temperatures. A combination of phenyl-silicone and/or fluorosilicone with certain forms of cross-linking agents has been found to result in a polymer which maintains its elastomeric properties during and after exposure to fuels and acids. Specifically, a vinyl terminated fluorine-containing polysiloxane and/or a vinyl terminated phenyl-substituted polysiloxane have been shown to be effective when combined with silicon hydrocarbon crosslinking agents. Exemplary vinyl terminated fluorine-containing polysiloxanes include Nusil PLY-7801, Nusil PLY (1-5)-7580, supplied by Nusil Technology, 1050 Cindy Lane, Carpinteria, CA 93013 and Gelest FMV-4031, supplied by Gelest, Inc., Tullytown, PA 19007-6308, USA. Exemplary vinyl terminated phenyl-substituted siloxanes include Nusil PLY (1-5)-7560, Nusil PLY-7664, Nusil PLY-7450, supplied by Nusil Technology; Gelest PMV-9925, Gelest PDV-0325, Gelest PDV-0331, Gelest PDV-0341, Gelest PDV-0346, Gelest PDV-0525,Gelest PDV-0541, Gelest PDV-1625, Gelest PDV-1631, Gelest PDV 1635, Gelest PDV-1641, Gelest PDV-2331, Gelest PDV-2335, supplied by Gelest, Inc; Andersil SF 1421; Andersil SF 1712; supplied by Anderson & Associates LLC., Summit, NJ. The reaction of many standard cross-linking agents, such as linear hydrosiloxane chain crosslinkers with either dimethyl or 3,33-trifluoropropyl substitution, with the polysiloxanes described above results in polymers with little or only moderate fuel and acid resistance. It has been determined that combining vinyl-terminated phenyl-substituted polysiloxane or vinyl terminated fluorine-containing polysiloxane with a silicon hydrocarbon crosslinking agent, provides a polymer with superior resistance to the harsh conditions imposed by fuels and acids.

[0010] Exemplary silicon hydrocarbon crosslinking agents are comprised of a cyclic or linear poly(organohydrosiloxane) having at least 30% of its silicon-hydrogen groups reacted with hydrocarbon residues derived from polycyclic polyenes. Numerous examples of poly(organohydrosiloxane) are known. One exemplary poly(organohydrosiloxane) is methylhydrocyclosiloxane, examples of typical structures include

with typically D4 (n=4) and D5 (n=5). Further exemplary poly(organohydrosiloxanes) include Tetra- and pentamethylcyclotetrasiloxane; tetra, penta, hexa and hepta-methylcyclopentasiloxane; tetra-, penta- and hexa-methylcyclohexasiloxane; tetraethyl cyclotetrasiloxanes and tetrphenyl cyclooctasiloxane; or blends thereof. Exemplary linear siloxanes include tetrakisdimethylsiloxysilane, tetrakisdiphenylsiloxysilane, and tetrakisdiethylsiloxysilane.

[0011] The silicon hydrocarbon crosslinking agents used in this invention are formed by the hydrosilation reaction of the poly(organohydrosiloxane) with a polycyclic polyene. The stoichiometric ratio of carbon-carbon double bonds to silicon-hydrogen linkages can be in the range of about 2:1 to 1:4. A preferred range is about 1:1. Useful cyclic polyenes are polycyclic hydrocarbon compounds having at least two non-aromatic, non-conjugated carbon-to-carbon double bonds. Exemplary compounds are well known in the art, and include cyclopentadiene oligomers such as dicyclopenta-
diene,

and tricyclopentadiene,

Further exemplary compounds include the Diels-Alder oligomers of the dicyclopentadiene and tricyclopentadiene species.
described above and substituted derivatives of the dicyclopentadiene and tricyclopentadiene species described above including dimethanohexahydronaphthalene, methyl dicyclopentadiene; and any mixture of these compounds.

An exemplary silicon hydrocarbon crosslinking agent has the following structure

[0012] Hereafter, this molecule will be referred to as crosslinker SC-1. A further exemplary silicon hydrogen crosslinking agent has the following structure

[0013] In a preferred formulation, the resulting polymer comprises about 64 to 99 wt% and most preferably about 77 to 90 wt% of a vinyl terminated fluorine-containing polysiloxane, which is about 20 to 90 mol% and most preferably about 20-60 mol% substituted with 3,3,3-trifluoropropyl groups, and about 1 to 36 wt% and most preferably about 10 to 23 wt% of the silicon hydrocarbon crosslinking agent described above. The resulting polymers are cross-linked silicone gels with the inherent elastomeric and high temperature properties of gel silicones, accompanied by superior strength and toughness. The resulting polymers additionally demonstrate excellent fuel resistance and good acid resistance. Materials of this type are useful as coating, potting or encapsulant materials to protect electric/electronic components and assemblies.

[0014] In another preferred formulation, the resulting polymer comprises about 1 to 40 wt% and most preferably 1-20 wt% of a vinyl terminated fluorine containing polysiloxane, which is about 20 to 90 mol% and most preferably about 20-60 mol% substituted with 3,3,3-trifluoropropyl groups, and about 60 to 99 wt% and most preferably about 80 to 99 wt% of the silicon hydrocarbon crosslinking agent described above. The resulting polymer is a cross-linked, rigid silicone which demonstrates reduced brittleness and improved toughness compared to the fully cross linked silicone hydrocarbon material. Furthermore the resulting polymer demonstrates increased hydrophobicity and lipophobicity indicating that this material will also exhibit resistance to fuels, oils and acids. This type of material is useful for the protective encapsulation of electric/electronic components where strength, toughness and mechanical stability are required.

[0015] In another preferred formulation, the resulting polymer comprises about 20 to 99 wt% and most preferably about 60 to 99 wt% of a vinyl terminated phenyl-substituted siloxane, which is about 1 to 40 mol% and most preferably about 2 to 20 mol% phenyl substituted, and about 1 to 80 wt% and most preferably about 1 to 40 wt% of the silicon hydrocarbon crosslinking agent described above. The resulting polymers are a range of cross-linked silicones which vary in hardness from soft gels to elastomers and rigid materials. The gel materials demonstrate superior strength and toughness while retaining the flexibility normally associated with this type of material. The rigid materials demonstrate a degree of flexibility and resilience beyond that expected of typical rigid elastomers. Both categories of material have been shown to be resistant to acid and alcohol based fuels. Materials of this type are useful as coating, potting or encapsulant materials to protect electric/electronic components and assemblies.

[0016] In another preferred formulation, the resulting polymer comprises about 64 to 99 wt% and most preferably about...
about 77 to 90 wt% of a blend of a vinyl terminated fluorine-containing polysiloxane and a vinyl terminated phenyl-substituted polysiloxane and about 1 to 36 wt% and most preferably about 10 to 23 wt% of the silicon hydrocarbon crosslinking agent described above. The blend of of vinyl terminated fluorine-containing polysiloxane and a vinyl terminated phenyl-substituted polysiloxane comprises about 70 to 99 wt% and most preferably about 80 to 99 wt% of a vinyl terminated fluorine-containing polysiloxane, which is about 20 to 90 mol% and most preferably about 20 to 60 mol% substituted with 3,3,3-trifluoropropyl groups, and about 1 to 30 wt% and most preferably 1 to 20 wt% of a vinyl terminated phenyl-substituted siloxane, which is 1 to 40 mol% and most preferably about 2 to 20 mol% phenyl substituted. The resulting polymers are flexible cross-linked gels. The polymers would be expected to demonstrate similar levels of fuel, oil and acid resistance seen from the fluorosilicone in combination with the silicon hydrocarbon cross linker and the phenylsilicone in combination with the silicon hydrocarbon cross linker. Such polymers would also be expected to be useful as encapsulants, coatings and sealants for the automotive, avionics and general electronics markets.

