(45) Date of publication and mention of the grant of the patent: 11.01.2012 Bulletin 2012/02

(21) Application number: 01931865.8

(22) Date of filing: 18.05.2001

(51) Int Cl.: C07D 275/04 (2006.01)

(86) International application number: PCT/GB2001/002203

(54) Compositions for inhibiting the growth of microorganisms in metal working fluids

Zusammensetzungen zur Hemmung des Wachstums von Mikroorganismen in Metallbearbeitungslösungen

Compositions permettant d’inhiber la croissance de micro-organismes dans des fluides d’usinage des metaux

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(30) Priority: 26.05.2000 GB 0012786

(43) Date of publication of application: 02.04.2003 Bulletin 2003/14

(60) Divisional application: 10167391.1

(73) Proprietor: Arch UK Biocides Limited

Castleford, West Yorkshire WF10 2JT (GB)

(72) Inventors:

• EASTWOOD, Ian Michael

York YO19 5SE (GB)

• MCGEECHAN, Paula Louise

Blackley,

Manchester M9 8ZS (GB)

(74) Representative: Westwood, Joanna

Withers & Rogers LLP

4 More London Riverside

London SE1 2AU (GB)

(56) References cited:

WO-A-93/06723

GB-A- 230 190

WO-A-99/65315

US-A- 3 517 022

US-A- 6 005 032

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a metal working fluid, especially a soluble oil, synthetic and semi-synthetic metal working fluid.

Metal working fluids are used in metal processing operations such as cutting, drilling, tapping, grinding, milling, rolling, metal drawing, stamping and turning operations. The primary function of the metal working fluid is to provide cooling and lubrication to the metal and tools used in the processing operations. Metal working fluids are also used to protect metals and metal working tools against corrosion and rust formation, as temporary surface coatings to protect newly machined articles such as coils and springs, as quenching fluids and as casting fluids.

Metal working fluids can become contaminated with micro-organisms during preparation, storage and use of the fluid. Uncontrolled growth of micro-organisms in a metal working fluid can result in a number of undesirable problems, including loss of emulsion stability, pH changes, viscosity changes, loss of lubrication properties, discoloration, production of un-pleasant odours and the growth of slimes and other bio-mass deposits. The growth of slimes and other bio-mass deposits is particularly undesirable because they can clog up the pipes, filters and screens used in metal working fluid handling systems.

To avoid these problems preservatives are added to metal working fluids to inhibit or prevent the growth of micro-organisms. Many preservatives are known for use in metal working fluids, US 4,279,762 for example discloses the use of 3-isothiazolinones. Other commonly used isothiazolin-3-ones include 2-n-octyl-4-isothiazolin-3-one (commercially available from Rohm and Haas under the trademark Kathon 893 MW) and a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one (commercially available from Rohm and Haas under the trademark Kathon MWC). Other commonly used preservatives include sodium pyridine-2-thiol-1-oxide (commercially available under the trademark Sodium Omadine from Arch Chemicals) and 3-iodo-2-propynyl-N-n-butyl carbamate (commercially available under the trademark Troyan polyphase from Troy Corporation).

Metal working fluids are often supplied to users as a concentrate which is diluted with water prior to use. The diluted concentrate can be used directly in metal processing operations. Alternatively the concentrate may be partially diluted and stored in holding vessels as a premix prior to further dilution and use in the metal processing operation. These concentrates and pre-mixes may be stored for long periods of time prior to use, often at an elevated temperature. It is therefore important that a preservative in a concentrate/pre-mix is able to withstand such hostile conditions without degrading and losing efficacy in the metal working fluid. If loss of the preservative occurs during storage micro-organisms can proliferate in the concentrate or pre-mix. Furthermore, when the concentrate/pre-mix is diluted prior to use further micro-biological degradation is possible because dilution may reduce the concentration of the preservative to a level below that required to inhibit growth of micro-organisms. If loss of preservative occurs further preservative must be added to the fluid which is both time consuming and expensive.

