Apparatus and method of securing pour spout fitments to containers
Vorrichtung und Verfahren zum Befestigen von Ausgiesselementen an Behälter
Dispositif et procédé pour fixer des becs verseurs à des contenants

(30) Priority: 20.02.1997 US 803391

(54) Int Cl. 7: B65B 61/18, B31B 1/84

Apparatus and method of securing pour spout fitments to containers...
Description

[0001] This invention relates primarily to an apparatus and method for securing an article to a container and, more particularly, to such an apparatus and method wherein a support mechanism, such as a mandrel or anvil, is not required.

[0002] Heretofore, articles, such as pour spout fitments, have been secured to thermoplastic-coated container panels by the following methods.

[0003] In US-A-4,813,578, the following method is employed: A mandrel is inserted into the interior of the still-open mouth of the container, with the mandrel abutting the interior surface of a barrier layer and forming a back-up support. Hot air or radiant heat is applied to the external surface of a gable top wall immediately around an opening to thereby soften the polyethylene coating, with a pour spout fitment flange placed on the softened layer to thereby adhere the flange to the wall. An external mandrel is also employed to press the assembly against the internally positioned mandrel. This pressure is maintained until the coating cools and thereby effects permanent adhesion of the flange to the wall. Other methods, such as ultrasonic adhesion and impulse heating, may be employed.

[0004] US-A-5,249,695 merely recites that attachment to the polymer-coated paperboard panel is accomplished by welding or otherwise adhering a pour spout fitment flange to the polymer coating.


[0006] US-A-4,948,015 discloses the use of an ultrasonic horn to bond a flange of a pour spout fitment to an inner or back surface of a container panel around a pouring aperture.


[0008] US-A-5,088,643 states that the pour spout fitment is preferably adhered to the outer surface of the container panel by impulse heating under pressure such as ultrasonic sealing although other methods may be used as desired.


[0010] US-A-5,101,999 suggests that a spout or closure be "attached to the package top by any suitable means such as an adhesive applied to a bottom surface of the closure to be attached to the package top". Where the package is coated with an outer thermoplastic layer of polyethylene, which discourages such adhesion, perimeter cuts may be made which may be serrat or applied as perforated cuts. Such serrations or perforated cuts need only penetrate the polyethylene outer layer to allow the adhesive to bond with the underlying carrier or paper layer.

[0011] WO-A-88/05012 discloses a container having an upper rim portion onto which a laminated cover is bonded. The adjacent surface of the cover is heated to above its melting point, in order to bond to the rim portion.

[0012] WO-A-96/39332 of the present assignee discloses a pouring spout attachment applied to a pourable-product-carrying container over a location where the container has one of a partial depth cut and an opening formed therein. The attachment includes a body and may have a removable cap mounted thereon. The body includes an internal projection, an external mounting flange, and an internal end wall having a web segment cut therein so as to be movable as a flap about a pivot axis.

[0013] WO-A-92/14604 discloses a method and apparatus for attaching a spout to an open-top, bottom-sealed carton. A conveyor moves the carton successively to three stations. At the first station, a hole punch punches a hole. At the second station, a glue applicator applies adhesive to the bonding site. At the third station, a spout attaching assembly applies a spout to the prepared site. The carton is subsequently filled and top-sealed. The glue applicator includes a horizontal gun which is rotated in a circle in a vertical plane to form a complete circle of bonding agent on the vertical external surface of the carton around the hole, ready to receive an annular flange of the fitment.