EXAMPLES

Example 1

An encapsulant polymer gel was prepared from a vinyl terminated fluorine containing polysiloxane which is 50 mol% substituted with 3,3,3-trifluoropropyl groups and the silicon hydrocarbon cross linking agent described above, via a two-part process. To prepare the first part, a mixing vessel equipped with a low shear stirrer was charged with 50 wt% of compound A, which is the vinyl terminated polysiloxane, given in Table 1. With low speed stirring, compound B, which is the group VIII metal catalyst and other additives, given in Table 1 were added to the mixing vessel and blended for a period of 5-30 minutes at room temperature. Entrapped air was removed from the resulting blend by evacuating the mixture in a vacuum chamber capable of providing a vacuum of 29 mmHg. To prepare the second part, a further mixing vessel equipped with a low shear stirrer was charged with the remaining 50 wt% of compound A, which is the vinyl terminated polysiloxane, given in Table 1. With low speed stirring, compound C, which is the cross linking agent, was added to the reaction vessel and blended for a period of 5 to 30 minutes at room temperature. Entrapped air was removed from the resulting blend by evacuating the mixture in a vacuum chamber capable of providing a vacuum of 29 mmHg. The resulting blend was poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nusil PLY-7801 (%)</td>
<td>85.8</td>
</tr>
<tr>
<td>B</td>
<td>Baysilone U Catalyst PT/L (%)</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Baysilone U Catalyst PT/L is a group VIII catalyst supplied by GE Silicones, 260 Hudson River Road, Waterford, NY 12188. A187 is a silane adhesion promoter supplied by OSI Specialties Inc., PO Box 38002, South Charleston, West Virginia, 25303.

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20inch/minute) and adhesion properties according to ASTM D-413-82 (type B 90°, peel rate 0.2 inches per minute) with the results shown below.

Table 2: Heat at 180°C

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Initial</th>
<th>200</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore 00)</td>
<td>40</td>
<td>62</td>
<td>69</td>
</tr>
<tr>
<td>Weight change (%)</td>
<td>-</td>
<td>-0.5%</td>
<td>-1.66</td>
</tr>
</tbody>
</table>

Table 3: Fuel C and Fuel CM 85 for 200 hours at 25°C

<table>
<thead>
<tr>
<th></th>
<th>Fuel C</th>
<th>Fuel CM 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength retention (%)</td>
<td>164</td>
<td>126</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>146</td>
<td>125</td>
</tr>
<tr>
<td>Adhesion to PPS retention (%)</td>
<td>159</td>
<td>146</td>
</tr>
<tr>
<td>Adhesion to gold retention (%)</td>
<td>150</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 4: Mobil 1 Oil at 140°C

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>200</th>
<th>400</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength retention (%)</td>
<td>112</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>121</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>Adhesion to PPS retention (%)</td>
<td>85</td>
<td>82</td>
<td>83</td>
</tr>
<tr>
<td>Weight gain (%)</td>
<td>+2.3</td>
<td>+2.7</td>
<td>-</td>
</tr>
</tbody>
</table>
The performance properties detailed above describing Example 1 illustrate that this vinyl terminated fluorine containing polysiloxane in combination with the silicon hydrocarbon crosslinker is a soft gel material with excellent strength, flexibility and adhesion properties. Moreover, excellent retention of these properties is observed on exposure of this material to fuels, oils and acids.

Example 2

Example 2 represents four formulations which demonstrate that similar properties to the material described in Example 1 can be achieved for a range of levels of the silicon hydrocarbon crosslinker. Encapsulant polymer gels were prepared from varying ratios of a vinyl terminated fluorine containing polysiloxane which is 50 mol% substituted with 3,3,3-trifluoropropyl groups and the silicon hydrocarbon crosslinking agent described above. Materials in Example 2 were formulated according to the method described in Example 1, via a two part process. Compound B shown in Table 6 was blended with 50 wt% of compound A. Compound C shown in Table 6 was blended with the remaining 50 wt% of compound A. The two parts were mixed, de-aerated, poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20inch/minute) with the results shown below.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
<th>Ex 2.1</th>
<th>Ex 2.2</th>
<th>Ex 2.3</th>
<th>Ex 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nusil PLY-7801 (%)</td>
<td>93.70</td>
<td>86.67</td>
<td>81.70</td>
<td>75.70</td>
</tr>
<tr>
<td>B</td>
<td>PT-L (%)</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>C</td>
<td>SC-1 (%)</td>
<td>6.00</td>
<td>13.03</td>
<td>18.00</td>
<td>24.00</td>
</tr>
</tbody>
</table>

Specimens were also examined for heat resistance according to ASTM D 573 and chemical resistance according to ASTM D 471, part 15.4.2, (using Die D). The results are shown in Tables 7 to 10.

Table 7: Heat for 200 hours at 180°C

<table>
<thead>
<tr>
<th></th>
<th>Ex 2.1</th>
<th>Ex 2.2</th>
<th>Ex 2.3</th>
<th>Ex 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore 00)</td>
<td>69</td>
<td>69.5</td>
<td>72</td>
<td>74</td>
</tr>
<tr>
<td>Tensile strength retention (%)</td>
<td>152</td>
<td>137</td>
<td>110</td>
<td>106</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>58</td>
<td>58</td>
<td>54</td>
<td>44</td>
</tr>
<tr>
<td>Toughness retention (%)</td>
<td>94</td>
<td>77</td>
<td>63</td>
<td>42</td>
</tr>
</tbody>
</table>
Example 3

Example 3 represents a further formulation which demonstrates that similar properties to the material described in Example 1 can be achieved for vinyl terminated fluorne containing polysiloxanes with alternative levels of 3,3,3-trifluoropropyl substitution. An encapsulant polymer gel was prepared from a vinyl terminated fluorne containing polysiloxane which is 40 mol% substituted with 3,3,3-trifluoropropyl groups and the silicon hydrocarbon cross linking agent described above. The material in Example 3 was formulated according to the method described in Example 1, via a two part process. Compound B shown in Table 11 was blended with 50 wt% of compound A. Compound C shown in Table 11 was blended with the remaining 50 wt% of compound A. The two parts were mixed, de-aerated, poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

Table 8: Fuel C for 200 hours at 25°C

<table>
<thead>
<tr>
<th></th>
<th>Ex 2.1</th>
<th>Ex 2.2</th>
<th>Ex 2.3</th>
<th>Ex 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore 00)</td>
<td>57</td>
<td>59</td>
<td>63.5</td>
<td>65</td>
</tr>
<tr>
<td>Tensile strength retention (%)</td>
<td>134</td>
<td>120</td>
<td>122</td>
<td>114</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>107</td>
<td>105</td>
<td>104</td>
<td>106</td>
</tr>
<tr>
<td>Toughness retention (%)</td>
<td>178</td>
<td>145</td>
<td>133</td>
<td>118</td>
</tr>
</tbody>
</table>

Table 9: Fuel CM 85 for 200 hours at 25°C

<table>
<thead>
<tr>
<th></th>
<th>Ex 2.1</th>
<th>Ex 2.2</th>
<th>Ex 2.3</th>
<th>Ex 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore 00)</td>
<td>56.5</td>
<td>59</td>
<td>63</td>
<td>65</td>
</tr>
<tr>
<td>Tensile strength retention (%)</td>
<td>117</td>
<td>94</td>
<td>118</td>
<td>120</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>107</td>
<td>96</td>
<td>106</td>
<td>108</td>
</tr>
<tr>
<td>Toughness retention (%)</td>
<td>139</td>
<td>100</td>
<td>125</td>
<td>123</td>
</tr>
</tbody>
</table>

Table 10: Nitric acid for 120 hours at pH 1.0, 85°C

<table>
<thead>
<tr>
<th></th>
<th>Ex 2.1</th>
<th>Ex 2.2</th>
<th>Ex 2.3</th>
<th>Ex 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore 00)</td>
<td>-</td>
<td>60</td>
<td>65</td>
<td>64</td>
</tr>
<tr>
<td>Tensile strength retention (%)</td>
<td>-</td>
<td>105</td>
<td>111</td>
<td>88</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>-</td>
<td>97</td>
<td>99</td>
<td>89</td>
</tr>
<tr>
<td>Toughness retention (%)</td>
<td>-</td>
<td>99</td>
<td>104</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 11

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FMV-4031 (%) 81.70</td>
</tr>
<tr>
<td>B</td>
<td>PT-L (%) 0,30</td>
</tr>
<tr>
<td>C</td>
<td>SC-1 (%) 18.00</td>
</tr>
</tbody>
</table>

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20 Inch/minute) with the results shown below.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore 00)</td>
<td>60</td>
</tr>
<tr>
<td>Tensile strength (psi)</td>
<td>99</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>268</td>
</tr>
<tr>
<td>Toughness (in.lbs/in³)</td>
<td>104</td>
</tr>
</tbody>
</table>
Specimens were also examined for heat resistance according to ASTM D 573 and chemical resistance according to ASTM D 471, part 15.4.2, (using Die D). The results are shown in Table 12.

