EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 21.12.2005 Bulletin 2005/51

Application number: 02021060.5

Date of filing: 20.09.2002

Cap opening system
Öffnungssystem für eine Kappe
Système d'ouverture de couvercle

Designated Contracting States: DE FR GB IT

Date of publication of application: 26.03.2003 Bulletin 2003/13

Proprietors:
• ALOKA CO., LTD. Mitaka-shi, Tokyo 181-8622 (JP)
• UEDA JAPAN RADIO CO., LTD. Ueda-shi, Nagano 386-8608 (JP)

Inventors:
• Niwayama, Hiroaki Mitaka-shi, Tokyo 181-8622 (JP)
• Ida, Yasumichi Mitaka-shi, Tokyo 181-8622 (JP)
• Kojyo, Yoshiyuki Mitaka-shi, Tokyo 181-8622 (JP)
• Miyazaki, Kenichi Ueda-shi, Nagano 386-8608 (JP)
• Takizawa, Hiroyuki Ueda-shi, Nagano 386-8608 (JP)

Representative: Solf, Alexander Patentanwälte Dr. Solf & Zapf Candidplatz 15 81543 München (DE)

References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention is related to a cap opening system, and in particular is related to a system for removing a cap provided in the upper portion of a container body of a container.

Description of the Prior Art

[0002] A cap opening apparatus used in a sample preprocessing system or the like is an apparatus which automatically removes a cap provided in a container such as a test tube or the like. The FR-A-2 014 953 for example describes a cap opening system for automatically opening a screw cap of a container which includes a container body and the cap attached thereto. This system comprises a container body handling apparatus for holding the container body of the container to raise and lower it, a cap handling apparatus arranged above the container body handling apparatus for grasping and then opening the cap of the container when the container body is raised and positioning means for positioning the cap with respect to the cap opening apparatus, in particular with respect to the cap handling apparatus. Furthermore according to the FR-A-2 014 953 the cap handling apparatus has a base frame, a rotary unit, which is rotatably with respect to the base frame, at least two basically V-shaped grasping arms provided on the rotary unit, wherein the bent portion thereof forms a rotation axis that is perpendicular to the rotation axis of the rotary unit, for grasping the cap and a shaft, wherein the shaft is provided so as to be capable of advancing or retracting with respect to the rotary frame with being biased toward the advancing direction. To activate the grasping arms between a grasping and an opened position, the shaft comprises a controlling cam, which controls the grasping arms by moving upwards and downwards with the shaft. The shaft comprises at its lower end a pin for positioning the cap and activating the grasping arms. When the container body with the attached cap is raised up by the container body handling apparatus the cap hits the pin and pushes the shaft together with the attached controlling cam upwards, wherein the controlling cam causes the grasping arms rotating about their axis and moving in their grasping position. After that the rotary unit including the grasping arms is rotated by suitable means, in particular by a belt drive and the cap is removed from the container.

[0003] Many other cap opening apparatuses have been proposed in the prior art, but any apparatus that can be applied to various types of containers and caps has not yet been put to practical use. Namely, there are a wide variety of container body shapes (lengths in particular) and cap sizes (thicknesses in particular) depending on the type of container. Accordingly, when the operation conditions of the apparatus are fixed or standardized, it is difficult to carry out a cap opening operation for containers having various container bodies and caps. Further, there are push-in caps and screw caps and the like. In the case of a push-in cap, it is preferred that the cap is rotated during the cap opening operation, while in the case of a screw cap, the cap must be rotated for opening it.

[0004] As described above, the prior art cap opening apparatuses can merely raise and lower a container with a cap by a predetermined distance, and operate a holding mechanism or cap grasping mechanism for caps of containers having a predetermined diameter.

[0005] Recently, containers having various container bodies and caps are put to practical use, and for this reason there is a demand for a cap opening apparatus which has a relatively simple structure and can automatically adapt its operating conditions to the shape of the container body and the cap of a container even when various containers having different container bodies and caps are supplied to the apparatus.

[0006] Further, when one mechanism is provided to grasp the cap and a separate mechanism is provided to rotate the grasped cap, the structure of the apparatus necessarily becomes large and complex. Further, in this case, it is necessary to provide a separate driving source. Furthermore, in the case where caps having various diameters are to be handled, it is desirable that a predetermined grasping force is applied irrespective of the cap diameter and that the cap is rotated at high speed from the point in time when such predetermined grasping force is created, but mechanisms in response to such demand have not yet been realized up to now. The same demand also exists for other apparatuses that need to grasp and rotate objects.

SUMMARY OF THE INVENTION

[0007] The present invention is made in view of the problem in the prior art described above. Therefore, an object of the present invention is to provide a cap opening system which can perform a cap opening operation reliably.

[0008] Another object of the present invention is to provide a cap opening system which can be used for various containers having caps of different sizes.

[0009] Still another object of the present invention is to provide a cap opening system equipped with a cap handling apparatus in which a cap is first grasped and then the cap is rotated.

[0010] Yet another object of the present invention is to provide a cap opening system equipped with a cap handling apparatus in which a force for grasping a cap and a force for rotating the cap are provided by a single driving source.

[0011] A further object of the present invention is to provide a cap opening system equipped with a cap han-
damping apparatus in which the cap is rotated after a constant grasping force is produced irrespective of the size of the cap to be grasped.

[0012] In order to achieve the objects stated above, the present invention is directed to a cap opening system as defined by claim 1. The cap opening system comprises a container body handling apparatus for holding the container body of the container to raise and lower it, a cap handling apparatus arranged above the container body handling apparatus for grasping and then opening the cap of the container when the container body is raised, and positioning means for positioning the cap with respect to the cap opening apparatus.

[0013] According to the above structure, the container body is held by the container body handling apparatus and then is raised upward. Then, the cap is positioned with respect to the cap handling apparatus, and then a cap opening operation is carried out. In this invention, since such positioning means is provided, it is possible to position the cap properly with respect to the cap handling apparatus irrespective of the thickness of the cap and the length of the container body.

[0014] Preferably, the positioning means positions the cap with respect to the container body handling apparatus based on the reference surface of the cap. Further, preferably, the reference surface is a top surface of the cap. Since the cap handling apparatus grasps a portion of the cap below the top surface thereof, it is quite reasonable that the top surface of the cap is used as the reference surface.

[0015] Preferably, the positioning means includes a cap receiving member to which the top surface of the cap is adapted to abut, said cap receiving member being arranged below the cap handling apparatus, in which the positioning of the cap is carried out by abutting the top surface of the cap against the cap receiving member. In this arrangement, because the positioning is carried out using the abutment of two parts, positioning can be carried out reliably with a simple structure.

[0016] In this case, it is preferred that the cap receiving member has a central portion and a peripheral portion, in which a concave part is formed in the central portion and an extending part which extends downward is formed in the peripheral portion thereof. In this arrangement, the top surface of the cap abuts against the lower surface of the extending part. In this case, it is preferred that the concave part has size and shape that can receive a protruding portion of the cap which protrudes upward from the central portion of the top surface of the cap.

[0017] Further, it is also preferred that the container body handling apparatus includes an abutment detecting device for detecting abutment of the top surface of the cap against the cap receiving member, and a control section for stopping the raising operation of the container body when the abutment detecting device detects the abutment. In this arrangement, it is also preferred that the cap opening system includes buffer means for damping impact by the abutment when the top surface of the cap abuts against the cap receiving member.

[0018] Furthermore, it is also preferred that the cap opening system further comprises a first sensor which emits a vertical optical beam along the raising and lowering path of the cap, a second sensor which emits a horizontal optical beam which intersects the raising and lowering path of the cap at a predetermined height, and means for determining the presence or absence of the cap based on the outputs of the first and second sensors. In this arrangement, the raising operation of the container body is stopped when the horizontal optical beam is interrupted, and in this state the presence or absence of an object within a predetermined range in height is detected utilizing the vertical optical beam.

[0019] In this arrangement, it is preferred that the first sensor is positioned above the container body at least before the cap opening operation is carried out. In this case, it is also preferred that the first sensor is positioned above the container body again when the cap opening operation has been carried out.

[0020] The cap opening system comprises a container body handling apparatus for holding the container body to raise and lower it. A reference surface detector may detect a reference surface of the cap of the container when the container body is raised upward by the container body handling apparatus. A cap handling apparatus for grasping and then opening the cap of the container, and means for controlling the operations of the container body handling apparatus and the cap handling apparatus to position the cap with respect to the container body handling apparatus based on the detected reference surface may be provided.

[0021] According to the above structure, the container body is held by the container body handling apparatus and then it is raised upward. At that time, the reference surface of the cap is detected by the reference surface detector. Then, based on the height of the reference surface, the cap is positioned with respect to the cap handling apparatus at a predetermined proper height. As described above, according to this arrangement, the level of the reference surface is detected individually. Therefore, even if there is a wide variety of cap thickness or container body length, it is possible to carry out proper positioning of such caps with respect to the cap handling apparatus within a certain degree. In other words, when a cap is grasped by the cap handling apparatus, a proper grasping position can be set. In this connection, it is to be noted that although it is preferred that the positioning of the cap is carried out by adjusting the height of the cap itself, such positioning may be done by adjusting the height of the cap handling apparatus.

[0022] Preferably, the reference level is the top surface of the cap. This is effective because detection of the top surface can be made relatively easily, and because the cap is grasped at its middle portion below the top surface.

[0023] Preferably, the reference surface detector in-
that time. Further, it is preferred that the predetermined
when the reference surface is detected or before or after
presence of the cap by carrying out detection at the time
optical sensor which detects the presence or absence
[0029]
other detector.
In this case, such confirmation may be done using the
so possible to confirm whether or not the cap is opened.
been carried out. According to this arrangement, it is al-
tainer body again when the cap opening operation has
container body at least before the cap opening operation
presence or absence detector is positioned above the con-
[0027] Further, it is also preferred that the cap
opening system further comprises a cap presence or absence
detector for detecting presence or absence of the cap. This
makes it possible to increase the reliability of the
detected result of the reference surface detector.
[0026] Further, it is also preferred that the cap
opening system further comprises a cap presence or absence
detector positioned above the container body at least before the cap opening operation
is carried out. According to this arrangement, it is possible
to avoid the case that the upper edge of the con-
tainer body is miss-recognized as the reference surface
when no cap is attached to the container body.
[0028] Further, it is also preferred that the cap
presence or absence detector is positioned above the con-
tainer body again when the cap opening operation has
been carried out. According to this arrangement, it is al-
so possible to confirm whether or not the cap is opened.
In this case, such confirmation may be done using the
reference surface detector alone or in combination with
other detector.
[0029] In this arrangement, it is preferred that the cap
presence or absence detector includes a reflection type
optical sensor which detects the presence or absence
of an object within a predetermined range in height. Ac-
cording to this arrangement, it is possible to confirm the
presence of the cap by carrying out detection at the time
when the reference surface is detected or before or after
that time. Further, it is preferred that the predetermined
range in height is set to the range where the reference
surface may lie therein taking variety in thickness of
caps or length of container bodies into account. This
makes it possible to avoid the case where a liquid sur-
face in a container body is miss-recognized as a cap.
[0030] In the cap opening system, it is preferred that
the container body handling apparatus comprises a pair of
holding mechanisms, which are arranged opposite to
each other so as to be capable of advancing or retract-
ing, for holding a container body of a container which
is supported by a rack from opposite sides of the container
body; and a raising and lowering mechanism for raising
and lowering the pair of holding mechanisms. According
to this arrangement, since the distance between the pair
of holding mechanisms can be relatively freely set, it be-
comes possible to hold or grip various container bodies
having different diameters to a certain extent. Namely,
this arrangement makes it possible for the system to
handle a wide variety of containers having caps and
containers of difference sizes in addition to the advan-
tage obtained by the positioning of caps based on the
reference levels thereof.
[0031] In this cap opening system, it is also preferred
that the cap handling apparatus comprises a clamp
mechanism for holding the cap, and a driving mecha-
nism for driving the clamp mechanism so that the clamp
mechanism is opened and closed with being rotated.
According to this arrangement, since the clamp mech-
anism can perform grasping operation for various types
of caps having different diameters and the clamp mech-
anism can be rotated, this structure can also be applied
to containers having screw caps (screw tops). Further,
in this arrangement, the system may be controlled that
the clamp mechanism is raised and/or the container
body is lowered while the cap is being rotated.
[0032] Furthermore, in this invention, it is also pre-
ferred that the cap opening system further comprises a
movable member on which the cap handling apparatus
is mounted; and means for driving the movable member
so as to position the cap handling apparatus above the
container body which is held by the container body han-
dling apparatus when the cap is to be opened while po-
sitioning the cap handling apparatus above a cap dis-
posal section when disposing of the cap.
[0033] According to this arrangement, a cap opening
operation by the cap handling apparatus and disposal
of caps can be made by driving the movable member,
that is it is possible to move the cap handling apparatus
between two positions with a simple structure.
[0034] In this case, it is preferred that the movable
member includes a rotary plate which is rotatable be-
tween a first angular position and a second angular po-
sition, in which the rotation angle of the rotary plate is
set at the first angular position when the cap is to be
opened and the rotation angle of the rotary plate is set
at the second angular position when disposing of the cap.
[0035] Further, it is also preferred that the cap pres-
ence or absence detector is mounted on the rotary plate, in which when the rotary plate is in the first angular position, the cap presence or absence detector is positioned at its evacuated position, while when the rotary plate is in the second angular position, the cap presence or absence detector is positioned above the container body held by the container body handling apparatus.