[0014] US-A-5473857 discloses a fitment application apparatus, for applying plastic spout fitments to filled and sealed cartons, integrated in line with a conventional form/fill/seal production line, in accordance with the preambles of claims 1 and 4. The apparatus advances formed, filled and sealed cartons to a fitment application station. For this purpose, the cartons are carried from the end of the form/fill/seal production line by a continuous line conveyor terminating at a dead plate between a pair of continuous line conveyors; an escapement allows the pair of conveyors to advance cartons one-by-one to an indexing flight conveyor extending through the fitment application station and advancing the cartons to a continuous delivery conveyor. A hopper and associated gravity-feed track supply a series of fitments to a fitment applicator anvil at the application station. Each fitment has a flange the bottom surface of which is coated with hot melt adhesive as the fitment slides past a hot melt adhesive applicator roll. A fitment retaining mechanism receives and positions each fitment such that the flange bottom surface coated with hot melt adhesive faces an external side of the wall of the filled carton. The fitment applicator anvil intermittently carries fitments from the fitment retaining mechanism into abutting relationship with the filled carton in registration with the spout hole, thereby pressing the flange bottom surface coated with hot melt adhesive against the extrusion layer on the external side of the carton wall, whereby the fitment is bonded to the filled and sealed carton. WO-A-97/04953 discloses a similar system, except for integra-
For attaching a pour spout fitment to an upwardly facing external surface of the filled and sealed container, characterized in that said fitment-attaching means comprises adhesive-applying means for applying a jet of adhesive to said external surface of the filled and sealed container, jet-displacing means arranged to displace said jet relative to said external surface to provide on said external surface an adhesive bead in the form of a closed loop of said adhesive, and applying means for applying a portion of a fitment to said bead to attach said fitment to said container.

Owing to applying the annular bead of adhesive after top-sealing, the bead can be applied to such upwardly facing external surface, so that there is a lower tendency for the adhesive to run down the surface (or even flow through a pouring hole, if provided, into the interior of the container) and thus reduce the efficacy of attachment of the fitment to the container and/or thus smear conveying and other surfaces and so disrupt the operation of the system.

A preferred embodiment of the invention provides an improved apparatus and method for securing an article to a thermoplastic coating of a laminate, in particular securing a pour spout fitment to a thermoplastic-coated container panel.

The preferred apparatus and method are applied downstream of all forming, filling and sealing operations performed on the container, and are capable of being installed and performed over an existing conveyor system downstream of a conventional forming, filling and sealing machine, without any alteration of that existing system being necessary.

The apparatus and method are adaptable, when required, to multiple in-line indexing, wherein a feeder bowl would include multiple discharge tracks, or a multiple of feeder bowls could be used.

In order that the invention may be clearly understood and readily carried into effect, reference will now be made, by way of example, to the accompanying drawings, in which:-

Figure 1 is a diagrammatic perspective view of a fitment-attaching machine mounted over an existing conveyor but not in accordance with the present invention;

Figure 2 is a diagrammatic layout of stations within the machine of Figure 1;

Figure 3 is a perspective view of a gable top carton, and a perspective view of a pour spout fitment to be attached to the carton;

Figure 3A is a side elevational view of a heating arrangement for heating a selected panel of the carton but not in accordance with the present invention;

Figure 4A is a partly sectional, side view of a fitment loading apparatus operating at a fitment-heating and-placing station but not in accordance with the present invention;

Figure 4B is a partly sectional, side view of the fit-
ment-loading apparatus and of a fitment-heating apparatus operating at the fitment-heating and-placing station but not in accordance with the present invention;
Figure 4C is a side view of the fitment-loading apparatus and the fitment-heating apparatus and of a fitment-placing apparatus operating at the fitment-heating and-placing station but not in accordance with the present invention;
Figure 4D is an enlarged detail of Figure 4B;
Figure 5 is a partly sectional side view of a press and cool arrangement but not in accordance with the present invention;
Figure 6 is a view similar to Figure 2, but representing double stations within the machine of Figure 1 and not in accordance with the present invention;
Figure 7 is a diagrammatic side view of apparatus including a fitment-attaching machine constituting an embodiment of the present invention;
Figure 8 is a diagrammatic, opposite side view of that embodiment;
Figure 9 is a diagrammatic, exploded, perspective view from above of that embodiment;
Figure 10 is an elevation taken in the direction of the arrow X in Figure 9;
Figure 11 is an elevation taken in the direction of the arrow XI in Figure 9;
Figure 12 is a view taken in the direction of the arrow XII in Figure 9;
Figure 13 is a diagrammatic top plan view of a modified apparatus constituting a second embodiment of the present invention; and
Figure 14 is a diagrammatic side elevation of that modified apparatus.