Table 12: Heat and chemical resistance

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Heat</th>
<th>Fuel C</th>
<th>Fuel CM 85</th>
<th>Nitric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (hours)</td>
<td>180°C</td>
<td>25°C</td>
<td>25°C</td>
<td>pH 1.0, 85°C</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Hardness (Shore 00)</td>
<td>67</td>
<td>62</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>Tensile strength retention (%)</td>
<td>139</td>
<td>91</td>
<td>93</td>
<td>119</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>53</td>
<td>93</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Toughness retention (%)</td>
<td>67</td>
<td>94</td>
<td>94</td>
<td>107</td>
</tr>
</tbody>
</table>

Comparative Example 1

A further encapsulant polymer gel was prepared from a vinyl terminated fluorine containing polysiloxane which is 50 mol% substituted with 3,3,3-trifluoropropyl groups and a cross linking agent that is a linear hydrosiloxane with dimethyl substitution, Masil XL-1, supplied by PPG Industries Inc., Specialty Chemicals, 3938 Porett Drive, Gurnee, IL 60031. A further encapsulant polymer gel was prepared from a vinyl terminated fluorine containing polysiloxane which is 50 mol% substituted with 3,3,3-trifluoropropyl groups and a cross linking agent that is a linear hydrosiloxane with 3,3,3-trifluoropropyl substitution, SMP 9951-22, supplied by Nusil Technology, 1050 Cindy Lane, Carpinteria, CA 93013. Materials in Comparative Example 1 were formulated according to the method described in Example 1, via a two part process. Compound B shown in Table 13 was blended with 50 wt% of compound A. Compound C shown in Table 13 was blended with the remaining 50 wt% of compound A. The two parts were mixed, de-aerated, poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

Table 13

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
<th>CEx 1.1</th>
<th>CEx 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nusil PLY-7801 (%)</td>
<td>81.70</td>
<td>81.70</td>
</tr>
<tr>
<td>B</td>
<td>PT-L (%)</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>C</td>
<td>Masil XL-1 (%)</td>
<td>18.00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SMP 9951-22 (%)</td>
<td>-</td>
<td>18.00</td>
</tr>
</tbody>
</table>

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20inch/minute) with the results shown below.

<table>
<thead>
<tr>
<th>CEx 1.1</th>
<th>CEx 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore 00)</td>
<td>59</td>
</tr>
<tr>
<td>Tensile strength (psi)</td>
<td>38</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>117</td>
</tr>
<tr>
<td>Toughness (in.lbs/in³)</td>
<td>39</td>
</tr>
</tbody>
</table>

Specimens were also examined for heat resistance according to ASTM D 573 and chemical resistance according to ASTM D 471, part 15.4.2, (using Die D). The results are shown in Tables 14 to 17.

Table 14: Heat for 200 hours at 180°C

<table>
<thead>
<tr>
<th>CEx 1.1</th>
<th>CEx 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore 00)</td>
<td>73</td>
</tr>
<tr>
<td>Tensile strength retention (%)</td>
<td>108</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>37</td>
</tr>
<tr>
<td>Toughness retention (%)</td>
<td>14</td>
</tr>
</tbody>
</table>
The performance properties detailed above describing Comparative Example 1 illustrate that this vinyl terminated fluorine containing polysiloxane in combination with cross linking agents that are linear hydrosiloxanes with either dimethyl or 3,3,3-trifluoropropyl substitution are soft gel materials with inferior strength and toughness compared with Examples 1 to 3. Moreover these properties are observed to deteriorate on exposure of this material to both fuels and acids, indicating polymer degradation.

Example 4

Example 4 describes a range of rigid polymers prepared from a vinyl terminated fluorine containing polysiloxane and the silicon hydrocarbon cross linking agent. These were prepared from varying ratios of a vinyl terminated fluorine containing polysiloxane which is 50 mol% substituted with 3,3,3-trifluoropropyl groups and the silicon hydrocarbon cross linking agent described above. Materials in Example 4 were formulated according to the method described in Example 1, via a two part process. Compound 8 shown in Table 18 was blended with 50 wt% of compound A. Compound C shown in Table 18 was blended with the remaining 50 wt% of compound A. The two parts were mixed and de-aerated.

Films coated on glass slides were prepared by drawing down material using 2 mil tape to define the film thickness. These films were cured at 150°C for 1 hour. Contact angle data for water and toluene on the films were measured by the sessile drop method: a drop of the test fluid was placed onto the film surface in air and the contact angle was measured after ten seconds at 25°C, with the results shown below.
The performance properties detailed above describing Example 4 illustrate that the incorporation of this vinyl terminated fluorine containing polysiloxane with the silicon hydrocarbon crosslinker results in a rigid polymer with reduced hardness compared with the fully crosslinked silicon hydrocarbon material, thus the polymer would be expected to have reduced brittleness and improved toughness compared with the fully crosslinked silicon hydrocarbon material. Moreover, Example 4 demonstrates that this improved toughness is accompanied by an increase in contact angle for both water and toluene, indicating that the polymer has increased hydrophobicity and lipophobicity, thus the polymer would be expected to have improved resistance to fuels, oils and acids.

Examples 5 to 7 include elastomers prepared from a vinyl terminated phenyl substituted polysiloxanes and the silicon hydrocarbon crosslinking agent.

Example 5

An encapsulant polymer elastomer was prepared from a vinyl terminated phenyl-substituted polysiloxane which is 6 mol% substituted phenyl groups and the silicon hydrocarbon crosslinking agent described above. The material in Example 5 was formulated according to the method described in Example 1, via a two part process. Compound 8 shown in Table 19 was blended with 50 wt% of compound A. Compound C shown in Table 19 was blended with the remaining 50 wt% of compound A. The two parts were mixed, de-aerated, poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
<th>Table 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Andersil SF 1721 (%)</td>
<td>86.9</td>
</tr>
<tr>
<td>B</td>
<td>PT-L (%)</td>
<td>0.1</td>
</tr>
<tr>
<td>C</td>
<td>SC-1 (%)</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20 inch/minute) and adhesion properties according to ASTM D-413-82 (type B 90°, peel rate 0.2 inches per minute) with the results shown below.

<table>
<thead>
<tr>
<th>Property</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore A)</td>
<td>14</td>
</tr>
<tr>
<td>Tensile Strength (psi)</td>
<td>130</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>285</td>
</tr>
<tr>
<td>Adhesion to PPS (J/m²)</td>
<td>121</td>
</tr>
<tr>
<td>Adhesion to Gold (J/m²)</td>
<td>86</td>
</tr>
</tbody>
</table>

Specimens were also examined for heat resistance according to ASTM D 573 and chemical resistance according to ASTM D 471, part 15.4.1 (using Die D). The results are shown in Tables 20 to 22.