[0036] In the present invention, the cap handling apparatus comprises a base frame; a rotary unit rotatably provided with respect to the base frame; a plurality of arms provided on the rotary unit for grasping the cap; and a brake mechanism for restricting the rotation of the rotary unit, wherein the rotary unit comprises a rotary frame, a rotation shaft which is a shaft rotatably driven and provided so as to be capable of advancing or retracting with respect to the rotary frame and being biased toward the advancing direction, said rotation shaft includes an engagement part which is to be engaged with the brake mechanism to release its rotation restricted state at a retracting position thereof, and a screw part; and a cam member threaded onto the screw part, and said cam member is adapted to move in an advancing direction by the forward rotation of the rotation shaft in the rotation restricted state of the rotary unit to cause the plurality of arms perform the grasping operation, and adapted to stop the advancing movement after the grasping operation has been completed to convert the forward rotational movement of the rotation shaft into a retracting movement of the rotation shaft, wherein by the forward rotational movement of the rotation shaft, the plurality of arms first perform the grasping operation and then the plurality of arms are rotated.

[0037] According to the above arrangement, when the cam member is retracted relative to the rotation shaft, the plurality of arms are in an open state (or a release state) and rotation of the rotary unit is restricted by the brake mechanism. When the rotation shaft is rotated forward from this state, the cam member is advanced relative to the rotation shaft due to threading engagement between the screw part of the rotation shaft and the cam member, and then according to the advancing movement of the cam member, the plurality of arms perform the grasping operation. When the grasping operation for the cap by the plurality of arms have been completed, the cam member is no longer possible to advance even by the forward rotation of the rotation shaft, and because of this, the rotation shaft itself begins the retracting movement by the forward rotation of the rotation shaft. Then, the engagement part of the rotation shaft comes to abutment with the brake mechanism to release the rotation restricted state by the brake mechanism. In this state, the rotary unit is rotated forward by the forward rotation of the rotation shaft. Namely, the plurality of arms are rotated forward as well as the cap is also rotated forward. As described above, according to this arrangement, only by the forward rotation of the rotation shaft, the grasping operation is first performed, and subsequently when the grasping operation is completed, the rotation of the rotary unit (the plurality of arms) is carried out. In this way, the sequential operations described above can be performed with a single driving source.

[0038] In this arrangement, the base frame is preferably constructed from a hollow outer casing, and the rotary unit is rotatably provided inside the outer casing through a bearing mechanism or the like. Further, the rotary frame is preferably constructed from a hollow inner casing, and the rotation shaft onto which the cam member is threaded is provided along the central axis of the inner casing.

[0039] Further, in this arrangement, it is preferred that the cam member is formed with an inclined surface on which a driving end of each arm slidably contacts, in which the driving ends of the respective arms are moved on the inclined surface according to the advancing movement of the cam member so that operating ends of the respective arms are operated so as to be closed.

[0040] According to this arrangement, one end of each arm functions as a driving end, and the other end of the arm (that is, an end of the arm that grasps a cap) functions as an operating end. When the driving ends of the respective arms are slidably moved along the inclined surface, the driving ends of the arms are gradually far away to each other in the horizontal direction, and at the same time, the operating ends of the arms are operated so as to be closed, that is grasping operation is performed. In this case, it is preferred that the length of the inclined surface is determined taking the upper and lower limits of diameters of caps to be handled into account.

[0041] Further, in this arrangement, it is preferred that the brake mechanism comprises a brake plate, and biasing means which biases the brake plate in the advancing direction of the rotation shaft, wherein the rotation of the rotary unit is being restricted during the state that the brake plate is in contact with the rotary frame. The biasing means may be formed from one or more springs, for example, and basically, the biasing force of the biasing means provides the grasping operation completing state (that is, a state that a predetermined grasping force is exhibited). In other words, the rotational force transmitted to the rotation shaft after the grasping operation is completed will not be utilized for increasing the grasping force, and such force is utilized for retracting the rotation shaft to release the brake.

[0042] Preferably, the brake plate comes to release from the rotary frame from the point of time that a force caused by the retracting movement of the rotation shaft after the conversion exceeds the biasing force of the biasing means, thereby the rotation restricted state of the rotary frame is released.

[0043] According to this arrangement, it is possible to generate a constant grasping force irrespective of sizes of caps, and it is also possible to rotate the cap automatically from the point of time that a predetermined grasping force is generated.
In this arrangement, it is also preferred that the cap opening system further comprises rotation preventing means for restricting rotation of the rotary unit when the plurality of arms are operated so as to release the grasping cap, wherein by the reverse rotation of the rotation shaft, the cam member carries out the retracting movement relative to the rotation shaft and the rotation shaft carries out the advancing movement.

According to this arrangement, it becomes possible to overcome a problem in that the cam member cannot be retracted and returned to the original position since the rotary unit itself is also rotated by the reverse rotation of the rotation shaft when the cap is to be released. The reverse rotation of the rotation shaft is immediately transmitted to the cam member so that the cam member begins its retracting movement. In this regard, it is to be noted that during the reverse rotation of the rotation shaft, the rotation shaft is advanced by the biasing force to be returned its original position.

In this arrangement, it is preferred that the rotation preventing means includes a polygonal member provided on the rotary unit, and a plurality of abutment members which abut the polygonal member to prevent its rotation.

In this case, the polygonal member may be a triangle member provided horizontally, wherein the rotation of the triangle member can be prevented (stopped) when two of three edges of the triangle member are abutted to two abutment members. Of course, as for the preventing means, other various means can be adopted so long as the rotation of the rotary unit is prevented when releasing the cap.

Further, it is also preferred that the rotary unit may be provided with a positioning member to which the cap is to be abutted. According to this arrangement, positioning of the cap can be made by abutting the cap against the positioning member.

It is to be noted that the cap opening system according to the present invention described above can be also applied to containers having similar caps and container bodies as well as containers having the same caps and container bodies.

These and other objects, structures and advantages of the present invention will be more apparent when the following detailed description of the embodiments is considered in conjunction with the appended drawings.

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1 is a top schematic view which shows the structure of a cap opening system according to the present invention.

Fig. 3 is a perspective view which shows the structure of a container body handling apparatus of the cap opening system.

Figs. 4 (A) and (B) are illustrations for explaining the function of two optical beams.

Figs. 5 (A) and (B) are illustrations for explaining the function of the two optical beams.

Fig. 6 is a cross sectional view which shows the structure of a cap handling apparatus of the cap opening system.

Fig. 7 is an illustration for explaining the operation of a rotation preventing member when disposing of the cap.

Figs. 8 (A) and (B) are illustrations for explaining the operation of the rotation preventing member when disposing of the cap.

Fig. 9 is a flow chart for explaining the operation of the cap opening system according to the present invention.

Fig. 10 is an illustration for explaining the main operations in the flow chart shown in Fig. 9.

Fig. 11 is a flow chart for explaining the operation of the cap handling apparatus when opening a cap.

Fig. 12 is a flow chart for explaining the operation of the cap handling apparatus when disposing of a cap.

Fig. 13 is an illustration which schematically shows the structure of a container body handling apparatus according to another embodiment of the present invention.

Figs. 14 (A) and (B) are illustrations which show the relation between two optical beams according to the another embodiment of the present invention.

Fig. 15 is an illustration which shows the structure of a part of the cap handling apparatus according to the another embodiment of the present invention.

Fig. 16 is a flow chart for explaining the operation of the another embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The preferred embodiments of the present in-
Fig. 1 is a top schematic view of the structure of a cap opening system according to the present invention. This cap opening system removes the cap provided on the upper opening of a container body 12 such as a test tube or the like supported by a rack 10, and then discards such cap. In Fig. 1, the rack 10 is conveyed along a rack conveying path 201. The conveying of the rack 10 is carried out by a rack conveying mechanism (not shown in the drawing). The container body 12 provided with a cap to be opened is positioned at a cap opening position indicated by the reference numeral 200.

In the present embodiment, a fan-shaped rotary plate (which is a movable member as claimed) 20 is provided above the rack 10. The rotary plate 20 rotates 90 degrees about a rotation axis 22. The rotation of the rotary plate 20 is carried out by a rotary plate driving section not shown in the drawing. In this connection, in Fig. 1, the rotation axis of the rotary plate 20 is represented by the reference numeral 202.

A cap opening head 16 is mounted to one side of the rotary plate 20 in a fixed state. As described later with reference to Fig. 6, the cap opening head 16 grasps and then rotates the cap attached to the container body 12, and this cap opening head 16 forms a mechanism for carrying out a cap opening operation (that is, a cap handling apparatus as claimed). On the other hand, a first sensor 18 for detecting the presence or absence of a cap is provided on the other side of the rotary plate 20. An example of the specific structure of the first sensor 18 is described later with reference to Fig. 3 and the like. In the embodiment shown in Fig. 1, the first sensor 18 and the cap opening head 16 are provided at positions shifted 90 degrees with respect to the rotation axis 202, but the present invention is not limited to this structure.

In the present embodiment, in the state where the first sensor 18 is at position A and the cap opening head 16 is at position B, when the rotary plate 20 is rotated 90 degrees clockwise, the cap opening head 16 is positioned above a disposal box 24, namely, the cap opening head 16 reaches position C, and in this state, the first sensor 18 is positioned at position B. The rotary plate 20 in this state is represented by the reference character 20A in Fig. 1. Further, the cap opening head 16 in this state is represented by the reference character 16A. Please note that the disposal box 24 is a container for receiving opened caps.

When the above process is described more specifically by focusing the cap opening operation, first, in order to detect the presence or absence of a cap, the first sensor 18 is positioned at position B, and in this state, the cap opening head 16 is evacuated to position C. Then, the rotary plate 20 is rotated 90 degrees counterclockwise, and in this state, the first sensor 18 is evacuated to position A, and the cap opening head 16 is positioned above the cap opening position 200. Namely, the cap opening head 16 is positioned at position B. In this state, the cap opening operation is carried out, and then after the cap has been opened, the cap opening head 16 is moved again to position C, and then the removed cap is discarded into the disposal box 24. Then, these alternating rotational operations are repeatedly carried out.

As shown in Fig. 1, a container body grasping unit 14 is provided in a fixed state at the cap opening position 200. As will be described in detail later with reference to Fig. 3, the container body grasping unit 14 grasps the container body 12 and then raises it, and this forms a mechanism for positioning the cap provided in the container body 12 with respect to the cap opening head 16. In this regard, it is to be noted that the container body grasping unit 14 is an example of "container body handling apparatus" in the appended claims.