We have found that many of the preservatives commonly used in metal working fluids and concentrates, especially isothiazolinones and pyridinethiones, degrade and are lost during high temperature storage of the metal working fluids. There is therefore a need for a preservative which provides a high level of protection against the growth of undesirable micro-organisms and which is stable when stored in a metal working fluid under hostile temperature conditions.

GB 1,531,431 discloses 2-(C1-3-alkyl)-benzisothiazolin-3-ones and their use as industrial biocides, including fungicides, in aqueous systems such as metal working fluids and paint films. The preferred compound is 2-methylbenzisothiazolin-3-one because this is stated to have a higher activity than the compounds with longer chain alkyl groups.

EP 475,123 discloses 2-(n-C6-8-alkyl)-benzisothiazolin-3-ones as industrial biocides and especially fungicides, in aqueous systems such as metal working fluids and paint films.

US 3,517,022 discloses 2-substituted benzisothi azolones and in particular -4,5,6- and -7- substituted benziso thiazolones when the 2-substituent is an alkyl with 4 to 24 carbon atoms for a range of uses.

WO 99/65315 discloses a biocidal composition comprising C3-C-alkyl-1,2-benzisothiazolin-3-one and a metal complex of a cyclic thiohydroxamic acid, in particular for inhibiting the growth of deteriogens of plastics materials in soil burial conditions.

GB 2230190 discloses compositions containing an isothiazolin(thi)one derivative (such as 1,2-benzisothiazolin-3-one) and a 2-mercaptopypyridine-1-oxide derivative for use as industrial biocides.

JP 57156405 discloses an industrial fungicide containing 2-mercaptopyridine-N-oxide and 1,2-benzisothiazolin-3-one, especially for use in treating water systems such as waste ditches and sub-ground water systems.

We have now surprisingly found that certain benzisothiazolin-3-ones are stable to high temperature storage in metal working fluids and provide a high degree of protection against undesirable micro-biological growth.

According to a first aspect of the present invention there is provided a synthetic, semi-synthetic or soluble oil metal working fluid containing a formulation comprising:

(a) from 10 to 60 parts of the compound of Formula (1)
wherein: R is n-butyl; and

(b) from 90 to 40 parts of a water-miscible solvent selected from diethylene glycol and dipropylene glycol; and

c) sodium pyridine-2-thiol-1-oxide; wherein the parts (a) and (b) are by weight and the sum of the parts of (a) and

(b) = 100, and the weight ratio of component (a) to component (c) is 1:2 to 2:1.

[0015] In view of the foregoing preferences, the compound of Formula (1) is 2-n-butyl-1,2-benzisothiazolin-3-one. We

have found that this compound is very stable to high temperature storage in metal working fluids. Furthermore this

compound exhibits very good compatibility with a wide range of metal working fluids, particularly those which contain

high levels of amines.

[0016] The compounds of the Formula (1) may be prepared by using known processes. A suitable process is described

in GB 484,130 wherein a 2-chlorosulphenyl benzoyl chloride is reacted with an alkylamine.

[0017] Preferably the metal working fluid contains a microbiologically effective concentration of the compound of

Formula (1). The concentration required to inhibit the growth of micro-organisms will depend upon the type of metal

working fluid and the conditions under which it will be stored and used. We have found that a concentration of from 50

to 300, more preferably from 75 to 200ppm and especially from 100 to 150ppm by weight of the compound of Formula

(1) in the metal working fluid inhibits the growth of micro-organisms. However, in some applications it may be desirable

to use a higher concentration, for example as a shock treatment to a fluid which has been heavily contaminated by fungal

growth.

[0018] When the compound of Formula (1) is added to a concentrate or pre-mix it is preferred that a higher concentration

of the compound of Formula (1) is used so that upon dilution the dilute fluid contains a sufficient concentration of the

compound of Formula (1) to maintain protection against growth of micro-organisms during use of the metal working fluid.

For example, if the concentrate/premix is diluted by 5 volumes of water prior to use in the metal processing operation it

is preferred that the concentrate contains 5 times the above preferred concentrations of the compound of Formula (1).