<table>
<thead>
<tr>
<th>Property</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore A)</td>
<td>14</td>
</tr>
<tr>
<td>Weight change (%)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Initial</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore A)</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Weight change (%)</td>
<td>-</td>
<td>1.76</td>
</tr>
</tbody>
</table>
The performance properties detailed above describing Example 5 illustrate that this vinyl terminated phenyl substituted polysiloxane in combination with the silicon hydrocarbon crosslinker is an elastomer with excellent strength and adhesion properties. Moreover, excellent retention of these properties is observed on exposure of this material to alcohol based fuels and acids.

Example 6

Example 6 represents a further formulation which demonstrates that similar properties to the material described in Example 5 can be achieved for an increased level of the silicon hydrocarbon crosslinker. An encapsulant polymer elastomer was prepared from a vinyl terminated phenyl-substituted polysiloxane which is 6 mol% substituted with phenyl groups and the silicon hydrocarbon cross linking agent described above. The material in Example 6 was formulated according to the method described in Example 1, via a two part process. Compound B shown in Table 23 was blended with 50 wt% of compound A. Compound C shown in Table 23 was blended with the remaining 50 wt% of compound A. The two parts were mixed, de-aerated, poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20inch/minute) with the results shown below.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
<th>Hardness (Shore 00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Andsil SF 1721 (%)</td>
<td>69</td>
</tr>
<tr>
<td>B</td>
<td>PT-L (%)</td>
<td>126</td>
</tr>
<tr>
<td>C</td>
<td>SC-1 (%)</td>
<td>172</td>
</tr>
</tbody>
</table>

Specimens were also examined for heat resistance according to ASTM D 573 and chemical resistance according to ASTM D 471, part 15.4.2 (using Die D). The results are shown in Table 24.
The performance properties detailed above describing Example 6 illustrate that this vinyl terminated phenyl substituted polysiloxane in combination with an increased level of the silicon hydrocarbon crosslinker is an elastomer with excellent strength and adhesion properties. Moreover, excellent retention of these properties is observed on exposure of this material to fuels and acids.

Example 7

Example 7 represents six formulations which demonstrate that similar benefits observed for the materials described in Examples 5 and 6 can be achieved with vinyl terminated phenyl substituted polysiloxanes with alternative levels of phenyl substitution and for a range of levels of the silicon hydrocarbon crosslinker. Encapsulant polymer elastomers were prepared from varying ratios of a vinyl terminated phenyl-substituted polysiloxane which is 15 mol% substituted phenyl groups and the silicon hydrocarbon crosslinking agent described above. Materials in Example 7 were formulated according to the method described in Example 1, via a two part process. Compound B shown in Table 25 was blended with 50 wt% of compound A. Compound C shown in Table 25 was blended with the remaining 50 wt% of compound A. The two parts were mixed, de-aerated, poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20inch/minute with the results shown below.

Specimens were also examined for heat resistance according to ASTM D 573 and chemical resistance according to ASTM D 471, part 15.4.2 (using Die D). The results are shown in Tables 26 to 29.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
<th>Ex 7.1</th>
<th>Ex 7.2</th>
<th>Ex 7.3</th>
<th>Ex 7.3</th>
<th>Ex 7.4</th>
<th>Ex 7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nusil PLY-7664 (%)</td>
<td>93.70</td>
<td>86.67</td>
<td>81.70</td>
<td>75.70</td>
<td>69.70</td>
<td>59.70</td>
</tr>
<tr>
<td>B</td>
<td>PT-L (%)</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>C</td>
<td>SC-1 (%)</td>
<td>6.00</td>
<td>13.03</td>
<td>18.00</td>
<td>24.00</td>
<td>30.00</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Table 26: Heat for 200 hours at 180°C

<table>
<thead>
<tr>
<th>Ex 7.1</th>
<th>Ex 7.2</th>
<th>Ex 7.3</th>
<th>Ex 7.3</th>
<th>Ex 7.4</th>
<th>Ex 7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore O0)</td>
<td>62.6</td>
<td>70.4</td>
<td>74.6</td>
<td>83.2</td>
<td>-</td>
</tr>
<tr>
<td>Hardness (Shore A)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>67</td>
</tr>
<tr>
<td>Tensile strength (psi)</td>
<td>40</td>
<td>142</td>
<td>197</td>
<td>482</td>
<td>523</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>180</td>
<td>173</td>
<td>131</td>
<td>131</td>
<td>95</td>
</tr>
<tr>
<td>Toughness (in.lbs/in²)</td>
<td>37</td>
<td>95</td>
<td>99</td>
<td>236</td>
<td>228</td>
</tr>
</tbody>
</table>

Table 26: Heat for 200 hours at 180°C
The performance properties detailed above describing Example 7 illustrate that this vinyl terminated phenyl substituted polysiloxane in combination with the silicon hydrocarbon crosslinker can be a soft gel material with excellent strength and toughness. Moreover, good retention of these properties is observed on exposing these materials to fuels and acids. The heat resistance of this material is equal to or better than a vinyl terminated phenyl substituted polysiloxane in combination with a cross linking agent that is a linear hydrosiloxane with dimethyl substitution (see Comparative Example 2). Furthermore, at increased levels of the silicon hydrocarbon crosslinker, more rigid materials are generated which demonstrate greatly increased levels of toughness while remaining flexible. Moreover, good retention of these properties is observed on exposing these materials to acids and alcohol based fuels.

Comparative Example 2

A further encapsulant polymer gel was prepared from a vinyl terminated phenyl-substituted polysiloxane which is 15 mol% substituted phenyl groups and a cross linking agent that is a linear hydrosiloxane with dimethyl substitution. The material in Comparative Example 2 was formulated according to the method described in Example 1, via a two part process. Compound 8 shown in Table 30 was blended with 50 wt% of compound A. Compound C shown in Table 30 was blended with the remaining 50 wt% of compound A. The two parts were mixed, de-aerated, poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nusil PLY-7664 (%) 81.70</td>
</tr>
<tr>
<td>B</td>
<td>PT-L (%) 0.30</td>
</tr>
<tr>
<td>C</td>
<td>Masil XL-1 (%) 18.00</td>
</tr>
</tbody>
</table>

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20inch/minute) with the results shown below.
Specimens were also examined for heat resistance according to ASTM D 573 and chemical resistance according to ASTM D 471, part 15.4.2 (using Die D). The results are shown in Table 31.

Table 31: Heat and Chemical resistance

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Heat 180°C</th>
<th>Fuel C 25°C</th>
<th>Fuel CM 85 25°C</th>
<th>Nitric acid pH 1.0, 85°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (hours)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>Hardness (Shore 00)</td>
<td>78</td>
<td>69</td>
<td>63</td>
<td>71</td>
</tr>
<tr>
<td>Tensile strength retention (%)</td>
<td>299</td>
<td>117</td>
<td>105</td>
<td>206</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>32</td>
<td>74</td>
<td>81</td>
<td>66</td>
</tr>
</tbody>
</table>

[0042] The performance properties detailed above describing Comparative Example 2 illustrate that this vinyl terminated phenyl substituted polysiloxane in combination with a cross linking agent that is a linear hydrosiloxane with dimethyl substitution is a soft gel material with inferior strength and toughness compared with Examples 5 to 7. Moreover these properties are observed to deteriorate on exposure of this material to both fuels and acids, indicating polymer degradation.