[0024] Referring now to Figures 1 to 7 in greater detail, Figure 1 shows a machine 10 mounted over a flat-top conveyor 12 carrying formed, filled and sealed thermoplastic-coated cartons 14 (Figure 3), which are coming from a typical and well-known forming, filling and sealing machine (not shown). Any one of various known retaining and conveying techniques (not shown) is employed to assure that the cartons 14 to have fitments 20 attached thereto are carried in a spaced relationship on the existing conveyor 12 (which permits the containers 14 to vary their spatial relationships) through the stations I-VII of the machine 10. These techniques include, for example, form-fitting timing screws 11, shuttle and clamp systems with forward and reverse motions, and so-called “walking paddle” systems with forward and reverse air cylinder provisions. If containers 14 to be advanced by the conveyor 12 are not to have fitments applied thereto, then either the machine 10 can be operated so that only its conveyor (the screws 12) is running, or its conveyor can be displaced away from interference with the containers 14 (for example the screws 12 can be displaced laterally outwards).

[0025] Figure 2 represents the seven stations I through VII, through which the carton 14 is indexed within the machine 10, namely, station I for entry of the filled and sealed carton (Figure 1, conveyor 12 entering machine 10);
Station II for heating a selected panel of the carton (Figure 3A);
Station III for loading and heating a pour spout fitment 20 and placing the same on the heated selected panel (Figures 4A, 4B and 4C);
Station IV for pressing and cooling the fitment (Figure 5);
Station V for a second pressing and cooling of the fitment (Figure 5);
Station VI for inspecting; and
Station VII for exiting the package from the machine 10.

[0026] Alternatively, the conveyor 12 can itself take the form of a conveyor which prevents the containers 14 from moving relative to it along or across it, for example it could be a pocketed chain conveyor.

[0027] Figure 3 illustrates the carton 14 having an upper panel 16 with a weakened line 18 formed therein; and a high density polyethylene coated, or other plastic pour spout fitment 20 having a body 22, a cap 23, and an external mounting flange 24. The weakened line 18 may be a circular score line or partial depth cut line. In some applications it may be an opening.

[0028] Figure 3A illustrates a round heated tool 25 having an annular shape for surrounding the loop-form weakened line 18 in the panel 16. The tool 25 is adapted to be extended by an air cylinder 25a to abut against and heat an annular surface portion around the weakened line 18 to a predetermined temperature, and then retracted therefrom. The predetermined temperature is below the melting point of the thermoplastic coating of the carton.

[0029] As shown in Figure 4A, station III includes a track 26 with pour spout fitments 20 stacked and slidable downwardly therein, abutting flange against flange. The fitments 20 are oriented and supplied to the track 26 by a well-known vibratory parts feeder, represented at 28 in Figure 1, mounted on top of the machine 10. At the bottom of the track 26, an abutment 29 on the distal end of a piston 30 of a fixed first cylinder 32 serves to push the end fitment laterally into an opening 33 formed in a receiver 34 on a piston 35 of a second cylinder 36. The cylinder 36 is secured at the rear end thereof to a horizontal pivot 38. Upon receiving the fitment 20, the second cylinder 36 is pivoted a predetermined number of degrees downwardly (counterclockwise) to a selected position, such as shown in Figure 4B, to become axially aligned with a fixed third cylinder 42. In this position, a piston 40 of the fixed third cylinder 42, having a hot annular tool 44 on the end thereof, is extended so as to cause the hot tool 44 to engage the face 46 of the flange 24 of the fitment 20, to thereby heat the flange to a predetermined temperature. Such predetermined temper-
ature is below the melting point of the plastic mounting flange 24.

[0031] Upon retraction of the hot annular tool 44, as shown in Figure 4C, the second cylinder 36 is next pivoted further in a downwardly counterclockwise direction about the pivot 38 to a position in alignment with the weakened line 18 of the panel 16. The piston 35 of the second cylinder 36, and its fitment-laden receiver 34, are extended to place the flange 24 of the fitment 20 onto the panel 16 around the weakened line 18.