[0019] The compound of Formula (1) is suitable for use in a wide range of metal working fluid compositions, for example

straight oils, quenching fluids and casting fluids. In the invention the compound of Formula (1) is used in soluble oil,

semi-synthetic or synthetic metal working fluids.

[0020] Metal working fluids are usually based upon formulations containing mineral oils, vegetable oils, animal derived

oils or synthetic lubricants and derivatives and mixtures thereof. Suitable mineral oils include those derived from petroleum

products, for example naphthenic and paraffinic based oils. Useful derivatives of mineral oils include sulphurised oils

and chlorinated oils both of which exhibit good lubricity properties under extremes of pressure.

[0021] Straight oils are oil based products which are substantially free from water. Typically straight oils comprise

mineral oils or a blend of mineral oils with fatty vegetable oils.

[0022] Soluble oils comprise an emulsion of mineral oil in water obtained by emulsifying the oil in water with a suitable

eumulsifying agent. The particle size of the oil in the emulsion is typically 2 to 10μm. Soluble oils have a high mineral oil

content of about 40 to 65% by weight oil.

[0023] Semi-synthetic metal working fluids are also mineral oil in water emulsions, however, these oils typically have

an oil particle size of 0.1 to 1μm and a lower oils content of about 5 to 40% by weight of oil compared to soluble oils.

[0024] Synthetic metal working fluids are based upon synthetic lubricants. Typically synthetic metal working fluids

comprise an emulsion of one or more synthetic lubricant(s) in an aqueous medium. Suitable synthetic lubricants include

glycols such as polyoxyalkylene glycols and glycol esters.

[0025] Quenching fluids generally comprise water and one or more humectants, for example glycols and glycol ethers.

[0026] Water-soluble corrosion products are formulations used to provide a short term corrosion protection to newly

machined parts. These formulations typically contain synthetic lubricants similar to those found in synthetic metal working

fluids and one or more corrosion inhibitors.

[0027] Casting fluids contain waxes, graphite, and other oil-based lubricants similar to those found in synthetic, semi-

synthetic and soluble oil metal working fluids.

[0028] Preferably the metal working fluid has a pH of from 3 to 10 more preferably from 7 to 10 and especially from 6 to 9.
The metal working fluids may contain a number of other additives for example, emulsifying agents and surfactants which can be cationic or more preferably anionic or non-ionic; viscosity modifiers; defoaming agents; corrosion inhibitors; and oxidation inhibitors.

The present method is effective for inhibiting the growth of micro-organisms, especially fungi such as *Fusarium solani*, *Penicillium sp.*, *Acremonium strictum* and *Geotrichum candidum*.

The metal working fluid is a synthetic, semi-synthetic or soluble oil metal working fluid, because we have found that the compound of Formula (1) used in the present method provides particularly good protection against the growth of undesirable micro-organisms and exhibits excellent thermal stability in these fluids compared to conventional preservatives such as pyridinethione compounds, isothiazolin-3-ones and 3-iodo-2-propynyl-butylcarbamate.

For ease of handling and dosing, the compound of Formula (1) is formulated with a carrier.

The formulation is preferably a solution, suspension, emulsion or micro-emulsion of the compound of Formula (1) in the liquid medium.

The carrier is a water miscible solvent selected from diethylene glycol and dipropylene glycol.

If the formulation is in the form of a suspension or emulsion, it preferably also contains a surface active agent to produce a stable dispersion or to maintain the noncontinuous phase uniformly distributed throughout the continuous phase. Any surface active agent which does not have a significant adverse effect on the biocidal activity of the compound of Formula (1) may be used. Suitable surface active agents include emulsifiers and surfactants and mixtures thereof. The emulsifiers/surfactants may be non-ionic, anionic or a mixture thereof. Suitable anionic emulsifiers and surfactants include alkylarylsulfonates (for example calcium dodecylbenzenesulfonate), alkylsulfates (for example sodium dodecylsulfate), sulfosuccinates (for example sodium dioctylsulfosuccinate), alkylerethersulfates, alkylethylcarboxylates, alkylethercarboxylates, lignin sulfonates or phosphate esters. Suitable non-ionic emulsifiers and surfactants include fatty acid ethoxylates, ester ethoxylates, glyceride ethoxylates (for example castor oil ethoxylate), alkylaryl polyglycol ethers (for example nonylphenol ethoxylates), alcohol ethoxylates, propylene oxide-ethylene oxide condensation products, amine ethoxylates, amine oxides, alkyl polyglycosides, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol esters or alcohol ethoxy carboxylates, especially those obtainable from C12-14-alcohols.