As will be described below, in the present embodiment, the container body grasping unit 14 and the cap opening head 16 are provided with various means that enable the cap opening system to be applied to container bodies having various lengths and diameters, and caps having various thicknesses and diameters.

Fig. 2 is a functional block diagram of the overall structure of the cap opening system according to the present embodiment. As shown in Fig. 2, a control section 15 controls the operations of the various elements in the present system, and the control section 15 is constructed for example from a microcomputer or the like. As shown in Fig. 1, when the container body 12 is raised upward at the cap opening position 200, the first sensor 18 detects whether or not a cap is actually provided in the container body 12. Further, in the present embodiment, the first sensor 18 can also be utilized to confirm whether or not the cap has been removed after the cap opening operation has been carried out. As will be described later, the first sensor 18 is for example a reflection type optical sensor which detects the presence or absence of an object within a predetermined distance range, and the detection results thereof are outputted to the control portion 15.

As will be described later with reference to Fig. 3, the cap opening system is provided with a second sensor 83 which detects the top surface of the cap as a reference surface when the container body 12 is held and raised upward. In the present embodiment, the second sensor 83 is arranged at a predetermined height (origin height for control), and is constructed from a light emitting element which emits an optical beam in the horizontal direction and a light receiving element which receives the beam, which are respectively arranged on opposite sides of the upward conveyance path (the rising and lowering path) of the container body 12. In this way, by detecting the top surface of the cap, namely, the reference surface, it is possible to always recognize the reference height of the cap even when there is a wide variety of container body lengths and cap thicknesses.
Accordingly, it is possible to set the proper grasping position at a position lying a predetermined distance below the top surface of the cap. Namely, it is possible to position the cap properly with respect to the cap opening head 16 shown in Fig. 1. The output signal of the second sensor 83 is outputted to the control section 15. The control section 15 controls the cap opening operations based on the output signals from the first sensor 18 and the second sensor 83.

Further, as shown in Fig. 2, the control section 15 controls the operations of a rack conveying mechanism 21, the container body grasping unit 14, the cap opening head 16 and a rotary driving section 19. In this regard, the rack conveying mechanism 21 is a mechanism for conveying the rack 10 along the rack conveying path 201 shown in Fig. 1, and the container body grasping unit 14 includes a horizontal driving portion 32 which functions as the container body handling apparatus. Further, the cap opening head 16 functions as the cap handling apparatus as described above, and the rotary plate driving portion 19 is constructed from a motor and the like for driving the rotary plate 20 shown in Fig. 1. Of course, in addition to the elements shown in Fig. 2, the cap opening system according to the present embodiment includes various other elements not shown in Fig. 2 or the other drawings. In this connection, it is to be noted that this cap opening system may be incorporated as a part of a sample preprocessing apparatus.

Fig. 3 shows an example of the specific structure of the container body grasping unit (container body handling apparatus) 14 described above. The container body grasping unit 14 includes a pair of stages 30R, 30L arranged on opposite sides of the rack 10, namely, on opposite sides of the container having a cap to be opened. Further, the container body grasping unit 14 includes a horizontal driving portion 32 which functions as a means for driving the pair of stages 30R, 30L in the horizontal direction so that the stages 30R, 30L are moved toward each other or away from each other. Further, the container body grasping unit 14 includes a vertical driving portion 34 which drives holding mechanisms 64, 66 respectively provided on the pair of stages 30R, 30L in the upward and downward directions. A detailed description of these elements is given below.

First, a description will be given for the horizontal driving portion 32. A feed screw 40 is coupled to the rotation shaft of a motor 50 via a coupling 52. The feed screw 40 extends in a direction orthogonal to the rack conveying path, and nut blocks 42, 44 are screwed onto the feed screw 40. The right and left sides of the feed screw 40 are formed with mutually opposite directed threads, whereby when the feed screw 40 is rotated in one direction, the nut blocks 42, 44 are moved toward each other, and when the feed screw 40 is rotated in the other direction, the two nut blocks 42, 44 are moved away from each other. In this regard the nut blocks 42, 44 respectively function as pedestals of the stages 30R, 30L.

Next, a description will be given for the vertical driving portion 34. The rotation shaft of a motor 50 is coupled to a spline shaft 54 via a coupling 52. The spline shaft 54 transmits rotational force for moving the two holding mechanisms 64, 66 in the upward and downward directions while allowing movement of the stages 30R, 30L in the horizontal direction. In the example shown in Fig. 3, the stages 30R, 30L include frames 46, 48 which are fixedly mounted to the nut blocks 42, 44, respectively, so that these frames 46, 48 extend upward from the nut blocks 42, 44.
holding mechanisms 64, 66 holding (grasping) the container body 12 upward.

[0069] In accordance with the structure shown in Fig. 3, because the stages 30R, 30L can be moved in opposite directions within a predetermined range, it is possible to reliably grasp and hold the container body 12 to a certain degree even for a wide variety of container body diameters. In this connection, the height where such grasping and holding is carried out is preferably set at a predetermined height which is determined using the top surface of the rack 10 as a reference level.

[0070] In the structure shown in Fig. 3, a light emitting element 86 and a light receiving element 84 which form the second sensor 83 shown in Fig. 2 are provided in a fixed state at a prescribed height on both sides of the raising/lowering path of the container body 12. In the example structure shown in Fig. 3, the light emitting element 86 and the light receiving element 84 are respectively mounted on the stages 30R, 30L via arms 80, 82, but the present invention is not limited to this structure. An optical beam 203 is run between the light emitting element 86 and the light receiving element 84, and when the container body 12 held by the pair of holding members 64, 66 is raised upward, a cap 13 provided in the top portion of the container body 12 intersects the optical beam 203. Accordingly, because the output signal level in the light receiving element 84 changes, it is possible to detect the presence of the cap 13, namely, the height of the top surface of the cap 13 which forms the reference surface. This detection will be described in detail later with reference to Fig. 4 and Fig. 5.

[0071] Further, as shown in Fig. 1, the first sensor 18 mounted underneath the rotary plate 20 is positioned above the container body 12 of which cap is to be opened, and the detection of an object is carried out within a predetermined range along the axis of an optical beam 204 created by the first sensor 18. In this way, by creating the two orthogonal optical beams 203, 204, in the case where for example the cap 13 is not provided in the container body 12, it is possible to avoid the case where the upper edge of the container body 12 is mistakenly recognized as the top surface of the cap 13. Of course, it is possible to use various other structures as a sensor for detecting the presence or absence of a cap, or as a sensor for detecting the top surface of the cap.

[0072] The optical beams 203, 204 described above are shown in Fig. 4 and Fig. 5, in which (A) is a view taken in the horizontal direction, and (B) is a view taken from above. In Fig. 4, the top surface of the cap 13 provided in the container body 12 is flat. As shown in Fig. 4, the optical beam 203 is set to pass through a position shifted slightly from the center portion of the top surface of the cap 13 in the horizontal direction, and the optical beam 204 is set in the center of the cap 13. When the container body 12 is raised upward, the optical beam 203 is interrupted by the cap 13, and detection of the top surface level of the cap 13 is made at this timing. At that time, if an object is detected by the optical beam 204, it is possible to confirm the presence of the cap 13. On the other hand, in the case where an object is not detected at that time, it is judged that the cap 13 is not provided in the container body 12 and there is a possibility that the upper edge of the container body 12 has interrupted the optical beam 203, thus an error process is carried out in such case.

[0073] As shown in Fig. 5, there is a case that the center portion of a cap 300 is provided with a protruding portion 302 which protrudes upward. Even in such a case, according to the present embodiment, since the optical beam 203 is set to pass through a position shifted slightly from the center portion of the top surface of the cap 300 in the horizontal direction as shown in Fig. 5(B), it is possible to accurately detect the top surface of the cap 300 without being affected by the protruding portion 302. In this case, in the same way as for the structure shown in Fig. 4, the optical beam 204 may be set in the center of the cap 300, but in order to more accurately judge the presence or absence of a cap, the position of the optical beam 204 may be shifted slightly, namely, as shown by the reference numeral 204A in Fig. 5(B), the optical beam 204 may be set at a position shifted slightly from the center portion of the cap 300.

[0074] In either of the cases described above, it is possible to detect the height of the top surface of the cap 13 individually for each cap, and the position of the cap is determined based on the height of the top surface which is used as a reference level. Therefore, even when the length of the container body 12 and the thickness of the cap 13 vary to a certain extent as described above, such variation can be allowed, and a reliable cap opening operation can be carried out.

[0075] Next, an example of the specific structure of the cap opening head 16 shown in Fig. 1 will be described with reference to Fig. 6.

[0076] The cap opening head 16 functions as the cap handling apparatus as described above, and the cap opening head 16 is mounted underneath the rotary plate 20.

[0077] An outer frame 100 is formed into a casing having a hollow cylindrical shape, and an internal unit 102 is rotatably housed inside the outer frame 100. Namely, the internal unit 102 is held by the outer frame 100 through a bearing mechanism 101 in a freely rotatable manner. The internal unit 102 functions as a rotary unit.

[0078] In the internal unit 102, an inner frame 108 having a hollow cylindrical shape forms the frame of the internal unit 102, and a rotation shaft 110 is provided on the center axis of the inner frame 108. An upper end 110B of the rotation shaft 110 is the driving end, and a pulley 113 is coupled to the upper end 110B. A belt 115 is wrapped around the pulley 113, and rotational force of a single drive motor not shown in the drawing is transmitted to the rotation shaft 110 via the belt 115 and the pulley 113. A bearing 108C is provided in a lower portion of the inner frame 108. Further, the bearing 108C holds a lower end 110C of the rotation shaft 110 to enable ad-
ward each other, whereby the second portions of the driving ends move away from each other or to-ment. Then, in accordance with such sliding movement, inclined surface in accordance with such move-
advanced and retracted, the driving ends slide on the inclined surface. When the nut member is ad-
pyramids thereof forms a pyramid shape, and by the abutment between each in-
minated forward, the nut member begins to move in an advancing direction relative to the rotation shaft. From this state, when the rotation shaft is rotated forward, the nut member 112 begins to move in an advancing direction, namely, move downward by the threading engagement between the screw portion and the nut member 112. The arm 120 pivots about the rotation axis 126. The tip end of the first portion 122 forms a driving end 128 which abuts the inclined surface 114. When the nut member 112 is advan-
and retracted, the driving ends slide on the inclined surface 114 in accordance with such move-
ment. Then, in accordance with such sliding movement, the driving ends move away from each other or to-
ward each other, whereby the second portions 124 of the arms 120 are moved to be opened or closed. A claw 130 is formed on the bottom end (operating end) of each arm 120, and when the arms 120 are moved to be closed, the side surface of the cap 13 is held (grasped) between each claw 130, namely, the cap 13 is clamped. Namely, such plurality of arms 120 constitutes a clamp-
mechanism 106.

In this connection, a weak biasing force which is normally exerted in the grip release direction can be applied to each arm 120 by a release spring or the like. This kind of spring may be provided between the inclined surface 114 and the driving end 128, or on the rotation shaft 126. In addition to these arrangements, it is possible to adopt various other structures.