[0032] As shown in Figure 4D, the annular tool 44 may consist of a round block 46 having a round recess 48, comparable to the inside diameter of the flange 24, formed in one end face 50 thereof. A connector hole 52 is formed in the center of the other face 54, a deeper hole 56 is formed in the face 54 off-set from the hole 52, suitable for the insertion therein of a heat source (not shown) and a still deeper hole 58 is also off-set from the hole 52, suitable for the insertion therein of a temperature-detecting probe (not shown). The hole 58 may extend to a point close to the face 50, off-set from the periphery of the recess 48.

[0033] The end face 50 is machined flat and, preferably, includes a coating of suitable non-stick coating material for engaging the flange 24. The tool 25 of Figure 3A may be formed so as to be similar to the tool 44 of Figure 4D for engaging and heating the panel 16 around the weakened line 18.

[0034] Upon retraction of the piston 35, the cylinder 36 is pivoted in a clockwise direction to its initial position shown in Figure 4A, and the conveyor 12 indexes to station IV (Figure 2), where a suitable cup-shaped and cooled anvil, represented at 60 (Figure 5), and mounted on a piston 62, is pressed by an air cylinder 64 against the exposed surface 66 of the flange 24 to bond the flange to the panel 16. At station V, pressing by an additional cooled anvil 60 and air cylinder 64 assembly is administered to enhance the bonding action.

[0035] After inspection by any convenient means, such as a photoeye arrangement (not shown), at station VI, the packages consisting of the filled and sealed cartons 14 and their bonded fitments 20 are exited from the machine 10, to be carried by the conveyor 12 to a shipping point (not shown).

[0036] Figure 6 represents a double indexing arrangement wherein each two adjacent cartons 14 are processed concurrently by dual equipment in the manner described above. The vibratory parts feeder 28 is adaptable to feeding oriented fitments to dual tracks 26.

[0037] It should be noted that the thermal energy required to be supplied to the flange 24 by the hot annular tool 44 depends upon various parameters, such as:

a. the melting point of the material of the flange surface 46,
b. the storage temperature of the fitments 20,
c. the ambient temperature within the machine,
d. the humidity, and
e. the melting point of the thermoplastic coating of the carton.

[0038] Referring to Figures 7 to 12, the apparatus comprises a fitment-attaching machine 101 mounted over a conveyor 102 carrying the formed, filled and sealed thermoplastic-coated cartons (not shown). The conveyor 102 may be an existing conveyor of a forming, filling, and sealing machine or may be another, existing conveyor constituting a linear extension of the existing conveyor of that machine. Whatever the case, the path of the cartons from before the top-sealing station (not shown) of the form, fill and seal machine to after the machine 101 does not turn back upon itself. The conveyor 102 is a double, endless-chain conveyor, the two chains of which define the pockets which closely receive the filled and top-sealed cartons 14. These pockets sufficiently closely receive the cartons 14 that the cartons are firmly held therein and can thus accurately receive the flanges 24 of the fitments 20. The apparatus comprises a double indexing arrangement wherein each two adjacent cartons are processed concurrently by dual equipment. A vibratory fitments feeder 103 feeds fitments in an oriented condition to dual tracks 104.