A formulation suitable for use in synthetic, semi-synthetic and soluble oil metal working fluids comprises:

(a) from 10 to 60, more preferably from 15 to 45 and especially from 18 to 25 parts of the compound of Formula (1); and
(b) from 90 to 40, more preferably from 85 to 55 and especially from 82 to 75 parts of a water miscible solvent selected from a C2-12-diyl and a polyalkylene glycol containing up to 12 carbon atoms;

wherein the parts are by weight and the sum of the parts (a) + (b) = 100.

Examples of preferred formulations include those in which the ratio of component (a) to component (b) is 40:60 and 20:80 by weight.

The compound of Formula (1) is used in conjunction with one or more further antimicrobial compound(s). The addition of further antimicrobial compound(s) to the metal working fluid can provide a broader spectrum of antimicrobial activity than the compound of Formula (1) alone. Furthermore, the combination of the compound of Formula (1) and further antimicrobial compound(s) may provide a synergistic effect.

The further antimicrobial compound(s) may possess anti-bacterial, antifungal, anti-algal or other antimicrobial activity. The further antimicrobial compound which is used is sodium pyridine-2-thiol-1-oxide.

The amount of further antimicrobial compound(s) used will depend upon the further antimicrobial compound and the metal working fluid to which the compound(s) are added. The weight ratio of sodium pyridine-2-thiol-1-oxide : total weight of the compound of Formula (1) is from 2:1 to 1:2.

The further antimicrobial compound(s) and the compound of Formula (1) may be added to the metal working fluid in any order or simultaneously. When the further antimicrobial compound(s) and the compound of Formula (1) are added simultaneously they are preferably formulated together, optionally with a carrier. Suitable carriers are as hereinbefore defined with reference to the first aspect of the current invention, especially the hereinbefore described liquid carriers. When the carrier is a liquid, the formulation may comprise an emulsion, micro-emulsion, suspension or solution of the compound of Formula (1) and further antimicrobial compound(s) in the liquid carrier.

The compounds of Formula (1) are oily liquids at ambient temperatures. We have found that the compound of Formula (1) is a solvent for many organic anti-microbial compounds. This property can be utilised to form a solution of the further anti-microbial compound in the compound of Formula (1), thereby forming a liquid concentrate without the need for additional solvents. The liquid concentrate can then be conveniently added to the metal working fluid directly or can be further diluted for example using a solvent, or by emulsifying the concentrate in a liquid carrier with a suitable emulsifying agent.

In the present invention the further antimicrobial compound is a sodium salt of pyridine-2-thiol-1-oxide (for example that commercially available from Arch Chemicals under the trademark Sodium Omadine).
We have found that the use of a composition comprising a compound of Formula (1) and a sodium salt of pyridine-2-thiol-1-oxide, in the method according to the present provides a synergistic effect compared to the use of the two compounds alone, especially against fungi such as *Fusarium solani*. This composition exhibits a sum of the Fractional Inhibitory Concentration (hereinafter FIC) for each component which has a value less than 1. The FIC is the ratio of the amount of each component in the composition relative to its Minimum Inhibitory Concentration (MIC) when used alone. Thus, when the sum of the FIC values is one, the two components exhibit a mere additive effect. When the sum of the FIC values is below one, the mixture is synergistic. When the sum of the FIC values is between one and two the two components are considered to act independently. When the sum of the FIC values is greater than two, the mixture is antagonistic. The FIC values are preferably determined by constructing an isobologram wherein each component in a matrix array is varied stepwise from a concentration in excess of the MIC down to zero ppm. Therefore, an isobologram, allows the smallest value of the sum of the FIC’s for each component in the composition to be determined and hence the optimal concentration for each component in the composition.