In the embodiment shown in Fig. 6, a brake mechanism 104 is provided in the upper portion inside the outer frame 100. In the present embodiment, the brake mechanism 104 is constructed from a brake plate 131 and a plurality of springs 136. The plurality of springs 136 constitute a means for biasing the brake plate 131 normally in the downward direction. In this embodiment, the brake plate 131 is constructed from a base member 132 and a brake shoe member 134 provided on the surface of the base member 132. A through hole is formed in the center portion of the base member 132, and the upper end 110B of the rotation shaft 110 is inserted through the through hole to enable free rotation. Fig. 6 shows the state in which the cap 13 is grasped by the clamping mechanism 106, the rotation shaft 110 is moved in the retracting di-
rection, namely, raised upward, and the brake plate 131 is pushed upward by a shoulder portion 110D formed on the rotation shaft 110. However, other than such grasped state, the brake plate 131 is pushed to abut a top surface 108B of the inner frame 108, namely, the rotation of the internal unit 102 is restricted by the brake plate 131. Specifically, in the initial state, the nut member 112 is at a retracted position, and the rotation shaft 110 is in a state where it is pushed in the advancing di-
rection, namely, downward by the force of the springs 136, and the internal unit 102 is in a state where the rotation thereof is restricted by the brake mechanism 104. From this state, when the rotation shaft 110 is ro-
tated forward, the nut member 112 begins to move in an advancing direction relative to the rotation shaft 110, namely, move downward by the threading engagement between the screw portion 110A and the nut member 112, and in accordance with this movement, the driving ends 128 of the arms 120 are moved upward along the inclined surfaces 114. Namely, the driving ends 128 are moved away from each other. When this happens, the operating ends (i.e., the claws 130) are moved toward each other, whereby the side surface of the cap 13 is grasped. Then, when the grasping force reaches a pre-
determined value, namely, when the grasping force ex-
cedes the total force of the plurality of springs 136, the advancing movement of the nut member 112 is stopped, and at the same time, the forward rotation movement of the rotation shaft 110 is converted to retraction move-

As shown in Fig. 6, an inclined surface 114 is formed on the nut member 112. The inclined surface functions so as to open and close a plurality of arms 120 described below.

In this connection, in Fig. 6, an example having two arms 120 is shown. Of course, it is also possible to provide three or more arms 120.

Each arm 120 is formed into a roughly V-shape as shown in Fig. 6, and the bent portion thereof forms a rotation axis 126. The portion above the rotation axis 126 is a first portion 122, and the portion below the ro-
tation axis 126 is a second portion 124. The arm 120 pivots about the rotation axis 126. The tip end of the first portion 122 forms a driving end 128 which abuts the inclined surface 114. When the nut member 112 is advan-
and retracted, the driving ends 128 slide on the inclined surface 114 in accordance with such move-
ment. Then, in accordance with such sliding movement, the driving ends 128 move away from each other or to-
ward each other, whereby the second portions 124 of the arms 120 are moved to be opened or closed.

In this connection, an opening 108A is formed in the upper portion of the inner frame 108. From this state, when the rotation shaft 110 is ro-
tation thereof is restricted by the brake mechanism 104. Namely, such plurality of arms 120 constitutes a clamp-
mechanism 106.

As shown in Fig. 6, an inclined surface 114 is formed on the nut member 112. The inclined surface functions so as to open and close a plurality of arms 120 described below.

In this connection, an opening 108A is formed in the up-
der portion inside the outer frame 100. In the present embodiment, the brake mechanism 104 is constructed from a brake plate 131 and a plurality of springs 136. The plurality of springs 136 constitute a means for biasing the brake plate 131 normally in the downward direction. In this embodiment, the brake plate 131 is constructed from a base member 132 and a brake shoe member 134 provided on the surface of the base member 132. A through hole is formed in the center portion of the base member 132, and the upper end 110B of the rotation shaft 110 is inserted through the through hole to enable free rotation. Fig. 6 shows the state in which the cap 13 is grasped by the clamping mechanism 106, the rotation shaft 110 is moved in the retracting di-
rection, namely, raised upward, and the brake plate 131 is pushed upward by a shoulder portion 110D formed on the rotation shaft 110. However, other than such grasped state, the brake plate 131 is pushed to abut a top surface 108B of the inner frame 108, namely, the rotation of the internal unit 102 is restricted by the brake plate 131. Specifically, in the initial state, the nut member 112 is at a retracted position, and the rotation shaft 110 is in a state where it is pushed in the advancing di-
rection, namely, downward by the force of the springs 136, and the internal unit 102 is in a state where the rotation thereof is restricted by the brake mechanism 104. From this state, when the rotation shaft 110 is ro-
tated forward, the nut member 112 begins to move in an advancing direction relative to the rotation shaft 110, namely, move downward by the threading engagement between the screw portion 110A and the nut member 112, and in accordance with this movement, the driving ends 128 of the arms 120 are moved upward along the inclined surfaces 114. Namely, the driving ends 128 are moved away from each other. When this happens, the operating ends (i.e., the claws 130) are moved toward each other, whereby the side surface of the cap 13 is grasped. Then, when the grasping force reaches a pre-
determined value, namely, when the grasping force ex-
cedes the total force of the plurality of springs 136, the advancing movement of the nut member 112 is stopped, and at the same time, the forward rotation movement of the rotation shaft 110 is converted to retraction move-

Namely, up and down movement of the nut member is allowed.

The rotation shaft 110 is threaded onto the screw portion 110A in a rotation restricted state with respect to the inner frame 108. In the state where advancing and retracting movement, name-
ly, up and down movement of the nut member 112 is allowed, when the rotation shaft 110 undergoes a forward (positive) rotation, the nut member 112 moves in the advancing direction, namely, in the downward direc-
tion. On the other hand, when the rotation shaft 110 undergoes reverse rotation, the nut member 112 moves in the retracting direction, namely, in the upward direction. In this connection, an opening 108A is formed in the upper portion of the inner frame 108, and the rotation shaft 110 is inserted through the opening 108A.

In the embodiment shown in Fig. 6, an example having two arms 120 is shown. Of course, it is also possible to provide three or more arms 120.

Each arm 120 is formed into a roughly V-shape as shown in Fig. 6, and the bent portion thereof forms a rotation axis 126. The portion above the rotation axis 126 is a first portion 122, and the portion below the rotation axis 126 is a second portion 124. The arm 120 pivots about the rotation axis 126. The tip end of the first portion 122 forms a driving end 128 which abuts the inclined surface 114. When the nut member 112 is advanced and retracted, the driving ends 128 slide on the inclined surface 114 in accordance with such movement. Then, in accordance with such sliding movement, the driving ends 128 move away from each other or toward each other, whereby the second portions 124 of
and falls downward, namely, falls into the inside of the container body 12, whereby the cap 13 is released from the claws 130 provided on the bottom of the inner frame 111. The rotation shaft 110, whereby the rotation shaft 110 itself is rotated in reverse in this state, the nut member 111 provided on the bottom of the inner frame 111 falls in between the two rotation rollers 136, 138, and in this state the rotation preventing member 111 is automatically rotated so that the triangular rotation preventing member 111, namely, rotation of the internal unit 102 shown in Fig. 6 is rotated in reverse, it becomes possible to open the arms 120 and smoothly release the cap 13, shown in Fig. 6 is rotated in reverse, it becomes possible to open the arms 120 and smoothly release the cap 13, whereas the removal of the cap 13 from the container body 12 can be carried out together with the operation of the internal unit 102 shown in Fig. 6. As described above, in accordance with the structure shown in Fig. 6, it is possible to automatically apply a predetermined grasping force to the cap 13 merely by transmitting rotational force to the rotation shaft 110, and it is also possible to automatically rotate the cap 13 from the point in time where such predetermined grasping force is obtained. In particular, because it is possible to apply a predetermined grasping force irrespective of the diameter of the cap 13, a reliable clamping can be carried out, and the operation timing (conditions) of the rotary movements can be set appropriately so as to suit such diameters. In this connection, the adjustment of the grasping force by the clamping mechanism 106 can be changed easily by adjusting the biasing force of the plurality of springs 136. Further, with respect to these operations, the action of the weak springs biasing the arms 120 can be practically ignored.

Further, as will be described later, an operation in which the container body grasping unit 14 lowers the container body 12 downward by a predetermined distance is carried out together with the operation of the cap opening head 16, whereby the removal of the cap 13 from the container body 12 can be carried out together with the rotary movement of the cap 13 described above.

Further, according to the structure described above, the cap opening system can be applied to not only so-called push-in caps but also screw caps.

Next, the operation for disposing of the cap 13 will be described. Abutment members (not shown in the drawings) are provided above the disposal box 24 shown in Fig. 1, and when the cap 13 is to be discarded, the side surface of a rotation preventing (stopping) member 111 provided on the bottom of the inner frame 108 shown in Fig. 6 abuts the plurality of abutment members, and this abutment prevents rotation of the rotation preventing member 111. Accordingly, when the rotation shaft 110 is rotated in reverse in this state, the nut member 112 moves in the retracting direction by the threading engagement between the screw portion 110A and the nut member 112, whereby the rotation shaft 110 itself is moved in the advancing direction and returned to its original position. Then, the plurality of arms 120 are opened by the retracting movement of the nut member 112, whereby the cap 13 is released from the claws 130 and falls downward, namely, falls inside of the disposal box 24 shown in Fig. 1.

Fig. 7 and Fig. 8 show several examples related to the rotation preventing member 111. In the example shown in Fig. 7, the rotation preventing member 111 is formed into a circular plate. The rotation preventing member has for example openings 142, 144 through which two arms are passed. In the state where the cap opening head 16 is positioned above the disposal box 24, the rotation preventing member 111 abuts a friction plate 140 as shown by the reference character 111', thereby restricting rotation of the rotation preventing member 111, namely, rotation of the internal unit 102 shown in Fig. 6.

In the example structure shown in Fig. 8, the rotation preventing member 111 is formed into a triangular plate. This kind of triangular plate is preferred in the case where the clamping mechanism 106 includes three arms, and it is possible to arrange each arm near the center portion of each side of the triangular plate. Further, as shown in Fig. 8(A), when the cap opening head 16 is rotated around the rotation axis 202 and positioned above the disposal box 24, the rotation preventing member 111 rotates in accordance with the rotation angle of the rotation preventing member 111, and this rotation is finally prevented by the abutment with the two rotation rollers 136, 138. This is shown in Fig. 8(A) by the reference characters 111A, 111B. In the same way, as shown in Fig. 8(B), even in the case where the rotation preventing member 111 is at a different rotation angle, when a peak portion of the rotation preventing member 111 abuts one of the rotation rollers 136, 138 as shown by the reference character 111C, the rotation preventing member 111 is automatically rotated so that the triangular rotation preventing member 111 falls in between the two rotation rollers 136, 138, and in this state the rotation thereof is prevented. Accordingly, in this state where such rotation is prevented, if the rotation shaft 110 shown in Fig. 6 is rotated in reverse, it becomes possible to open the arms 120 and smoothly release the cap 13, and it also becomes possible to return the rotation shaft 110 and the nut member 112 to their original positions.

Next, the operation of the cap opening system according to the present embodiment will be described with reference to Fig. 9.

First, at Step S101, the rack 10 is positioned so that the container body 12 having a cap to be opened is set at the cap opening position as shown in Fig. 1. At Step S102, the container body 12 is grasped and held by the container body grasping unit 14. Then, at Step S103, the held container body 12 is raised upward by the container body grasping unit 14.

At Step S104, a judgment of whether or not the top surface of the cap has been detected, namely,
whether or not the optical beam 203 has been interrupt-
ed during the raising step is carried out by the second
sensor (i.e., the light emitting element 86 and the light
receiving element 84) shown in Fig. 3. In the case where
the output signal of the second sensor is ON, namely,
in the case where the top surface of the cap is detected,
the raising of the container body 12 by the container
body grasping unit 14 is stopped at Step S105. This
stopping position is then utilized as the origin height.

[0095] At Step S106, an object detection is carried out
from above the container body 12 by the first sensor 18
shown in Fig. 1, and in the case where the presence of
the cap 13 can not be confirmed, the error process at
Step S107 is carried out. On the other hand, in the case
where the presence of the cap 13 can be confirmed,
then at Step S108, the rotary plate 20 is rotated 90 de-
grees counterclockwise, whereby the cap opening head
16 is positioned above the cap opening position 200 as
shown in Fig. 1.

[0096] Then, at Step S109, the container body 12 at
the origin height is raised by a predetermined distance
(e.g., 2cm) upward, whereby the height of the cap is posi-
tioned properly with respect to the cap opening head
16.