[0039] The feeder 103 comprises a reservoir bowl 105 connected by a single track 106 to the dual tracks 104, there being an oscillatingly rotated toothed wheel 107 at the branching from the track 106 to the tracks 104 to discourage jamming of the fitments 20 at the branching location. The edge walls of the track 106 and of earlier sections 104a of the tracks 104 have overhangs to provide undercuttings to receive and guide the flanges 24 of the fitments 20, whilst later sections 104b of the tracks 104 have side walls without such overhangs so that the fitments 20 can be readily picked therefrom. In particular, each track 104 includes a channel 108 with a terminating wall 109 across a lower end thereof. Each channel 108 has a pair of overhanging strips 110 attached to the upper edges of the respective side walls thereof. Part-way along each section 104a is an escapement device 111 including a shutter 112 and whereby the fitments in the section 104a are fed one-by-one to the section 104b. The tracks 104, the escapement devices 111 and the outlet end zone 106a of the track 106 are part of a fitment-attaching device 113 having respective opposite end walls 114 and 115 arranged one after the other along the path of advance of the cartons in the conveyor 102. The end walls 114 and 115 are interconnected by members 116 extending parallelly to that path of advance. Between the two plates 114 and 115 there are only two stations and these are double stations, namely an adhesive application station 117 and a fitment pick-and-place station 118. Mounted on the plate 114 is an electric motor 119 having a removable safety guard 120 anchored via a chain 121. The output from the motor 119 is taken to a single-to-dual drive, gear transmission 122, the dual outputs from which are two synchronous
parallel movements in side-by-side circles performed by two eccentric output pins 123. A support link 124 is mounted on the pins 123 and thus performs a motion parallel to itself. Fixed to the link 124 is a mounting 125 for a pair of adhesive guns 126 consisting of respective dosing devices 127 and respective nozzles 128 which deliver respective dosed jets of adhesive. The dosing devices 127 are operated pneumatically through a compressed air inlet 129 connected to a compressed air line (not shown), and are supplied with adhesive through respective inlet pipes 130 connected to respective adhesive supply lines (also not shown). Fixed to respective opposite sides of the end plate 114 are photoelectric detectors 131 which disable the two stations 117 and 118 when a carton is not approaching the station 117. Fixed to the plate 115 is a bracket 132 to which is fixed a table when a carton is not approaching the station 117. Fixed to the plate 115 is a bracket 132 to which is fixed a table when a carton is not approaching the station 117. Fixed to the plate 115 is a bracket 132 to which is fixed a table when a carton is not approaching the station 117. Fixed to the plate 115 is a bracket 132 to which is fixed a table when a carton is not approaching the station 117.

Fixed to the plate 115 is a bracket 132 to which is fixed a table 133 through which is mounted a drive device 134 which to the plate 115 is a bracket 132 to which is fixed a table when a carton is not approaching the station 117. Fixed to the plate 115 is a bracket 132 to which is fixed a table when a carton is not approaching the station 117. Fixed to the plate 115 is a bracket 132 to which is fixed a table when a carton is not approaching the station 117. Fixed to the plate 115 is a bracket 132 to which is fixed a table when a carton is not approaching the station 117.

When a carton is not approaching the station 117, fixed to the plate 115 is a pair of photoelectric detectors 140 which stops cartons from approaching the station 117 in the event that a preselected number of cartons leaving the station 118 are without fitments 20 thereon. The machine 101 and the conveyor 102 are mounted in a housing 141 upon which is carried a cabinet 142 containing controls for the pneumatically operated items of the apparatus. Adjacent the housing 141 stands a platform assembly 143 which carries the bowl 105, an adhesive hot melt unit 144 and a cabinet 145 for electrical controls of the main electrically operated items of the apparatus.

Shown adjacent the platform assembly 143 are access steps 146.