It is especially preferred that the weight ratio of the two components is close to the ratio which gives the minimum value for the sum of the FIC values for each component of the composition. This ratio is readily determined from an isobologram as described above.

Preferably, the sum of the FIC values of the components in the composition is not greater than 0.8, more preferably not greater than 0.7 and especially not greater than 0.5.

The compositions according to the second aspect of the invention have been found to be particularly useful at inhibiting the growth of micro-organisms in metal working fluids. It will be readily appreciated that the composition may also be used to protect other media, especially industrial media and personal care formulations, which are susceptible to microbiological and especially fungal degradation. Examples of such industrial media are cooling tower liquors, geological drilling muds, hydraulic fluids, latices, paints, lacquers, adhesives, sealants, wood, leather, pigments and inks. Examples of personal care formulations include shampoos, cosmetics, fragrances and hand lotions. Generally, the amount of the composition according to the second aspect of the invention is from 1 to 250 ppm and preferably from 10 to 100 ppm of the composition relative to the medium.

The invention is further illustrated by the following examples in which all parts are by weight unless otherwise stated:

Comparative Examples A to C Temperature Stability of 2-n-butyl-benzisothiazolin-3-one in Synthetic Metal Working Fluids

The biocides shown in Table 1 were added to Trim C111A (ex. Master Chemical Corporation, USA, a synthetic water miscible cutting and grinding fluid used as coolant and lubricant in metal removal processes). The initial concentration of the biocide in the metal working fluid is shown in the third column of Table 1. The metal working fluid was then stored at 50°C for 45 days.

The concentration of biocide remaining after storage was measured using reverse phase high performance liquid chromatography (HPLC) after initial sample preparation. In the case of 2-n-butyl-benzisothiazolin-3-one, 2-n-octyl-isothiazolin-3-one and 3-iodo-2-propynyl-N-butylcarbamate sample preparation involved solvent extraction of the active from the metal working fluid. For sodium pyrithione, initial sample preparation was derivatisation to produce a compound readily detectable by HPLC. The concentration of each biocide remaining after storage at 50°C is shown in the fourth column of Table 1.

<table>
<thead>
<tr>
<th>Table 1: Stability in Synthetic Metal Working Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Comparative 1</td>
</tr>
<tr>
<td>Comparative 2</td>
</tr>
</tbody>
</table>
Table 1 clearly shows that 2-n-butyl-1,2-benzisothiazolin-3-one is considerably more stable to high temperature storage than the biocides in the comparative examples. For example in Comparative Example C, despite using twice the initial concentration of IPBC as the BBIT in Example C, no IPBC remained after storage. On the other hand 40% of the BBIT (i.e. a compound of Formula (1)) remained in the metal working fluid.

Comparative Examples D to I Temperature Stability of 2-n-butyl-benzisothiazolin-3-one in Semi-Synthetic and Soluble Oil Metal Working Fluids

Table 2: Stability in Semi-Synthetic Metal Working Fluid (Quaker fluid No. 12717, ex Quaker Inc.)

<table>
<thead>
<tr>
<th>Example</th>
<th>Biocide</th>
<th>Initial concentration (ppm)</th>
<th>% Remaining after storage at 50°C for 45 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>BBIT</td>
<td>1500</td>
<td>33</td>
</tr>
<tr>
<td>E</td>
<td>BBIT</td>
<td>2000</td>
<td>40</td>
</tr>
<tr>
<td>F</td>
<td>BBIT</td>
<td>2500</td>
<td>46</td>
</tr>
<tr>
<td>Comparative 4</td>
<td>Sodium Omadine</td>
<td>2500</td>
<td>0</td>
</tr>
<tr>
<td>Comparative 5</td>
<td>OIT</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>Comparative 6</td>
<td>IPBC</td>
<td>5000</td>
<td>0</td>
</tr>
</tbody>
</table>

Footnotes to Tables 2 and 3. BBIT, OIT, IPBC and sodium Omadine are as defined in the foot note to Table 1.