[0097] At Step S110, a cap opening operation is car-
rried out by the cap opening head 16. In this case, during
such cap opening operation being carried out, the con-
tainer body 12 is lowered by a predetermined distance
downward by the container body grasping unit 14. Then,
the container body 12 is finally lowered to the same
height as the stopping position in Step S105.

[0098] At Step S111, the output signal of the second
sensor is monitored. In the case where the output signal
of the second sensor is ON, namely, in the case where
the optical beam is interrupted, because there is a pos-
sibility that the cap opening operation was not carried
out properly, the process proceeds to Step S107.

[0099] On the other hand, in the case where the cap
opening operation is judged to have been carried out
properly at Step S111, then at Step S112, the rotary plate
20 shown in Fig. 1 is rotated 90 degrees clockwise,
whereby the first sensor 18 is positioned above the cap
opening position 200, and at the same time, the cap
opening head 16 holding the removed cap is positioned
above the disposal box 24. Then, in this state, the held
cap is released and falls into the inside of the disposal
box 24 as shown by Step S113. At the same time, at
Step S114, an object detection is carried out by the first
sensor 18, namely, confirmation of whether or not the
cap opening operation has been performed properly is
carried out again. In this regard, in the case where an
object is detected by the first sensor, the cap opening
operation is judged to have not been carried out pro-
perly, and the process proceeds to Step S107.

[0100] On the other hand, in the case where the cap
opening operation is judged to have been carried out
properly at Step S114, the container body grasping unit
14 returns and conveys the opened container body 12
downward to the rack 10. Then, at Step S116, in the
case where this process is to be continued, each step
from Step S101 is repeatedly carried out.

[0101] Fig. 10 shows the main operations in the proc-
ess represented by the flow chart of Fig. 9a. As de-
scribed above, the container body 12 is raised upward
at Step S103, and this raising of the container body 12
is stopped when the top surface of the cap 13 is detected
at Step S114. In this state, an object detection is carried
out by the optical beam 204 at Step S106, and in this
case, for example, an object detection is carried out
within a predetermined range G with the optical beam
203 as a reference level.

[0102] At Step S109, the container body 12 is raised
by a predetermined distance H1 upward, and the cap
13 is positioned properly with respect to the cap opening
head 16.

[0103] At Step S110, the container body 12 is lowered
by a predetermined distance H2 downward while the
cap which has been grasped by the cap opening head
is being rotated.

[0104] At Step S114, after the cap opening operation
is carried out, the container body 12 is positioned at the
same height as the height in Step S104, and in this state,
the optical beam 204 is utilized to carry out object de-
tection. In this case, when an object is not present within
a predetermined range G, the cap opening operation is
judged to have been carried out properly. At Step S115,
the opened container body 12 is lowered downward and
returned to the rack.

[0105] Of course, the process (operation) shown in
Fig. 9 and Fig. 10 is only one example, and it is possible
to adopt various other processes (operations).

[0106] Fig. 11 shows a flowchart of the operations of
the cap opening head at Step S110 in Fig. 9, and Fig.
12 shows a flowchart of the operations of the cap open-
ing head at the time the cap is discarded at Step S113
in Fig. 9.

[0107] In Fig. 11, at Step S201, rotation of the rotation
shaft 110 is begun in the cap opening head 16 shown
in Fig. 6. In this way, as shown by Step S202, the nut
member 112 begins to move in the advancing direction,
and in accordance with this movement, the clamping me-
chanism 106 carries out a grasping movement. Namely,
the claws 130 are moved toward each other. Then, when
the grasping of the cap 13 is completed, namely, when
the advancing movement of the nut member 112 is
stopped, the biasing force F1 exerted by the plurality of
springs 136 is balanced with the upward force F2 exert-
ed on the nut member 112 by the driving ends 128 as
shown in Step S203. In this state, when rotation of the
rotation shaft 110 is further continued, F2 becomes larg-
er than F1 as shown in Step S204, whereby the shoulder
portion 110D of the rotation shaft 110 pushes the brake
plate 131 upward. Then, as shown by Step S205, when
the rotation restricted state of the internal unit 102 is re-
leased, the internal unit 102 is allowed to do rotary
movement in accordance with the rotation of the rotation
when the upward movement of the upper slide block 401 state) is carried out before opening the cap. In this case, later, positioning of the cap 13 (formation of abutment is provided with an abutment sensor 406. As described normally moved up and down together.

[0109] At Step S302 in Fig. 12, rotational force in the reverse direction is transmitted to the rotation shaft by the driving motor, and then as shown in Step S303, the rotation shaft 110 is returned to its original position, and in accordance with this, the nut member 112 is retracted backward and returned to its original position. Then, during this process, as shown by Step S304, the cap being held up to now is released from the clamping mechanism 116 and falls into the inside of the disposal box 24. After that, the reverse rotation operation of the driving motor is stopped as shown in Step S305.

[0110] Hereinbelow, a description will be made with regard to another embodiment of the cap opening system which is believed to be more practical.

[0111] When contrasting the cap opening system of this embodiment with the structure of the first embodiment shown in Fig. 1 to Fig. 8, there are differences in their cap positioning means and the structures of the stages of the container body grasping units. Therefore, the same reference numerals are assigned to the same structures and components as those shown in Fig. 1 to Fig. 8, and explanation thereof are omitted.

[0112] Fig. 13 shows the structure of a part of the container body grasping unit 14 (in particular, the structure which is different from the embodiment shown in Fig. 3). Although the container body grasping unit 14 has two stages, only one stage 30L is shown in Fig. 13. The other stage has the same structure as that of the stage 30L.

[0113] The stage 30L includes an erected frame 48 having a rail 48B. An upper slide block 401 and a lower slide block 402 are slidably mounted to the rail 48B. A spring 404 which is a compression spring is provided between the upper slide block 401 and the lower slide block 402 so that the upper slide block 401 is biased upward with respect to the lower slide block 402 to the extent of a certain distance. The lower slide block 402 is formed with a coupling portion 402A, and the lower slide block 402 is coupled to a belt 60 by means of the coupling portion 402A. Namely, the lower slide block 402 is a slide block of a driven side, and the upper slide block 401 is a slide block of a driven side, and they are normally moved up and down together.

[0114] As shown in Fig. 13, the upper slide block 401 is provided with an abutment sensor 406. As described later, positioning of the cap 13 (formation of abutment state) is carried out before opening the cap. In this case, when the upward movement of the upper slide block 401 is forcibly stopped, a contact 402B formed on the lower slide block 402 contacts with the abutment sensor 406 due to the upward movement of the lower slide block 402. Then, a control section not shown in the drawings recognizes the abutment of the cap based on an output signal from the abutment sensor 406, and at the same time, stops the driving of the belt 60. By such abutment state and the control for the raising movement, the cap 13 can be properly positioned with respect to the cap opening head.

[0115] Fig. 13 shows the state that the first sensor 18 is at the rotational position B shown in Fig. 1. As was described above, on the opposite sides of the raising and lowering path of the container body 12 (that is, the cap 13), the light emitting element 86 and the light receiving element 84 which constitute the second sensor are provided at a predetermined height. This second sensor forms the optical beam 203. During the process that the container body 12 is being raised, when the cap 13 reaches the optical beam 203, the optical beams 203 is interrupted by the cap 13, and the reference surface (that is, the top surface of the cap or the top surface of the protruding portion) of the cap 13 is detected by the interruption of the beam. In this embodiment, the raising movement of the container body 12 is stopped at that time, and in this stopped state, detection for the presence or absence of an object is carried out by the first sensor 18. The first sensor 18 forms a vertical optical beam aligned with the center of the cap 13 to detect the presence or absence of an object within a predetermined height range along the optical beam 204 with using the height of the optical beam 203 as a reference level. In this case, if the cap 13 exists, the cap 13 is detected by the reflection of the beam. On the other hand, if there is no cap 13, that is if the cap 13 is not provided in the container body 12, no object is detected. In this way, it is possible to confirm the presence of the cap before the cap opening operation, thereby enabling to perform the cap opening operation with high reliability.

This advantage is the same as the first embodiment shown in Fig. 1 to Fig. 8.

[0116] Fig. 14 shows the relation between the optical beam 203 and the optical beam 204. The optical beam 203 is set so as to pass through the center of the cap 13, and the optical beam 204 is also set so as to align with the center of the cap 13. Therefore, in the case of the cap 13 having the protruding portion as shown in Fig. 14, the top surface of the protruding portion is detected with the respective optical beams 203 and 204. In this embodiment, only detection of the presence or absence of the cap is needed, and the positioning of the cap 13 with respect to the cap opening head is carried out by a separate means. Therefore, there is no problem even if the optical beams 203 and 204 as shown in Fig. 14 are used. Of course, it goes without saying that the technique as shown in Figs. 4 and 5 may be adopted.

[0117] Fig. 15 shows the structure of a part of the cap opening head of this embodiment (in particular, the
structure which is different from the embodiment shown in Fig. 6. A clamp mechanism 106 is constructed from a plurality of arms 120. In a space surrounded by these arms, that is a space defined below the cap opening head, a cap receiving member 410 is fixedly provided. The cap receiving member 410 may be formed of, for example, a metallic material or a resin material, and in the example shown in the drawing, it is fixedly mounted to the rotation preventing member 111. The cap receiving member 410 includes a concave part 414 which corresponds to the central portion of the cap and a cylindrical extending part 412 which is formed around the concave part 414 so as to extend downward.

In this embodiment, when the container body 12 is raised upward by the container body handling apparatus, the tip surface (in particular, the peripheral portion thereof) 13A of the cap 13 comes to abutment with the lower surface (abutment surface) of the container when the container body 12 is raised upward by the container body handling apparatus, the tip surface (in particular, the peripheral portion thereof) 13A of the cap 13 comes to abutment with the lower surface (abutment surface) of the container body 12. Further, in the example structure shown in the drawing, the cap receiving member 410 is formed with the concave part 414. Therefore, even in the case of a specific type cap in which a protruding portion is formed on the central portion of the top surface of the cap, positioning of the cap 13 can be carried out properly by receiving the protruding portion 13C into the concave part 414. Other structures and operations of this embodiment are basically the same as those of the embodiment shown in Fig. 6.

Next, referring to Fig. 13 and Fig. 15, operation of this embodiment will be described based on Fig. 16. In Fig. 16, Steps S401 to S408 are basically the same as Steps S101 to S108 in Fig. 9, and Step S412 to S418 in Fig. 16 are basically the same as Steps S110 to S116 in Fig. 9. Therefore, in the following, a description will be made particularly with reference to Steps S409 to S411 in Fig. 16.

At Step S409, the container body 12 is raised upward again from the state that the container body 12 is being temporarily stopped during the raising operation. At Step S410, a determination is made as to whether or not the abutment sensor 406 shown in Fig. 13 is turned on.

In this state, when the top surface of the cap abuts against the lower surface (that is, the abutment surface) of the cap receiving member 410 as shown in Fig. 15, the raising movement of the upper slide block 401 shown in Fig. 13 is prevented while the lower side block 402 continues its raising movement, so that the spring 404 is further compressed. In this case, since the spring 404 exhibits a resilient force, an impact when the cap 13 is abutted against the cap receiving member is damped. Namely, the spring 404 functions as a cushioning means. When the spring 404 is compressed over a predetermined degree, that is when the lower side block 402 closes to the upper slide block which has been stopped, the contact 402 contacts with the abutment sensor 406 to turn it on.

At this time, the upwardly raising movement of the container body 12 by the container body grasping unit 14 is stopped. Namely, the state that the cap is properly positioned is maintained. The operations after this step is the same as the operations shown in Fig. 9. For example, at Step S216, determination is made as to whether or not the cap is removed using the first sensor 18.

In the foregoing, the structure shown in Figs. 13 to 16 is mere one example, and it goes without saying that various other structures can be adopted so long so they can achieve the same objects.

As described above, according to the present invention, it is possible to carry out a cap opening operation with high reliability. Further, according to the present invention, containers and caps having various sizes can be handled.