[0040] In operation of the apparatus described with reference to Figures 7 to 12, filled and top-sealed cartons 14 arrive in pairs at the station 117, where, with the cartons stationary, jets of hot melt adhesive are dosed from the nozzles 128 onto the respective roof panels 16 of the cartons 14 of the pair, to form circular beads of hot melt adhesive concentric with and just to the outside of the circular loops of weakness 18, the nozzles 128 each performing more than one revolution, in order to apply the hot melt adhesive relatively evenly and to provide a relatively deep bead of adhesive in order to obtain a strong attachment of the fitment to the carton, particularly by thus ensuring that the adhesive retains its tackiness long enough to ensure that the thermo-plastics of both the fitment and the carton fuse well to the adhesive. The pair of cartons carrying the circular beads are indexed to the station 118, where the two nozzles 137 further from the tracks 104 firmly apply respective pour spout fitments 20 by the tracks 104 supplied from the bowl 105. Each carton pair leaving the station 118 is returned to the conveyor 102 and carried by co-operation between a guide 168 and a pair of conveyor chains (not seen) which advance the carton pair onto the conveyor 102. Each carton pair may be unloaded from that conveyor by a carton unloading device 160. The indexing chain conveyor 151 is driven by an electric motor 161 through a brake/clutch combination 162, a gear box 163, an indexer 164, a gear train 165, and a drive shaft 166. At its other end, the chain passes two suction nozzles 137 nearer the tracks 104 are applied to two pour spout fitments in the respective track sections 104b. Then suction is released from the pair of nozzles 137 further from the tracks 104, but applied to the pair of nozzles 137 nearer the tracks 104 and the pneumatic devices 136 are operated to retract all four nozzles 137 upwardly, so that the nearer pair of nozzles 137 picks the next two pour spout fitments 20 from the sections 104b. When the nozzles 137 are fully retracted, the device 134 turns the plate 135 through 180°, to await the arrival of the next pair of cartons from the station 117. Meanwhile, the pair of cartons to which the pour spout fitments have been applied is indexed out of the station 118, and the escapement devices 111 supply the next two pour spout fitments 20 to the sections 104b.
A method of manufacturing a package, comprising forming a container, filling the container with contents, top-sealing the filled container, and attaching an annular portion (24) of a pour spout fitment (20) by way of adhesive to an upwardly facing, external surface (16) of the filled and sealed container (14), characterized in that said attaching comprises applying said adhesive to the external surface (16) of the filled and sealed container (14) to provide a bead in the form of a closed loop of adhesive, and applying said annular portion (24) to said bead, which is of a form corresponding to that of said annular portion (24).

2. A method according to claim 1, wherein said bead extends round a loop of weakness (18) in said external surface (16).

3. A method according to claim 1 or 2, wherein said applying of said adhesive comprises causing a nozzle (128) to perform more than one revolution.

4. Apparatus for use in manufacturing a package, comprising conveying means (102; 102', 151) for forming a container on said conveying means (102; 102', 151), filling means adjacent said conveying means (102; 102', 151) for filling the formed container, top-sealing means adjacent said conveying means (102; 102', 151) for sealing the top of the filled container, and fitment-attaching means (117, 118) adjacent said conveying means (102; 151) for attaching a pour spout fitment (20) to an upwardly facing external surface (16) of the filled and sealed container (14), characterized in that said fitment-attaching means (117, 128) comprises adhesive-applying means (128) for applying a jet of adhesive to said external surface (16) of the filled and sealed container (14), jet-displacing means (123) arranged to displace said jet relative to said external surface (16) to provide on said external surface (16) an adhesive bead in the form of a closed loop of said adhesive, and applying means (118) for applying a portion (24) of a fitment (20) to said bead to attach said fitment (20) to said container (14).

5. Apparatus according to claim 4, wherein said fitment-attaching means (117, 118) serves also for attaching a pour spout fitment (20) to an upwardly facing external surface (16) of a second filled and sealed container (14) and includes a second adhesive-applying means (128) for applying a second jet of adhesive to said external surface (16) of said second filled and sealed container (14), second jet-displacing means (123) arranged to displace said second jet relative to said external surface (16) of the second container (14) to provide on said external surface (16) a second adhesive bead in the form of a second closed loop of said adhesive, and second applying means (118) for applying a portion (24) of a second fitment (20) to said second bead to attach said second fitment (20) to said second container (14).

6. Apparatus according to claim 5, wherein the first-mentioned adhesive-applying means (128) and said second adhesive-applying means (128) comprise respective nozzles (128) mounted upon a common support link (124) itself carried by first and second eccentric pins (123) which perform respective synchronous parallel movements in side-by-side circles, whereby said support link (124) performs a motion parallel to itself.
(20) mittels Klebers an einer aufwärts weisenden Außenfläche (16) des gefüllten und versiegelten Behälters (14), dadurch gekennzeichnet, dass der Schritt des Anbringens das Aufbringen des Klebers auf die Außenfläche (16) des gefüllten und versiegelten Behälters (14) zum Bilden einer Wulst in Form einer geschlossenen Schleife aus Kleber und das Aufbringen des ringförmigen Teils (24) auf die Wulst umfasst, deren Form der Form des ringförmigen Teils (24) entspricht.