Table 3: Stability in Soluble Oil Metal working Fluid

<table>
<thead>
<tr>
<th>Example</th>
<th>Biocide</th>
<th>Initial concentration (ppm)</th>
<th>% Remaining after storage at 50°C for 45 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>BBIT</td>
<td>1000</td>
<td>80</td>
</tr>
<tr>
<td>H</td>
<td>BBIT</td>
<td>2000</td>
<td>78</td>
</tr>
<tr>
<td>I</td>
<td>BBIT</td>
<td>600</td>
<td>50</td>
</tr>
<tr>
<td>Comparative 7</td>
<td>IPBC</td>
<td>5000</td>
<td>13</td>
</tr>
<tr>
<td>Comparative 8</td>
<td>Sodium Omadine</td>
<td>2500</td>
<td>0</td>
</tr>
</tbody>
</table>

Footnotes to Tables 2 and 3. BBIT, OIT, IPBC and sodium Omadine are as defined in the foot note to Table 1.

Tables 2 and 3 show that 2-n-butyl-1,2-benzisothiazolin-3-one is significantly more stable than the comparative biocides.

Comparative Example J Inhibition of Micro-Organisms in Metal Working Fluid Concentrates

The following microbial strains were studied:
Method

[0055] The biocides shown in Tables 4, 5 and 6 were added to the metal working fluid shown in each table and assessed for microbial resistance by a method based on ASTM E686-91: Standard Test Method for Evaluation of Antimicrobial Agents in Aqueous Metal Working Fluids as described below.

[0056] The metal working fluids used in the assessment were the same as those used in Examples A to I.

Inoculum

[0057] Bacteria and fungi were gradually acclimatised to the metal working fluid. The organisms were grown up in biocide free metal working fluid (containing 50%(v/v) minimal broth) with aeration at 25°C until microbial count reached 10^9 cfu/ml. Every 7 days each micro-organism was subcultured into 90ml (10ml inoculum) and re-incubated. Subculturing was done for a minimum of three cycles before use.

Microbiological Test Procedure

[0058] To 1l French square bottles, 900ml of metal working fluid was added at use concentration (diluted to 5% with water of 125ppm calcium hardness). 100ml of inoculum was added and mixed (100ml of total quantity was removed and discarded). The metal working fluid was allowed to sit undisturbed for 64hours. The metal working fluid was mixed and sampled for microbiological testing.

[0059] Bacteria and fungi were enumerated by streaking an aliquot onto nutrient or malt agar as appropriate. The mixtures were aerated using capillary tubing to bubble air into the bottom of the bottle (introduced by means of a multi-valve air manifold). Antifoam was also added. After 5 days, the aeration was stopped and volume replaced with sterile distilled water. The mixture was allowed to sit for 64 hours and then mixed. 10ml of inoculum was used to re-inoculate and all losses were replaced with Biocide containing metal working fluid. The pH of the metal working fluid was measured at start of test and every 7 days. The physical condition of the metal working fluid was noted at the start of the test and every 7 days. Aeration was resumed and the regime repeated for a minimum of 6 weeks or until failure.

Results

[0060]

Table 4: Synthetic Metal Working Fluid

<table>
<thead>
<tr>
<th>Biocide</th>
<th>Conc. (a.i.)</th>
<th>Fungal Contamination after (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Control</td>
<td>0ppm</td>
<td>+++</td>
</tr>
<tr>
<td>Kathon 893W + Sodium omadine</td>
<td>45ppm + 50ppm</td>
<td>-</td>
</tr>
<tr>
<td>BBIT</td>
<td>75ppm</td>
<td>-</td>
</tr>
<tr>
<td>BBIT</td>
<td>100ppm</td>
<td>-</td>
</tr>
</tbody>
</table>
The data in Tables 4 to 6 shows that the method according to the present invention provides good protection against the growth of fungi, yeasts and bacteria in metal working fluids.