Example 8

[0043] Example 8 represents two formulations in which a blend of a vinyl terminated fluorine containing polysiloxane and a vinyl terminated phenyl substituted polysiloxane is used in conjunction with the silicon hydrocarbon crosslinker. Encapsulant polymer gels were prepared from blends of a vinyl terminated fluorine containing polysiloxane, which is 50 mol% substituted with 3,3,3-trifluoropropyl groups, and a vinyl terminated phenyl-substituted polysiloxane, which is 15 mol% substituted phenyl groups, in different ratios, and the silicon hydrocarbon crosslinking agent described above. Materials in Example 8 were formulated according to the method described in Example 1, via a two part process. Compound B shown in Table 32 was blended with 50 wt% each of compounds A. Compound C shown in Table 32 was blended with the remaining 50 wt% each of compounds A. The two parts were mixed, de-aerated, poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

Table 32

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
<th>Ex 8.1</th>
<th>Ex 8.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nusil PLY-7801 (%)</td>
<td>65.36</td>
<td>73.53</td>
</tr>
<tr>
<td></td>
<td>Nusil PLY-7664 (%)</td>
<td>16.34</td>
<td>8.17</td>
</tr>
<tr>
<td>B</td>
<td>PT-L (%)</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>C</td>
<td>SC-1 (%)</td>
<td>18.00</td>
<td>18.00</td>
</tr>
</tbody>
</table>

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20inch/minute) with the results shown below.

<table>
<thead>
<tr>
<th></th>
<th>Ex 8.1</th>
<th>Ex 8.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (Shore 00)</td>
<td>71</td>
<td>64</td>
</tr>
<tr>
<td>Tensile strength (psi)</td>
<td>68</td>
<td>64</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>111</td>
<td>185</td>
</tr>
<tr>
<td>Toughness (in.lbs/in³)</td>
<td>46</td>
<td>49</td>
</tr>
</tbody>
</table>

Specimens were also examined for heat resistance according to ASTM D 573, 180°C for 200 hours, with the results
The performance properties detailed above describing Example 8 illustrate that blends of vinyl terminated fluorine containing polysiloxane and vinyl terminated phenyl substituted polysiloxane in combination with the silicon hydrocarbon crosslinker are gel materials with good strength, flexibility and heat resistance.

Comparative Example 3

A further encapsulant polymer gel was prepared from a blend of a vinyl terminated fluorine containing polysiloxane which is 50 mol% substituted with 3,3,3-trifluoropropyl groups with a vinyl terminated phenyl-substituted polysiloxane which is 15 mol% substituted with phenyl groups and a cross linking agent that is a linear hydrosiloxane with either dimethyl substitution or 3,3,3-trifluoropropyl substitution. Materials in Comparative Example 3 were formulated according to the method described in Example 1, via a two part process. Compounds B shown in Table 33 was blended with 50 wt% each of compounds A. Compound C shown in Table 33 was blended with the remaining 50 wt% each of compounds A. The two parts were mixed, de-aerated, poured into molds suitable for making test pieces and cured at 150°C for 1 hour.

Specimens were cut from each cured piece and measured for physical properties according to ASTM D2240 and ASTM D 412 (using Die D to cut the pieces and a tensile rate of 20inch/minute with the results shown below.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Material</th>
<th>CEx 3.1</th>
<th>CEx 3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nusil PLY-7801 (%)</td>
<td>65.36</td>
<td>65.36</td>
</tr>
<tr>
<td></td>
<td>Nusil PLY-7664 (%)</td>
<td>16.34</td>
<td>16.34</td>
</tr>
<tr>
<td>B</td>
<td>PT-L (%)</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>C</td>
<td>Masil XL-1 (%)</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMP 9951-22 (%)</td>
<td></td>
<td>18.00</td>
</tr>
</tbody>
</table>

Specimens were also examined for heat resistance according to ASTM D 573, 180°C for 200 hours, with the results shown below.

<table>
<thead>
<tr>
<th>Hardness (Shore 00)</th>
<th>CEx 3.1</th>
<th>CEx 3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength (psi)</td>
<td>26.4</td>
<td>16.2</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>134.4</td>
<td>342.4</td>
</tr>
<tr>
<td>Toughness (in.lbs/in³)</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness (Shore 00)</td>
<td>CEx 3.1</td>
<td>CEx 3.2</td>
</tr>
<tr>
<td>Tensile strength retention (%)</td>
<td>84</td>
<td>54.5</td>
</tr>
<tr>
<td>Elongation retention (%)</td>
<td>256</td>
<td>121</td>
</tr>
<tr>
<td>Toughness retention (%)</td>
<td>14</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
fluorine containing polysiloxane and vinyl terminated phenyl substituted polysiloxane in combination with cross linking agents that are linear hydroxiloxanes with either dimethyl or 3,3,3-trifluoropropyl substitution are soft gel materials with inferior strength, toughness and heat resistance compared with Example 8.

Claims

1. A cross-linked and cross-linkable organosilicon polymer gel comprising vinyl terminated fluorine-containing polysiloxane and a reactive polysiloxane resin having both reactive carbon-carbon double bonds and silicone hydrogen groups and wherein the reactive polysiloxane resin comprises a silicon hydrocarbon crosslinking agent comprising alternating structures of polycyclic polyene residue and cyclic (or tetrahedral) siloxysilane residue.

2. An organosilicon polymer gel according to claim 1 comprising in the range of about 64 wt % to about 99 wt % of the vinyl terminated fluorine-containing polysiloxane.

3. An organosilicon polymer gel according to claim 2 comprising in the range of about 77 wt % to about 90 wt % of the vinyl terminated fluorine-containing polysiloxane.

4. An organosilicon polymer gel according to claim 1, wherein the vinyl terminated fluorine-containing polysiloxane is in the range of about 20 mole % to about 90 mole % substituted with 3,3,3-trifluoropropyl groups.

5. An organosilicon polymer gel according to claim 4, wherein the vinyl terminated fluorine-containing polysiloxane is in the range of about 20 mole % to about 60 mole % substituted with 3,3,3-trifluoropropyl groups.

6. An organosilicon polymer gel according to claim 1, comprising in the range of about 1 wt % to about 36 wt % of the silicon hydrocarbon cross-linking agent.

7. An organosilicon polymer gel according to claim 6, comprising in the range of about 10 wt % to about 23 wt % of the silicon hydrocarbon cross-linking agent.

8. An organosilicon polymer gel as in claims 1, 3, 5 or 7 further comprising a group VIII metal catalyst.

9. An organosilicon polymer gel according to claim 8, wherein the group VIII metal catalyst is selected from the group consisting of platinum based compounds, rhodium based compounds, ruthenium based compounds, iridium based compounds, palladium based compounds and mixtures thereof.

10. An organosilicon polymer gel according to claim 9, wherein the group VIII metal catalyst is selected from the group consisting of chloroplatinic acid, platinum chloride, dibenzenitriple platinum dichloride, platinum on carbon, platinum on silica, platinum on alumina, olefinic complexes, RhCl\(_3\)(PPh\(_3\))\(_3\), RhCl(CO)(PPh\(_3\))\(_2\), Ru\(_3\)(CO)\(_{12}\), IrCl(CO)(PPh\(_3\))\(_4\), Pd(PPh\(_3\))\(_4\), and mixtures thereof.

11. An organosilicon polymer gel according to claim 8, wherein the gel further comprises an additive selected from the group consisting of antioxidants, compatibilizing agents, metallic, mineral and organic fillers, flow control agents, air release agents, adhesion promoters, cure rate modifiers and mixtures thereof.

12. An electronic sensor module containing the organosilicon polymer gel of claim 1 as a protective encapsulant.

13. A cross-linked and cross-linkable organosilicon polymer in the form of a rigid, cross-linked silicone, comprising vinyl terminated fluorine-containing polysiloxane and a reactive polysiloxane resin having both reactive carbon-carbon double bonds and silicone hydrogen groups wherein the reactive polysiloxane resin comprises a silicon hydrocarbon crosslinking agent comprising alternating structures of polycyclic polyene residue and cyclic (or tetrahedral) siloxysilane residue.

14. An organosilicon polymer according to claim 13 comprising in the range of about 1 wt % to about 40 wt % of the vinyl terminated fluorine-containing polysiloxane.