2. Verfahren nach Anspruch 1, bei dem die Wulst um eine Schwächungsschleife (18) in der Außenfläche (16) verläuft.

3. Verfahren nach Anspruch 1 oder 2, bei dem das Aufbringen des Klebers einen Schritt umfasst, bei dem bewirkt wird, dass eine Düse (128) mehr als eine Umdrehung ausführt.

4. Vorrichtung zur Verwendung beim Herstellen einer Verpackung, wobei die Vorrichtung aufweist: eine Fördereinrichtung (102;102',151), eine Formeinschaltung in Nachbarschaft zu der Fördereinrichtung (102;102',151) zum Formen eines Behälters an der Fördereinrichtung (102;102',151), eine Füllereinrichtung in Nachbarschaft zu der Fördereinrichtung (102;102',151) zum Füllen des gefüllten Behälters, eine Versiegelereinrichtung in Nachbarschaft der Fördereinrichtung (102;102',151) zum Versiegeln des oberen Endes des gefüllten Behälters, und eine Fitting-Anbringeinrichtung (117,118) in Nachbarschaft der Fördereinrichtung (102,151) zum Anbringen eines Ausgießstüllen-Fittings (24) an einer aufwärts weisenden Außenfläche (16) des gefüllten und versiegelten Behälters (14), dadurch gekennzeichnet, dass die Fitting-Anbringeinrichtung (117,118) aufweist: eine Kleber-Aufbringeinrichtung (128) zum Aufbringen eines Strahls aus Kleber auf die Außenfläche (16) des gefüllten und versiegelten Behälters (14), eine Strahlverdrängeinrichtung (123) zum Verdrängen des Strahls relativ zu der Außenfläche (16) zum Bilden einer Kleberwulst in Form einer geschlossenen Schleife aus Kleber auf der Außenfläche (16), und eine Aufbringeinrichtung (118) zum Aufbringen eines Teils (24) eines Fittings (20) auf die Wulst zum Anbringen des Fittings (20) an dem Behälter (14).

5. Vorrichtung nach Anspruch 4, bei der die Fitting-Anbringeinrichtung (117,118) ferner zum Anbringen eines Ausgießstüllen-Fittings (20) an einer aufwärts weisenden Außenfläche (16) eines zweiten gefüllten und versiegelten Behälters (14) dient und aufweist: eine zweite Kleber-Aufbringeinrichtung (128) zum Aufbringen eines zweiten Strahls aus Kleber auf der Außenfläche (16) des zweiten gefüllten und versiegelten Behälters (14), eine zweite Strahlverdrängeinrichtung (123) zum Verdrängen des zweiten Strahls relativ zu der Außenfläche (16) des zweiten Behälters (14) zum Bilden einer zweiten Kleberwulst in Form einer zweiten geschlossenen Schleife aus Kleber auf der Außenfläche (16), und eine zweite Aufbringeinrichtung (118) zum Aufbringen eines Teils (24) eines zweiten Fittings (20) auf die zweite Wulst zum Anbringen des zweiten Fittings (20) an dem zweiten Behälter (14).

6. Vorrichtung nach Anspruch 5, bei der die erstgenannte Kleber-Aufbringeinrichtung (128) und die zweite Kleber-Aufbringeinrichtung (128) jeweils Düsen (128) aufweisen, die an einem gemeinsamen Stützglied (124) montiert sind, welches wiederum von ersten und zweiten exzentrischen Stiften (123) getragen werden, die jeweils synchrone Parallelbewegungen in nebeneinanderliegenden Kreisen durchführen, wobei das Stützglied (124) eine zu sich selbst parallel verlaufende Bewegung ausführt.