Table 5 Semi Synthetic Metal Working Fluid

<table>
<thead>
<tr>
<th>Biocide</th>
<th>Conc. (a.i.)</th>
<th>10</th>
<th>31</th>
<th>87</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBIT</td>
<td>150ppm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sodium omadine</td>
<td>150ppm</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>IPBC</td>
<td>75ppm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6 Soluble Oil Metal Working Fluid

<table>
<thead>
<tr>
<th>Biocide</th>
<th>Conc. (a.i.)</th>
<th>10</th>
<th>31</th>
<th>87</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0ppm</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Vantropol T + Sodium omadine</td>
<td>1140ppm + 50ppm</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Vantropol T + IPBC</td>
<td>1140ppm + 45ppm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vantropol T + BBIT</td>
<td>1140ppm + 50ppm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vantropol T + BBIT</td>
<td>1140ppm + 30ppm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vantropol T + BBIT</td>
<td>760ppm + 50ppm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Vantropol T + BBIT</td>
<td>760ppm + 100ppm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Footnotes to Tables 4, 5 and 6

BBIT is 2-n-N-butyl-1,2-benzisothiazolin-3-one, ex. Avecia Limited
Kathon 893 W is a trademark name for 2-n-octyl-4-isothiazolin-3-one, ex Rohm and Haas
Sodium Omadine is a trademark name for sodium pyridine-2-thiol-1-oxide, ex Arch Chemicals
IPBC is 3-iodo-2-propynyl-N-n-butyl carbamate, ex Arch Chemicals
Vantropol T is a trademark name for 1,3,5-tris(hydroxyethyl)-1,3,5-triazine, ex. Avecia Limited.
+++ indicates confluent growth
++ indicates moderate growth
+ indicates slight growth
- indicates no growth
Example 9: Synergistic Compositions

[0062] The fungus *Fusarium solani* (ATCC 58877/ IMI 314228) was grown in malt agar for 7-14 days at 25°C to give a mycelial mat and the spores harvested from the surface using physiological saline to give a suspension containing about 10^6 fungal spores/ml. This was then diluted with malt broth to give a spore suspension containing 10^4 spores/ml. A 100μl aliquot of this spore suspension was added to each well of a microtitre plate except for the first well which contained 180μl.

[0063] 2-n-butyl-1,2-benzisothiazolin-3-one (BBIT) was dissolved in dimethylformamide at a concentration of 0.25mg/ml. A 20μl aliquot of this solution was added to the first well of the microtitre plate and thoroughly mixed. 100μl was withdrawn from the first well, added to the second well and mixed. This process was repeated along each row of the wells in the microtitre plate so that the concentration of the chemical under evaluation was progressively reduced by a doubling dilution technique. The growth of fungi was assessed by visual inspection after incubation for 5 days at 25°C to determine the MIC value of BBIT against each of the fungi in Table 1. This procedure was repeated to determine the MIC of sodium pyridine-2-thiol-1-oxide (Sodium Omadine). The results are given in Table 7:

Table 7

<table>
<thead>
<tr>
<th>MIC values (ppm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BBIT</td>
<td>sodium pyridine-2-thiol-1-oxide</td>
</tr>
<tr>
<td>6.4</td>
<td>18.5</td>
</tr>
</tbody>
</table>

b) Determination of FIC Fractional Inhibitory Concentration

[0064] A matrix was constructed in a 10 x 10 array in microtitre wells wherein the concentration of each chemical was varied stepwise by serial dilution from a concentration of twice the MIC down to zero. As each microtitre plate contains only 96 wells the combination of the two compounds making up the extreme concentrations (highest and lowest) were omitted. Each mixture (100μl) was added to the plate so that the total volume was maintained at 200μl. By transferring 100μl from each well to the adjacent well containing 100μl nutrient the concentration of the chemical was reduced from twice the MIC to zero in a stepwise manner.

[0065] The presence or absence of growth was determined visually after incubation. The plates containing fungi were incubated for 40-72 hours at 25°C. From the matrix an isobologram was created and the FIC for each chemical of the composition calculated. The FIC is the ratio of the concentration of chemical which inhibits growth when applied as a combination of chemicals relative to the MIC for that chemical when applied alone.