15. An organosilicon polymer according to claim 14 comprising in the range of about 1 wt % to about 20 wt % of the vinyl terminated fluorine-containing polysiloxane.
16. An organosilicon polymer according to claim 13, wherein the vinyl terminated fluorine-containing polysiloxane is in
the range of about 20 mole % to about 90 mole % substituted with 3,3,3-trifluoropropyl groups.

17. An organosilicon polymer according to claim 16, wherein the vinyl terminated fluorine-containing polysiloxane is in
the range of about 20 mole % to about 60 mole % substituted with 3,3,3-trifluoropropyl groups.

18. An organosilicon polymer according to claim 13, comprising in the range of about 60 wt % to about 99 wt % of the
silicon hydrocarbon cross-linking agent

19. An organosilicon polymer according to claim 18, comprising in the range of about 80 wt % to about 99 wt % of the
silicon hydrocarbon cross-linking agent.

20. An organosilicon polymer as in claims 13, 15, 17, or 19 further comprising a group VIII metal catalyst.

21. An organosilicon polymer according to claim 20, wherein the group VIII metal catalyst is selected from the group
consisting of platinum based compounds, rhodium based compounds, ruthenium based compounds, iridium based
compounds, palladium based compounds and mixtures thereof.

22. An organosilicon polymer according to claim 21, wherein the group VIII metal catalyst is selected from the group
consisting of chloroplatinic acid, platinum chloride, dibenzenonitrile platinum dichloride, platinum on carbon, platinum
on silica, platinum on alumina, olefinic complexes, RhCl(PPh₃)₃, RhCl(CO)(PPh₃)₂, Ru₃(CO)₁₂, IrCl(CO)(PPh₃)₄,
Pd(PPh₃)₄, and mixtures thereof.

23. An organosilicon polymer according to claim 20, wherein the polymer further comprises an additive selected from
the group consisting of antioxidants, compatibilizing agents, metallic, mineral and organic fillers, flow control agents,
air release agents, adhesion promoters, cure rate modifiers and mixtures thereof.

24. An electronic sensor module containing the organosilicon polymer of claim 13 as a protective encapsulant.

25. A cross-linked and cross-linkable organosilicon polymer gel, comprising vinyl terminated fluorine-containing poly-
siloxane, vinyl terminated phenyl-substituted siloxane and a reactive polysiloxane resin having both reactive carbon-
carbon double bonds and silicone hydrogen groups wherein the reactive polysiloxane resin comprises a silicon
hydrocarbon crosslinking agent comprising alternating structures of polycyclic polyene residue and cyclic (or tetra-
hedral) siloxysilane residue.

26. An organosilicon polymer gel according to claim 25 comprising in the range of about 64 wt % to about 99 wt % of
a blend of the vinyl terminated fluorine-containing polysiloxane and the vinyl terminated phenyl-substituted siloxane.

27. An organosilicon polymer gel according to claim 26 comprising in the range of about 77 wt % to about 90 wt % of
the blend of the vinyl terminated fluorine-containing polysiloxane and the vinyl terminated phenyl-substituted siloxane.

28. An organosilicon polymer gel according to claim 27, wherein the blend of the vinyl terminated fluorine-containing
polysiloxane and the vinyl terminated phenyl-substituted siloxane comprises in the range of about 70 wt % to about
99 wt % of the vinyl terminated fluorine-containing polysiloxane.

29. An organosilicon polymer gel according to claim 28, wherein the blend of the vinyl terminated fluorine-containing
polysiloxane and the vinyl terminated phenyl-substituted siloxane comprises in the range of about 80 wt % to about
99 wt % of the vinyl terminated fluorine-containing polysiloxane.

30. An organosilicon polymer gel according to claim 25, wherein the vinyl terminated fluorine-containing polysiloxane
is in the range of about 20 mole % to about 90 mole % substituted with 3,3,3-trifluoropropyl groups.

31. An organosilicon polymer gel according to claim 30, wherein the vinyl terminated fluorine-containing polysiloxane
is in the range of about 20 mole % to about 60 mole % substituted with 3,3,3-trifluoropropyl groups.

32. An organosilicon polymer gel according to claim 25, wherein the blend of the vinyl terminated fluorine-containing
polysiloxane and the vinyl terminated phenyl-substituted siloxane comprises in the range of about 1 wt % to about
30 wt % of the vinyl terminated phenyl-substituted siloxane.
33. An organosilicon polymer gel according to claim 32 wherein the blend of the vinyl terminated fluorine-containing polysiloxane and the vinyl terminated phenyl-substituted siloxane comprises in the range of about 1 wt % to about 20 wt % of the vinyl terminated phenyl-substituted siloxane.

34. An organosilicon polymer gel according to claim 25, wherein the vinyl terminated phenyl-substituted siloxane is in the range of about 1 mole % to about 40 mole % phenyl substituted.

35. An organosilicon polymer gel according to claim 34, wherein the vinyl terminated phenyl-substituted siloxane is in the range of about 2 mole % to about 20 mole % phenyl substituted.

36. An organosilicon polymer gel according to claim 25, comprising in the range of about 1 wt % to about 36 wt % of the silicon hydrocarbon cross-linking agent.

37. An organosilicon polymer gel according to claim 36, comprising in the range of about 10 wt % to about 23 wt % of the silicon hydrocarbon cross-linking agent.

38. An organosilicon polymer gel as in claims 25, 31, 35 or 37, further comprising a group VIII metal catalyst.

39. An organosilicon polymer gel according to claim 38, wherein the group VIII metal catalyst is selected from the group consisting of platinum based compounds, rhodium based compounds, ruthenium based compounds, iridium based compounds, palladium based compounds, palladium based compounds and mixtures thereof.

40. An organosilicon polymer gel according to claim 39, wherein the group VIII metal catalyst is selected from the group consisting of chloroplatinic acid, platinum chloride, dibenzonitrile platinum dichloride, platinum on carbon, platinum on silica, platinum on alumina, olefinic complexes, RhCl(PPh3)3, RhCl(CO)(PPh3)2, Ru3(CO)12, IrCl(CO)(PPh3)4, Pd(PPh3)4, and mixtures thereof.

41. An organosilicon polymer gel according to claim 38, wherein the polymer further comprises an additive selected from the group consisting of antioxidants, compatibilizing agents, metallic, mineral and organic fillers, flow control agents, air release agents, adhesion promoters, cure rate modifiers and mixtures thereof.

42. An electronic sensor module containing the organosilicon polymer gel of claim 25 as a protective encapsulant.

Patentansprüche

2. Organosiliciumpolymer-Gel nach Anspruch 1, das Vinyl-terminiertes Fluor-enthaltendes Polysiloxan im Bereich von etwa 64 Gew.-% bis etwa 99 Gew.-% umfasst.

4. Organosiliciumpolymer-Gel nach Anspruch 1, wobei das Vinyl-terminierte Fluor-enthaltende Polysiloxan im Bereich von etwa 20 Mol-% bis etwa 90 Mol-% mit 3,3,3-Trifluorpropylgruppen substituiert ist.

5. Organosiliciumpolymer-Gel nach Anspruch 4, wobei das Vinyl-terminierte Fluor-enthaltende Polysiloxan im Bereich von etwa 20 Mol-% bis etwa 60 Mol-% mit 3,3,3-Trifluorpropylgruppen substituiert ist.

6. Organosiliciumpolymer-Gel nach Anspruch 1, das das Silicium-Kohlenwasserstoff-Vernetzungsmittel im Bereich von etwa 1 Gew.-% bis etwa 36 Gew.-% umfasst.

7. Organosiliciumpolymer-Gel nach Anspruch 6, das das Silicium-Kohlenwasserstoff-Vernetzungsmittel im Bereich
von etwa 10 Gew.-% bis etwa 23 Gew.-% umfasst.