In addition, the cap opening system of the present invention makes it possible to realize a simple structure which can grasp a cap and then rotate it. Further, according to the present invention, it is possible to create a cap grasping force and a rotation force by a single driving source. Furthermore, according to the present invention, a cap is always rotated after a constant grasping force is exerted irrespective of sizes of caps.

Finally, it is to be noted that the present invention is not limited to the embodiments described above, and many changes and additions may be made within the spirit of this invention which is defined by the appended claims.

 Claims

1. A cap opening system for automatically opening a cap (13) of a container which includes a container body (12) and the cap (13) attached thereto, the system comprising:

 a container body handling apparatus (14) for holding the container body (12) of the container to raise and lower it;

 a cap handling apparatus (16) arranged above the container body handling apparatus (14) for grasping and then opening the cap (13) of the container when the container body (12) is raised; and
positioning means (84, 86, 203, 18, 204, 410) for positioning the cap (13) with respect to the cap handling apparatus (16), wherein the cap handling apparatus (16) comprises:

- a base frame (100);
- a rotary unit (102) rotatably provided with respect to the base frame (100) comprising:
 - a rotary frame (108);
 - a rotation shaft (110) which is a shaft rotatably driven and provided so as to be capable of advancing or retracting with respect to the rotary frame (108) and being biased toward the advancing direction; and
 - a cam member (112);

and wherein the cap handling apparatus (16) comprising a plurality of arms (120) provided on the rotary unit (102) for grasping the cap (13), wherein the cam member (112) is adapted to move in an advancing direction to cause the plurality of arms (120) perform the grasping operation;

CHARACTERIZED IN THAT the cap handling apparatus (16) comprises:

- a brake mechanism (104) for restricting the rotation of the rotary unit (102), wherein said shaft (110) includes an engagement part (110D) which is to be engaged with the brake mechanism (104) to release its rotation restricted state at a retracting position thereof, and a screw part (110A), and wherein the cam member (112) is threaded onto the screw part (110A), and said cam member (112) is adapted to move in the advancing direction by the forward rotation of the rotation shaft (110) in the rotation restricted state of the rotary unit (102) to cause the plurality of arms (120) perform the grasping operation, and adapted to stop the advancing movement after the grasping operation has been completed to convert the forward rotational movement of the rotation shaft (110) into a retracting movement of the rotation shaft (110),

wherein by the forward rotational movement of the rotation shaft (110), the plurality of arms (12) first perform the grasping operation and then the plurality of arms (120) are rotated.

2. The cap opening system as claimed in claim 1, wherein the cam member (112) is formed with an inclined surface (114) on which a driving end (128) of each arm (120) slidably contacts, in which the driving ends (128) of the respective arms (120) are moved on the inclined surface (114) according to the advancing movement of the cam member (112) so that operating ends (130) of the respective arms (120) are operated so as to be closed.

3. The cap opening system as claimed in claim 1, wherein the brake mechanism (104) comprises a brake plate (131), and biasing means (136) which biases the brake plate (131) in the advancing direction of the rotation shaft (110), wherein the rotation of the rotary unit (102) is being restricted during the state that the brake plate (131) is in contact with the rotary frame (108).

4. The cap opening system as claimed in claim 1, wherein the brake plate (131) comes to release from the rotary frame (108) from the point of time that a force caused by the retracting movement of the rotation shaft (110) after the conversion exceeds the biasing force of the biasing means (136), thereby the rotation restricted state of the rotary frame (108) is released.

5. The cap opening system as claimed in claim 1, further comprising rotation preventing means (111) for preventing rotation of the rotary unit (102) when the plurality of arms (120) are operated so as to release the grasping cap (13), wherein by the reverse rotation of the rotation shaft (110), the cam member (112) carries out the retracting movement with respect to the rotation shaft (110) and the rotation shaft (110) carries out the advancing movement.

6. The cap opening system as claimed in claim 5, wherein the rotation preventing means (111) includes a polygonal member provided on the rotary unit (102), and a plurality of abutment members (136, 138) which abut on the polygonal member to prevent its rotation.

7. The cap opening system as claimed in claim 1, wherein the rotary unit (102) includes a positioning member (410) on which the cap (13) is adapted to abut.

8. The cap opening system as claimed in claim 1, wherein the cap has a reference surface, and the positioning means (410) positions the cap (13) with respect to the cap handling apparatus (16) basted on the reference surface of the cap (13).

9. The cap opening system as claimed in claim 8, wherein the cap (13) has a top surface (13A) and the reference surface is the top surface (13A) of the cap (13).
10. The cap opening system as claimed in claim 9, wherein said positioning means (410) includes a cap receiving member (410) to which the top surface of the cap is adapted to abut, said cap receiving member (410) being arranged underneath the cap handling apparatus (16) in which positioning of the cap (13) is carried out by the abutment of the top surface (13A) of the cap (13) against the cap receiving member (410).

11. The cap opening system as claimed in claim 10, wherein said cap receiving member (410) has a central portion and a peripheral portion, in which a concave part (414) is formed in the central portion and an extending part (412) is formed in the peripheral portion thereof.

12. The cap opening system as claimed in claim 11, wherein a protruding portion (13C) is formed on the central portion of the top surface (13A) of the cap (13), and the concave part (414) has size and shape that can receive the protruding portion (13C) therein.

13. The cap opening system as claimed in claim 10, wherein the container body handling apparatus (14) includes an abutment detecting device for detecting abutment of the top surface (13A) of the cap (13) against the cap receiving member (410) and a control section for stopping the raising operation of the container body (12) when the abutment detecting device detects the abutment.

14. The cap opening system as claimed in claim 10, further comprising buffer means (404) for damping impact by the abutment when the top surface (13A) of the cap (13) abuts against the cap receiving member (410).

15. The cap opening system as claimed in claim 1, wherein the positioning means includes a first sensor (18) which emits a vertical beam (204) along the raising and lowering path of the cap (13), a second sensor (83) which emits a horizontal beam (203) which intersects the raising and lowering path of the cap (13) at a predetermined height, and means for determining presence or absence of the cap (13) based on the outputs of the first and second sensors (18, 83).

16. The cap opening system as claimed in claim 15, wherein the raising operation of the container body (12) is stopped when the horizontal optical beam (203) is interrupted, and in this state the presence or absence of an object within a predetermined range in height is detected utilizing the vertical optical beam (204).

17. The cap opening system as claimed in claim 15, wherein the first sensor (18) is positioned above the container body (12) at least before the cap opening operation is carried out.

18. The cap opening system as claimed in claim 17, wherein the first sensor (18) is positioned above the container body (12) again when the cap opening operation has been carried out.

19. The cap opening system as claimed in claim 1, wherein the positioning means includes:

a reference surface detector which detects a reference surface of the cap (13) of the container when the container body (12) is raised upward by the container body handling apparatus (14); and

means for controlling the operations of the container body handling apparatus (14) and the cap handling apparatus (16) to position the cap (13) with respect to the cap handling apparatus (16) based on the detected reference surface.

20. The cap opening system as claimed in claim 19, wherein the cap (13) has a top surface (13A) and the reference surface is the top surface (13A) of the cap (13).

21. The cap opening system as claimed in claim 20, wherein the reference surface detector includes a light emitting element (86) and a light receiving element (84) arranged at opposite sides of the raising and lowering path of the cap (13) so that an optical beam (203) is run between the light receiving and light emitting elements (84, 86), in which the top surface (13A) of the cap (13) is detected utilizing the interruption of the optical beam (203) by the cap (13).

22. The cap opening system as claimed in claim 21, wherein the top surface (13A) of the cap (13) has a central portion and a peripheral portion which is located at a position shifted from the central portion in the horizontal direction, in which the light receiving and light emitting elements (84, 86) are arranged so that the optical beam (203) runs across the peripheral portion, thereby enabling to detect the top surface (13A) of the cap (13) irrespective of the shape of the central portion of the top surface (13A) of the cap (13).

23. The cap opening system as claimed in claim 19, wherein the control section sets the height at which the reference surface is detected by the reference surface detector (83, 203) as a reference level and then raises the container body (12) by a predetermined range in height.
minded distance, thereby positioning the cap (13) with respect to the cap handling apparatus (16).

24. The cap opening system as claimed in claim 19, further comprising a cap presence or absence detector (18, 204) for detecting presence or absence of the cap (13).

25. The cap opening system as claimed in claim 24, wherein the cap presence or absence detector (18, 204) is positioned above the container body (12) at least before the cap opening operation is carried out.

26. The cap opening system as claimed in claim 25, wherein the cap presence or absence detector (18, 204) is positioned above the container body (12) again when the cap opening operation has been carried out.

27. The cap opening system as claimed in claim 26, wherein the cap presence or absence detector (18, 204) includes a reflection type optical sensor (18) which detects the presence or absence of an object within a predetermined range in height.

28. The cap opening system as claimed in claim 1, wherein the container body handling apparatus (14) comprises:

a pair of holding mechanisms (64, 66) which are arranged opposite to each other so as to be capable of advancing or retracting, for holding a container body (12) of a container which is supported by a rack from opposite sides of the container body (12); and

a raising and lowering mechanism (34) for raising and lowering the pair of holding mechanisms (64, 66).

29. The cap opening system as claimed in claim 1, further comprising:

a movable member on which the cap handling apparatus (16) is mounted; and

means for driving the movable member so as to position the cap handling apparatus (16) above the container body (12) which is held by the container body handling apparatus (16) when the cap (13) is to be while positioning the cap handling apparatus (16) above a cap disposal section (24) when disposing of the cap (13).

30. The cap opening system as claimed in claim 29, wherein the movable member includes a rotary plate (20) which is rotatable between a first angular position and a second angular position, in which the rotation angle of the rotary plate (20) is set at the first angular position when the cap (13) is to be opened and the rotation angle of the rotary plate (20) is set at the second angular position when disposing of the cap (13).

31. The cap opening system as claimed in claim 30, wherein the cap presence or absence detector (18, 204) is mounted on the rotary plate (20) in which when the rotary plate (20) is in the first angular position, the cap presence or absence detector (18, 204) is positioned at its evacuated position, while when the rotary plate (20) is in the second angular position, the cap presence or absence detector (18, 204) is positioned above the container body (12) held by the container body handling apparatus (14).

Patentansprüche

1. Kappenöffnungssystem zum automatischen Öffnen einer Kappe (13) eines Behälters, der einen Behälterkörper (12) und die daran angebrachte Kappe (13) umfasst, wobei das System aufweist:

Eine Behälterkörperhandhabungsvorrichtung (14) zum Halten des Behälterkörpers (12) des Behälters, um diesen anzuheben und abzusenken; eine Kappenhandhabungsvorrichtung (16), die über der Behälterkörperhandhabungsvorrichtung (14) angeordnet ist, um sie zu ergreifen und daraufhin die Kappe (13) des Behälters zu öffnen, wenn der Behälterkörper (12) angehoben ist; und eine Positionierungseinrichtung (84, 86, 203, 18, 204, 410) zum Positionieren der Kappe (13) relativ zu der Kappenhandhabungsvorrichtung (16), wobei die Kappenhandhabungsvorrichtung (16) aufweist:

Einen Basisrahmen (100); eine Dreheinheit (102), die relativ zu dem Basisrahmen (100) drehbar vorgesehen ist, aufweisend:

Einen Drehrahmen (108); eine Drehwelle (110), bei der es sich um eine Welle handelt, die drehbar ange trieben und derart bereitgestellt ist, dass sie relativ zu dem Drehrahmen (108) vorrücken und sich zurückziehen kann, und die in Richtung auf die Vorrückrichtung vorgespansst ist; und ein Nockenelement (112);
und wobei die Kappenhandhabungsvorrichtung (16) mehrere Arme (120) umfasst, die an der Dreh-
heit (102) zum Ergreifen der Kappe (13) vorgese-
hen sind, wobei das Nockenelement (112) dazu
ausgelegt ist, sich in der Vorrückrichtung zu bewe-
gen, um die mehreren Arme (120) zu veranlassen,
den Greifvorgang durchzuführen; dadurch gekennzeichnet, dass die Kappenhand-
habungsvorrichtung (16) aufweist:

Einen Bremsmechanismus (104) zum Be-
schränken der Drehung der Dreheinheit (102), wobei die Welle (110) einen Eingriffteil (110D)
aufweist, der mit dem Bremsmechanismus (104) in Eingriff bringbar ist, um dessen dreh-
beschränkten Zustand in einer Rückziehstel-
lung von ihm freizugeben, und einen Schrau-
benteil (110A), und wobei das Nockenelement
(112) auf den Schraubenteil (110A) geschraubt
ist, und wobei das Nockenelement (112) zu ei-
er Bewegung in der Vorrückrichtung durch die
Vorwärtsdrehung der Drehwelle (110) in dem
drehbeschränkten Zustand der Dreheinheit
(102) geeignet ist, um die mehreren Arme (120)
zur Veranlassen, den Greifvorgang durchzufüh-
ren und die Vorrückbewegung, nachdem der
Greifvorgang beendet wurde, zu stoppen, um
die Vorwärtsdrehbewegung der Drehwelle
(110) in eine Rückziehbewegung der Drehwelle
(110) umzusetzen, wobei durch die Vorwärts-
drehbewegung und die mehreren Arme (120)
zunächst den Greifvorgang durchführen, woraufhin die mehreren Arme
(120) gedreht werden.