[0066] FIC values for both compounds in the mixture were calculated and results are shown in Table 8. The sum of these two figures gives an indication of the action of the two biocides. A value less than one indicates a synergistic effect, if the total is unity or greater the action is additive and if the value is greater than two the biocides are antagonistic. If a graph is constructed with axes representing biocide Fractional Inhibitory concentrations on linear scales, when the combination is additive the isobole (i.e. the line joining the points that represent all combinations with the same effect including the equally effective concentrations of the Biocides used alone) is straight, synergistic combinations give concave isoboles and antagonistic combinations give convex isoboles.

Table 8

<table>
<thead>
<tr>
<th>Biocide</th>
<th>FIC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBIT</td>
<td>0 0.33 0.33 0.67 1</td>
</tr>
<tr>
<td>Sodium Omadine</td>
<td>1 0.29 0.15 0.15 0</td>
</tr>
<tr>
<td>Sum of FIC Values</td>
<td>1 0.62 0.48 0.82 1</td>
</tr>
</tbody>
</table>

[0067] Table 8 clearly shows synergy between BBIT and Sodium Omadine against *Fusarium solani*.

Graph 1 is an isobologram illustrating the synergistic effect encountered using a BBIT and Sodium omadine composition in a metal working fluid as specified by the results in table 8.
Foot notes to Tables 7 and 8 and Graph 1

[0069] Sodium omadine is a trademark name for sodium pyridine-2-thiol-1-oxide, ex Arch Chemicals.

[0070] BBIT represents 2-n-N-butyl-1,2-benzoisothiazoline-3-one ex. Avecia Limited.

Claims

1. A synthetic, semi-synthetic or soluble oil metal working fluid containing a formulation comprising:

 (a) from 10 to 60 parts of the compound of Formula (1)

\[
\text{Formula (1)}
\]

 wherein: \(R \) is n-butyl;

 (b) from 90 to 40 parts of a water-miscible solvent selected from diethylene glycol and dipropylene glycol;

 (c) sodium pyridine-2-thiol-1-oxide; wherein the parts (a) and (b) are by weight and the sum of the parts of (a) and (b) = 100, and the weight ratio of component (a) to component (c) is 1:2 to 2:1.

Patentansprüche

1. Eine synthetische, teilsynthetische oder auf löslichem oder emulgierendem Öl basierende Metallbearbeitungsflüssigkeit, die eine Formulierung enthält, die umfasst:

 (a) von 10 bis 60 Teilen der Verbindung gemäß Formel (1)

\[
\text{Formel (1)}
\]
wobei R n-Butyl ist,
(b) von 90 bis 40 Teilen ein wassermischbares Lösungsmittel, das aus Diethylenglykol und Dipropylen glykol ausgewählt ist, und
(c) Natriumpyridin-2-Thiol-1-Oxid, wobei die Anteile aus (a) und (b) Gewichtsanteile sind und die Summe der Anteile aus (a) und (b) = 100 und das Gewichtsverhältnis der Komponente (a) zu der Komponente (c) 1:2 bis 2:1 ist.

Revendications

1. Fluide de travail des métaux synthétique, semi-synthétique ou huileux soluble contenant une formulation comprenant :

 (a) de 10 à 60 parties du composé de formule (1)

 ![Formule (1)](image)

 où : R est n-butyle ;
 (b) de 90 à 40 parties d'un solvant miscible à l'eau choisi parmi le diéthyléneglycol et le dipropyleneglycol ;
 (c) du pyridine-2-thiol-1-oxyde de sodium ; où les parties (a) et (b) sont en poids et la somme des parties de (a) et (b) = 100, et le rapport en poids du composant (a) au composant (c) est 1 : 2 à 2 : 1.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4279762 A [0004]
- GB 1531431 A [0007]
- EP 475123 A [0008]
- US 3517022 A [0009]
- JP 57156405 B [0012]
- GB 484130 A [0016]