8. Organosiliciumpolymer-Gel nach Anspruch 1, 3, 5 oder 7, das außerdem einen Gruppe VIII-Metall-Katalysator umfasst.

10. Organosiliciumpolymer-Gel nach Anspruch 9, wobei der Gruppe VIII-Metall-Katalysator aus der Gruppe, bestehend aus Chlorplatin säure, Platinchlorid, Dibenzonitril-Platindichlorid, Platin auf Kohle, Platin auf Silica, Platin auf Aluminiumoxid, olefinischen Komplexen, RhCl{(PPh)}_{3}, RhCl{(CO)}{(PPh)}_{3}, Ru_{3}{(CO)}_{12}, IrCl{(CO)}{(PPh)}_{3}, Pd{(PPh)}_{3} und Gemischen davon, ausgewählt ist.

11. Organosiliciumpolymer-Gel nach Anspruch 8, wobei das Gel außerdem ein Additiv, ausgewählt aus der Gruppe, bestehend aus Antioxidantien, Kompatibilisierungsmitteln, metallischen, mineralischen und organischen Füllstoffen, Fließkontrollmitteln, Luftfreisetzungsmitteln, Adhäsionspromotoren, Modifizierungsmitteln der Här tungsraten und Gemischen davon, umfasst.

12. Elektronisches Sensormodul, das das Organosiliciumpolymer-Gel nach Anspruch 1 als einen schützenden Verkapselungsstoff enthält.

22. Organosiliciumpolymer nach Anspruch 21, wobei der Gruppe VIII-Metall-Katalysator aus der Gruppe, bestehend aus Chlorplatin säure, Platinchlorid, Dibenzonitril-Platindichlorid, Platin auf Kohle, Platin auf Silica, Platin auf Aluminiumoxid, olefinischen Komplexen, RhCl{(PPh)}_{3}, RhCl{(CO)}{(PPh)}_{3}, Ru_{3}{(CO)}_{12}, IrCl{(CO)}{(PPh)}_{3}, Pd{(PPh)}_{3} und Gemischen davon, ausgewählt ist.
23. Organosiliciumpolymer nach Anspruch 20, wobei das Polymer außerdem ein Additiv, ausgewählt aus der Gruppe, bestehend aus Antioxidantien, Kompatibilisierungsmitteln, metallischen, mineralischen und organischen Füllstoffen, Fließkontrollmitteln, Luftfreisetzungsmitteln, Adhäsionspromotoren, Modifizierungsmitteln der Härtungsrate und Gemischen davon, umfasst.

38. Organosiliciumpolymer-Gel nach Anspruch 25, 31, 35 oder 37, das außerdem einen Gruppe VIII-Metall-Katalysator umfasst.

41. Organosiliciumpolymer-Gel nach Anspruch 38, wobei das Polymer außerdem ein Additiv, ausgewählt aus der Gruppe, bestehend aus Antioxidantien, Kompatibilisierungsmitteln, metallischen, mineralischen und organischen Füllstoffen, Fließkontrollmitteln, Luftfreisetzungsmitteln, Adhäsionspromotoren, Modifizierungsmitteln für die Härungsrate und Gemischen davon, umfasst.

42. Elektronisches Sensormodul, das das Organosiliciumpolymer-Gel nach Anspruch 25 als einen schützenden Verkapselungsstoff enthält.

Revendications
1. Gel polymère à base d’organosilicium réticulé et pouvant être réticulé, comprenant un polysiloxane contenant du fluor à terminaison vinyle et une résine à base de polysiloxane apte à réagir ayant à la fois des doubles liaisons réactives carbone-carbone et des groupes hydrogène de silicone et dans lequel la résine à base de polysiloxane apte à réagir comprend un agent de réticulation hydrocarboné à base de silicium comprenant des structures alternées d’un résidu de polyène polycyclique et d’un résidu de siloxysilane cyclique (ou tétraédrique).

2. Gel polymère à base d’organosilicium selon la revendication 1, comprenant entre environ 64 % en poids et environ 99 % en poids du polysiloxane contenant du fluor à terminaison vinyle.

3. Gel polymère à base d’organosilicium selon la revendication 2, comprenant entre environ 77 % en poids et environ 90 % en poids du polysiloxane contenant du fluor à terminaison vinyle.

4. Gel polymère à base d’organosilicium selon la revendication 1, dans lequel le polysiloxane contenant du fluor à terminaison vinyle est substitué par des groupes 3,3,3-trifluoropropyle à raison d’environ 20 % en moles à environ 90 % en moles.

5. Gel polymère à base d’organosilicium selon la revendication 4, dans lequel le polysiloxane contenant du fluor à terminaison vinyle est substitué par des groupes 3,3,3-trifluoropropyle à raison d’environ 20 % en moles à environ 60 % en moles.

6. Gel polymère à base d’organosilicium selon la revendication 1, comprenant entre environ 1 % en poids et environ 36 % en poids de l’agent de réticulation hydrocarboné à base de silicium.

7. Gel polymère à base d’organosilicium selon la revendication 6, comprenant entre environ 10 % en poids et environ 23 % en poids de l’agent de réticulation hydrocarboné à base de silicium.

8. Gel polymère à base d’organosilicium selon la revendication 1, 3, 5 ou 7, comprenant en outre un catalyseur à base d’un métal du groupe VIII.

9. Gel polymère à base d’organosilicium selon la revendication 8, dans lequel le catalyseur à base de métal du groupe VIII est choisi dans l’ensemble constitué de composés à base de platine, de composés à base de rhodium, de composés à base de ruthénium, de composés à base d’iridium, de composés à base de palladium et des mélanges de ceux-ci.

10. Gel polymère à base d’organosilicium selon la revendication 9, dans lequel le catalyseur à base de métal du groupe VIII est choisi dans l’ensemble consistant en l’acide chloroplatinique, le chlorure de platine, le dichlorure de dibenzonitrile-platine, le platine sur charbon, le platine sur silice, le platine sur alumine, des complexes oléfiniques, RhCl(PPh₃)₃, RhCl(CO)(PPh₃)₂, Ru₃(CO)₁₂, IrCl(CO)(PPh₃)₄, Pd(PPh₃)₄ et des mélanges de ceux-ci.
11. Gel polymère à base d’organosilicium selon la revendication 8, ledit gel comprenant en outre un additif choisi dans l’ensemble constitué d’antioxydants, d’agents de compatibilisation, de charges métalliques, minérales et organiques, d’agents de maîtrise de l’écoulement, d’agents de libération d’air, de promoteurs d’adhésion, de modificateurs de la vitesse de durcissement et des mélanges de ceux-ci.

12. Module de capteurs électroniques contenant le gel polymère à base d’organosilicium selon la revendication 1 en tant qu’encapsulant protecteur.

13. Polymère à base d’organosilicium réticulé et pouvant être réticulé sous la forme d’une silicone réticulée rigide, comprenant un polysiloxane contenant du fluor à terminaison vinyle et une résine à base de polysiloxane apte à réagir ayant à la fois des doubles liaisons réactives carbone-carbone et des groupes hydrogène de silicone, dans lequel la résine à base de polysiloxane apte à réagir comprend un agent de réticulation hydrocarboné à base de silicium comprenant des structures alternées d’un résidu de polyène polycyclique et d’un résidu de siloxysilane cyclique (ou tétraédrique).

14. Polymère à base d’organosilicium selon la revendication 13, comprenant entre environ 1 % en poids et environ 40 % en poids du polysiloxane contenant du fluor à terminaison vinyle.

15. Polymère à base d’organosilicium selon la revendication 14, comprenant entre environ 1 % en poids et environ 20 % en poids du polysiloxane contenant du fluor à terminaison vinyle.

16. Polymère à base d’organosilicium selon la revendication 13, dans lequel le polysiloxane contenant du fluor à terminaison vinyle est substitué par des groupes 3,3,3-trifluoropropyle à raison d’environ 20 % en mole à environ 90 % en mole.