2. Kappenöffnungssystem nach Anspruch 1, wobei
das Nockenelement (112) mit einer Schrägfläche
(114) gebildet ist, auf der ein Antriebsende (128)
von jedem Arm (120) sich im Gleitkontakt befindet, wobei die Antriebsenden (128) der jeweiligen Arme
(120) auf der Schrägfläche (114) in Übereinstim-
mung mit der Vorrückbewegung des Nockenele-
ments (112) derart bewegt werden, dass Betäti-
gungszeiten (130) der jeweiligen Arme (120) derart
betätigt werden, dass sie geschlossen werden.

3. Kappenöffnungssystem nach Anspruch 1, wobei
der Bremsmechanismus (104) eine Bremsplatte
(131) umfasst, und wobei die Vorspanneinrichtung
(136) die Bremsplatte (131) in der Vorrückrichtung
der Drehwelle (110) vorspannt, wobei die Dreh-
heit (102) während dessen denjenigen Zu-
stands beschränkt ist, in welchem sich die Brems-
platte (131) im Kontakt mit dem Drehrahmen (108)
befindet.

4. Kappenöffnungssystem nach Anspruch 1, wobei
die Bremsplatte (131) zu demjenigen Zeitpunkt von
dem Drehrahmen (108) freikommt, zu welchem ei-
eine Kraft durch die Rückziehbewegung der Drehwel-
le (110) hervorgerufen wird, nachdem die Umset-
zung der Vorspannkraft der Vorspanneinrichtung
(136) übersteigt, wodurch der drehbeschränkte Zu-
stand des Drehrahmens (108) aufgehoben bzw.
freigegeben wird.

5. Kappenöffnungssystem nach Anspruch 1, außer-
dem aufweisend eine Drehungsverhinderungsein-
richtung (111) zum Verhindern der Drehung der
Dreheinheit (102), wenn die mehreren Arme (120)
derart betätigt werden, dass die Greifkappe (13)
freigegeben wird, wobei durch die umgekehrte bzw.
etzte Drehung der Drehwelle (110) das Nockenelement (112) die Rückziehbewegung rela-

tiv zu der Drehwelle (110) und die Drehwelle
(110) die Vorrückbewegung ausführt.

6. Kappenöffnungssystem nach Anspruch 5, wobei
die Drehungsverhinderungseinrichtung (111) ein
mehreckiges Element umfasst, das an der Dreh-
heit (102) vorgesehen ist und mehrere Anschlü-
gemeinschaften (136, 138), die an dem mehreckigen Element zur Verhinderung seiner Drehung anliegen.

7. Kappenöffnungssystem nach Anspruch 1, wobei
die Dreheinheit (102) ein Positionierungselement
(410) umfasst, auf welchem die Kappe (13) in An-
lage gelangen kann.

8. Kappenöffnungssystem nach Anspruch 1, wobei
die Kappe eine Bezugsfläche aufweist, und wobei
 die Positionierungseinrichtung (410) die Kappe (13)
relativ zu der Kappenhandhabungsvorrichtung (16)
 auf Grundlage der Bezugsfläche der Kappe (13) po-
 sitioniert.

9. Kappenöffnungssystem nach Anspruch 8, wobei
die Kappe (13) eine Oberseite (13A) aufweist, und
wobei die Bezugsfläche die Oberseite (13A) der
Kappe (13) ist.

10. Kappenöffnungssystem nach Anspruch 9, wobei
die Positionierungseinrichtung (410) ein Kappen-
aufnahmeelement (410) umfasst, an welchem die
Oberseite der Kappe in Anlage gelangen kann, wo-
die Kappenhandhabungsvorrichtung (16) angeord-
net ist, wobei die Positionierung der Kappe (13) ausge-
führt wird durch die Anlage der Oberseite (13A) der
Kappe (13) an dem Kappenauflaufnahmeelement (410).

11. Kappenöffnungssystem nach Anspruch 10, wobei
das Kappenauflaufnahmeelement (410) einen zentra-
len Abschnitt und einen Randabschnitt aufweist, wobei ein konkaver Teil (414) in dem zentralen Ab-
schnitt gebildet ist, und wobei ein Verlängerungsteil (412) in seinem Randabschnitt gebildet ist.

12. Kappenöffnungssystem nach Anspruch 11, wobei ein vorstehender Abschnitt (13C) an dem zentralen Abschnitt der Oberseite (13A) der Kappe (13) gebildet ist, und wobei der konkave Teil (414) eine Größe und Form derart aufweist, dass sie den vorspringenden Abschnitt (13C) im Innern aufnehmen kann.

13. Kappenöffnungssystem nach Anspruch 10, wobei die Behälterkörperhandhabungsvorrichtung (14) eine Anschlagermittlungseinstellung zum Ermitteln eines Anschlags der Oberseite (13A) der Kappe (13) an dem Kappenaufnahmeelement (410) und einen Steuerabschnitt umfasst, um den Anhebevorgang des Behälterkörpers (12) zu stoppen, wenn die Anlageermittlungseinstellung die Anlage ermittelt.

14. Kappenöffnungssystem nach Anspruch 10, außerdem aufweisend eine Puffereinrichtung (404) zum Dämpfen des Anlagestoßes, wenn die Oberseite (13A) der Kappe (13) an dem Kappenaufnahmeelement (410) anstößt.

19. Kappenöffnungssystem nach Anspruch 1, wobei die Positionierungseinrichtung umfasst:

Einen Bezugssflächendetektor, der eine Oberfläche der Kappe (13) des Behälters ermittelt, wenn der Behälterkörper (12) durch die Behälterkörperhandhabungsvorrichtung (14) angehoben wird; und eine Einrichtung zum Steuern der Betriebsabläufe der Behälterkörperhandhabungsvorrichtung (14) und der Kappenhandhabungsvorrichtung (16) zum Positionieren der Kappe (13) relativ zu der Kappenhandhabungsvorrichtung (16) auf Grundlage der ermittelten Bezugssfläche.

20. Kappenöffnungssystem nach Anspruch 19, wobei die Kappe (13) eine Oberseite (13A) aufweist und die Bezugssfläche die Oberseite (13A) der Kappe (13) ist.

21. Kappenöffnungssystem nach Anspruch 20, wobei der Bezugssflächendetektor ein Licht emittierendes Element (86) und ein Licht empfangendes Element (84) umfasst, die auf gegenüberliegenden Seiten des Anhebe- und Absenkpfads der Kappe (13) so angeordnet sind, dass ein optischer Strahl (203) zwischen den Licht empfangenden und Licht emittierenden Elementen (84, 86) verläuft, wobei die Oberseite (13A) der Kappe (13) unter Nutzung der Unterbrechung des optischen Strahls (203) durch die Kappe (13) ermittelt wird.

22. Kappenöffnungssystem nach Anspruch 21, wobei die Oberseite (13A) der Kappe (13) einen zentralen Abschnitt und einen Randabchnitt aufweist, der in einer Position zu liegen kommt, die ausgehend vom zentralen Abschnitt in horizontaler Richtung verschoben ist, wobei die Licht empfangenden und Licht emittierenden Elemente (84, 86) so angeordnet sind, dass der optische Strahl (203) über den Randabschnitt verläuft, wodurch die Oberseite (13A) der Kappe (13) ungeachtet der Form des zentralen Abschnitts der Oberseite (13A) der Kappe (13) ermittelbar ist.

23. Kappenöffnungssystem nach Anspruch 19, wobei der Steuerabschnitt die Höhe festlegt, auf der die Bezugssfläche durch den Bezugssflächendetektor (83, 203) als Bezugspegel ermittelt wird, woraufhin er den Behälterkörper (12) um eine vorbestimmte Distanz anhebt, wodurch die Kappe (13) relativ zu der Kappenhandhabungsvorrichtung (16) positioniert wird.

24. Kappenöffnungssystem nach Anspruch 19, außerdem aufweisend einen Kappenanwesenheits- oder-abwesenheitsdetektor (18, 204) zum Ermit-
teln der Anwesenheit oder Abwesenheit der Kappe (13).

27. Kappenöffnungssystem nach Anspruch 26, wobei der Kappenanwesenheits- oder -abwesenheitsdetektor (18, 204) einen optischen Reflektionsensor (18) umfasst, der die Anwesenheit oder Abwesenheit eines Gegenstands innerhalb eines vorbestimmten Höhenbereichs ermittelt.

28. Kappenöffnungssystem nach Anspruch 1, wobei die Behälterkörperhandhabungsvorrichtung (14) aufweist:

Ein Paar von Haltemechanismen (64, 66), die in Gegenüberlage zueinander derart angeordnet sind, dass sie vorrückbar und einziehbar sind, um den Behälterkörper (12) eines Behälters zu halten, der durch ein Gestell von gegenüberliegenden Seiten des Behälterkörpers (12) abgestützt ist; und
einen Anhebe- und Absenkmechanismus (34) zum Anheben und Absenken des Paars von Haltemechanismen (64, 66).

29. Kappenöffnungssystem nach Anspruch 1, außerdem aufweisend:

Ein bewegliches Element, auf welchem die Kappenhandhabungsvorrichtung (16) angebracht ist; und
eine Einrichtung zum Antreiben des beweglichen Elements zur Positionierung der Kappenhandhabungsvorrichtung (16) über dem Behälterkörper (12), der durch die Behälterkörperhandhabungsvorrichtung (14) gehalten wird, während die Kappenhandhabungsvorrichtung (16) über einem Kappenentsorgungsabschnitt (24) angeordnet wird, wenn die Kappe (13) entsorgt wird.

30. Kappenöffnungssystem nach Anspruch 29, wobei das bewegliche Element eine Drehplatte (20) umfasst, die zwischen einer ersten Winkelstellung und einer zweiten Winkelstellung drehbar ist, wobei der Drehwinkel der Drehplatte (20) in der ersten Winkelstellung angeordnet wird, wenn die Kappe (13) geöffnet werden soll, und wobei der Drehwinkel der Drehplatte (20) in der zweiten Winkelstellung angeordnet wird, wenn die Kappe (13) entsorgt werden soll.

31. Kappenöffnungssystem nach Anspruch 30, wobei der Kappenanwesenheits- oder -abwesenheitsdetektor (18, 204) auf der Drehplatte (20) angebracht ist, wobei dann, wenn sich die Drehplatte (20) in der ersten Winkelstellung befindet, der Kappenanwesenheits- oder -abwesenheitsdetektor (18, 204) in seiner evakuierten Stellung zu liegen kommt, während dann, wenn sich die Drehplatte (20) in der zweiten Winkelstellung befindet, der Kappenanwesenheits- oder -abwesenheitsdetektor (18, 204) über dem Behälterkörper (12) zu liegen kommt, der durch die Behälterkörperhandhabungsvorrichtung (14) gehalten wird.