Revendications

1. Un procédé de fabrication d'un emballage, comprenant les étapes consistant à former un contenant, à remplir le contenant avec un contenu, à fermer de manière étanche le dessus du contenant rempli, et à fixer une partie annulaire (24) d'un accessoire formant bec verseur (20), à l'aide d'une matière adhésive, à une surface externe dirigée vers le haut (16) du contenant rempli et fermé de manière étanche (14), caractérisé en ce que ladite étape de fixation comprend l'application de ladite matière adhésive sur ladite surface externe (16) du contenant rempli et fermé de manière étanche (14), pour créer un bourrelet sous la forme d'une boucle de matière adhésive fermée, et l'application de ladite partie annulaire (24) sur ledit bourrelet, lequel est d'une forme correspondant à celle de ladite partie annulaire (24).

2. Un procédé selon la revendication 1, dans lequel ledit bourrelet s'étend autour d'une boucle de moin dre résistance (18) formée dans ladite surface externe (16).

3. Un procédé selon la revendication 1 ou 2, dans lequel ladite application de ladite matière adhésive comprend le fait d'amener une buse (128) à effectuer plus d'un tour.

4. Dispositif utilisable dans la fabrication d'un emballage, comprenant des moyens de transport (102 ; 102', 151), des moyens de formation adjacents auxdits moyens de transport (102 ; 102', 151) pour
former un contenant sur lesdits moyens de transport (102 ; 102', 151), des moyens de remplissage adjacents auxdits moyens de transport (102 ; 102', 151) pour remplir le contenant qui a été formé, des moyens de fermeture de manière étanche de dessus adjacents auxdits moyens de transport (102 ; 102', 151) pour fermer de manière étanche le dessus du contenant qui a été rempli, et des moyens de fixation d'accessoires (117, 118) adjacents auxdits moyens de transport (102, 151) pour fixer un accessoire formant bec verseur (20) à une surface externe dirigée vers le haut (16) du contenant qui a été rempli et fermé de manière étanche (14), caractérisé en ce que les moyens de fixation d'accessoires (117, 118) comprennent des moyens d'application de matière adhésive (128) pour appliquer un jet de matière adhésive sur ladite surface externe (16) du contenant qui a été rempli et fermé de manière étanche (14), des moyens de déplacement de jet (123) disposés pour déplacer ledit jet par rapport à ladite surface externe (16) afin de créer, sur ladite surface externe (16), un bourrelet de matière adhésive sous la forme d'une boucle de ladite matière adhésive fermée, et des moyens d'application (118) pour appliquer une partie (24) d'un accessoire (20) sur ledit bourrelet afin de fixer ledit accessoire (20) audit contenant (14).

5. Dispositif selon la revendication 4, dans lequel lesdits moyens de fixation d'accessoires (117, 118) servent également à fixer un accessoire formant bec verseur (20) à une surface externe dirigée vers le haut (16) d'un second contenant qui a été rempli et fermé de manière étanche (14) et comprennent de seconds moyens d'application de matière adhésive (128) pour appliquer un second jet de matière adhésive sur ladite surface externe (16) dudit second récipient qui a été rempli et fermé de manière étanche (14), de seconds moyens de déplacement de jet (123) disposés pour déplacer ledit second jet par rapport à ladite surface externe (16) du second contenant (14) afin de créer, sur ladite surface externe (16), un second bourrelet de matière adhésive sous la forme d'une seconde boucle de ladite matière adhésive fermée, et de seconds moyens d'application (118) pour appliquer une partie (24) d'un second accessoire (20) sur ledit second bourrelet afin de fixer ledit second accessoire (20) audit second contenant (14).

6. Dispositif selon la revendication 5, dans lequel les moyens d'application de matière adhésive mentionnés en premier (128) et lesdits seconds moyens d'application de matière adhésive (128) comprennent des buses respectives (128) montées sur une liaison de support commun (124) elle-même portée par de première et seconde tiges excentriques (123) qui effectuent des mouvements parallèles synchrones respectifs en cercles juxtaposés, de sorte que ladite liaison de support (124) effectue un mouvement parallèle à lui-même.
Fig. 2

Fig. 6