17. Polymère à base d’organosilicium selon la revendication 16, dans lequel le polysiloxane contenant du fluor à terminaison vinyle est substitué par des groupes 3,3,3-trifluoropropyle à raison d’environ 20 % en mole à environ 60 % en mole.

18. Polymère à base d’organosilicium selon la revendication 13, comprenant entre environ 60 % en poids et environ 99 % en poids de l’agent de réticulation hydrocarboné à base de silicium.

19. Polymère à base d’organosilicium selon la revendication 18, comprenant entre environ 80 % en poids et environ 99 % en poids de l’agent de réticulation hydrocarboné à base de silicium.

20. Polymère à base d’organosilicium selon la revendication 13, 15, 17 ou 19, comprenant en outre un catalyseur à base d’un métal du groupe VIII.

21. Polymère à base d’organosilicium selon la revendication 20, dans lequel le catalyseur à base de métal du groupe VIII est choisi dans l’ensemble constitué de composés à base de platine, de composés à base de rhodium, de composés à base de ruthénium, de composés à base d’iridium, de composés à base de palladium et des mélanges de ceux-ci.

22. Polymère à base d’organosilicium selon la revendication 21, dans lequel le catalyseur à base de métal du groupe VIII est choisi dans l’ensemble consistant en l’acide chloroplatinique, le chlorure de platine, le dichlorure de dibenzonitrile-platine, le platine sur charbon, le platine sur silice, le platine sur alumine, des complexes oléfiniques, RhCl(PH₃)₃, RhCl(CO) (PPh₃)₂, Ru₃(CO)₁₂, IrCl(CO) (PPh₃)₄, Pd(PPh₃)₄ et des mélanges de ceux-ci.

23. Polymère à base d’organosilicium selon la revendication 20, ledit polymère comprenant en outre un additif choisi dans l’ensemble constitué d’antioxydants, d’agents de compatibilisation, de charges métalliques, minérales et organiques, d’agents de maîtrise de l’écoulement, d’agents de libération d’air, de promoteurs d’adhésion, de modificateurs de la vitesse de durcissement et des mélanges de ceux-ci.

24. Module de capteurs électroniques contenant le polymère à base d’organosilicium selon la revendication 13 en tant qu’encapsulant protecteur.

25. Gel polymère à base d’organosilicium réticulé et pouvant être réticulé, comprenant un polysiloxane contenant du fluor à terminaison vinyle, un siloxane à substitution phényle et à terminaison vinyle et une résine à base de poly-
siloxane apte à réagir ayant à la fois des doubles liaisons réactives carbone-carbone et des groupes hydrogène de silicone, dans lequel la résine à base de polysiloxane apte à réagir comprend un agent de réticulation hydrocarboné à base de silicium comprenant des structures alternées d’un résidu de polyène polycyclique et d’un résidu de siloxysilane cyclique (ou tétraédrique).

26. Gel polymère à base d’organosilicium selon la revendication 25, comprenant entre environ 64 % en poids et environ 99 % en poids d’un mélange du polysiloxane contenant du fluor à terminaison vinylé et du siloxane à substitution phényle et à terminaison vinylé.

27. Gel polymère à base d’organosilicium selon la revendication 26, comprenant entre environ 77 % en poids et environ 90 % en poids du mélange du polysiloxane contenant du fluor à terminaison vinylé et du siloxane à substitution phényle et à terminaison vinylé.

28. Gel polymère à base d’organosilicium selon la revendication 27, dans lequel le mélange du polysiloxane contenant du fluor à terminaison vinylé et du siloxane à substitution phényle et à terminaison vinylé comprend entre environ 70 % en poids et environ 99 % en poids du polysiloxane contenant du fluor à terminaison vinylé.

29. Gel polymère à base d’organosilicium selon la revendication 28, dans lequel le mélange du polysiloxane contenant du fluor à terminaison vinylé et du siloxane à substitution phényle et à terminaison vinylé comprend entre environ 80 % en poids et environ 99 % en poids du polysiloxane contenant du fluor à terminaison vinylé.

30. Gel polymère à base d’organosilicium selon la revendication 25, dans lequel le polysiloxane contenant du fluor à terminaison vinylé est substitué par des groupes 3,3,3-trifluoropropyle à raison d’environ 20 % en mole à environ 90 % en mole.

31. Gel polymère à base d’organosilicium selon la revendication 30, dans lequel le polysiloxane contenant du fluor à terminaison vinylé est substitué par des groupes 3,3,3-trifluoropropyle à raison d’environ 20 % en mole à environ 60 % en mole.

32. Gel polymère à base d’organosilicium selon la revendication 25, dans lequel le mélange du polysiloxane contenant du fluor à terminaison vinylé et du siloxane à substitution phényle et à terminaison vinylé comprend entre environ 1 % en poids et environ 30 % en poids du polysiloxane à substitution phényle et à terminaison vinylé.

33. Gel polymère à base d’organosilicium selon la revendication 32, dans lequel le mélange du polysiloxane contenant du fluor à terminaison vinylé et du siloxane à substitution phényle et à terminaison vinylé comprend entre environ 1 % en poids et environ 20 % en poids du polysiloxane à substitution phényle et à terminaison vinylé.

34. Gel polymère à base d’organosilicium selon la revendication 25, dans lequel le siloxane à substitution phényle et à terminaison vinylé est substitué par un groupe phényle à raison d’environ 1 % en mole à environ 40 % en mole.

35. Gel polymère à base d’organosilicium selon la revendication 34, dans lequel le siloxane à substitution phényle et à terminaison vinylé est substitué par un groupe phényle à raison d’environ 2 % en mole à environ 20 % en mole.

36. Gel polymère à base d’organosilicium selon la revendication 25, comprenant entre environ 1 % en poids et environ 36 % en poids de l’agent de réticulation hydrocarboné à base de silicium.

37. Gel polymère à base d’organosilicium selon la revendication 36, comprenant entre environ 10 % en poids et environ 23 % en poids de l’agent de réticulation hydrocarboné à base de silicium.

38. Gel polymère à base d’organosilicium selon la revendication 25, 31, 35 ou 37, comprenant en outre un catalyseur à base d’un métal du groupe VIII.

39. Gel polymère à base d’organosilicium selon la revendication 38, dans lequel le catalyseur à base de métal du groupe VIII est choisi dans l’ensemble constitué de composés à base de platine, de composés à base de rhodium, de composés à base de ruthénium, de composés à base d’iridium, de composés à base de palladium et des mélanges de ceux-ci.

40. Gel polymère à base d’organosilicium selon la revendication 39, dans lequel le catalyseur à base de métal du groupe
VIII est choisi dans l’ensemble consistant en l’acide chloroplatinique, le chlorure de platine, le dichlorure de diben-
zonitrile-platine, le platine sur charbon, le platine sur silice, le platine sur alumine, des complexes oléfiniques, RhCl
(PPh₃)₃, RhCl(CO) (PPh₃)$_2$, Ru₂(CO)$_{12}$, IrCl (CO) (PPh₃)$_4$, Pd(PPh₃)$_4$ et des mélanges de ceux-ci.

41. Gel polymère à base d’organosilicium selon la revendication 38, dans lequel le polymère comprend en outre un
additif choisi dans l’ensemble constitué d’antioxydants, d’agents de compatibilisation, de charges métalliques, mi-
nérales et organiques, d’agents de maîtrise de l’écoulement, d’agents de libération d’air, de promoteurs d’adhésion,
de modificateurs de la vitesse de durcissement et des mélanges de ceux-ci.

42. Module de capteurs électroniques contenant le gel polymère à base d’organosilicium selon la revendication 25 en
tant qu’encapsulant protecteur.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5171817 A [0004]
- US 5196498 A [0004]
- US 5349037 A [0005]