Revendications

1. Système d’ouverture de couvercle pour automatiquement ouvrir un couvercle (13) d’un conteneur qui comprend un corps de conteneur (12) et le couvercle (13) fixé à celui-ci, le système comprenant :

un appareil de manipulation de corps de conteneur (14) pour tenir le corps de conteneur (12) du conteneur afin de le lever et de l’abaisser ;

un appareil de manipulation de couvercle (16) agencé au-dessus de l’appareil de manipulation de corps de conteneur (14) pour saisir puis ouvrir le couvercle (13) du conteneur lorsque le corps de conteneur (12) est levé ; et

des moyens de positionnement (84, 86, 203, 18, 204, 410) pour positionner le couvercle (13) par rapport à l’appareil de manipulation de couvercle (16), dans lequel l’appareil de manipulation de couvercle (16) comprend :

un châssis de base (100) ;

une unité rotative (102) prévue de façon rotative par rapport au châssis de base (100) comprenant :

un cadre rotatif (108) ;

un bras rotatif (110) qui est un bras entraîné de façon rotative et prévu de façon à pouvoir avancer ou se rétracter par rapport au cadre rotatif (108) et
Système d'ouverture de couvercle selon la revendication 1, dans lequel la plaque de frein (131) est libérée du cadre rotatif (108) à partir du moment où une force causée par le mouvement de rétraction de l'arbre rotatif (110) après la conversion dépasse la force de rappel des moyens de rappel (136), moyennant quoi l'état limité de rotation du cadre rotatif (108) est libéré.

4. Système d'ouverture de couvercle selon la revendication 1, dans lequel la plaque de frein (131) est en contact avec le cadre rotatif (108).

5. Système d'ouverture de couvercle selon la revendication 1, comprenant en outre des moyens de prévention de rotation (111) pour empêcher la rotation de l'unité rotative (102) lorsque la pluralité de bras (120) est actionnée afin de libérer le couvercle saisi (13), dans lequel par la rotation inverse de l'arbre de rotation (110), la came (112) effectue le mouvement de rétraction par rapport à l'arbre de rotation (110) et l'arbre de rotation (110) effectue le mouvement d'avance.

6. Système d'ouverture de couvercle selon la revendication 5, dans lequel les moyens de prévention de rotation (111) comprennent un élément polygone prévu sur l'unité rotative (102), et une pluralité d'éléments de butée (136, 138) qui butent sur l'élément polygone pour empêcher sa rotation.

7. Système d'ouverture de couvercle selon la revendication 1, dans lequel l'unité rotative (102) comprend un élément de positionnement (410) sur lequel le couvercle (13) est adapté pour venir en butée.

8. Système d'ouverture de couvercle selon la revendication 1, dans lequel le couvercle a une surface de référence, et les moyens de positionnement (410) positionnement le couvercle (13) par rapport à l'appareil de manipulation de couvercle (16) sur la base de la surface de référence du couvercle (13).

9. Système d'ouverture de couvercle selon la revendication 8, dans lequel le couvercle (13) a une surface supérieure (13A) et la surface de référence est la surface supérieure (13A) du couvercle (13).

10. Système d'ouverture de couvercle selon la revendication 9, dans lequel lesdits moyens de positionnement (410) incluent un élément recevant le couvercle (410) contre lequel la surface supérieure du couvercle est adaptée pour buter, ledit élément recevant le couvercle (410) étant agencé sous l'appareil de manipulation de couvercle (16) dans lequel le positionnement du couvercle (13) est effectué par la butée de la surface supérieure (13A) du
11. Système d'ouverture de couvercle selon la révélation 10, dans lequel le premier élément recevant le couvercle (410) a une partie centrale et une partie périphérique, dans laquelle une partie concave (414) est formée dans la partie centrale et une partie en extension (412) est formée dans la partie périphérique de celui-ci.

12. Système d'ouverture de couvercle selon la révélation 11, dans lequel une partie en saillie (13C) est formée sur la partie centrale de la surface supérieure (13A) du couvercle (13), et la partie concave (414) a une taille et une forme qui peuvent recevoir la partie en saillie (13C) à l'intérieur.

13. Système d'ouverture de couvercle selon la révélation 10, dans lequel l'appareil de manipulation de corps de conteneur (14) comprend un dispositif de détection de butée pour détecter la butée de la surface supérieure (13A) du couvercle (13) contre l'élément recevant le couvercle (410), et une section de contrôle pour arrêter l'opération de levage du corps de conteneur (12) lorsque le dispositif de détection de butée détecte la butée.

14. Système d'ouverture de couvercle selon la révélation 10, comprenant en outre des moyens tamps (404) pour amortir l'impact par la butée lorsque la surface supérieure (13A) du couvercle (13) bute contre l'élément recevant le couvercle (410).

15. Système d'ouverture de couvercle selon la révélation 1, dans lequel les moyens de positionnement comprennent un premier capteur (18) qui émet un faisceau vertical (204) le long du chemin d'élévation et d'abaissement du couvercle (13), un second capteur (83) qui émet un faisceau horizontal (203) qui coupe le chemin d'élévation et d'abaissement du couvercle (13) à une hauteur prédéterminée, et des moyens pour déterminer la présence ou l'absence du couvercle (13) sur la base des sorties des premier et second capteurs (18, 83).

16. Système d'ouverture de couvercle selon la révélation 15, dans lequel l'opération d'élévation du corps de conteneur (12) est arrêtée lorsque le faisceau optique horizontal (203) est interrompu, et dans cet état la présence ou l'absence d'un objet dans une plage prédéterminée de hauteur est détectée en utilisant le faisceau optique vertical (204).

17. Système d'ouverture de couvercle selon la révélation 15, dans lequel le premier capteur (18) est positionné au-dessus du corps de conteneur (12) au moins avant que l'opération d'ouverture de couvercle ne soit réalisée.

18. Système d'ouverture de couvercle selon la révélation 17, dans lequel le premier capteur (18) est positionné au-dessus du corps de conteneur (12) à nouveau lorsque l'opération d'ouverture de couvercle a été réalisée.

19. Système d'ouverture de couvercle selon la révélation 1, dans lequel les moyens de positionnement comprennent:

- un détecteur de surface de référence qui détecte une surface de référence du couvercle (13) du conteneur lorsque le corps de conteneur (12) est levé vers le haut par l'appareil de manipulation de corps de conteneur (14) ; et des moyens pour contrôler les opérations de l'appareil de manipulation de corps de conteneur (14) et de l'appareil de manipulation de couvercle (16) pour positionner le couvercle (13) par rapport à l'appareil de manipulation de couvercle (16) en fonction de la surface de référence détectée.

20. Système d'ouverture de couvercle selon la révélation 19, dans lequel le couvercle (13) a une surface supérieure (13A), et la surface de référence est la surface supérieure (13A) du couvercle (13).

21. Système d'ouverture de couvercle selon la révélation 20, dans lequel le détecteur de surface de référence comprend un élément émettant de la lumière (86) et un élément recevant de la lumière (84) agencés sur des côtés opposés du chemin d'élévation et d'abaissement du couvercle (13) afin qu'un faisceau optique (203) passe entre les éléments recevant et émettant de la lumière (84, 86), dans lequel la surface supérieure (13A) du couvercle (13) est détectée en utilisant l'interruption du faisceau optique (203) par le couvercle (13).

22. Système d'ouverture de couvercle selon la révélation 21, dans lequel la surface supérieure (13A) du couvercle (13) a une partie centrale et une partie périphérique qui est située à une position décalée de la partie centrale dans la direction horizontale, dans lequel les éléments recevant et émettant de la lumière (84, 86) sont agencés afin qu'il y ait un faisceau optique (203) passe à travers la partie périphérique, permettant ainsi de déterminer la surface supérieure (13A) du couvercle (13) quelle que soit la forme de la partie centrale de la surface supérieure (13A) du couvercle (13).

23. Système d'ouverture de couvercle selon la révélation 19, dans lequel la section de contrôle fixe
la hauteur à laquelle la surface de référence est détectée par le détecteur de surface de référence (83, 203) comme niveau de référence puis lève le corps du couvercle (12) d’une distance prédéterminée, positionnant ainsi le couvercle (13) par rapport à l’appareil de manipulation de couvercle (16).

24. Système d’ouverture de couvercle selon la revendication 19, comprenant en outre un détecteur de présence ou d’absence de couvercle (18, 204) pour détecter la présence ou l’absence du couvercle (13).

25. Système d’ouverture de couvercle selon la revendication 24, dans lequel le détecteur de présence ou d’absence de couvercle (18, 204) est positionné au-dessus du corps de conteneur (12) au moins avant que l’opération d’ouverture du couvercle ne soit réalisée.

26. Système d’ouverture de couvercle selon la revendication 25, dans lequel le détecteur de présence ou d’absence de couvercle (18, 204) est positionné au-dessus du corps de conteneur (12) à nouveau lorsque l’opération d’ouverture du couvercle a été réalisée.

27. Système d’ouverture de couvercle selon la revendication 26, dans lequel le détecteur de présence ou d’absence de couvercle (18, 204) comprend un capteur optique de type à réflexion (18) qui détecte la présence ou l’absence d’un objet dans une plage déterminée en hauteur.

28. Système d’ouverture de couvercle selon la revendication 1, dans lequel l’appareil de manipulation de corps de conteneur (14) comprend :

- une paire de mécanismes de maintien (64, 66) qui sont agencés l’un à l’opposé de l’autre afin de pouvoir avancer ou se rétracter, pour tenir un corps de conteneur (12) d’un conteneur qui est supporté par un bâti depuis les côtés opposés du corps de conteneur (12) ; et

- un mécanisme d’élévation et d’abaissement pour élever et abaisser la paire de mécanismes de maintien (64, 66).

29. Système d’ouverture de couvercle selon la revendication 1, comprenant en outre :

- un élément mobile sur lequel l’appareil de manipulation de couvercle (16) est monté ; et

- des moyens pour entraîner l’élément mobile afin de positionner l’appareil de manipulation de couvercle (16) au-dessus du corps de con-

teneur (12) qui est tenu par l’appareil de manipulation de corps de conteneur (16) lorsque le couvercle (13) doit être, tout en positionnant l’appareil de manipulation de couvercle (16), au-dessus d’une section de mise au rebut de couvercle (24) pour mettre au rebut le couvercle (13).

30. Système d’ouverture de couvercle selon la revendication 29, dans lequel l’élément mobile comprend une plaque rotative (20) qui peut tourner entre une première position angulaire et une seconde position angulaire, dans lequel l’angle de rotation de la plaque rotative (20) est fixé à la première position angulaire lorsque le couvercle (13) doit être ouvert et l’angle de rotation de la plaque rotative (20) est fixé à la seconde position angulaire lors de la mise au rebut du couvercle (13).

31. Système d’ouverture de couvercle selon la revendication 30, dans lequel le détecteur de présence ou d’absence de couvercle (18, 204) est monté sur la plaque rotative (20), dans lequel lorsque la plaque rotative (20) est dans la première position angulaire, le détecteur de présence ou d’absence de couvercle (18, 204) est positionné à sa position évacuée, alors que lorsque la plaque rotative (20) est dans la seconde position angulaire, le détecteur de présence ou d’absence de couvercle (18, 204) est positionné au-dessus du corps de conteneur (12) tenu par l’appareil de manipulation de corps de conteneur (14).
Fig. 11
Start

Rotation of Internal Unit Is Prevented S301

Reverse Rotation Is Begun S302

Rotation Shaft Is Lowered Nut Member Is Raised S303

Releasing Cap S304

Reverse Rotation Is Stopped S305

End

Fig. 12
Fig. 15